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Abstract. This article describes the implementation of grid refinement in the I[COsahedral Nonhydrostatic ICON) modeling
system. It basically follows the classical two-way-nesting approach known from widely used mesoscale models like MM5
or WREF, but differs in the way how feedback from fine grids to coarser grids is applied. Moreover, the ICON implementa-
tion supports vertical nesting in the sense that the upper boundary of a nested domain may be lower than that of its parent
domain. Compared to the well-established implementations on quadrilateral grids, new methods had to be developed for in-
terpolating the lateral boundary conditions from the parent domain to the child domain(s). These are based on radial basis

functions (RBFs) and partly apply direct reconstruction of the prognostic variables at the required grid points, whereas gradient-

based extrapolation from parent to child grid points is used in other cases. The-technical-implementation-on-the-unstruetured

The run-time flow control is written such that limited-area domains can be processed identically to nested domains except

for the lateral boundary data supply. To demonstrate the functionality and quality of the grid nesting in ICON, idealized tests

based on the Jablonowski-Williamson test case (Jablonowski and Williamson, 2006) and the Schir mountain wave test case

006)-(Schir et al., 2002) are pre-
sented. The results show that the numerical disturbances induced at the nest boundaries are small enough to be negligible for
real applications. This is confirmed by experiments closely following the configuration used for operational numerical weather
prediction at DWD, which demonstrate that a regional refinement over Europe has a significant positive impact on the forecast

quality in the northern hemisphere.

1 Introduction

The ICON (ICOsahedral Nonhydrostatic) modeling framework is jointly developed by the German Weather Service (DWD),
the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Center (DKRZ) and the Karlsruhe In-
stitute for Technology (KIT), targeting a unified global numerical weather prediction (NWP) and climate modeling system
(GCM). The development work started in 2004 with basic research on the model grid and the numerical formulation of the
dynamical core in a highly idealized shallow-water framework (Bonaventura and Ringler, 2005; Ripodas et al., 2009). The next
step was the implementation of a hydrostatic dynamical core using the same model equations, time-integration scheme, and

vertical discretization as the spectral transform ECHAM model (Wan et al., 2013). This work focused on investigating the ef-
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fects of the different horizontal grid formulation (icosahedral vs. spherical harmonics) and provided the basis for a first version
with full physics coupling. In parallel, nonhydrostatic dynamical cores were developed on hexagonal grids (Gassmann and Her-
zog, 2008; Gassmann, 2013) and triangular grids (Zingl et al., 2015). As discussed in Gassmann (2011) and Danilov (2012),
C-grid type triangular discretizations suffer from a spurious computational mode, which manifests itself in a rapidly oscillating
checkerboard pattern in the horizontal divergence field, giving rise to numerical stability problems. To date, this problem is
lacking a rigorous mathematical solution. However, Zingl et al. (2015) showed that the problem could largely be mitigated
by a specific averaging of the velocity components entering the divergence operator. This pragmatic solution ;-together-with
the-fact-that-allowed to retain the triangular C-grid discretization. Moreover, a triangular grid proved to be more suitable for
implementing a two-way grid nesting capability than a hexagonal one S at ¢ i izati

=

Triangular cells can be recursively partitioned into successively smaller triangles, which leads to a unique relationship between
parent and child cells. For hexagons, however, this is not the case, as the majority of child cells is shared between two adjacent
parent cells. To our knowledge, this is one aspect that makes two-way grid refinement approaches developed for hexagonal
grids significantly more complex (e.g. Dubos and Kevlahan, 2013).

Despite impressive advances in computational power over the last decades, the application of global models with uniform,
convection-permitting resolution on weather or even climate timescales is still too costly to be performed on a regular basis. To
date, high-resolution limited-area-limited-area models (LAM) serve as a cost-effective alternative for exploring the meso- and
microscale, and will continue to serve as a working horse for both the NWP and climate community. Limited-area-Limited-area
models have proven successful, but they are known to have conceptional deficiencies, such as the potential ill-posedness of
lateral boundary conditions (Davies, 2014), possible inconsistencies with the driving model in terms of the governing equations,
numerical formulations or physical parameterizations, and the lack of regional-to-global scale interactions (Warner et al., 1997).
In order to mitigate these deficiencies, a number of methods have been considered to achieve locally enhanced resolution in
global models.

The oldest approach dating back more than 40 years is the usage of stretched grids (Schmidt, 1977; Staniforth and Mitchell,
1978). The so-called Schmidt transformation allows for enhanced resolution in a particular region of interest by redistributing
the grid points of an initially uniform model grid. This approach has proven successful in various NWP and climate applica-
tions. A review on GCM applications is provided, e.g. by Fox-Rabinovitz et al. (2008), and Goto et al. (2015) discuss a more
recent NWP application using NICAM, which is based on a modified Schmidt transformation on an icosahedral grid (Tomita,
2008). Grid stretching obviates the need for lateral boundary conditions, and it allows for an immediate interaction between
global and regional scales. Probably the largest drawback of this method is the fact that grid points can only be redistributed
rather than created. Enhancing the resolution in one region of the globe implies a coarsening in another region. Besides the in-
evitable coarsening itself, the insufficient resolution of disturbances passing through the coarsened region may also negatively
affect the simulation in the refined region.

More recently, global models using locally refined unstructured meshes have been developed. Unlike the grid stretching
approach, they allow new grid cells to be added in regionts)regions of interest (static h-refinement). This approach is pursued,
for example, by the Model for Prediction Across Scales (MPAS) (Skamarock et al., 2012), or the spectral element dynamical
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core of the Community Atmosphere Model (CAM) (Zarzycki et al., 2014). Albeit being much more flexible, this approach

has-to-cope-with-faces similar challenges as the grid stretching approach mentioned previously;regarding-numerical-efficiency
and-the-suitability-of the-physteal-parameterization-suite—The-. In both approaches, the time step is restricted by the smallest

cell in the domain, unless specific measures like substepping are taken for individual cells or regions, or horizontally implicit
numerical methods are chosen. Depending-on-thezoomfactorMoreover, care must be taken that the parameterizations are
applicable on a wide range of scales, and turn off gradually when the respective processes become resolved on the model grid
(such as the convection parameterization in the gray zone). The development of scale aware parameterizations poses major
challenges and is an area of active research (Gross et al., 2018). However, notable progress in terms of scale awareness has
been reported e.g. for the CAMS5 parameterization suite, when compared to CAM4 (Gettelman et al., 2018).

The approach we are pursuing closely resembles traditional two-way nesting, as known from many regional mesoscale
models such as MMS (Grell et al., 1994) or WRF (Skamarock et al., 2019). Two-way nesting differs from the previous
single-grid approaches by the fact that multiple grids of different resolution are overlaid inte-onto each other, such that in-
dividual points on the globe are covered by more than one prognostic grid cell. Scale interaction can be ensured by feed-
ing the nested-grid-nested-grid solution back to the underlying parent grid at regular time intervals. Similar to LAMs, this
method requires lateral boundary conditions to be specified for every nested domain, and it may suffer from spurious wave
reflections at nest boundaries due to the abrupt reselution—jump-jump in resolution. On the other hand, it allows many model
settings to be chosen individually for each domain, which improves numerical efficiency and reduces the requirements con-
cerning the parameterization suite. Distinct time steps can be chosen for each domain, allowing e.g. a proportional reduc-
tion in refined domains in order to meet stability constraints. The parameterizations can be tuned individually for each do-
main and resolution, or even switched off, relaxing the requirement of scale awareness to some degree. While two-way
nesting has been successfully applied in limited-area modeling since decades, it is still much less common in global mod-
eling. Focusing on recent global models which are being used in research or operational forecasting, the authors are only

aware of the two-way nesting approach implemented in the High

erid-(Harris-and-Ein; 2043, 2044)Geophysical Fluid Dynamics Laboratory (GFDL)’s Finite-Volume Cubed-Sphere Dynamical
Core (FV3) (Harris and Lin, 2013, 2014; Mouallem et al., 2022).

The purpose of this article is to describe the implementation of grid nesting in ICON. Compared to previous two-way-nesting

approaches, it is the first implementation on triangular grids and it-differs in the way how feedback from fine grids to coarser
grids is realized. In addition, the ICON implementation allows for vertical nesting in the sense that the upper boundary of a
nested domain may be lower than that of the parent domain, which is not supported by most previous nesting implementations
in other models. Without specific discussion, we note that a limited-area mode is available in ICON as a by-product of the
grid-nesting-grid nesting implementation, differing from nesting only in the way how the lateral boundary conditions are pro-
vided. A detailed description the grid-nesting-grid nesting implementation will be provided in Sect. 2, followed by application

examples in Sect. 3. A brief summary will be given in Sect. 4.
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2 Domain Nesting in ICON'
2.1 Description of the Basic Design

The understanding of ICON’s nesting implementation requires some basic knowledge of ICON’s mathematical-physical de-
sign. We therefore start by summarizing key elements of the dynamical core, time stepping and physics-dynamics coupling
scheme. ICON’s dynamical core solves the fully compressible, nonhydrostatic Euler equations on the sphere, using either the
shallow or deep atmosphere formulation (Borchert et al., 2019). The spatial discretization is performed on an unstructured
icosahedral-triangular Arakawa-C grid in the horizontal, and a terrain following height-based SLEVE coordinate (Leuenberger
et al., 2010) with Lorenz-type staggering in the vertical. As described in Zingl et al. (2015), the prognostic variables encompass
the edge-normal horizontal wind speed v,,, vertical wind speed w, total air density p, virtual potential temperature 6,,, and mass
fractions gj, of various moisture quantities. See Fig. €1 3-in Wan et al. (2013) for the variable placement on the triangular grid.
The two-time-level predictor-corrector time integration scheme is fully explicit except for the terms describing the vertical
propagation of sound waves, which are treated implicitly (Zéangl et al., 2015). Hence, the permitted integration time step is
comparatively small and constrained by the ratio of the speed of sound to the horizontal mesh size.

To optimize computational efficiency, different integration time steps are used for the dynamical core on the one hand and
additional sub-grid physical processes (and tracer transport) on the other hand. The time steps will be denoted by A7 for the
dynamical core and At for physics. The dynamical core is sub-stepped with respect to physical processes, with a single physics
time step consisting of 5 dynamics substeps by default (nsubs = At/AT =5).

The physics-dynamics coupling scheme in ICON further distinguishes between fast physical processes, having a time scale
shorter than or comparable to the time step At, and slow processes, which are considered to have a time scale large compared
to At. Processes that fall into the category fast are saturation adjustment, grid scale microphysics or turbulent diffusion, while
examples of slow processes are convection and radiation. Fast processes are integrated with the previously defined time step
At, whereas slow processes may be integrated with process-specific larger time steps that are an integer multiple of At. We
therefore call the time step At the fast physics time step. The-fact-that-As the tracer transport is performed at A¢ as well, in

combination-with-the-wishfor-we apply the coupling of nested domains at At for both dynamics and tracer variables because
this simplifies maintaining consistency with continuity (Gross et al., 2002) i i : i

JA ho han A~

is required to provide time-averaged mass fluxes (averaged over the substeps) for tracer transport at nest lateral boundaries
(see Sect 2.2.1), and to ensure that the child-to-parent feedback increments for partial densities pg; sum up to the feedback
The static mesh refinement in ICON is accomplished using a-mutti-grid-appreachmultiple individual grids, where one or

more higher resolution (child) domains are overlaid on a coarser base (parent) domain. The base domain can be a regional or
a global domain. Model integration on the child domain is performed in addition to that on the underlying part of the parent

domain, i.e. there is no "hole’ in the parent domain where the child domain is eenteredlocated.

'Some elements of this description have already been published in the ICON User tutorial (Prill et al., 2020).
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Figure 1. Basic structure of a nested (or limited-area) domain, exemplified by a section of domain 2 shown in the upper left. Orange:

boundary interpolation zone, having a fixed width of 4 cell rows. Ocher: nudging zone with adjustable width, only active for one-way nesting
and in }imited-area-limited-area mode. Blue and light-blue: €hitd-to-parent-child-to-parent feedback zone. Light-blue: Anethernest overlap

region, i.e. a region for which a higher resolution child domain everlapping-with-the-depieted-exists (see domain 3 in the schematic on the
upper left). Prognostic computations are restricted to the feedback and nudging zone. Black-and-white-integers-Integers indicate the internal
indexing of domain 2 which is used to assign cells and edges to individual zones. More details on the indexing and the indicated sorting of

cell rows are given in Appendix-the Appendices Al and A2.

Each child domain has a defined parent domain providing lateral boundary conditions, but a parent domain can have several
child domains. The child domains can be located in different geographical regions and can also serve as parent domains for
further subdomains, but domains having the same parent are not allowed to overtap—They-share the same parent grid cells
because this would lead to ambiguities in combination with two-way nesting, Nested domains may also be switched on or off
during runtime. Conceptually, the number of nested domains is arbitrary and controlled by the grid files provided as input, but
of course not all choices would make sense from a physical point of view. Each domain can be regarded as a-separate-instance
separate instances of the same model that are coupled to each other, using the same numerical operators and filters, time
integration scheme and physics-dynamics coupling. If desired, however, different physical settings can be chosen individually
for each domain. For example, radiation can be called more frequently on subdomains, or eonveetion-can-bereduced-by-stronger
entratnmentthe convection scheme can be tuned differently or even be switched off completely.

The refinement ratio between the parent domain and a child domain is fixed to a value of 2, as each parent triangle is split

into 4 child triangles (see the right part of Fig. 1). While higher refinement ratios would technically be possible, we decided

for this restriction because it reduces the risk for numerical artifacts (e.g. by partial wave reflection) along nest boundaries.
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Consistent with the refinement ratio of 2, the model integration time step At is multiplied by a factor of 0.5 for each additional
nesting level. The coupling time step between successive nesting levels is the fast physics time step At.

The parent-child coupling can be either one-way or two-way. A mixture of one-way and two-way coupled domains is also
possible. Two-way versus one-way coupling means that the prognostic variables on the child domain are transferred back to the
coarser parent domain at regular time intervals using a dedicated feedback mechanism. As a result, the solution on the parent
domain benefits from the higher resolution of the child domain. In case of one-way nesting, the feedback is switched off.

To perform the coupling, we conceptionally split any nested domain into three zones, which we call the boundary inter-
polation zone, the nudging zone and the feedback zone. In order to identify grid points belonging to these zones, cells, edges
and vertices are indexed according to their distance from the boundary (see Appendix A1l for details). These zones along with
the grid point indexing are depicted in Fig. 1, which shows part of the boundary region and inner region of a nested domain.
Limited-area domains are treated technically like one-way nested domains except for the fact that the boundary interpolation
zone is filled with external input data rather than data interpolated from the parent domain.

The boundary interpolation zone

is-is non-prognostic, and is meant
to store the boundary conditions that are necessary to solve the governing equations in the child domain. Boundary conditions
are needed for the prognostic variables v,,, w, p, 6,, and gi. By a dedicated boundary update mechanism (see Sect. 2.2.1 for

details), both the prognostic variables and their time tendencies are interpolated from the parent to the child domain, and the

boundary conditions are updated at every child fast-physies-timestep-At—time step. The boundary interpolation zone has a

fixed width of 4 cell rows. This is motivated by the technical constraint that the boundary zone needs to match with parent cell
rows (i.e. an odd number of cell rows is not allowed), combined with the fact that 2 cell rows would not be sufficient to cover

all stencil operations performed in the dynamical core. For example, the V*-diffusion operator (Zingl et al., 2015) requires

information from three adjacent cell rows. We note that halving the size of the boundary interpolation zone would be possible
by modifying some stencil operations near the lateral boundary, such as replacing V* with V2. However, this would have no

impact on computational efficiency in practical applications with MPI domain decomposition (see Appendix A2).
The nudging zone, which is active in the case of one-way nesting only, serves to damp differences between the driving

solution in the adjacent boundary interpolation zone and the prognostic solution in the child domain. Essentially, the prognostic
model state of the child domain is relaxed (nudged) to the parent state, following the traditional Newtonian-relaxation approach
described by Davies (1976). Details of the implementation are provided in Sect. 2.2.3. For two-way nesting, no nudging is
applied and the boundary interpolation zone borders on the feedback zone.

In the feedback zone, the model state on the parent domain is relaxed towards the updated model state on the child domain at
every fast physics time step At,, of the parent domain. We refer to this as relaxation-type feedback. As a result, the parent and
child domains remain tightly coupled, and the solution on the parent domain benefits from the enhanced resolution of the child
domain. Feedback is applied to the prognostic variables v,,, w, p, 8,, as well as to the mass fractions of water vapour g¢,,, cloud

water q., and cloud ice ¢;. Child-to-parent feedback has already been successfully applied in mesoscale models like MM5
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(Grell et al., 1994) or WRF (Skamarock et al., 2019), as well as in global simulations based on a cubed-sphere grid (Harris and
Lin, 2013). However, our approach differs in the sense that the parent state is relaxed towards the child state with an adjustable
timescale, rather than being overwritten by the child state. Compared to the conventional direct feedback, which is available as
an option in ICON as well, the relaxation feedback has the advantage of generating less numerical disturbances near vertical
nest interfaces, leading to slightly better forecast quality in NWP applications (without vertical nesting, the quality difference
is small). In addition, the relaxation feedback requires no adjustment of the model orography at the parent grid level, which is

more convenient if nested domains are turned on or off during runtime. See Sect. 2.2.2 for further details.
2.2 Parent-Child Coupling
2.2.1 Lateral Boundary Update: Parent — Child

The boundary update mechanism provides the child domain with up-to-date lateral boundary conditions for the prognostic
variables v, w, p, 0, qx. In order to prevent parent-to-child interpolated values of p from entering the solution of the mass
continuity equation, the above set of variables is extended by the horizontal mass flux pv,,. This will allow for parent-child
mass flux consistency, as described below. For the subsequent description of the algorithm, let the model state on the parent
and child domain be denoted by M and M, respectively, where n specifies the time step index.

In general, the boundary update works as follows: Let 7, w;}“ represent a prognostic variable on the parent domain at

time steps n and n + 1, respectively. Once the variables on the parent domain M,, have been updated from n to n 4+ 1, the time

tendency
Oy _ Wyt Uy
o At

is diagnosed. Both the field ¢, at time level n and the tendency Bgf are then interpolated (downscaled) from the parent grid

cells/edges to the corresponding cells/edges of the child domain’s boundary zone (orange cells in Fig. 1). With Z,,_, . denoting

the interpolation operator, we get

1/’2 =ZIpse (1/)2)
Y
o = Lo (m) :

The interpolated tendencies are needed in order to provide the lateral boundary conditions at the right time levels, since two
integration steps are necessary on the child domain in order to reach the model state M7, with each step consisting of several
(typically 5) dynamics sub-steps. The temporal update is performed at each dynamics sub-step A7, for the prognostic variables
of the dynamical core and at each large step At, for the tracer variables. As an example, the boundary conditions at the first
dynamics sub-step of the first and second (fast physics) integration step on the child domain read ¢ and ¥ +0.5 At,, 0. /0t,
respectively.

Concerning the interpolation operator Z,,_,., we distinguish between cell-based variables (i.e. scalars) and edge-based vari-

ables (v, and pvy,). For cell-based variables, a 2D horizontal gradient is reconstructed at the parent cell eenter-circumcenter by
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first computing edge-normal gradients at edge midpoints, followed by a 9-point reconstruction of the 2D gradient at the cell
center based on radial basis functions (Narcowich and Ward, 1994). The interpolated value at the jth child cell center is then

calculated as

Ve, = ¥p+ Vi -d(p,cy), vje{l...4}, 0

with V4, denoting the horizontal gradient at the parent cell center, and d(p, ¢;) the distance vector between the parent and jth
child cell center. The same operator is applied to eel-based-cell-based tendencies.

To prevent excessive over- and undershoots of ., in the vicinity of strong gradients, a limiter for Vi, is implemented. It
ensures that
1
B

on all four child points, where v, i, and 1), .« denote the minimum and maximum of 1), respectively, on the above-

Ypmin < Pe; < BUp max Vje{l...4}

mentioned reconstruction stencil including the local cell center, and 8 = 1.05 is a tuning parameter. To minimize interpolation
errors above steep orography, perturbations from the reference state (Zéangl et al., 2015) rather than the full values are inter-
polated for the thermodynamic variables p and 6,,. In addition, the interpolation operator Z,_,. is also applied to the model
orography in the boundary interpolation zone in the setup phase of the model (before calculating the vertical grid) in order
to ensure consistency of the model grids even if different raw data sets have been used to generate the model orographies. To
allow a smooth transition to the orography in the interior of the nested domain, a linear blending with a width of eight cell rows
(as for the above-mentioned nudging zone) is applied.

Regarding the interpolation of edge-based variables (i.e. the edge-normal vector components v,, and pv,,), we distinguish
between outer child edges coinciding with the edges of the parent cell, and inner child edges (see Fig. 2a).

Edge-normal vector components at the inner child edges are reconstructed using a direct RBF reconstruction based upon
the five-point stencil indicated by solid red dots in Fig. 2a. For a given inner child edge the stencil comprises the edges of the
corresponding parent cell, and the two edges of the neighboring parent cells that (approximately) share the orientation of the
inner child edge.

For the outer child edges, a more sophisticated reconstruction is applied in order to ensure that the mass flux across a parent
edge equals the sum of the mass fluxes across the corresponding child edges. We start with an RBF reconstruction of the
2D vector of the respective variable at the parent triangle vertices (blue triangles in Fig. 2b), using the six (five at pentagon

peintsthe original vertices of the icosahedron, the pentagon points) edge points adjacent to a vertex (red dots).
The edge-normal vector component ¢ at the child edge is then computed as

¢ce = (bp +Vt¢p : d(pace)a Ve € {1,2}7 (2)

with d(p, c.) denoting the distance vector between the parent and child edge midpoints for a given parent edge, and V¢,
denoting the gradient of the edge-normal vector component ¢,, tangential to the parent edge. The latter is computed by pro-

jecting the reconstructed 2D vectors at the two vertices of an edge onto the edge-normal direction and taking the centered
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Figure 2. Horizontal reconstruction stencil for edge-normal vector components at (a) inner child edges and (b) outer child edges. The
child edge under consideration is highlighted in red. Black open dots indicate child edge midpoints, while black solid dots indicate cell
circumcenters. Solid red dots represent the reconstruction stencil, i.e. the location of the parent edge-normal vector components entering the

reconstruction, and blue triangles in (b) indicate the location of the reconstructed 2D vectors. See the text for details.

difference. Since by construction d(p,c1) = —d(p, c2) holds on the ICON grid, the above-mentioned-above-mentioned mass
flux consistency is ensured. It is noted that attempts to use higher-order polynomial interpolation methods, which are the stan-
dard in mesoscale models with regular quadrilateral grids, were unsuccessful on the triangular ICON grid, because the ensuing
equation system leads to the inversion of nearly singular matrices.

Rather than interpolating v,, and its time tendency, only the time tendency is interpolated, and then used to update v,, at
child level at every dynamics time step. The wind field v,, itself is interpolated only once during the initialization of the child
domain. This methodology has been chosen because the comparatively inaccurate interpolation to the interior child edges
tends to induce small-scale noise in v,,. To suppress the remaining noise arising from the interpolation of the time tendency, a
second-order diffusion operator is applied in the inner half of the boundary interpolation zone on v,,, and the default fourth-
order diffusion applied in the prognostic part of the model domain (Zingl et al., 2015) is enhanced in the-up to five grid rows

adjacent to the interpolation zone by an amount exponentially decaying with distance from the boundary. For the second-order
diffusion, a coefficient of 0.005 a,

with At means that the amount of diffusion is effectively independent from the time step. This proved to be sufficient to

suppress the development of spurious disturbances even in the data assimilation cycle, which turned out to be the most critical
application mode in this respect. For the other prognostic variables, no special filtering is applied near nest boundaries. In the

case of one-way nesting, the second-order velocity diffusion is extended into the nudging zone of the nested domain, replacing

the enhanced fourth-order diffusion. More details on the nudging zone are given in Sect 2.2.3.
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For the horizontal mass flux pv,,, the time average over the dynamic sub-steps is interpolated instead of time level n, as the
time averaged mass flux is used by the tracer transport scheme in order to achieve consistency with continuity. Using the mass
flux time tendency that is interpolated as well, the related time shift is corrected for when applying the boundary mass fluxes
at the child level. In the nested domain, the interpolated mass fluxes valid for the current time step are then prescribed at the
interface edges separating the boundary interpolation zone from the prognostic part of the nested domain (edges nr. 9 in Fig. 1).
Due to the flux-form scheme used for solving the continuity equation (Zéngl et al., 2015), this implies that the interpolated
values of p do not enter into any prognostic computations in the dynamical core. They are needed, however, for flux limiter
computations in the transport scheme. Moreover, no mass fluxes at interior child edges are used, so that the non-conservative
interpolation method used for those edges does not affect the model’s conservation properties. For 6, and the tracer variables
g, the values at the edges are reconstructed in the usual manner following Eq. 26-(20) in Zingl et al. (2015) and then multiplied

with the interpolated mass fluxes before computing the flux divergences.
2.2.2 Feedback: Child — Parent

If two-way nesting is activated, the model state M;}*l on the parent domain is relaxed towards the updated model state M +1
on the child domain at every parent fast physics time step At,,. This relaxation-type feedback is only applied to the prognostic
variables v,,, w, 8, p plus specific humidity ¢, and the specific contents of cloud water ¢. and cloud ice g;. Precipitating
hydrometeors are excluded because recommended relaxation time scales (see below) are larger than their typical falling times.
Surface variables are excluded as well because they can easily adjust during runtime, and the tile approach used in ICON’s
land-surface module would require a rather complicated algorithm to avoid inconsistencies.

Let ¢ denote any of the above variables. Conceptually, the feedback mechanism is based on the following three steps:

1. Upscaling: The updated variable 1?1 is interpolated (upscaled) from the child domain to the parent domain. The
upscaling operators for eel-based-and-edge-based-cell-based and edge-based variables will be denoted by Z._,;,, and

Z¢_,,, respectively.

2. Difference computation: The difference between the parent-domain variable wl’,“rl and the upscaled child variable

Ze—p (¢ F1) is computed.

c

3. Relaxation: The variable on the parent domain is relaxed towards the upscaled child-domain variable by an increment

that is proportional to the difference computed in step 2.

For edge-based-edge-based normal velocity v,,, a-simple-the arithmetic average of the two child edges lying on the parent

edge is taken.

. 1
Ic%p(vn,c) = 5 [Un,echildl + Un,echiia2 (3)

10
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For eell-based-cell-based variables the upscaling consists of a modified barycentric interpolation from the four child cells to

the corresponding parent cell:

Teo(be) =Y gt @)

The weights «; are derived from the following constraints (5)—(7). First of all, a necessary property for the interpolation
operator is that it reproduces constant fields, i.e. the weights are normalized:

4
ijl a; =1. 5
Moreover, the interpolation shall be linear: With the four child cell circumcenters x; (j = 1,...,4), and x,, denoting the parent

cell center, i.e. the interpolation target, we set

ijlaj(wj —x,)=0. (6)

To motivate this constraint, consider the special case of equilateral triangles in which the center point of the inner child cell 4
coincides with the parent center such that the term (z1 — x,) vanishes. Equation (6) then defines a barycentric interpolation
within the triangle spanned by the mass points of the three outer child cells {cz,c3,¢4} (see Fig. 2a), where the weights
{2, a3, 04} represent the barycentric coordinates. Generally, the constraints and-(5) and (6) ensure reversibility in the sense
that Z._,,, (Z,—.) returns the original parent cell value irrespective of the reconstructed gradient.

Of course, the contribution of the point x; closest to the interpolation target is of particular importance. Therefore, the
underdetermined system of equations (5), (6) is closed with a final constraint which reads as

ap = e (7
ap

where a., and a, denote the inner child and parent cell areas, respectively. In other words, the inner child cell ¢; containing
the parent cell circumcenter is given a pre-defined weight corresponding to its fractional area coverage. This can be interpreted
as a conservation constraint for the special case of a very localized signal at the mass point of the inner child cell.

In summary, this method can be regarded as a modified barycentric interpolation for the mass points {2, 3,24}, which
accounts for x; as an additional fourth source point. A more stringent barycentric interpolation would require an additional
triangulation based on the child mass points.

We note that the eell-based-cell-based operator Z._, ), is not strictly mass-conserving and that strict mass conservation would
require some means of area-weighted aggregation from the child cells to the parent cells, which is available as an option.

The problem-difficulty with such methods on the ICON grid is related to the fact that the mass points lie in the circumcenter

rather than the barycenter of the triangular cells. Using-These points coincide on planar equilateral triangles, but they do not

on general spherical triangles, the differences being largest in the vicinity of the pentagon points. Due to this fact, using an
area-weighted aggregation from the child cells to the parent cells thus-would map linear horizontal gradients on the child grid

into a checkerboard noise pattern between upward and downward oriented triangles on the parent grid.
Another difficulty that was encountered in the context of mass conservation is related to the fact that the density decreases

roughly exponentially with height. In the presence of orography, the atmospheric mass resolved on the model grid therefore
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increases with decreasing mesh size, assuming the usual area-weighted aggregation of the orographic raw data to the model
grid. Feeding back p is thus intrinsically non-conservative. To keep the related errors small and non-systematic, and to generally
reduce the numerical errors over steep mountains, perturbations from the reference state are used for upscaling p and 6, to
the parent grid. A closer investigation of the related conservation errors revealed that the previously mentioned differences
between bilinear and area-weighted averaging are unimpertant-negligible (with real orography) compared to the mesh-size-
related conservation error.

When combining the above-mentioned-above-mentioned steps, the feedback mechanism for p can be cast into the following

form:

.o At . §

Here p;j“ denotes the parent-cell density, which has already been updated by dynamics and physics. The superscript “x‘
signifies the final solution including the feedback increment. At,, is the fast physics time step on the parent domain, and 7 is
a user-defined relaxation time scale that has a default value of 77, = 10800s and is independent of the relaxed field. The smaller
Trp, the more-faster the parent state is drawn towards the child state. The chosen default value is optimized for our typical NWP
applications and aims at filtering small-scale transient features from the feedback, while fully capturing synoptic-scale features.

Finally note that the upscaled density includes the correction term Apzs7A peorr, Which has been introduced to account for
height differences between the child and parent cell circumcenters. At locations with mountainous orography, the heights at
parent cell circumcenters can differ markedly from those at the corresponding child cells. Without an appropriate correction,

the feedback process would introduce a noticeable bias in the parent domain’s mass field. The correction term is given by
Apcorreor = (1.05 = 0.005Zcyp (6,51)) Apres pretp
with the parent-child difference in-of the reference density field

Apr'ef;pri&g) = Ic%p(prefﬁcr’e\ff) - pref.pr’e\f/,\? )

and the potential temperature perturbation ¢4 =frtl—@ o p 0/ = 071 — 0, 1o . The term AprerA preg.p 1S a pure
function of the parent-child height difference and can be viewed as a leading-order correction term. As a further optimization,
the empirical factor (1.05 — 0.005Z..,,,(6."*')) was added, which means that the correction is roughly proportional to the ac-
tual air density. We further note that a possibly more accurate and less ad hoc approach would require a conservative remapping
step in the vertical, prior to the horizontal upscaling.

Care is required in order to achieve consistency with continuity. For this purpose, feedback is not implemented for the tracer

mass fractions directly, but for partial densities. Building upon the implementation for p, we get

(par)y = (p@r)p '+ =2 | Zemsp (P2 = Apeorreor)dpt ') — (par)p ™ ©9)
Tfb ~ ’
Mass fractions are re-diagnosed thereafter:
(pak);,
qk,p = - z
Pp
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By summing Eq. (9) over all partial densities, we recover Eq. (8) for the total density.
A very similar approach is used for 6,. As for p, only the increment of 6, is upscaled from the ehild—child domain to the
parent domain and added to the parent reference profile fy7e7 50y rer.p.

At,
9: re 63;1 - E < (*P(eiznjl) + 6, vref,pvref,p = 0&;1)

The same approach is taken for w, however the full field is upscaled.

At,,
* +1 +1 n+1
wp w™ + be (Icﬁp( n ) g )

In the case of v,, some second-order diffusion is added to the ensuing feedback increment in order to damp small-scale noise.

At,,
vy, =voptl+ . L (Av,, + K V2 (Av,y)) . (10)

with the feedback increment

e n+1 n+1
Avp =1, np

c%p( n,c )_U

ap.e

and the diffusion coefficient K = % AL, , where a,, . is the area of the quadrilateral spanned by the vertices and cell centers

adjacent to the parent’s edge.
2.2.3 Lateral Nudging

If the feedback is turned off, i.e. if one-way nesting is chosen, a nudging of the prognostic child-grid variables towards the
corresponding parent-grid values is needed near the lateral nest boundaries in order to accommodate possible inconsistencies
between the two grids, particularly near the outflow boundary. Nudging is performed every fast physics time step of the child

domain At following Davies (1976), by adding a forcing term to the prognostic equations for v,,, p, 8,, and g, of the form

e 1
ot =RHS+ — At t. Onudge nudge [Zp—w (wp _IC—H?(wC))] )

with the nudging coefficient eémmageuudge, and the term in brackets denoting the nudging increment. Because lateral boundaries
are in general not straight lines on the unstructured ICON grid, attempts to make an explicit distinction between inflow and
outflow boundaries (e.g. by prescribing v,, at inflow boundaries only) were not successful.

To compute the nudging increment, the child-grid variables are first upscaled to the parent grid in the same way as for the
feedback (Eq. (3) and (4)), followed by taking the differences between the parent-grid variables and the upscaled child-grid
variables. The differences are then interpolated back to the child grid using the same methods as for the lateral boundary
conditions (Eq. (1) and (2)). The nudging coefficient epage—yugge decreases exponentially from the inner margin of the

boundary interpolation zone towards the interior of the model domain and is defined as

Aoexp(—’“LT(’), ifr>rqgandr —rqg <L
Qnydgenudge =
0 otherwise,
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with the maximum nudging coefficient Ay, the cell row index r, the nudging zone start index 7o = 5 (see Fig. 1), the nudging
zone width L and the e-folding width p, the latter two defined in units of cell rows. The coefficients Ay, L, and p may be
adjusted by the user, with the default values given by Ag = 0.1, L = 8 cell rows and iz = 2 cell rows. A second-order diffusion
on v, is used near the lateral nest boundaries in order to suppress small-scale noise. As opposed to Eq. (10) for feedback, the

diffusion operator acts on the velocity field itself, rather than the velocity increment.
2.3 Vertical Nesting

The vertical nesting option allows to set model top heights individually for each domain, with the constraints that the child
domain height is lower than or at most equal to the parent domain height, and that the child domain extends into heights where
the coordinate surfaces are flat. This allows, for instance, a global domain extending into the mesosphere to be combined with
a child domain that extends only up to the lower stratosphere, which can save a significant amount of computational resources.
However, a vertical refinement in the sense that the vertical resolution in the child domain may differ from that in the parent
domain is not implemented.

Vertical nesting requires appropriate boundary conditions for all prognostic variables to be specified at the vertical nest
interface level, i.e. the uppermost half level of the nested domain. This is crucial in order to prevent vertically propagating
sound and gravity waves from being spuriously reflected at the nest interface. Boundary-conditions-In the following, boundary
conditions are derived for v,,, w, 8y, p, g, as well as the vertical mass flux pware-derived-asfolows:. We note that the boundary
condition for w is required for the vertically implicit sound wave solver in the dynamics, whereas pw is needed to compute the
vertical flux divergence terms in the prognostic equations for p, w and pg.

Due to the constraints mentioned above, boundary conditions can be derived by horizontal parent-to-child interpolation,

without the need of any boundary interpolation zone extending vertically away from the upper nest boundary. For w, 8, p
and pw the full fields at the nest interface level are horizontally interpolated from the parent to the child grid, using the same

RBF based interpolation method as for the lateral boundary conditions (Eq. (1)). Rather than interpolating instantaneous values
as for the lateral boundaries, w, 6, p, and pw are averaged over all dynamics substeps constituting a fast physics time step,
in order to filter oscillations related to vertically propagating sound waves. Hence, for ¢ € {w, 0., p, pw} the parent-to-child
parent-to-child interpolated field reads

nsubs
— 1
=T, E n+s/nsubs 11
wc p— (nsubs ~ rlsz ) ) ( )

with s denoting an individual dynamics substep, and nsubs denoting the total number of substeps. We apply the same interpo-
lation method to the corresponding time tendencies 01, /9t, which are estimated by taking the difference of the state variables
at the substeps s = 1 and s = nsubs. This enables us to perform a linear interpolation in time, in order to provide the boundary
conditions at approximately the right time levels for every dynamics substep on the child domain.

A slightly different approach is taken for v,,, which turned out to be beneficial in order to reduce the magnitude of the
horizontal interpolation errors. The differences between the nest interface level and the next half level below (denoted as Awv,, ,,

in the following) are interpolated rather than the full field, using again the same methods as for the lateral boundary conditions.
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After interpolating Av, , to the child domain, it is added to v,, . at the second interface level (k = 3/2) on the child domain,
in order to obtain the upper boundary condition, i.e.

1
Une(k=1/2) =vnc(k=3/2)+ Ly (2

(Ao, + Avg;;l)> .
Since Aw, is less strongly affected by sound waves, only an average between the first and the last dynamics substep is taken
prior to the interpolation. The temporal interpolation is neglected.

For the tracer variables we refrain from interpolating the partial mass fluxes (pwqy), directly, in order to ensure tracer- and
air mass consistency. Instead, we make use of the already-interpetated-mass-flux{pw - vertical mass flux boundary condition
(pw),. and multiply it with proper mass fractions. On the parent domain the required mass fractions are derived by taking the
ratio of the vertical tracer mass flux at the nest interface level calculated in the vertical tracer transport scheme (pwgy), and

the available mass flux (pw),. The mass fractions are then interpolated to the child domain, using Eq. (1). Hence, the flux

boundary condition for an arbitrary tracer field g;, reads

(pqu)p>

(prk)c = (W)czp—)c ( (Pw)p

with (pw),. computed via Eq. (11). We note that due to the lack of g; values above the nest upper boundary (lack of a bounda
interpolation zone), the flux computation for scalars at the second interface level (k = 3/2) is only stable for vertical Courant

numbers O, = |wi|At,./Azp|—3/9 < 1, with Az denoting the vertical layer thickness.

2.4 Recursive Algorithm for Multi-domain Setups

Sofar-we-

The previous sections have focused on the coupling of an-individual-parent-and-a single child domain. The eeupling
iple-and-possibly-repeatedlynested-domains—requires—a—well-coneeived-processingsequenee;—whose-basies-nesting
capability of ICON, however, is not limited to a single domain but supports multiple nests at the same level and multi-level
nesting, as well as a combination of both. In the literature, multi-level nesting is also referred to as telescoping nesting
Mouallem et al., 2022). An example of multiple same-level nesting will be provided in Sect. 3.1, while for multi-level nestin
we refer to the ICON simulations in Weimer et al. (2021), where a three-domain three-level setup has been used to investigate
mountain-wave induced polar stratospheric clouds.
The coupling of multiple same-level nested domains with a parent domain is rather straightforward. as it only requires the
Sect. 2.2.1-2.2.2) to be applied sequentially for each nest. The coupling strate
nested domains is probably less obvious and will be described in-the-followinghere for clarity, and in order to complement

Figure 3 displays a schematic-examplebasic multi-level nesting example, where a global domain is combined with two
successively (two-way) nested domains. The global domain is indicated at the bottom, and the nested domains are vertically

single-nest coupling strate for repeatedl

staggered on top of it. The red and blue regions show the boundary interpolation zones and feedback zones of the individual

15



440

445

450

455

Nest #2 At/4
Nest #1 At/2

Boundary d