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Abstract. Transferability of knowledge from well-investigated areas to a new study region is gaining importance in landslide 

hazard research. Considering the time-consuming compilation of landslide inventories as a prerequisite for landslide 

susceptibility mapping, model transferability can be key to making hazard-related information available to stakeholders in a 

timely manner. In this paper, we compare and combine two important transfer-learning strategies for landslide susceptibility 

modelling: case-based reasoning (CBR) and domain adaptation (DA). CBR gathers knowledge from previous similar situations 10 

(source areas) and applies it to solve a new problem (target area). DA, which is widely used in computer vision, selects data 

from a source area that has a similar distribution to the target area. We assess the performances of single- and multiple-source 

CBR, DA and CBR-DA strategies to train and combine landslide susceptibility models using generalized additive models 

(GAMs) for 10 study areas with various resolutions (1 m, 10 m and 25 m) located in Austria, Ecuador, and Italy. The 

performance evaluation shows that CBR and combined CBR-DA based on our proposed similarity criterion was able to achieve 15 

performances comparable to benchmark models trained in the target area itself. Particularly the CBR strategies yielded 

favourable results in both single- and multi-source strategies. DA tended to have overall lower performances than CBR; yet, 

it had promising results in scenarios wherewhen the source-target similarity was low. We recommend that future transfer 

learning research for landslide susceptibility modelling can build on the similarity criterion we used, as it successfully helped 

to achieve transfer landslide susceptibility models transfers by discovering identifying suitable training datasets from various 20 

source regions for model training. 
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1 Introduction 

Landslides are a not only a common, but one of the most severe and critical natural hazards in mountain areas. Globally, the 

destruction caused by landslides continues to have severe effects on human activity and life (Froude and Petley, 2018; Haque 

et al., 2019). Landslide susceptibility refers to the likelihood of landslides occurring in the region, depending on the local 25 

topographic conditions, and to estimating the likely location of future landslides (Reichenbach et al., 2018). Landslide 

susceptibility mapping, the modelling of areas prone to landslide occurrence, is an effective method to assist land managers in 

decision making aimed at minimizing landslide risk. One of the most challenging aspects of building data-driven landslide 

susceptibility models is establishing the landslide inventory data for model training and testing (Lin et al., 2021). Landslide 

inventories from different areas can provide informative knowledge of landslides – even in the case of older data, certain parts 30 

of the data can be still reused (Petschko et al., 2016). Additionally, previous landslide as well as ecological studies have pointed 

out that model transferability can aid in the prediction in adjacent regions (i.e., regional susceptibility modelling) and have the 

potential to improve process understanding (Wenger and Olden, 2012; Sequeira et al., 2016; Rudy et al., 2016).  

Machine learning is currently the most commonly applied method in research for solving the problem of landslide prediction 

(Goetz et al., 2015; Kavzoglu et al., 2019; Merghadi et al., 2020). Traditional machine learning operates on the condition that 35 

the training and test data are taken from the same input feature space and data distribution (Pan, 2014). In the case of spatial 

and temporal predictions, this means that most fitted machine learning models are limited to the spatial and temporal bounds 

of the input data. Thus, when extrapolating or transferring traditional machine- learning models to new spatial and temporal 

domains, model performance can be degraded due to differences in feature space and/or data distributions (Shimodaira, 2000; 

Pan and Yang, 2010; Yates et al., 2018).  40 

Nevertheless, aA successful model transfer does not necessarily rely solely on the extent of geographic or temporal separation, 

but rather on the similarity of the environmental conditions between the source and target areas (Yates et al 2018). The field 

of transfer learning offers various techniques to exploit this observation, which have yet to be fully utilized by the geospatial 

modelling communities – including landslide susceptibility modelling. Transfer learning techniques such as domain adaptation 

(DA) and case-based reasoning (CBR) have been developed to select the best data and corresponding models from source 45 

areas for predicting in a spatially and or temporally distinct target area.  

The general concept of transfer learning is to solve new problems by applying knowledge gained from previous experiences 

solving similar problems. That is, transfer learning has the potential to allow us to take existing knowledge of landslide 

occurrence from previous modelling experiences and apply it to new locations lacking any landslide data. Thus, this approach 

has incredible potential to minimize the considerable time and effort needed for building landslide inventories for susceptibility 50 

modelling in new areas, especially in large and geographically remote areas where landslide mapping and detection is 

particularly challenging.  
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In CBR, we consider multiple lLandslide inventories from different various source areas usually contain many different cases, 

each of which have contains a large amount of information. The problem is that not all inventories (so-called ‘cases’) are 

suitable for training a model that can be applied to the new target task. Also, and processing the large amount of information 55 

for each case is of high cost in terms of time and efforttime-consuming. Therefore, it is desirable to compare the overall 

characteristics of each case to transfer the appropriate knowledge. CBR is a method to solve these problems by identifying 

similar cases and applying them to a new target area. This CBR similarity analysis can be performed by considering various 

attributes, such as data structure and topographic characteristics, which has been widely used in environmental sciences (Shi 

et al. 2004; Qin et al. 2016; Liang et al. 2020; Liang et al. 2021). In contrast, instead of finding best cases using the overall 60 

similarity of source areas to a target, which is done by CBR, DA transfer learning techniques can be applied to select the 

observations within a source area that match the data distribution of the target area. Previous applications of CBR in the 

geosciences have focused on selecting one source area to transfer to a target area (Qin et al 2016; Liang et al 2021). Yet, there 

is also potential for using CBR and DA to combine cases from multiple source areas to generate transferable models.  

The objective of this study is to assess the potential of transfer learning using CBR and DA techniques for enhancing model 65 

transferability of machine-learning landslide susceptibility models. In particular, we evaluate the performance of transferred 

susceptibility models using DA, CBR and a combined CBR-DA technique, as well as the sensitivity of these methods to spatial 

resolution. We consider two scenarios for training landslide susceptibility models: only one source area available (single-

source) and multiple source areas available for model training (multi-source). We examine both scenarios of these methods 

and compare them to benchmark situations, where susceptibility models are applied to a new target area without using transfer 70 

learning techniques. 

2 Methods and Data 

In transfer learning, the general goal is to train a model 𝑓 on data from one or multiple source areas 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑁} in order 

to apply use it to make predictions in an unseen target area 𝑇  with 𝑁𝑡  observations regardless of spatial and temporal 

differences. A source area 𝑆𝑖  consists of 𝑁𝑆𝑖
 observations of a set of predictors, x𝑗 , and the corresponding labels 𝑦𝑗  (e.g., 75 

landslide or non-landslide), 𝑗 = 1, . . . , 𝑁𝑆𝑖
. 
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Figure 1: Flow chart of transfer modelling strategies and benchmarks for landslide susceptibility mapping in a target area. Case-

based reasoning (CBR) involves selection and weighting steps. In the single-source situation, weighting does not apply. Domain 

adaptation (DA) can be used by itself or combined with CBR to select source areas. 80 

Altogether, we evaluate five different transfer learning strategies for landslide susceptibility modelling that consider the use 

of data from single source area, multiple source areas, which are applied to CBR, DA, and both combined (CBR-DA) (Fig. 1). 

To assess the relative performance of the transfer learning strategies, we include benchmark landslide susceptibility models 

that are simply trained using data from a single source area (single-source transfer benchmark), multiple source areas (multi-

source transfer benchmark) and the target area (target benchmark), and then applied to the target area. In the case wheren 85 

multiple source areas were used, the benchmark transfer model was calculated by averaging the model predictions of multiple 

source areas without weighting (Table 2). The target benchmark, which is trained and tested with all of the target data, is meant 

to represent an overoptimistic yet potentially obtainable performance for a given target area. 

In this section we first introduce the general CBR and DA methods separately (sections 2.1 and 2.2). We then explain how 

CBR and DA models as well as the combined CBR-DA approach are trained and tested in this work (section 2.3). The data 90 

used for demonstrating the proposed approaches is then briefly presented, referring the readers to the relevant local literature 

for details (section 2.4). 
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2.1 Case-based reasoning method 

In machine learning, CBR is one of the most well-known methods for solving a new problem by referring to similar cases, 

which can translate the knowledge from geographical space to parameter space (Shi et al., 2004; Shi et al., 2009; Hammond, 95 

2012). It finds cases in a data collection that are similar to the current case in terms of metadata and/or data distribution, and 

then adopts those similar cases for training models (Liang et al., 2020a). This method has been reported to reduce the users’ 

modelling efforts while achieving good performances in use cases involving terrain attributes (Qin et al., 2016; Liang et al., 

2020b).  

CBR strategies are designed to find source areas 𝑆 =  {𝑆1, 𝑆2, … , 𝑆𝑘} that are most similar to the target area based on statistical 100 

summary information and metadata; these selected areas are referred to as related areas. In generating a CBR model, the 

individual models trained on the selected source areas are combined as a weighted sum 

𝒇(𝐱) = ∑ 𝒘𝒊𝒇𝒊(𝐱)𝒌
𝒊=𝟏  (1) 

whose weights 𝑤𝑖  correspond to similarity scores, normalized to sum up to 1. The individual models 𝑓𝑖 may be trained using 

conventional sampling strategies as well as DA strategies, both of which are described below in detail.  105 

Generally, CBR consists of the case problem and the corresponding case solution parts (Qin et al., 2016; Liang et al., 2020b). 

In our study, the problem part for formalizing the similarity of areas in landslide susceptibility modelling is to contrive a way 

to adequately describe the data and areas' contextual information, such as how a study area's spatial data can describe the 

pattern of landslide occurrence.  

In applying CBR, it is first necessary to define and calculate similarity measures for relevant attributes that describe the data 110 

distributions of the source and target areas. In this study, we chose geological characteristics, spatial resolution and topographic 

characteristics. Similarities in each attribute were estimated based on similarity function (Table 1).  

The geological characteristics of a region are an essential factor that influences multiple landslide conditioning factors such as 

the geomechanical and hydrological properties of hillslopes (Segoni et al., 2020). Considering the difficulties in matching 

geological descriptors such as heterogeneous chronostratigraphic units in different areas, we chose a simplified approach as a 115 

first-order approximation. Specifically, we used an indicator method that is based on whether the main rock types (igneous, 

sedimentary and volcanic rocks) coincide in source and target areas.  

Topographic conditions were described by measures of total relief, standard deviation of slope angle, and mean slope angle 

(Wang et al., 2019). Total relief describes the overall terrain situation of a study area by subtracting the minimum elevation 

from the maximum elevation within the study area. The relief, which reflects the macroscopic characteristics of surface 120 

topography in a large area, has a good relation with landslide susceptibility (Wang et al., 2010). The standard deviation of 

slope is used to describe the topographic complexity of a study area. It is one of the most influential topographic variables in 

landslide susceptibility studies (e.g., Van Den Eeckhaut et al., 2012).  
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Table 1 Similarity functions for the attributes used in CBR to identify related source areas: Geological characteristics, data 

characteristics, and topographic characteristics of study area 125 

Factor group 
 

Attribute Similarity function Description 

Geological 

characteristics 

 Igneous 𝑺𝒊𝒎 =
𝟏

𝟑
∑ 𝑰𝒈𝒈   where 𝐼𝑔 = 1if unit 𝑔 present or 

absent in the source and the 

target area, and 0 otherwise.  

Sedimentary 

Metamorphic 

Data 

characteristics 

 Resolution [m]  𝑺𝒊𝒎 = 𝟐−(𝟐|𝒍𝒐𝒈𝟏𝟎 𝑹𝒕−𝒍𝒐𝒈𝟏𝟎 𝑹𝐬|)𝟎.𝟓
  

 𝑜𝑟 𝑺𝒊𝒎 = 𝟏             

where the similarity is 1 if the 

resolution of source area is 

smaller than in the target area, 

otherwise 𝑆𝑖𝑚 . R is the DEM 

resolution. 

Topographic 

characteristics 

 
Total relief [m] 𝑺𝒊𝒎 = 𝟏 −

| 𝑹𝒆𝒍𝒊𝒆𝒇𝒕−𝑹𝒆𝒍𝒊𝒆𝒇𝑺|

𝐦𝐚𝐱(𝟖𝟖𝟒𝟖−𝑹𝒆𝒍𝒊𝒆𝒇𝒕, 𝑹𝒆𝒍𝒊𝒆𝒇𝒕)
   where Relief is the total relief. 

Standard deviation of slope 𝑺𝒊𝒎 = 𝟐−(𝟐|𝒍𝒐𝒈𝟏𝟎 𝑺𝒅𝒕−𝒍𝒐𝒈𝟏𝟎 𝑺𝒅𝑺|)𝟎.𝟓
                 where Sd is the standard 

deviation of slope angle. 

Mean slope [º] 𝑺𝒊𝒎 = 𝟏 −
| 𝑺𝒍𝒐𝒑𝒆𝒕−𝑺𝒍𝒐𝒑𝒆𝑺|

𝐦𝐚𝐱(𝟒𝟎°−𝑺𝒍𝒐𝒑𝒆𝒕, 𝑺𝒍𝒐𝒑𝒆𝒕)
      where Slope is the mean slope. 

Note: Sim is the similarity of each individual attribute between the target area t and a source area S, which is in [0,1]. The following 

constants were used for normalization: 8848 m is the elevation of Mount Everest. For mean slope, 40° can properly cover the mean 

slope in all study areas. 

The similarity values obtained for each factor were combined into a single indicator by taking their minimum (Zhu and Band, 

1994; Qin et al., 2009; Qin et al., 2016).  In this study, for a given target area we refer to source areas that have an overall (i.e. 130 

minimum) similarity score ≥ 0.65 as related source areas. 

2.2 Domain Adaptation 

The general machine-learning approach of domain adaptation (DA) aims to solve a learning problem in the target area by 

utilizing data from different source areas to construct a learning sample (Wang and Deng, 2018). A latent feature space is 

defined in which the source and target areas have the same distribution, and as a consequence, classifiers trained on labelled 135 

data from source areas are likely to perform well in the target area (Baktashmotlagh et al., 2013; Patel et al., 2015; Wilson and 

Cook, 2020). There are supervised DA techniques that require labelled data from the target area, and unsupervised methods 

that do not require such data (Ben-David et al., 2010; Courty et al., 2017). We adopt unsupervised DA in our study because its 

smaller data requirements seem more appealing for practical applications.  

DA used in our study is a strategy for selecting instances 𝐷𝑖  ⊂  𝑆𝑖 (i.e., sample locations or grid cells for training) from a 140 

source area 𝑆𝑖 in such a way that their distribution is more similar to the target area’s data distribution. In situations with 

multiple sources areas, DA is applied to each of them independently to obtain instance sets 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑘} on which k 

models are trained. The predictions from these models are either averaged (referred to as “plain” DA), or their weighted 

average is calculated when combined with source-area selection by CBR. DA is conventionally used as a single-source 

strategy, which is also included in this study for comparison even though multi-source strategies may seem more appealing in 145 

real-world applications. 
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Many DA strategies for transferring or weighting features can result in models that are difficult to interpret in terms of the 

geophysical process’s modelled influence on the response. Also, not all instances from different source areas may be suitable 

for transferring to a target area (Jiang and Zhai, 2007; Gong et al., 2013; Long et al., 2013). Thus, the landmark-based domain 

adaptation (LBDA) approach (Gong et al., 2013) was applied in our study. This method selects the instances (or landmarks) 150 

from source areas with the same or similar distribution as the target area without creating new predictors. It aims at minimizing 

the difference in sample means in latent feature space.  

In our study, considering computational constraints, a randomly selected set of 50,000 unlabelled (landslide and non-landslide) 

points 𝑥𝑛 from the target area were used as reference points, and were compared to a randomly selected set of 30,000 labelled 

(𝑥𝑆,𝑚, 𝑦S,𝑚) (landslide and non-landslide) points from the source area 𝑆 as reference points from which to select a subset with 155 

similar data distribution as the target area. In the case of some of the smaller source areas in our study, all observations were 

used for subset selection. 

Domain adaptationDA selects training data by formally solving the following optimization problem 

 

𝒎𝒊𝒏 ‖
𝟏

∑ 𝜶𝑺,𝒎
𝑵𝑺
𝒎=𝟏

∑ 𝜶𝑺,𝒎𝝓(𝒙𝑺,𝒎)
𝑵𝑺
𝒎=𝟏 −

𝟏

𝑵𝒕

∑ 𝝓(𝒙𝒕,𝒏)
𝑵𝒕
𝒏=𝟏 ‖

𝑯

𝟐

 (2) 160 

 

subject to 
𝟏

∑ 𝜶𝑺,𝒎
𝑪
𝒎=𝟏

∑ 𝜶𝑺,𝒎𝒚𝑺,𝒎
𝑪
𝒎=𝟏 =

𝟏

𝑵𝑺

∑ 𝒚𝑺,𝒎
𝑪
𝒎=𝟏  (3) 

 

where indicator variables 𝛼 = {𝛼𝑚 ∈ {0,1}, m =  1, . . . , 𝑵𝑆 } are used to judge whether a landslide/non-landslide point in the 

source area is a landmark for minimizing the difference between source and target areas in the latent feature space. When 𝛼𝑚 165 

is 1, (𝑥𝑆,𝑚, 𝑦𝑆,𝑚) is regarded as a landmark, that is, a landslide/non-landslide point that can provide valuable information for 

the landslide susceptibility model of the target area. 𝜙 is a nonlinear feature function to map x to a Reproducing Kernel Hilbert 

Space (Gretton et al., 2006). Following Gong et al. (2013, 2017), Gaussian RBF kernels are used for 𝜙 in our study. And C is 

the number of landslide or non-landslide points. The collection 𝛼 is chosen when the eq. (1) is minimized, that is, the difference 

is minimized. Eq. (2) is the constraint that considers the distribution of labels in the selected landmarks. Then eq. (1) can be 170 

solved efficiently with convex optimization.  

Finally, we will set a threshold for selecting landmarks. Ideally, the distributions of landslide/non-landslide points in the source 

and the target areas areis the same, meaning that each landslide/non-landslide point in the source area can be a landmark. 

Therefore, we use 1/𝑁𝑆 as the criterion for obtaining the selected landmarks.  
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Table 2 Transfer strategies and benchmarks adopted in our study. 175 

Transfer Strategies Final predictive model 𝒇 Description 

Single source area with DA 
(single-source DA) 

𝒇𝒊(𝑫𝒊) 
The final prediction model is trained on the DA-derived subset of data 
from each source area. 

Single source area with CBR 

(single-source CBR) 
𝒇(𝑺𝒉𝒊𝒈𝒉𝒆𝒔𝒕) 

The final prediction model is trained using all data from the most 

strongly related source area. 

Multiple source areas only with 
CBR (multi-source CBR) 

∑ 𝒘𝒊𝒇𝒊(𝑺𝒊)
𝒌

𝒊=𝟏
 

The final prediction model is the weighted mean of different predictive 
models trained on the k related source areas. 

Multiple source areas only with 
DA (multi-source DA) 

𝟏

𝑵
∑ 𝒇𝒊(𝑫𝒊)

𝑵

𝒊=𝟏
 

The final prediction model is the average of predictions from all 

landslide models trained on the DA-selected data from different 

source areas. 

Multiple source areas with CBR 

and DA (multi-source CBR-

DA) 
∑ 𝒘𝒊𝒇𝒊(𝑫𝒊)

𝒌

𝒊=𝟏
 

The final prediction model is the weighted mean of predictions from 

landslide models trained on the DA-selected data from the k related 

source areas. 

Benchmarks   

Multiple source areas without 
CBR and DA (multi-source 

transfer benchmark) 

𝟏

𝑵
∑ 𝒇𝒊(𝑺𝒊)

𝑵

𝒊=𝟏
 

The final prediction model is the average of predictions from all 

landslide models trained on different source areas. 

Single source area without CBR 
and DA (single-source transfer 

benchmark) 
𝒇𝒊(𝑺𝒊) The final prediction model is trained on a (specific) single source area. 

Target benchmark 𝒇(𝑻) 
The final prediction model is trained on data from the target area itself 

(only for comparison – not a model transfer situation). 

2.3 Susceptibility model training and testing 

The transfer learning strategies were applied using generalized additive models (GAM) for susceptibility modelling. The 

logistic GAM, which performs a binomial classification of the absence/presence of landslides occurrence, has been well 

established as a method suitable for landslide susceptibility (Goetz et al., 2011; Petschko, 2014; Conrad et al., 2015; Bordoni 

et al., 2020). In fitting our model, we assume feature space is the same for source and target areas. We therefore only used 180 

common predictors of landslide susceptibility (Goetz et al., 2015) that are available in all source and target areas, which include 

local slope angle, plan and profile curvature, catchment slope angle, and upslope contributing area. These terrain attributes are 

intended to act as proxies for destabilizing forces (slope, catchment slope angle), water availability (logarithm of the size of 

the upslope contributing area, concave curvatures), and exposure to wind (convex curvatures), as well as general variability in 

characteristics of soil and vegetation (Muenchow et al., 2012).  185 

We used the mgcv package (Wood, 2006) for GAM implementation. We set the dimension of the basis used to represent the 

smooth term k as 4.  Since it can be difficult to separate landslide scarp and body from medium to low-resolution data (Dou et 

al., 2020), landslide presence points were randomly sampled from the entire landslide polygon and non-landslide points were 

randomly sampled from the area where the mapped landslides were excluded. At the same time, landslides that are smaller 

than one grid cell were excluded in our study. 190 

In turn, each study area was used as a target area. The landslide label data from the target area was not involved in the training 

process of all strategies embedded in CBR, DA or CBR-DA. Model performance was assessed using test data only within a 
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target area. The training data set was composed of an equal number of landslide and non-landslide samplesobservations. These 

landslide and non-landslide grid cells were obtained from the whole study area, or a subset of the study area based on DA.  

Altogether, we explore five CBR and DA strategies for susceptibility modelling based on single and multiple sources areas, 195 

which are summarized in Table 2. In our implementation of CBR, only source areas related to the target area were used for 

modelling, where we defined related areas as source areas that had a (minimum) similarity score ≥ 0.65. In the case of DA 

(without CBR), multi-source models were created for all N source areas, excluding the target area. The final susceptibility 

models for multi-source CBR, DA and CBR-DA strategies were based on combining model predictions from multiple source 

areas (described in Table 2). 200 

The area under the receiver operating characteristic (ROC) curve (AUROC) (Hosmer et al., 2013) was used to assess the 

predictive performance of the transferred models based on its their predictions in the target area. In choosing the AUROC, we 

treat model predictions as relative scores instead of actual probability estimates, which is common practice in landslide 

susceptibility modelling. 

2.4 Case study transfer source and target areas 205 

We demonstrate the application of CBR and DA for transfer learning using ten case study areas for source and target areas 

from three distinct geographic regions (Fig. 2): Ecuador (Reserva Biológica San Francisco (RBSF) area, and a highway 

corridor) in the Andes of sSouthern Ecuador (Muenchow et al., 2012; Brenning et al., 2015), Emilia Romagna Region 

(https://ambiente.regione.emilia-romagna.it) in northern Italy (Bologna, Modena, Parma, Piacenza, and Rimini) (Rossi et al., 

2010; Segoni et al., 2018; Piacentini et al., 2018; Ciccarese et al., 2021), and eastern Austria (Burgenland, Waidhofen and 210 

Paldau) (Gasser et al., 2009; Petschko et al., 2012; Knevels et al., 2019; Knevels et al., 2020). Rainfall is considered the main 

trigger of landslides in all study areas. 

The study areas have the similar types of igneous rock (e.g., basalt), sedimentary rocks (e.g., sandstone) and metamorphic rock 

(e.g., schist), while RBSF has no igneous and sedimentary rocks. The above references provide additional detailed information 

of the study areas. We also summarised the geological information of all study areas in Table A1 in the Appendix. 215 
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Figure 2: Overview of study areas for landslide susceptibility mapping in our study. The study areas are shown as DEM map in the 

same scale. Landslide inventories of study areas are shown as blue polygons. From top to bottom, study areas are from Austria, 

Ecuador, and Italy. Map extents correspond to study areas, with the exception of the Ecuador highway area, where the study area 

is limited to a 300 m buffer on both sides of the highways and outside urban areas. 220 

In our study, DEMs with different resolutions were available for the Austrian, Italian, and Ecuadorian study areas. For Ecuador, 

10 m × 10 m DEMs were produced by E. Jordan and L. Ungerechts (Düsseldorf), for Italy a EU-DEM with a 25 m × 25 m 

resolution was used (https://www.eea.europa.eu), and an airborne LiDAR-derived digital terrain model (DTM) with a 1 m × 1 

m resolution was available for the Austrian areas from the GIS department of the Styrian government and the Government of 

Burgenland. Landslide inventories in our study were provided by J. Muenchow (Erlangen) for Ecuador, who also did a more 225 

detailed study in Muenchow et al. (2012). Additional information can furthermore be found in , SGSS (2019) for Emilia 

Romagna Region, Knevels et al. (2019) for Burgenland, and Knevels et al. (2020) for Waidhofen and Paldau. For the Emilia 

Romagna Region, we chose the subset of landslides labelled as active. 

We furthermore resampled the DEMs with 1 m resolution to 10 m and 25 m and the data with 10 m resolution to 25 m in order 

to use up to three dataset versions to mimic various mismatches in target and source resolution. Resampling was based on B-230 

sSpline iInterpolation in SAGA (System for Automated Geoscientific Analysis) GIS 7.4.0 (Conrad et al., 2015). Overall, we 

therefore had 17 datasets (Table 3). For brevity we combine the place name with the resolution, e.g., Waidhofen 10 for 

Waidhofen with a 10 m resolution. 
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Table 3 Summary of the landslide data sets used in this study 

Study Areas Resolution(m) 
Number of 

Landslide 

Mean 

Landslide 

Size (m2) 

Main landslide types 
Main triggering 

factor 
Region 

Burgenland 

1 

382 

 

Earth and debris materials 

(Knevels et al., 2019; 
Knevels et al., 2020) 

Rainfall Austria 

Alpine fringe 10* 6330 

25*  

Paldau 

1 

418 

 

Styrian Basin 10* 3879 

25*  

Waidhofen 

1 

621 11235 
Ybbstaler 

Alps 
10* 

25* 

RBSF 
10 

178 733.9 
Shallow landslides 

(Muenchow et al., 2012) 

 
Rainfall Ecuador 

South 
Ecuadorian 

Andes 

25* 

Ecuador 

Highway 
10 1588 2725.4 

Shallow and deep-seated 
landslides (Brenning et al., 

2015) 

Bologna 

25 

1354 33272 

Debris flows (Piacentini et 

al., 2018)  

Rainfall and 

Earthquake 
Italy Italian Alps 

Modena 1240 38816 
Parma 1261 41444 

Piacenza 1583 37502 

Rimini 2229 34679 

* resolution of resampled data 235 

3 Results 

3.1 CBR similarity analysis 

Mean slope angle and spatial resolution were for the majority of the areas the most limiting and therefore influential similarity 

attributes in determining which source areas were related to the target area based on the similarity score threshold of 0.65. For 

some target areas, multiple similarity attributes (i.e., topographic characteristics and geological unit) contributed to 240 

differentiatinge candidate source areas, while for others, a single attribute (mean slope or resolution) dominated the exclusion 

of unrelated source areas (Fig. 3). For high-resolution datasets, the resolution attribute was primarily responsible for the overall 

similarity. The combination of spatial resolution and the standard deviation of slope or mean slope affected the overall 

similarity as the resolution between the source and target areas got closer. In general, as the spatial resolution of the target area 

and the source areas became coarser, the number of related source areas tended to increase. Mean slope, standard deviation of 245 

slope and geological units had more influence on the overall similarity decision making when resolutions were similar. 

Topographic characteristics and resolution were generally the main attributes that determined the overall similarity. 

Most of the target areas (14 out of 17) had one or more related source areas. There were only three cases where the target had 

no related source areas (RBSF 10, 25 and Waidhofen 1), two cases of only one source area, and twelve with multiple source 

areas (Fig. 4). Target areas with a resolution of 25 m tended to have a large high number of related source areas. Some target 250 

areas had related source areas in different geographic regions (e.g., Italian Alps and Burgenland). 
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Three representative target areas were selected to show the contribution of each attribute to the overall similarity because 

similar patterns were observed elsewhere (Figure 3; complete results in Supplementary Material).  

 
Figure 3: Similarity scores for three selected representative target areas (Burgenland 1, Paldau 10 and Bologna 25). Light colours 255 
represent smaller similarities. The overall similarity value of each source area is marked with a black box. 

 
Figure 4: Distribution of related (black points) and unrelated (grey points) source areas for different target areas in the CBR transfer 

learning strategies. Related source areas are defined as having a minimum similarity score ≥ 0.65 (vertical line).  

3.2 Single-source learning 260 

In single-source transfer learning, CBR achieved the highest model performance overall. DA resulted in stronger predictive 

performances only when source and target areas were substantially dissimilar (Fig. 5, 6). The AUROCs obtained by single-

source CBR were always distributed between the median and maximum values of transfer benchmark models and close to the 
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AUROCs obtained by the model trained using only target data (Fig. 5 and Table A2 in Appendix). E.g., when Bologna 25 was 

the test data, the AUROCs of a model trained by the most related source area Piacenza 25 was 0.762 and that of the model 265 

trained with Bologna 25 data itself was also 0.762. Moreover, the majority of median AUROC performances obtained with 

single-source DA were greater than the median AUROC performance of single-source transfer benchmark models (Fig. 5). 

The distribution trend it displayed implied that single-source DA to some extent improved performances, which was consistent 

with the results shown in Fig. 6. Specifically, for similarities below 0.27, AUROCs achieved with DA were up to 0.14 higher 

than without it. When the overall similarity of the source area for the target area gradually increased up to ~0.60-0.65, the 270 

difference values were centred at around +0.03. As the overall similarity was greater than 0.65, the AUROCs obtained by 

single-source DA were close to the ones achieved by the single-source transfer benchmark.  

CBR-DA also showed good performance as its results were located in the upper part of transfer benchmark results (Fig. 5). 

This may be due to the contribution of CBR rather than DA. Throughout all the results, single-source CBR demonstrated more 

stable prediction performance behaviour compared to the results obtained by the strategies involving DA. 275 

From this perspective, it can be concluded that by selecting the related areas, CBR was effective in identifying a suitable source 

area that resulteds in favourable performances regardless of the use of DA. 

 

Figure 5: Comparison of single-source strategies: AUROCs obtained by models trained on individual source areas with case-based 

reasoning (CBR), domain adaptation (DA), combined CBR-DA, and in the single-source transfer benchmark. 280 



14 

 

 

Figure 6: Similarity scores vs. AUROC differences between models trained on individual source areas with domain adaptation and 

models without domain adaptation (“single-source DA” minus “single-source transfer benchmark”).  

3.3 Multi-source learning 

The strategies that involved CBR had better prediction performances in the multi-source transfer learning in comparison to the 285 

multi-source transfer benchmark and multi-source DA (Fig. 7).  

Multi-source CBR obtained good performances regardless of the number of related source areas and whether the related source 

areas were from the same region (Fig. 4 and Fig. 7). However, multi-source CBR-DA in general underperformed, usually 

having predictive performance lower than the multi-source transfer benchmark. When comparing the average of AUROCs of 

different strategies for all target areas in the multi-source transfer learning, CBR was the best multi-source strategy followed 290 

by the transfer benchmark, and CBR-DA, while DA had the worst multi-source performance. Furthermore, with respect to the 

stability of the results, multi-source CBR performed best since the performances it obtained were always in the top two of all 

performances obtained by different multi-source transfer learning strategies. In contrast, the results obtained for strategies 

involving DA were highly variable and always inferior to the results of the corresponding multi-source transfer benchmark. 
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 295 

Figure 7: AUROCs of models trained on multiple source areas with case-based reasoning (CBR), domain adaptation (DA), combined 

CBR-DA, and the multi-source transfer benchmark (averaged across all source areas) and target benchmark.  

3.4 Comparing single- and multi-source learning 

Single-source CBR was for the majority of target areas the best-performing transfer learning strategy, closely followed by 

multi-source CBR (Fig. 8). Both were located between the median and the maximum of single-source transfer benchmark and 300 

tended to be closer to the maximum, which means that CBR-based source selection was highly effective at identifying the 

most suitable sources of training data. On average the single-source and multi-source CBR AUROCs were below the 

overoptimistic target benchmark (training and testing in target area) by only ~0.05. The strong performance of CBR in both 

single- and multi-source strategies indicates that the most effective transfer learning methods were to train the predictive model 

using the most related source area or performing a weighted combination based on the similarity scores of the predictive 305 

models trained on the most strongly related source areas. 
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Figure 8: Comparison of single- and multi-source CBR strategies and the single-source target benchmark.  

3.5 Comparing susceptibility map appearances 

The highestbest- performing transfer learning strategies (single-source and multi-source CBR and CBR-DA) had spatial 310 

patterns of landslide- prone areas that most resembled the target benchmark (Fig. 9). Strategies with CBR, which considers 

target-source similarity, were able to better avoid falsely detecting landslide prone areas. Using classified landslide 

susceptibility maps for Burgenland 10 as an example, the lower- performing multi-source DA (Fig. 9h) and the multi-source 

benchmark (Fig. 9e) appear to overpredict susceptibility in some areas (e.g., on alluvial fans) compared to the target benchmark 

(Fig. 9a) and the higher better-performing CBR-based transfer- learning strategies (Fig. 9c, f, and g). The susceptibly maps 315 

also show that given if a single source area has a high similarity (e.g., Paldau 10 and Burgenland 10) to the target area, DA 

strategies (Fig. 9d) can also properly detect landslide susceptible areas. The difference in landslide- prone areas of single- and 

multi-source benchmarks compared to the target benchmark also indicates that not all source areas were suitable for predicting 

landslides for unseen areas. 

 320 
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Figure 9: An example of classified landslide susceptibility maps for each benchmark and transfer- learning strategy for the 

Burgenland 10 target area. Predicted probabilities weare classified into five susceptible levels (very high, high, moderate, low, very 

low) using the top 5th, 10th, 25th and 50th percentile of each individual strategy’s predictions. The results of single-source CBR and 325 
single-source DA are illustrated using models trained onby Paldau 10 data. The single-source benchmark result is illustrated using 

a model trained withby Waidhofen 10 data. 

4 Discussion 

4.1 Case-based reasoning in landslide assessment studies 

By calculating the similarities between source and target areas to find the most transferable or one of the most transferable 330 

source area(s), CBR is able to transfer the knowledge from source areas to the target area. In our study, we considered the data 

from a variety of different regions, and our results provided a more comprehensive understanding of the potential of CBR in 
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single- and multi- source transfer learning. Consistent with the literature for digital soil mapping and digital terrain analysis 

(Qin et al., 2016; Liang et al., 2020a; Liang et al., 2021), our results further support the adoption of CBR and provide useful 

methodological information for landslide assessment studies. 335 

CBR may give a fresh insight to improve the understanding of knowledge transfer in landslide susceptibility modelling. It is 

an effective method to capture past experiences, intensifying and enriching the knowledge to improve the predictive 

capabilities of models (Wang et al., 2020; Bannour et al., 2021). Particularly, it only needs to consider the basic characteristics 

of the data and the region to quickly match historical scenarios to the current study area and thus solve the task at hand. 

Meanwhile, the use of CBR to compare similarities between datasets makes it possible to reuse existing predictive models. 340 

These attractive abilities may benefit ex-post landslide mapping for emergency response as well as ex-ante landslide 

susceptibility modelling for hazard mitigation. Moreover, we determined that using similarity as the basis for the weight of 

each related source area and the strategies involved CBR in multiple source areas displayed good and robust performance in 

our study (Fig. 7).  

Until now, model transfer in landslide modelling have usually relied on a homogeneous availability of data and a strong model 345 

generalization to avoid local overfitting and allow the application of a model in an adjacent target region (Goetz et al., 2011; 

Wenger and Olden, 2012; Petschko et al., 2014; Bordoni et al., 2020). Although this approach has been identified as a robust 

method for regional susceptibility modelling, its model transferability is often limited to nearby locations that have the same 

feature space and a nearly identical data distribution. However, when the data distribution is different, the above approach may 

not be effective, even though the training data are from adjacent regions. Yates et al. (2018) have pointed out that the spatial 350 

and temporal separation may have little impact on model transfers, while environmental dissimilarity and data resolution are 

critical factors for successful model transfer. These factors could be considered as the spatial and temporal limits to 

extrapolation in model transfers, as well as for landslide susceptibility model transfers. CBR may be able to handle these limits 

by calculating the overall similarity, indicating the likelihood suitability of implementing landslide susceptibility model 

transfers between different study areas. In Fig. 3 and 7 we found that combining data from multiple related source areas with 355 

CBR obtained great results, even though some of the related source areas are from different regions thanas the target area.  

After selecting related source areas, the predictors designed for training the model need to be examined. In our study, we 

assumed that the source and target areas used the same predictors and focused on topographic predictors. However, when the 

source and target areas have different predictors, one of the problems is that topographic predictors are not the only factors 

that play a key role in landslide prediction. Thus, a method should be implemented to select suitable predictors for model 360 

transferring since not all predictors can be used in the training process. – Liang et al. (2021) selected suitable predictors for a 

new task by using each model trained by individual predictors of the source area to predict in the target area, and concluded 

that this method was effective. However, since they only focused on terrain attributes, it is unclear how this approach would 

work on other predictors such as antecedent rainfall intensity, which, in addition to regional rainfall pattern variations, can 
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strongly differ from one region to another. From this perspective, we would suggest future research using CBR transfer learning 365 

could focus on the selection of features that are more likely transferable. 

4.2 CBR Similarity criteria  

The proposed similarity scores in this study based on geologic, topographic and data characteristics (i.e., spatial resolution) 

worked quite well at supporting CBR strategies for identifying the most similar and thus transferable source areas. These 

similarity attributes do not explicitly account for landslide type, which is an important factor to consider when modelling 370 

landslide susceptibility modelling (Huang and Zhao, 2018). However, geologic attributes and terrain attributes such as slope 

angle, may work together as a suitable surrogate to anticipate the most likely landslide types given little to no landslide data 

in the target area. Landslide type information is also difficult to collect and is often lacking in landslide inventories (Mezaal 

and Pradhan, 2018). Prior information on unseen areas or integrating expert experience may be helpful in formulating landslide 

types for transfer learning.  375 

In general, the use of similarity indices can be somewhat arbitrary, as there are currently no clear criteria for how to select 

suitable similarity indices. For example, Liang et al. (2020a) analysed the importance of each attribute for digital soil mapping 

based on previous studies to select the similarity index. Qin et al. (2016) indicated that the similarity indices should be 

structured to effectively represent the contextual information relevant to digital terrain analysis applications, hence the 

similarity indices used were based on knowledge and experience. Wang et al. (2020) selected similarity indices based on their 380 

importance for disaster situations.  

For CBR applied to landslide susceptibility modelling, more elaborate criteria that could be indirectly used to account for 

differences in landslide type could focus on preparatory and triggering conditions such as land use (Steger et al., 2017; Knevels 

et al., 2021), distance to paved and unpaved road networks; noting that (paved) roads in Ecuador are associated with strongly 

increased landslide susceptibility (Brenning et al., 2015). Adding more process-related similarity indices may lead to improved 385 

CBR transfer learning, but this may not be easy to implement across different study regions in different countries with different 

mapping agencies and standards. Therefore, similar to selecting individual features for landslide susceptibility modelling 

(without model transferring), we recommend the use of expert knowledge to help guide in the selection of similarity attributes. 

In terms of choosing related source areas, the minimum operator method worked very well in our study and avoided selecting 

a “falsely” related source. However, we did observe a scenario where one area was considered related but the reciprocal area 390 

not (Paldau and Waidhofen; Fig. 4). As pointed out by Humphreys et al. (2003), when using CBR for similarity evaluation, 

the evaluation criterion used may be different in different categories and situations. By analogy, we can assume that the 

threshold settings for similarity may also differ for different attributes in different study areas in landslide assessment studies. 

Additionally, there are other methods to obtain the related area, such as Manhattan distance, grey relational analysis, or k-

nearest neighbours (Dou et al., 2015). 395 
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4.3 Utility of domain adaptation in geospatial learning and other limitations 

Our study showed that DA did not generally improve transfer learning performance in landslide susceptibility modelling. This 

holds true for single-source as well as multi-source DA with and without CBR-based source selection. Nevertheless, DA 

increased the AUROC performance when the source area was rather dissimilar to the target area (Fig. 6), which is less relevant 

in landslide studies that have access to a large and geographically diverse case base. It is impressive that models trained on 400 

multiple related source areas with CBR and DA showed good performances. For instance, when Paldau with a 1 m × 1 m, and 

Burgenland with a 10 m × 10 m resolution were the target areas, AUROCs obtained by multi-source CBR-DA were nearly 

equal to thoseat obtained achieved by the best single-source transfer benchmark and higher than the other strategies (Fig. 7). 

The reason may lie in the improvement of DA through the weighting of source areas. 

A further consideration is to use labelled data from the target area. Fang et al. (2021) proposed a new domain adaptation for 405 

landslide inventory mapping by considering pre-landslides and post-landslide conditions, and concluded that the proposed 

method was successful. This new method could be considered as supervised DA in landslide susceptibility mapping. In other 

geospatial learning fields, such as land cover mapping, Mboga et al. (2021) compared two unsupervised domain adaptation 

strategies (the correlation alignment (D-CORAL) domain adaptation network and the domain adversarial neural, DANN) and 

found that classification performance was improved by adding labelled data from the target area. We suggest that active-410 

learning strategies (Wang & Brenning, 2021) could be useful in efficiently generating limited amounts of labelled data for 

transfer learning. 

Although the study areas cover a wide range of climates with different land cover types and landslide process types, our set of 

source areas is by no means complete and the results may therefore not be fully representative for the performances that might 

be achieved at a global scale. Future work should therefore broaden the database of source areas. 415 

5 Conclusion 

The aim of our study was to examine the performances of geographically informed case-based reasoning (CBR) and 

unsupervised domain adaptation (DA) in geographically transferring knowledge for landslide susceptibility modelling in 

“new” target areas without landslide inventory data. Our comparative study revealed that CBR strategies with a single source 

area as well as with multiple related source areas are robust and effective in developing highly transferable landslide 420 

susceptibility models without requiring any a prior knowledge of landslides in the target area. In the multi-source CBR and 

CBR-DA transfer strategies the weighted combination of model predictions based on similarity scores can qualitatively exploit 

the degree of relatedness between target and source areas, but the way to determine the similarity still requires further research. 

Single-source CBR was the most effective method for performing model transfer to the target area in most situations. Its 

performance was also very close to that obtained by models trained with data from the target area itself. Domain adaptation 425 

showed promise for situations where only source areas that are weakly related to the target area are available for transfer 
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learning. Nevertheless, considering the increasing availability of geographically diverse landslide inventories, this appears to 

be of limited practical relevance in landslide studies. Therefore, the single-source CBR strategy appears to be the most 

promising strategy for landslide susceptibility modelling.  

The findings of this paper also provide insights regarding the potential of transferring existing landslide susceptibility models 430 

to new areas. By calculating the similarity between data and region characteristics, trained models can directly be used for the 

new task, especially in situations that require rapid model development, such as emergency situations. Although further 

research is needed to generalize our findings, we suggest that the proposed approach can alleviate the burden of collecting and 

labelling data, resulting in a more expedited preparation of landslide susceptibility maps for large and data-scarce regions. 

Appendix 435 

Table A1 Information of all study areas 
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 Original dataset 

 Burgenland Paldau Waidhofen 
Ecuador 

highway 
RBSF 

Moden

a 
Parma Piacenza Rimini Bologna 

Slope 

angle (º) 

Min 0 0 0 2.5 0 0 0 0 0 0 

Max 82.5 66.6 87.5 52.9 76.2 67.8 71.8 66.6 64.1 67.2 

Mean 9.2 10.9 19.8 25.3 35.7 13.3 11.8 11.4 8.2 11.5 

Standard 

deviation 
8.2 8.3 10.7 12.2 10.7 6.9 7.5 8.6 6.5 7.9 

Area 

(km2) 
 117.8 39.3 131.3 88 9.6 1293 2576.8 1834.8 921.2 3707.6 

Main 

geologi

cal units 

Igneous ✓ ✓ ✓ ✓   
✓  

Sedimentary ✓ ✓ ✓ ✓  ✓ 

Metamorphi

c 
✓ ✓ ✓ ✓ ✓ ✓ 

Elevatio

n (m) 

Max 766.7 463.1 1114.9 2960.4 3164.2 2141.5 1827.3 1726.3 1399.3 1923.5 

Min 243.1 282.7 324.5 948.8 1714.4 80.7 34.8 49.7 3.8 11.0 

Predictor variables for landslide and non-landslide observations 

Slope 

angle (º) 

Landslides 

median 

(IQR) 

15.9 

(13.95) 

11.36 

(11.63) 

19.05 

(13.84) 

30.02 

(17.43) 

43.37 

(10.67) 

12.08 

(5.64) 

11.03 

(6.49) 

10.81 

(5.83) 

10.17 

(4.93) 

11.2 

(5.5) 

Non-

landslides 

median 

(IQR) 

6.7 

(8.24) 

9.23 

(10.53) 

18.00 

(15.12) 

23.03 

(17.56) 

36.27 

(14.59) 

12.34 

(8.07) 

11.30 

(9.74) 

10.31 

(1.08) 

7.18 

(9.88) 

10.9 

(10.1) 

Plan 

curvatur

e 

(radians 

per 100 

m) 

Landslides 

median 

(IQR) 

-0.001 (0.33) 
0.00136 

(0.39) 

-0.0034 

(0.3648) 

0.00086 

(0.0152) 

-0.017 

(0.052) 

-

0.00124 

(0.0080

4) 

-

0.00102 

(0.0078

5) 

-0.00182 

(0.0081) 

-

0.0021

4 

(0.008

13) 

-0.002 

(0.0079) 

Non-

landslides 

median 

(IQR) 

0.00019 

(0.42) 

0.00294 

(0.46) 

-0.0009 

(0.2762) 

0.00028 

(0.0117) 

0.0054 

(0.043) 

0.00035 

(0.0087

3) 

0.00037 

(0.0093

5) 

0.00027 

(0.00999) 

0.0005

2 

(0.011

18) 

0.0004 

(0.01) 

Profile 

curvatur

e 

(radians 

per 100 

m) 

Landslides 

median 

(IQR) 

-0.0001 

(0.0014) 

0.00025 

(0.08558) 

-0.0015 

(0.1028) 

0.00056 

(0.019) 

-0.0025 

(0.013) 

-

0.00015 

(0.0015

) 

-

0.00014 

(0.0014

3) 

-0.00019 

(0.00135) 

-

0.0001

8 

(0.001

27) 

-0.0002 

(0.0014) 

Non-

landslides 

median 

(IQR) 

0.00024 

(0.05) 

0.00046 

(0.07183) 

-0.0006 

(0.0738) 

-0.00036 

(0.013) 

0.00147 

(0.014) 

-

0.00002 

(0.0017

) 

-

0.00002 

(0.0014

) 

-0.00002 

(0.00132) 

-

0.0000

2 

(0.001

01) 

-3e-05 

(0.0015) 

Upslope 

contribu

ting 

area 

(log10 

m2) 

Landslides 

median 

(IQR) 

1.74 

(1.08) 

1.56 

(0.95) 

1.87 

(0.997) 

3.04 

(0.65) 

3.03 

(0.61) 

4.19 

(0.76) 

4.16 

(0.71) 

4.18 

(0.73) 

4.07 

(0.72) 

4.1 

(0.71) 

Non-

landslides 

median 

(IQR) 

1.67 

(0.97) 

1.56 

(0.95) 

1.88 

(0.734) 

3.15 

(0.80) 

2.80 

(0.60) 

3.86 

(0.67) 

3.81 

(0.70) 

3.82 

(0.74) 

3.71 

(0.68) 

3.7 

(0.67) 
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Table A2 AUROCs of models trained on individual source areas with domain adaptation versus without domain adaptation, the 

results are shown as DA / target benchmark. The bolded font indicated that the source area corresponding to this AUROC was the 

most related for the current target area. 440 

 Target areas 

 Bologna 

25 

Burgenland 

1 

RBSF 10 Ecuador highway 

10 

Modena 

25 

Paldau 1 Parma 

25 

Piacenza 

25 

Rimini 

25 

Waidhofen 

1 

Bologna 25 0.767 0.515/0.432 0.524/0.50

5 

0.446/0.415 0.719/0.72 0.494/0.47 0.72/0.72

6 

0.754/0.75

3 

0.803/0.8

06 

0.5/0.435 

Burgenland 1 - 0.82 - - - 0.611/0.59

5 

- - - 0.562/0.55

3 

RBSF 10 - 0.633/0.617 0.772 0.635/0.634 - 0.547/0.51

3 

- - - 0.543/0.55

8 

Ecuador highway 

10 

- 0.536/0.628 0.704/0.71

3 

0.671 - 0.505/0.47 - - - 0.502/0.50

1 

Modena 25 0.756/0.75

6 

0.502/0.493 0.468/0.40

6 

0.448/0.369 0..731 0.512/0.50

2 

0.705/0.7

15 

0.743/0.74

8 

0.802/0.7

98 

0.496/0.48 

Paldau 1 - 0.794/0.796 - - - 0.621 - - - 0.587/0.56

4 

Parma 25 0.762/0.76

2 

0.504/0.466 0.629/0.59

4 

0.514/0.482 0.706/0.71

2 

0.499/0.47

7 

0.733 0.753/0.75 0.795/0.7

95 

0.496/0.47

3 

Piacenza 25 0.757/0.76 0.595/0.482 0.54/0.428 0.436/0.422 0.719/0.72

2 

0.51/0.494 0.721/0.7

2 

0.755 0.803/0.8

04 

0.499/0.48

8 

Rimini 25 0.763/0.75

9 

0.508/0.489 0.681/0.55

2 

0.483/0.467 0.709/0.71

5 

0.507/0.49

7 

0.726/0.7

22 

0.753/0.74

8 

0.811 0.533/0.49

4 

Waidhofen 1 - 0.77/0.763 - - - 0.601/0.60

2 

- - - 0.652 

Burgenland 10 - - 0.657/0.53

3 

0.542/0.448 - - - - - - 

Paldau 10 - - 0.73/0.73 0.63/0.614 - - - - - - 

Waidhofen 10 - - 0.709/0.66

2 

0.533/0.542 - - - - - - 

Burgenland 25 0.728/0.72

8 

- - - 0.683/0.66

1 

- 0.681/0.6

63 

0.715/0.71

7 

0.782/0.7

77 

- 

Paldau 25 0.601/0.58

8 

- - - 0.535/0.51

5 

- 0.563/0.5

47 

0.583/0.58

5 

0.715/0.7

11 

- 

Waidhofen 25 0.677/0.65

7 

- - - 0.619/0.61

9 

- 0.643/0.6

45 

0.684/0.66

1 

0.744/0.7

41 

- 

RBSF 25 0.67/0.541 - - - 0.615/0.48 - 0.65/0.53

7 

0.654/0.56

2 

0.695/0.6

7 

- 

 Burgenland 10 Paldau 10 Waidhofen 10 Burgenland 25 Paldau 25 Waidhofen 25 

Bologna 25 0.686/0.629 0.5/0.560 0.608/0.575 0.705/0.768 0.639/0.66

2 

0.627/0.617 

RBSF 10 0.774/0.766 0.726/0.69

1 

0.587/0.594 - - - 

Ecuador highway 

10 

0.657/0.669 0.638/0.61

7 

0.530/0.526 - - - 

Modena 25 0.753/0.736 0.642/0.6 0.602/0.582 0.722/0.784 0.615/0.64

5 

0.594/0.601 

Parma 25 0.510/0.696 0.651/0.59

1 

0.610/0.616 0.728/0.767 0.589/0.61

9 

0.654/0.642 

Piacenza 25 0.735/0.681 0.61/0.572 0.572/0.597 0.569/0.791 0.541/0.65

9 

0.632/0.631 

Rimini 25 0.756/0.698 0.573/0.58

7 

0.625/0.584 0.691/0.780 0.588/0.68

2 

0.632/0.626 

Burgenland 10 0.877 0.603/0.76

6 

0.596/0.616 - - - 

Paldau 10 0.845/0.852 0.787 0.616/0.612 - - - 

Waidhofen 10 0.807/0.803 0.6845/0.7

3 

0.716 - - - 

Burgenland 25 - - - 0.876 0.616/0.76

0 

0.643/0.673 

Paldau 25 - - - 0.846/0.835 0.790 0.605/0.588 

Waidhofen 25 - - - 0.791/0.805 0.603/0.72

3 

0.726 

RBSF 25 - - - 0.765/0.769 0.699/0.68

1 

0.554/0.548 
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Code availability 

The scripts of strategies used in our paper are available at https://doi.org/10.5281/zenodo.6527716  (last access: 07 May 2022). 

Data availability 

Austrian study areas: Landslide inventories for Paldau and Waidhofen is available in Knevels et al., 2021 

(https://doi.org/10.3390/land10090954) and for Burgenland is available in Knevels et al., 2019 445 

(https://doi.org/10.3390/ijgi8120551). LiDAR-based HRDTM of Burgenland, Paldau and Waidhofen can be requested from 

the GIS department of the Styrian and the Government of Burgenland, and the provincial government of Lower Austria, 

respectively. 

Italian study areas: Emilia Romagna Region landslide inventories could be downloaded at https://ambiente.regione.emilia-

romagna.it/it/geologia/cartografia/webgis-banchedati/cartografia-dissesto-idrogeologico#consulta-dati-shp. The DEM for 450 

Emilia Romagna Region is available at https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-

eu-dem.  

Ecuadorian study areas: Landslide data for the RBSF area is available as part of the open-source ‘sperrorest’ package in R 

(https://cran.r-project.org/package=sperrorest, dataset ‘ecuador’), and the Ecuador highway landslide data is available from A. 

Brenning upon request. The DEMs used can be requested from the DFG Research Unit FOR 816 (J. Bendix, University of 455 

Marburg, Germany).  
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