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Abstract. Transferability of knowledge from well-investigated areas to a new study region is gaining importance in landslide 

hazard research. Considering the time-consuming compilation of landslide inventories as a prerequisite for landslide 

susceptibility mapping, model transferability can be key to making hazard-related information available to stakeholders in a 

timely manner. In this paper, we compare and combine two important transfer-learning strategies for landslide susceptibility 

modelling: case-based reasoning (CBR) and domain adaptation (DA). CBR gathers knowledge from previous similar situations 10 

(source areas) and applies it to solve a new problem (target area). DA, which is widely used in computer vision, selects data 

from a source area that has a similar distribution to the target area. We assess the performances of single- and multiple-source 

CBR, DA and CBR-DA strategies to train and combine landslide susceptibility models using generalized additive models 

(GAMs) for 10 study areas with various resolutions (1 m, 10 m and 25 m) located in Austria, Ecuador, and Italy. The 

performance evaluation shows that CBR and combined CBR-DA based on our proposed similarity criterion was able to achieve 15 

performances comparable to benchmark models trained in the target area itself. Particularly the CBR strategies yielded 

favorable results in both single- and multi-source strategies. DA tended to have overall lower performances than CBR; yet, it 

had promising results in scenarios where the source-target similarity was low. We recommend that future transfer learning 

research for landslide susceptibility modelling can build on the similarity criterion we used, as it successfully helped to transfer 

landslide susceptibility models by identifying suitable source regions for model training. 20 
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1 Introduction 

Landslides are among the most common and severe natural hazards in mountain areas. Globally, the destruction caused by 

landslides continues to have severe impacts on human activity and life (Froude and Petley, 2018; Haque et al., 2019). Landslide 

susceptibility mapping, the modelling of areas prone to landslide occurrence, is an effective method to assist land managers in 

decision making aimed at minimizing landslide risk. These models are typically data-driven and rely heavily on terrain 25 

characteristics to capture conditions that can lead to landslide occurrence (Goetz et al 2015; Reichenbach et al., 2018). One of 

the most challenging aspects of building data-driven landslide susceptibility models is establishing the landslide inventory data 

for model training and testing (Lin et al., 2021). Landslide inventories from different areas and time periods can provide 

relevant knowledge for predictive landslide susceptibility modelling (Petschko et al., 2016). In the case that a region has 

insufficient landslide data to produce a susceptibility model, previous studies in ecology and on landslides have demonstrated 30 

that model transfers can aid in predicting susceptibility in adjacent regions (i.e., regional susceptibility modelling), as well as 

allowing us to improve process understanding (Wenger and Olden, 2012; Sequeira et al., 2016; Rudy et al., 2016).  

Machine learning is currently the most applied method for solving the problem of landslide prediction (Goetz et al., 2015; 

Kavzoglu et al., 2019; Merghadi et al., 2020). Traditional machine learning operates on the condition that the training and test 

data are taken from the same input feature space and data distribution (Pan, 2014). In the case of spatial and temporal 35 

predictions, this means that most fitted machine learning models are limited to the spatial and temporal bounds of the input 

data. Thus, when extrapolating or transferring traditional machine-learning models to new spatial and temporal domains, model 

performance can be degraded due to differences in feature space and/or data distributions (Shimodaira, 2000; Pan and Yang, 

2010; Yates et al., 2018).  

A successful model transfer does not necessarily rely solely on the extent of geographic or temporal separation, but rather on 40 

the similarity of the environmental conditions between the source and target areas (Yates et al 2018). The field of transfer 

learning offers various techniques to exploit this observation, which have yet to be fully utilized by the geospatial modelling 

communities – including landslide susceptibility modelling. For example, Wang et al. (2022) combined deep learning and 

transfer learning for landslide assessments in Hong Kong and obtained good prediction results. Xu et al. (2022) demonstrated 

landslide model transfers for regions with earthquake-induced landslides. Qin et al. (2020) applied distant domain transfer 45 

learning for landslide detection in the city of Shenzhen, Guangdong province, China. However, these studies required training 

samples from the target region, which may lead to problems, such as the timing of sample acquisition, and whether the selected 

sample can correctly characterize the entire region. Thus, unsupervised transfer learning is highly attractive in landslide 

assessments. Zhu et al. (2020) proposed unsupervised feature learning and improved landslide susceptibility model transfer 

performance in Chongqing, China. These studies were based on landslide data and predictors from the same or adjacent areas 50 

with the same spatial resolution as the target area: i.e., their environmental characteristics and data distributions were highly 
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similar, which may not always be the case. It is therefore necessary to find more suitable landslide transfer-learning methods 

without the limitation of scale and spatial resolution. Transfer learning techniques such as domain adaptation (DA) and case-

based reasoning (CBR) are emerging techniques to tackle the challenge of model transfer. In general, they have been developed 

to select the most suitable data and corresponding models from source areas with similar data characteristics for predicting to 55 

a distinct target area in space and time.  

The general concept of transfer learning is to solve new problems by applying knowledge gained from previous experiences 

solving similar problems. That is, transfer learning has the potential to allow us to take existing knowledge of landslide 

occurrence from previous modelling experiences and apply it to new locations lacking any landslide data. Thus, this approach 

has great potential to minimize the considerable time and effort needed for building landslide inventories for susceptibility 60 

modelling in new areas, especially in large and geographically remote areas where landslide mapping and detection is 

particularly challenging.  

In CBR, we consider multiple landslide inventories from various source areas, each of which contains a large amount of 

information. The problem is that not all inventories (so-called ‘cases’) are suitable for training a model that can be applied to 

the new target task. Also, processing the large amount of information for each case is time-consuming. Therefore, it is desirable 65 

to compare the overall characteristics of each case to transfer the appropriate knowledge. CBR is a method to solve these 

problems by identifying similar cases and applying them to a new target area. This CBR similarity analysis can be performed 

by considering various attributes, such as data structure and topographic characteristics (Shi et al. 2004; Qin et al. 2016; Liang 

et al. 2020; Liang et al. 2021). In contrast, instead of finding best cases using the overall similarity of source areas to a target, 

which is done by CBR, DA transfer learning techniques can be applied to select the observations within a source area that 70 

match the data distribution of the target area. Previous applications of CBR in the geosciences have focused on selecting one 

source area to transfer to a target area (Qin et al 2016; Liang et al 2021). Yet, there is also potential for using CBR and DA to 

combine cases from multiple source areas to generate transferable models.  

The objective of this study is to assess the potential of transfer learning using CBR and DA techniques for enhancing model 

transferability of machine-learning landslide susceptibility models. We evaluate the performance of transferred susceptibility 75 

models using DA, CBR and a combined CBR-DA technique, as well as the sensitivity of these methods to spatial resolution. 

We consider two scenarios for training landslide susceptibility models: only one source area available (single-source) and 

multiple source areas available for model training (multi-source). We examine both scenarios and compare them to benchmark 

situations, where susceptibility models are applied to a new target area without using transfer learning techniques. 

2 Methods and Data 80 

In transfer learning, the general goal is to train a model 𝑓 on data from one or multiple source areas 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑁} to make 

predictions in an unseen target area 𝑇 with 𝑁𝑡 observations regardless of spatial and temporal differences. A source area 𝑆𝑖 
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consists of 𝑁𝑆𝑖
 observations of a set of predictors, x𝑗, and the corresponding labels 𝑦𝑗 (e.g., landslide or non-landslide), 𝑗 =

1, . . . , 𝑁𝑆𝑖
. 

 85 

Figure 1: Flow chart of transfer modelling strategies and benchmarks for landslide susceptibility mapping in a target area. Case-

based reasoning (CBR) involves selection and weighting steps. In the single-source situation, weighting does not apply. Domain 

adaptation (DA) can be used by itself or combined with CBR to select source areas. 

Altogether, we evaluate five different transfer learning strategies for landslide susceptibility modelling that consider the use 

of data from a single or multiple source areas, which are applied to CBR, DA, and both combined (CBR-DA) (Fig. 1). To 90 

assess the relative performance of the transfer learning strategies, we include benchmark landslide susceptibility models that 

are simply trained using data from a single source area (single-source transfer benchmark), multiple source areas (multi-source 

transfer benchmark), and the target area (target benchmark), and then applied to the target area. In the case where multiple 

source areas were used, the benchmark transfer model was calculated by averaging the model predictions of multiple source 

areas without weighting (Table 2). The target benchmark, which is trained and tested with all target data, is meant to represent 95 

an overoptimistic yet potentially obtainable performance for a given target area. 

In this section, we first introduce the general CBR and DA methods separately (sections 2.1 and 2.2). We then explain how 

CBR and DA models as well as the combined CBR-DA approach are trained and tested in this work (section 2.3). The data 

used for demonstrating the proposed approaches is then briefly presented, referring the readers to the relevant literature for 

more details (section 2.4). 100 
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2.1 Case-based reasoning method 

In machine learning, CBR is one of the most well-known methods for solving a new problem by referring to similar cases, 

which can translate the knowledge from geographical space to parameter space (Shi et al., 2004; Shi et al., 2009; Hammond, 

2012). It finds cases in a data collection that are similar to the current case in terms of metadata and/or data distribution, and 

then adopts those similar cases for training models (Liang et al., 2020a). This method has been reported to reduce the users’ 105 

modelling efforts while achieving good performances in use cases involving terrain attributes (Qin et al., 2016; Liang et al., 

2020b).  

CBR strategies are designed to find source areas 𝑆 =  {𝑆1, 𝑆2, … , 𝑆𝑘} that are most similar to the target area based on statistical 

summary information and metadata; these selected areas are referred to as related areas. In generating a CBR model, the 

individual models trained on the selected source areas are combined as a weighted sum 110 

𝒇(𝐱) = ∑ 𝒘𝒊𝒇𝒊(𝐱)𝒌
𝒊=𝟏  (1) 

whose weights 𝑤𝑖  correspond to similarity scores and are normalized to sum up to 1. The individual models 𝑓𝑖 may be trained 

using conventional sampling strategies as well as DA strategies, both of which are described below in detail.  

Generally, CBR consists of the case problem and the corresponding case solution parts (Qin et al., 2016; Liang et al., 2020b). 

In our study, the challenge of formalizing the similarity of areas in landslide susceptibility modelling is to contrive a way to 115 

adequately describe the data and areas' contextual information, such as how a study area's spatial data can describe the pattern 

of landslide occurrence.  

In applying CBR, it is first necessary to define and calculate similarity measures for relevant attributes that describe the data 

distributions of the source and target areas. In this study, we chose geological characteristics, spatial resolution, and 

topographic characteristics. Similarities in each attribute were estimated based on a similarity function (Table 1).  120 

The geological characteristics of a region are an essential factor that influences multiple landslide conditioning factors such as 

the geomechanical and hydrological properties of hillslopes (Segoni et al., 2020). Considering the difficulties in matching 

geological descriptors such as heterogeneous chronostratigraphic units in different areas, we chose a simplified approach as a 

first-order approximation. Specifically, we used an indicator method that is based on whether the main rock types (igneous, 

sedimentary, and volcanic rocks) coincide in source and target areas.  125 

Topographic conditions were described by measures of total relief, standard deviation of slope angle, and mean slope angle 

(Wang et al., 2019). Total relief describes the overall terrain situation of a study area by subtracting the minimum elevation 

from the maximum elevation within the study area. The relief, which reflects the macroscopic characteristics of surface 

topography in a large area, has been found to describe well landslide susceptibility (Wang et al., 2010). The standard deviation 

of slope is used to describe the topographic complexity of a study area. It is one of the most influential topographic variables 130 

in landslide susceptibility studies (e.g., Van Den Eeckhaut et al., 2012).  
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Table 1 Similarity functions for the attributes used in CBR to identify related source areas: Geological characteristics, data 

characteristics, and topographic characteristics of study area 

Factor group 
 

Attribute Similarity function Description 

Geological 

characteristics 

 Igneous 𝑺𝒊𝒎 =
𝟏

𝟑
∑ 𝑰𝒈𝒈   where 𝐼𝑔 = 1if unit 𝑔 present or 

absent in the source and the 

target area, and 0 otherwise.  

Sedimentary 

Metamorphic 

Data 

characteristics 

 Resolution [m]  𝑺𝒊𝒎 = 𝟐−(𝟐|𝒍𝒐𝒈𝟏𝟎 𝑹𝒕−𝒍𝒐𝒈𝟏𝟎 𝑹𝐬|)𝟎.𝟓
  

 𝑜𝑟 𝑺𝒊𝒎 = 𝟏             

where the similarity is 1 if the 

resolution of source area is 

smaller than in the target area, 

otherwise 𝑆𝑖𝑚 . R is the DEM 

resolution. 

Topographic 

characteristics 

 
Total relief [m] 𝑺𝒊𝒎 = 𝟏 −

| 𝑹𝒆𝒍𝒊𝒆𝒇𝒕−𝑹𝒆𝒍𝒊𝒆𝒇𝑺|

𝐦𝐚𝐱(𝟖𝟖𝟒𝟖−𝑹𝒆𝒍𝒊𝒆𝒇𝒕, 𝑹𝒆𝒍𝒊𝒆𝒇𝒕)
   where Relief is the total relief. 

Standard deviation of slope 𝑺𝒊𝒎 = 𝟐−(𝟐|𝒍𝒐𝒈𝟏𝟎 𝑺𝒅𝒕−𝒍𝒐𝒈𝟏𝟎 𝑺𝒅𝑺|)𝟎.𝟓
                 where Sd is the standard 

deviation of slope angle. 

Mean slope [º] 𝑺𝒊𝒎 = 𝟏 −
| 𝑺𝒍𝒐𝒑𝒆𝒕−𝑺𝒍𝒐𝒑𝒆𝑺|

𝐦𝐚𝐱(𝟒𝟎°−𝑺𝒍𝒐𝒑𝒆𝒕, 𝑺𝒍𝒐𝒑𝒆𝒕)
      where Slope is the mean slope. 

Note: Sim is the similarity of each individual attribute between the target area t and a source area S, which is in [0,1]. The following 

constants were used for normalization: 8848 m is the elevation of Mount Everest. For mean slope, 40° can properly cover the mean 135 
slope in all study areas. 

The similarity values obtained for each factor were combined into a single indicator by taking their minimum value (Zhu and 

Band, 1994; Qin et al., 2009; Qin et al., 2016). In this study, for a given target area we referred to source areas that have an 

overall (i.e., minimum) similarity score ≥ 0.65 as related source areas. 

2.2 Domain Adaptation 140 

The general machine-learning approach of domain adaptation (DA) aims to solve a learning problem in the target area by 

utilizing data from different source areas to construct a learning sample (Wang and Deng, 2018). At first, a latent feature space 

is defined in which the source and target areas have the same distribution; as a consequence, classifiers trained on labelled data 

from source areas are likely to perform well in the corresponding target area (Baktashmotlagh et al., 2013; Patel et al., 2015; 

Wilson and Cook, 2020). There are supervised DA techniques that require labelled data from the target area, and unsupervised 145 

methods that do not require such data (Ben-David et al., 2010; Courty et al., 2017). We adopt unsupervised DA in our study 

because its smaller data requirements seem more appealing for practical applications.  

DA used in our study is a strategy for selecting instances 𝐷𝑖  ⊂  𝑆𝑖 (i.e., sample locations or grid cells for training) from a 

source area 𝑆𝑖 in such a way that their distribution is more similar to the target area’s data distribution. In situations with 

multiple source areas, DA is applied to each of them independently to obtain instance sets 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑘} on which k 150 

models are trained. The predictions from these models are either averaged (referred to as “plain” DA), or a weighted average 

is calculated when combined with source-area selection from CBR. DA is conventionally used as a single-source strategy, 

which is also included in this study for comparison, although multi-source strategies may seem more appealing in real-world 

applications. 
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Many DA strategies for transferring or weighting features can result in models that are difficult to interpret in terms of the 155 

physical process’s modelled influence on the response. Also, not all instances from different source areas may be suitable for 

transfer to a target area (Jiang and Zhai, 2007; Gong et al., 2013; Long et al., 2013). Thus, the landmark-based domain 

adaptation (LBDA) approach (Gong et al., 2013) was applied in our study. This method selects the instances (or landmarks) 

from source areas with the same or similar distribution as the target area without creating new predictors. It aims at minimizing 

the difference in sample means in latent feature space.  160 

In our study, considering computational constraints, a randomly selected set of 50,000 unlabeled (landslide and non-landslide) 

points 𝑥𝑛 from the target area were used as reference points, and were compared to a randomly selected set of 30,000 labelled 

(𝑥𝑆,𝑚, 𝑦S,𝑚) (landslide and non-landslide) points from the source area 𝑆 as reference points from which to select a subset with 

similar data distribution as the target area. In the case of some of the smaller source areas in our study, all observations were 

used for subset selection. 165 

DA selects training data by formally solving the optimization problem 

 

𝒎𝒊𝒏 ‖
𝟏

∑ 𝜶𝑺,𝒎
𝑵𝑺
𝒎=𝟏

∑ 𝜶𝑺,𝒎𝝓(𝒙𝑺,𝒎)
𝑵𝑺
𝒎=𝟏 −

𝟏

𝑵𝒕

∑ 𝝓(𝒙𝒕,𝒏)
𝑵𝒕
𝒏=𝟏 ‖

𝑯

𝟐

 (2) 

 

subject to 
𝟏

∑ 𝜶𝑺,𝒎
𝑪
𝒎=𝟏

∑ 𝜶𝑺,𝒎𝒚𝑺,𝒎
𝑪
𝒎=𝟏 =

𝟏

𝑵𝑺

∑ 𝒚𝑺,𝒎
𝑪
𝒎=𝟏  (3) 170 

 

where indicator variables 𝛼 = {𝛼𝑚 ∈ {0,1}, m =  1, . . . , 𝑵𝑆 } are used to judge whether a landslide/non-landslide point in the 

source area is a landmark for minimizing the difference between source and target areas in the latent feature space. When 𝛼𝑚 

is 1, (𝑥𝑆,𝑚, 𝑦𝑆,𝑚) is regarded as a landmark, that is, a landslide/non-landslide point that can provide valuable information for 

the landslide susceptibility model of the target area. In order to determine an optimal 𝛼, it is necessary to apply a selection 175 

threshold (for a quantity 𝛽 in Gong et al., 2013); we chose 1/𝑁𝑆 as this would allow us to select all source points as landmarks 

in the ideal situation where the source and target areas have identical latent feature space distributions. Furthermore, 𝜙 is a 

nonlinear feature function to map x to a Reproducing Kernel Hilbert Space (Gretton et al., 2006). Following Gong et al. (2013, 

2017), Gaussian RBF kernels are used for 𝜙 in our study. And C is the number of landslide or non-landslide points. The 

collection 𝛼 is chosen so that the quantity in eq. (2) is minimized, that is, the difference is minimized. Eq. (3) is the constraint 180 

that considers the distribution of labels in the selected landmarks. This problem can be solved efficiently with convex 

optimization.  
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Table 2 Transfer strategies and benchmarks adopted in our study. 

Transfer Strategies Final predictive model 𝒇 Description 

Single source area with DA 
(single-source DA) 

𝒇𝒊(𝑫𝒊) 
The final prediction model is trained on the DA-derived subset of data 
from each source area. 

Single source area with CBR 

(single-source CBR) 
𝒇(𝑺𝒉𝒊𝒈𝒉𝒆𝒔𝒕) 

The final prediction model is trained using all data from the most 

strongly related source area. 

Multiple source areas only with 
CBR (multi-source CBR) 

∑ 𝒘𝒊𝒇𝒊(𝑺𝒊)
𝒌

𝒊=𝟏
 

The final prediction model is the weighted mean of different predictive 
models trained on the k related source areas. 

Multiple source areas only with 
DA (multi-source DA) 

𝟏

𝑵
∑ 𝒇𝒊(𝑫𝒊)

𝑵

𝒊=𝟏
 

The final prediction model is the average of predictions from all 

landslide models trained on the DA-selected data from different 

source areas. 

Multiple source areas with CBR 

and DA (multi-source CBR-

DA) 
∑ 𝒘𝒊𝒇𝒊(𝑫𝒊)

𝒌

𝒊=𝟏
 

The final prediction model is the weighted mean of predictions from 

landslide models trained on the DA-selected data from the k related 

source areas. 

Benchmarks   

Multiple source areas without 
CBR and DA (multi-source 

transfer benchmark) 

𝟏

𝑵
∑ 𝒇𝒊(𝑺𝒊)

𝑵

𝒊=𝟏
 

The final prediction model is the average of predictions from all 

landslide models trained on different source areas. 

Single source area without CBR 
and DA (single-source transfer 

benchmark) 
𝒇𝒊(𝑺𝒊) The final prediction model is trained on a (specific) single source area. 

Target benchmark 𝒇(𝑻) 
The final prediction model is trained on data from the target area itself 

(only for comparison – not a model transfer situation). 

2.3 Susceptibility model training and testing 

The transfer learning strategies were applied using generalized additive models (GAM) for susceptibility modelling. The 185 

logistic GAM, which performs a binomial classification of the absence/presence of landslides, has been well established as a 

method suitable for landslide susceptibility (Goetz et al., 2011; Petschko, 2014; Conrad et al., 2015; Bordoni et al., 2020). In 

fitting our model, we assumed the feature space is the same for source and target areas. We therefore only used common 

predictors of landslide susceptibility (Goetz et al., 2015) that are available in all source and target areas, which include local 

slope angle, plan and profile curvature, catchment slope angle, and upslope contributing area. These terrain attributes are 190 

intended to act as proxies for destabilizing forces (slope, catchment slope angle), water availability (logarithm of upslope 

contributing area and concave curvatures), and exposure to wind (convex curvatures), as well as general variability in 

characteristics of soil and vegetation (Muenchow et al., 2012). 

We used the mgcv package (Wood, 2006) for GAM modelling. We set the dimension of the basis used to represent the smooth 

term k as 4. Since it can be difficult to separate landslide scarp and body from medium to low-resolution data (Dou et al., 195 

2020), landslide presence points were randomly sampled from the entire landslide polygon and non-landslide points were 

randomly sampled from the area where the mapped landslides were excluded. At the same time, landslides that are smaller 

than one grid cell were excluded in our study. 

In turn, each study area was used as a target area. The landslide label data from the target area was not involved in the training 

process of all strategies embedded in CBR, DA or CBR-DA. Model performance was assessed using test data only within a 200 



9 

 

target area. The training data set was composed of an equal number of landslide and non-landslide observations. These 

landslide and non-landslide grid cells were obtained from the whole study area, or a subset of the study area based on DA.  

Altogether, we explored five CBR and DA strategies for susceptibility modelling based on single and multiple sources areas, 

which are summarized in Table 2. In our implementation of CBR, only source areas related to the target area were used for 

modelling, where we defined related areas as source areas that had a (minimum) similarity score ≥ 0.65. In the case of DA 205 

(without CBR), multi-source models were created for all N source areas, excluding the target area. The final susceptibility 

models for multi-source CBR, DA and CBR-DA strategies were based on combining model predictions from multiple source 

areas (described in Table 2). 

The area under the receiver operating characteristic (ROC) curve (AUROC) (Hosmer et al., 2013) was used to assess the 

predictive performance of the transferred models based on their predictions in the target area. In choosing the AUROC, we 210 

treated model predictions as relative scores instead of actual probability estimates, which is common practice in landslide 

susceptibility modelling. 

2.4 Case study transfer source and target areas 

We demonstrated the application of CBR and DA for transfer learning using ten case study areas for source and target areas 

from three distinct geographic regions (Fig. 2): the Andes of southern Ecuador (the Reserva Biológica San Francisco (RBSF) 215 

area, and a highway corridor; Muenchow et al., 2012; Brenning et al., 2015), the Emilia Romagna Region in northern Italy 

(Bologna, Modena, Parma, Piacenza, and Rimini areas; Rossi et al., 2010; Segoni et al., 2018; Piacentini et al., 2018; Ciccarese 

et al., 2021), and eastern Austria (Burgenland, Waidhofen and Paldau areas; Gasser et al., 2009; Petschko et al., 2012; Knevels 

et al., 2019; Knevels et al., 2020). Rainfall is considered the main trigger of landslides in all study areas. 

All study areas have similar types of igneous rocks (e.g., basalt), sedimentary rocks (e.g., sandstone) and metamorphic rocks 220 

(e.g., schist), except that the RBSF area has no igneous and sedimentary rocks. The above references provide additional detailed 

information on the study areas. We also summarized the geological information of all study areas in Table A1 in the Appendix. 



10 

 

 

Figure 2: Overview of study areas for landslide susceptibility mapping in our study. The study areas are shown as DEM map in the 

same scale. Landslide inventories of study areas are shown as blue polygons. From top to bottom, study areas are from Austria, 225 
Ecuador, and Italy. Map extents correspond to study areas, with the exception of the Ecuador highway area, where the study area 

is limited to a 300 m buffer on both sides of the highways and outside urban areas. 

In our study, DEMs with different resolutions were available for the Austrian, Italian, and Ecuadorian study areas. For Ecuador, 

the 10 m × 10 m DEMs were produced by E. Jordan and L. Ungerechts (Düsseldorf), for Italy an EU-DEM with a 25 m × 25 

m resolution was used, and an airborne LiDAR-derived digital terrain model (DTM) with a 1 m × 1 m resolution was available 230 

for the Austrian areas from the governments of Styria and Burgenland. Landslide inventories in our study were provided by J. 

Muenchow (Erlangen) for Ecuador, who also did a more detailed study in Muenchow et al. (2012). Additional information can 

furthermore be found in SGSS (2019) for Emilia Romagna Region, Knevels et al. (2019) for Burgenland, and Knevels et al. 

(2020) for Waidhofen and Paldau. For the Emilia Romagna Region, we chose the subset of landslides labelled as active. 

We furthermore resampled the DEMs with 1 m resolution to 10 m and 25 m, and the data with 10 m resolution to 25 m in 235 

order to use up to three dataset versions to mimic various mismatches in target and source resolution. Resampling was based 

on B-spline interpolation in SAGA (System for Automated Geoscientific Analysis) GIS 7.4.0 (Conrad et al., 2015). Overall, 

we therefore had 17 datasets (Table 3). For brevity we combined the place name with the resolution, e.g., Waidhofen 10 for 

Waidhofen with a 10 m resolution. 
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Table 3 Summary of the landslide data sets used in this study 240 

Study Areas Resolution(m) 
Number of 

Landslide 

Mean 

Landslide 

Size (m2) 

Main landslide types 
Main triggering 

factor 
Region 

Burgenland 

1 

382 

 

Earth and debris materials 

(Knevels et al., 2019; 
Knevels et al., 2020) 

Rainfall Austria 

Alpine fringe 10* 6330 

25*  

Paldau 

1 

418 

 

Styrian Basin 10* 3879 

25*  

Waidhofen 

1 

621 11235 
Ybbstaler 

Alps 
10* 

25* 

RBSF 
10 

178 733.9 
Shallow landslides 

(Muenchow et al., 2012) 

 
Rainfall Ecuador 

South 
Ecuadorian 

Andes 

25* 

Ecuador 

Highway 
10 1588 2725.4 

Shallow and deep-seated 
landslides (Brenning et al., 

2015) 

Bologna 

25 

1354 33272 

Debris flows (Piacentini et 

al., 2018)  

Rainfall and 

Earthquake 
Italy Italian Alps 

Modena 1240 38816 
Parma 1261 41444 

Piacenza 1583 37502 

Rimini 2229 34679 

* resolution of resampled data 

3 Results 

3.1 CBR similarity analysis 

Mean slope angle and spatial resolution were for the majority of the areas the most limiting and therefore the most influential 

similarity attributes in determining which source areas were related to the target area. For some target areas, multiple similarity 245 

attributes contributed to differentiating candidate source areas, while for others, a single attribute (mean slope or resolution) 

dominated the exclusion of unrelated source areas (Fig. 3). For high-resolution datasets, the resolution attribute was primarily 

responsible for the overall similarity. The combination of spatial resolution and the standard deviation of slope or mean slope 

affected the overall similarity as the resolutions of the source and target areas got closer. In general, as the spatial resolution 

of the target and source areas became coarser, the number of related source areas tended to increase. Mean slope, standard 250 

deviation of slope and geological units had more influence on the overall similarity assessment when resolutions were similar. 

Topographic characteristics and resolution were generally the main attributes that determined the overall similarity. 

Most of the target areas (14 out of 17) had one or more related source areas. There were only three cases where the target had 

no related source areas (RBSF 10, 25 and Waidhofen 1), two cases with only one source area, and twelve with multiple related 

source areas (Fig. 4). Target areas with a resolution of 25 m tended to have a larger number of related source areas. Some 255 

target areas had related source areas in different geographic regions (e.g., Italian Alps and Burgenland). 
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Three representative target areas were selected to show the contribution of each attribute to the overall similarity because 

similar patterns were observed elsewhere (Figure 3; complete results in Supplementary Material).  

 
Figure 3: Similarity scores for three selected representative target areas (Burgenland 1, Paldau 10 and Bologna 25). Light colours 260 
represent smaller similarities. The overall similarity value of each source area is marked with a black box. 

 
Figure 4: Distribution of related (black points) and unrelated (grey points) source areas for different target areas in the CBR transfer 

learning strategies. Related source areas are defined as having a minimum similarity score ≥ 0.65 (vertical line).  

3.2 Single-source learning 265 

In single-source transfer learning, CBR achieved the highest model performance overall. DA resulted in stronger predictive 

performances only when source and target areas were substantially dissimilar (Fig. 5, 6). The AUROCs obtained by single-

source CBR were always distributed between the median and maximum values of transfer benchmark models and close to the 
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AUROCs obtained by the model trained using only target data (Fig. 5 and Table A2 in Appendix). E.g., when Bologna 25 was 

the target data, the AUROCs of a model trained in the most related source area Piacenza 25 was 0.762 and that of the model 270 

trained with Bologna 25 data itself was also 0.762. Moreover, the majority of median AUROC performances obtained with 

single-source DA were greater than the median AUROC performance of single-source transfer benchmark models (Fig. 5). 

This distribution trend implied to some extent that single-source DA improved performances, which was consistent with the 

results shown in Fig. 6. Specifically, for similarities below 0.27, AUROCs achieved with DA were up to 0.14 higher than 

without it. When the overall similarity of the source area for the target area gradually increased up to ~0.60-0.65, the difference 275 

values were centered at around +0.03. As the overall similarity was greater than 0.65, the AUROCs obtained by single-source 

DA were close to the ones achieved by the single-source transfer benchmark.  

CBR-DA also showed good performances. Its results were located in the upper part of transfer benchmark results (Fig. 5). This 

may be due to the contribution of CBR rather than DA. Throughout all the results, single-source CBR demonstrated more 

stable prediction performances compared to the results obtained by the strategies involving DA. 280 

From this perspective, it can be concluded that by selecting the related areas, CBR was effective in identifying a suitable source 

area that resulted in favorable performances regardless of the use of DA. 

 

Figure 5: Comparison of single-source strategies: AUROCs obtained by models trained on individual source areas with case-based 

reasoning (CBR), domain adaptation (DA), combined CBR-DA, and in the single-source transfer benchmark. 285 
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Figure 6: Similarity scores vs. AUROC differences between models trained on individual source areas with domain adaptation and 

models without domain adaptation (“single-source DA” minus “single-source transfer benchmark”).  

3.3 Multi-source learning 

The strategies that involved CBR had better prediction performances in multi-source transfer learning in comparison to the 290 

multi-source transfer benchmark and multi-source DA (Fig. 7).Multi-source CBR obtained good performances regardless of 

the number of related source areas and whether the related source areas were from the same region (Fig. 4 and Fig. 7). However, 

multi-source CBR-DA in general underperformed, usually having predictive performances lower than the multi-source transfer 

benchmark. When comparing the average of AUROCs of different strategies for all target areas in multi-source transfer 

learning, CBR was the best multi-source strategy followed by the transfer benchmark, and CBR-DA, while DA had the worst 295 

multi-source performance. Furthermore, with respect to the stability of the results, multi-source CBR performed best since the 

performances it obtained were always in the top two of all performances obtained by different multi-source transfer learning 

strategies. In contrast, the results obtained for strategies involving DA were highly variable and always inferior to the results 

of the corresponding multi-source transfer benchmark. 
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 300 

Figure 7: AUROCs of models trained on multiple source areas with case-based reasoning (CBR), domain adaptation (DA), combined 

CBR-DA, and the multi-source transfer benchmark (averaged across all source areas) and target benchmark.  

3.4 Comparing single- and multi-source learning 

Single-source CBR was for the majority of target areas the best-performing transfer learning strategy, closely followed by 

multi-source CBR (Fig. 8). Both were located between the median and the maximum of single-source transfer benchmark and 305 

tended to be closer to the maximum, which meant that CBR-based source selection was highly effective at identifying the most 

suitable sources of training data. On average the single-source and multi-source CBR AUROCs were below the overoptimistic 

target benchmark (training and testing in target area) by only ~0.05. The strong performance of CBR in both single- and multi-

source strategies indicated that the most effective transfer learning methods were to train the predictive model using the most 

related source area or performing a weighted combination based on the similarity scores of the predictive models trained on 310 

the most strongly related source areas. 
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Figure 8: Comparison of single- and multi-source CBR strategies and the single-source target benchmark.  

3.5 Comparing susceptibility map appearances 

The best-performing transfer learning strategies (single-source and multi-source CBR and CBR-DA) had spatial patterns of 315 

landslide-prone areas that most resembled the target benchmark (Fig. 9). Strategies with CBR, which considers target-source 

similarity, were able to better avoid falsely detecting landslide prone areas. Using classified landslide susceptibility maps for 

Burgenland 10 as an example, the lower-performing multi-source DA (Fig. 9h) and the multi-source benchmark (Fig. 9e) 

appeared to overpredict susceptibility in some areas (e.g., on alluvial fans) compared to the target benchmark (Fig. 9a) and the 

better-performing CBR-based transfer-learning strategies (Fig. 9c, f, and g). The susceptibly maps also showed that if a single 320 

source area had a high similarity (e.g., Paldau 10 and Burgenland 10) to the target area, DA strategies (Fig. 9d) can also 

properly detect landslide susceptible areas. The difference in landslide-prone areas of single- and multi-source benchmarks 

compared to the target benchmark also indicates that not all source areas were suitable for predicting landslides for unseen 

areas. 

 325 
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Figure 9: An example of classified landslide susceptibility maps for each benchmark and transfer-learning strategy for the 

Burgenland 10 target area. Predicted probabilities were classified into five susceptible levels (very high, high, moderate, low, very 

low) using the top 5th, 10th, 25th and 50th percentile of each strategy’s predictions. The results of single-source CBR and single-330 
source DA are illustrated using models trained on Paldau 10 data. The single-source benchmark result is illustrated using a model 

trained with Waidhofen 10 data. 

4 Discussion 

4.1 Case-based reasoning in landslide assessment studies 

By calculating the similarities between source and target areas to find the most transferable source area(s), CBR is able to 335 

transfer the knowledge from source areas to the target area. In our study, we considered data from a variety of regions, and our 

results provided a comprehensive understanding of the potential of CBR in single- and multi-source transfer learning. 
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Consistent with the literature for digital soil mapping and digital terrain analysis (Qin et al., 2016; Liang et al., 2020a; Liang 

et al., 2021), our results further support the adoption of CBR and provide useful methodological information for landslide 

assessment studies. 340 

CBR may give a fresh insight to improve the understanding of knowledge transfer in landslide susceptibility modelling. It is 

an effective method to capture past experiences to improve the predictive capabilities of models (Wang et al., 2020; Bannour 

et al., 2021). Particularly, it only needs to consider the basic characteristics of the data and the region to quickly match historical 

scenarios to the current study area and thus solve the task at hand. Additionally, the use of CBR to compare similarities between 

datasets makes it possible to reuse existing predictive models. These attractive abilities may benefit landslide mapping for 345 

emergency response as well as landslide susceptibility modelling for hazard mitigation. Moreover, we determined that using 

similarity as the basis for the weight of each related source area and the strategies involved CBR in multiple source areas 

displayed good and robust performance in our study (Fig. 7).  

Until now, model transfer in landslide modelling have usually relied on a homogeneous availability of data and a strong model 

generalization to avoid local overfitting and allow the application of a model in an adjacent target region (Goetz et al., 2011; 350 

Wenger and Olden, 2012; Petschko et al., 2014; Bordoni et al., 2020). Although this approach has been identified as a robust 

method for regional susceptibility modelling, its model transferability is often limited to nearby locations that have the same 

feature space and a nearly identical data distribution. However, when the data distribution is different, the above approach may 

not be effective, even though the training data are from adjacent regions. Yates et al. (2018) have pointed out that the spatial 

and temporal separation may have little impact on model transfers, while environmental dissimilarity and data resolution are 355 

critical factors for successful model transfer. These factors could be considered as the spatial and temporal limits to 

extrapolation in model transfers, as well as for landslide susceptibility model transfers. CBR may be able to handle these limits 

by calculating the overall similarity, indicating the suitability of landslide susceptibility model transfers between different 

study areas. In Fig. 3 and 7 we found that combining data from multiple related source areas with CBR yielded excellent 

results, even though some of the related source areas are from different regions than the target area.  360 

After selecting related source areas, the predictors designed for training the model need to be examined. In our study, we 

assumed that the source and target areas used the same predictors and focused on topographic predictors. However, when the 

source and target areas have different predictors, one of the problems is that topographic predictors are not the only factors 

that play a key role in landslide prediction. Thus, a method should be implemented to select suitable predictors for model 

transfer since not all predictors can be used in the training process. Liang et al. (2021) selected suitable predictors for a new 365 

task by using each model trained by individual predictors of the source area to predict in the target area and concluded that 

this method was effective. However, since they only focused on terrain attributes, it is unclear how this approach would work 

on other predictors such as antecedent rainfall intensity, which, in addition to regional rainfall pattern variations, can strongly 

differ from one region to another. From this perspective, we would suggest future research using CBR transfer learning could 

focus on the selection of features that are more likely transferable. 370 
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4.2 CBR similarity criteria  

The proposed similarity scores in this study based on geologic, topographic and data characteristics (i.e., spatial resolution) 

worked quite well at supporting CBR strategies for identifying the most similar and thus transferable source areas. These 

similarity attributes do not explicitly account for landslide type, which is an important factor to consider when modelling 

landslide susceptibility (Huang and Zhao, 2018). However, geologic attributes and terrain attributes such as slope angle, may 375 

work together as a suitable surrogate to anticipate the most likely landslide types given little to no landslide data in the target 

area. Landslide type information is also difficult to collect and is often lacking in landslide inventories (Mezaal and Pradhan, 

2018). Prior information on unseen areas or integrating expert experience may be helpful in formulating landslide types for 

transfer learning.  

In general, the use of similarity indices can be somewhat arbitrary, as there are currently no clear criteria for how to select 380 

suitable similarity indices. For example, Liang et al. (2020a) analyzed the importance of each attribute for digital soil mapping 

based on previous studies to select the similarity index. Qin et al. (2016) indicated that the similarity indices should be 

structured to effectively represent the contextual information relevant to digital terrain analysis applications, hence the 

similarity indices used were based on knowledge and experience. Wang et al. (2020) selected similarity indices based on their 

importance for disaster situations.  385 

For CBR applied to landslide susceptibility modelling, more elaborate criteria that could be indirectly used to account for 

differences in landslide type could focus on preparatory and triggering conditions such as land use (Steger et al., 2017; Knevels 

et al., 2021), and the density of paved and unpaved road networks (Brenning et al., 2015). Adding more process-related 

similarity indices may lead to improved CBR transfer learning, but this may not be easy to implement across different study 

regions in different countries with different mapping agencies and standards. Therefore, similar to selecting individual features 390 

for landslide susceptibility modelling (without model transfer), we recommend the use of expert knowledge to help guide the 

selection of similarity attributes. 

In terms of choosing related source areas, the minimum operator method worked well in our study and avoided selecting a 

“falsely” related source. However, we did observe a scenario where one area was considered related but the reciprocal area 

not (Paldau and Waidhofen; Fig. 4). As pointed out by Humphreys et al. (2003), when using CBR for similarity evaluation, 395 

the evaluation criterion used may be different in different categories and situations. By analogy, we can assume that the 

threshold settings for similarity may also differ for different attributes in different study areas in landslide assessment studies. 

Additionally, there are other methods to obtain the related area, such as Manhattan distance, grey relational analysis, or k-

nearest neighbors (Dou et al., 2015). 
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4.3 Utility of domain adaptation in geospatial learning and other limitations 400 

Our study showed that DA did not generally improve transfer learning performance in landslide susceptibility modelling. This 

holds true for single-source as well as multi-source DA with and without CBR-based source selection. Nevertheless, DA 

increased the AUROC performance when the source area was rather dissimilar to the target area (Fig. 6), which is less relevant 

in landslide studies that have access to a large and geographically diverse case base. 

It is impressive that models trained on multiple related source areas with CBR and DA showed good performances. For 405 

instance, when Paldau with a 1 m × 1 m, and Burgenland with a 10 m × 10 m resolution were the target areas, AUROCs 

obtained by multi-source CBR-DA were nearly equal to those achieved by the best single-source transfer benchmark and 

higher than the other strategies (Fig. 7). The reason may lie in the improvement of DA through the weighting of source areas. 

A further consideration is to use labelled data from the target area. Fang et al. (2021) proposed a new domain adaptation for 

landslide inventory mapping by considering pre-landslide and post-landslide conditions and concluded that the proposed 410 

method was successful. This new method could be considered as supervised DA in landslide susceptibility mapping. In other 

geospatial learning fields, such as land cover mapping, Mboga et al. (2021) compared two unsupervised domain adaptation 

strategies (the correlation alignment domain adaptation network and the domain adversarial neural network) and found that 

classification performance was improved by adding labelled data from the target area. We suggest that active-learning 

strategies (Wang & Brenning, 2021) could be useful in efficiently generating limited amounts of labelled data for transfer 415 

learning, which should therefore be investigated in a next step. 

Although the study areas cover a wide range of climates with different land cover types and landslide process types, our set of 

source areas is by no means complete and the results may therefore not be fully representative for the performances that might 

be achieved at a global scale. Future work should therefore broaden the database of source areas. 

4.4 The potential of the novel methods for landslide assessment 420 

Deep learning is getting more and more popular in the study of landslide model transfer. For example, Ai et al. (2022) proposed 

a supervised method by combining deep learning and transfer learning for landslide susceptibility modelling. Liu et al. (2021) 

performed landslide classification using VGG-19 and transfer learning based on limited data from the unseen area. Lu et al. 

(2020) mapped landslides based on deep learning and transfer learning. These studies show that deep learning is a potential 

method in landslide model transfer studies, although they are limited to a regional scale or require training data from the target 425 

area.  

Combining CBR with deep learning could be a worthy unsupervised method in landslide assessments. By calculating 

similarities between the target area and source areas and selecting related source areas, deep learning can directly use them to 

train landslide models for the target area, which might avoid the need for tuning hyperparameters. 
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5 Conclusion 430 

The aim of our study was to examine the performances of geographically informed case-based reasoning (CBR) and 

unsupervised domain adaptation (DA) in geographically transferring knowledge for landslide susceptibility modelling in 

“new” target areas without landslide inventory data. We extended the study of landslide model transfers to a larger global scale 

and considered the effect of different spatial resolutions on landslide model transfer. In addition, different scenarios (single 

source area and multiple source areas) were considered, which made methods and results much closer to practical applications 435 

in the real world. Moreover, in the multi-source scenario, we proposed a method to combine multiple landslide models based 

on environmental similarity. Our comparative study revealed that CBR strategies with a single source area and multiple related 

source areas were robust and effective in developing highly transferable landslide susceptibility models without requiring prior 

knowledge of landslides in the target area. In particular, single-source CBR was the most effective method for performing 

model transfer to the target area in most situations. Its performance was also very close to that obtained by models trained with 440 

data from the target area itself. CBR similarity criteria in our study are still preliminary, and data sets used in our study might 

not be enough for an application at a global scale, which should therefore be considered in future research. 

Overall, the findings of this paper demonstrated that the proposed transfer leaning approaches can alleviate the burden of 

collecting and labelling data, resulting in a more expedited preparation of landslide susceptibility maps for large and data-

scarce regions. By calculating the similarity between data and region characteristics, trained models can directly be used for 445 

the new task, especially in situations that require rapid model development, such as emergency situations. We also suggest 

that novel methods such as deep learning may also benefit greatly for landslide model transfer studies. 

Appendix 

Table A1 Information of all study areas 
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 Original dataset 

 Burgenland Paldau Waidhofen 
Ecuador 

highway 
RBSF 

Moden

a 
Parma Piacenza Rimini Bologna 

Slope 

angle (º) 

Min 0 0 0 2.5 0 0 0 0 0 0 

Max 82.5 66.6 87.5 52.9 76.2 67.8 71.8 66.6 64.1 67.2 

Mean 9.2 10.9 19.8 25.3 35.7 13.3 11.8 11.4 8.2 11.5 

Standard 

deviation 
8.2 8.3 10.7 12.2 10.7 6.9 7.5 8.6 6.5 7.9 

Area 

(km2) 
 117.8 39.3 131.3 88 9.6 1293 2576.8 1834.8 921.2 3707.6 

Main 

geologi

cal units 

Igneous ✓ ✓ ✓ ✓   
✓  

Sedimentary ✓ ✓ ✓ ✓  ✓ 

Metamorphi

c 
✓ ✓ ✓ ✓ ✓ ✓ 

Elevatio

n (m) 

Max 766.7 463.1 1114.9 2960.4 3164.2 2141.5 1827.3 1726.3 1399.3 1923.5 

Min 243.1 282.7 324.5 948.8 1714.4 80.7 34.8 49.7 3.8 11.0 

Predictor variables for landslide and non-landslide observations 

Slope 

angle (º) 

Landslides 

median 

(IQR) 

15.9 

(13.95) 

11.36 

(11.63) 

19.05 

(13.84) 

30.02 

(17.43) 

43.37 

(10.67) 

12.08 

(5.64) 

11.03 

(6.49) 

10.81 

(5.83) 

10.17 

(4.93) 

11.2 

(5.5) 

Non-

landslides 

median 

(IQR) 

6.7 

(8.24) 

9.23 

(10.53) 

18.00 

(15.12) 

23.03 

(17.56) 

36.27 

(14.59) 

12.34 

(8.07) 

11.30 

(9.74) 

10.31 

(1.08) 

7.18 

(9.88) 

10.9 

(10.1) 

Plan 

curvatur

e 

(radians 

per 100 

m) 

Landslides 

median 

(IQR) 

-0.001 (0.33) 
0.00136 

(0.39) 

-0.0034 

(0.3648) 

0.00086 

(0.0152) 

-0.017 

(0.052) 

-

0.00124 

(0.0080

4) 

-

0.00102 

(0.0078

5) 

-0.00182 

(0.0081) 

-

0.0021

4 

(0.008

13) 

-0.002 

(0.0079) 

Non-

landslides 

median 

(IQR) 

0.00019 

(0.42) 

0.00294 

(0.46) 

-0.0009 

(0.2762) 

0.00028 

(0.0117) 

0.0054 

(0.043) 

0.00035 

(0.0087

3) 

0.00037 

(0.0093

5) 

0.00027 

(0.00999) 

0.0005

2 

(0.011

18) 

0.0004 

(0.01) 

Profile 

curvatur

e 

(radians 

per 100 

m) 

Landslides 

median 

(IQR) 

-0.0001 

(0.0014) 

0.00025 

(0.08558) 

-0.0015 

(0.1028) 

0.00056 

(0.019) 

-0.0025 

(0.013) 

-

0.00015 

(0.0015

) 

-

0.00014 

(0.0014

3) 

-0.00019 

(0.00135) 

-

0.0001

8 

(0.001

27) 

-0.0002 

(0.0014) 

Non-

landslides 

median 

(IQR) 

0.00024 

(0.05) 

0.00046 

(0.07183) 

-0.0006 

(0.0738) 

-0.00036 

(0.013) 

0.00147 

(0.014) 

-

0.00002 

(0.0017

) 

-

0.00002 

(0.0014

) 

-0.00002 

(0.00132) 

-

0.0000

2 

(0.001

01) 

-3e-05 

(0.0015) 

Upslope 

contribu

ting 

area 

(log10 

m2) 

Landslides 

median 

(IQR) 

1.74 

(1.08) 

1.56 

(0.95) 

1.87 

(0.997) 

3.04 

(0.65) 

3.03 

(0.61) 

4.19 

(0.76) 

4.16 

(0.71) 

4.18 

(0.73) 

4.07 

(0.72) 

4.1 

(0.71) 

Non-

landslides 

median 

(IQR) 

1.67 

(0.97) 

1.56 

(0.95) 

1.88 

(0.734) 

3.15 

(0.80) 

2.80 

(0.60) 

3.86 

(0.67) 

3.81 

(0.70) 

3.82 

(0.74) 

3.71 

(0.68) 

3.7 

(0.67) 

 450 



23 

 

Table A2 AUROCs of models trained on individual source areas with domain adaptation versus without domain adaptation, the 

results are shown as DA / target benchmark. The bolded font indicated that the source area corresponding to this AUROC was the 

most related for the current target area. 

 Target areas 

 Bologna 

25 

Burgenland 

1 

RBSF 10 Ecuador highway 

10 

Modena 

25 

Paldau 1 Parma 

25 

Piacenza 

25 

Rimini 

25 

Waidhofen 

1 

Bologna 25 0.767 0.515/0.432 0.524/0.50

5 

0.446/0.415 0.719/0.72 0.494/0.47 0.72/0.72

6 

0.754/0.75

3 

0.803/0.8

06 

0.5/0.435 

Burgenland 1 - 0.82 - - - 0.611/0.59

5 

- - - 0.562/0.55

3 

RBSF 10 - 0.633/0.617 0.772 0.635/0.634 - 0.547/0.51

3 

- - - 0.543/0.55

8 

Ecuador highway 

10 

- 0.536/0.628 0.704/0.71

3 

0.671 - 0.505/0.47 - - - 0.502/0.50

1 

Modena 25 0.756/0.75

6 

0.502/0.493 0.468/0.40

6 

0.448/0.369 0..731 0.512/0.50

2 

0.705/0.7

15 

0.743/0.74

8 

0.802/0.7

98 

0.496/0.48 

Paldau 1 - 0.794/0.796 - - - 0.621 - - - 0.587/0.56

4 

Parma 25 0.762/0.76

2 

0.504/0.466 0.629/0.59

4 

0.514/0.482 0.706/0.71

2 

0.499/0.47

7 

0.733 0.753/0.75 0.795/0.7

95 

0.496/0.47

3 

Piacenza 25 0.757/0.76 0.595/0.482 0.54/0.428 0.436/0.422 0.719/0.72

2 

0.51/0.494 0.721/0.7

2 

0.755 0.803/0.8

04 

0.499/0.48

8 

Rimini 25 0.763/0.75

9 

0.508/0.489 0.681/0.55

2 

0.483/0.467 0.709/0.71

5 

0.507/0.49

7 

0.726/0.7

22 

0.753/0.74

8 

0.811 0.533/0.49

4 

Waidhofen 1 - 0.77/0.763 - - - 0.601/0.60

2 

- - - 0.652 

Burgenland 10 - - 0.657/0.53

3 

0.542/0.448 - - - - - - 

Paldau 10 - - 0.73/0.73 0.63/0.614 - - - - - - 

Waidhofen 10 - - 0.709/0.66

2 

0.533/0.542 - - - - - - 

Burgenland 25 0.728/0.72

8 

- - - 0.683/0.66

1 

- 0.681/0.6

63 

0.715/0.71

7 

0.782/0.7

77 

- 

Paldau 25 0.601/0.58

8 

- - - 0.535/0.51

5 

- 0.563/0.5

47 

0.583/0.58

5 

0.715/0.7

11 

- 

Waidhofen 25 0.677/0.65

7 

- - - 0.619/0.61

9 

- 0.643/0.6

45 

0.684/0.66

1 

0.744/0.7

41 

- 

RBSF 25 0.67/0.541 - - - 0.615/0.48 - 0.65/0.53

7 

0.654/0.56

2 

0.695/0.6

7 

- 

 Burgenland 10 Paldau 10 Waidhofen 10 Burgenland 25 Paldau 25 Waidhofen 25 

Bologna 25 0.686/0.629 0.5/0.560 0.608/0.575 0.705/0.768 0.639/0.66

2 

0.627/0.617 

RBSF 10 0.774/0.766 0.726/0.69

1 

0.587/0.594 - - - 

Ecuador highway 

10 

0.657/0.669 0.638/0.61

7 

0.530/0.526 - - - 

Modena 25 0.753/0.736 0.642/0.6 0.602/0.582 0.722/0.784 0.615/0.64

5 

0.594/0.601 

Parma 25 0.510/0.696 0.651/0.59

1 

0.610/0.616 0.728/0.767 0.589/0.61

9 

0.654/0.642 

Piacenza 25 0.735/0.681 0.61/0.572 0.572/0.597 0.569/0.791 0.541/0.65

9 

0.632/0.631 

Rimini 25 0.756/0.698 0.573/0.58

7 

0.625/0.584 0.691/0.780 0.588/0.68

2 

0.632/0.626 

Burgenland 10 0.877 0.603/0.76

6 

0.596/0.616 - - - 

Paldau 10 0.845/0.852 0.787 0.616/0.612 - - - 

Waidhofen 10 0.807/0.803 0.6845/0.7

3 

0.716 - - - 

Burgenland 25 - - - 0.876 0.616/0.76

0 

0.643/0.673 

Paldau 25 - - - 0.846/0.835 0.790 0.605/0.588 

Waidhofen 25 - - - 0.791/0.805 0.603/0.72

3 

0.726 

RBSF 25 - - - 0.765/0.769 0.699/0.68

1 

0.554/0.548 
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Code availability 

The scripts of strategies used in our paper are available at https://doi.org/10.5281/zenodo.6527716  (last access: 07 May 2022). 455 

Data availability 

Austrian study areas: Landslide inventories for Paldau and Waidhofen is available in Knevels et al., 2021 

(https://doi.org/10.3390/land10090954) and for Burgenland is available in Knevels et al., 2019 

(https://doi.org/10.3390/ijgi8120551). LiDAR-based HRDTM of Burgenland, Paldau and Waidhofen can be requested from 

the GIS department of the Styrian and the Government of Burgenland, and the provincial government of Lower Austria, 460 

respectively. 

Italian study areas: Emilia Romagna Region landslide inventories could be downloaded at https://ambiente.regione.emilia-

romagna.it/it/geologia/cartografia/webgis-banchedati/cartografia-dissesto-idrogeologico#consulta-dati-shp. The DEM for 

Emilia Romagna Region is available at https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-

eu-dem.  465 

Ecuadorian study areas: Landslide data for the RBSF area is available as part of the open-source ‘sperrorest’ package in R 

(https://cran.r-project.org/package=sperrorest, dataset ‘ecuador’), and the Ecuador highway landslide data is available from A. 

Brenning upon request. The DEMs used can be requested from the DFG Research Unit FOR 816 (J. Bendix, University of 

Marburg, Germany).  
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