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Abstract. Implicit structural modeling using sparse and unevenly distributed data is essential for various scientific and societal

purposes ranging from natural source exploration to geological hazard forecasts. Most advanced implicit approaches formu-

late structural modeling as least-squares minimization or spatial interpolation problem and solve partial differential equations

(PDEs) for a scalar field that optimally fits all the input data under smooth regularization assumption. However, the PDEs in

these methods might be insufficient to model highly complex structures in practice and may fail to reasonably fit a global5

structure trend when the known data are too sparse. In addition, solving the PDEs with iterative optimization solvers could

be computationally expensive in 3-D. In this study, we propose an efficient deep learning method using a convolution neural

network to predict a scalar field from sparse structural data associated with multiple distinct stratigraphic layers and faults.

Our deep learning architecture is beneficial for the flexible incorporation of empirical geological knowledge by training with

numerous and realistic structural models that are automatically generated from a data simulation workflow. It also presents an10

impressive characteristic of integrating various types of structural constraints by optimally minimizing a hybrid loss function

to compare predicted and reference structural models, opening new opportunities for further improving geological modeling.

Moreover, the deep neural network, after training, is highly efficient to predict implicit structural models in practical applica-

tions. The capacity of our approach for modeling highly deformed geological structures is verified by using both synthetic and

real-world datasets, where the produced models are geologically reasonable and structurally consistent with the inputs.15

1 Introduction

A structurally reasonable geological model is essential to well understand subsurface spatial organization and quantitatively

simulate geological processes for a wide variety of earth science applications (Wellmann and Caumon, 2018). Structural mod-

eling intends to accurately represent the geometry of geological structures with a numerical model by using mathematical

methods. The traditional modeling approach can be described as explicit or surface modeling (Chaodong et al., 2010). It in-20

tends to reproduce the complex geometry of structures by digitizing the interpreted surface elements and their arrangements,

and the resultant model typically incorporates a series of geological interfaces derived by a triangulation algorithm. In addition

to being time-consuming, the modeling process is also related to each individual geologist’s interpretation and might not be

replicated by others (Caumon et al., 2009; Chaodong et al., 2010).
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Recently, more and more implicit structural modeling methods have been proposed for constructing geological models25

because of their automatic, efficient, and reproducible characteristics (Guillen et al., 2008; Caumon et al., 2012; Hillier et al.,

2014; Laurent et al., 2014; Collon et al., 2015). The implicit method is distinguished from the explicit approach because it

consists in interpreting field structural observations into a volumetric function that is defined on the entire region of interest to

implicitly represent geological structures. In this function, the geological interfaces are embedded as scalar iso-surfaces, while

the structural discontinuities are highlighted by discontinuous value jumps of the function. Thus, the scalar function is also30

called the implicit model. The implicit method benefits from incorporating available geological information into the resultant

model from a global respective, providing an effective alternative to reproduce the geometry of the subsurface by integrating

the observed data and the empirical rules (Fossen, 2016). File observations and measurements are interpreted by the geologists

and geophysicists to obtain the input data of the implicit method that typically included various types of modeling objects, such

as spatial points, vectors, polylines, and surfaces. The output model needs to represent geologically reasonable structures while35

honoring the input structural data. As it is hardly possible to observe a ground truth of subsurface, the geological structures

are often sparsely and heterogeneously sampled, or regional available in a limited number of highly developed mining and

oil fields. This arises the necessity of adding prior geological rules and simplifications as structural constraints to guide the

modeling process.

The discrete smooth interpolation (DSI) is one class of implicit methods that compute structural models by discretizing the40

scalar function on a volumetric mesh (Mallet, 1988, 1992, 1997, 2014; Souche et al., 2014; Renaudeau et al., 2019). In DSI

and its variant approaches, structural modeling is performed by solving a least-squares minimization problem with smooth

constraint to compute a scalar field compatible with the inputs. This smooth constraint incorporates empirical geological

knowledge into the modeling process with a fundamental assumption that the desired model should be as smooth as possible.

However, the mesh elements prohibit from crossing structural discontinuities because the scalar function is always continuous45

on the mesh elements, and the method cannot correctly estimate the gradients of the scalar function near the faults or unconfor-

mities (Shewchuk, 2002). In addition to DIS, the potential field method (PFM) is another class of implicit approaches (Lajaunie

et al., 1997; Jessell, 2001; McInerney et al., 2007; Phillips et al., 2007). PFM typically formulates structural modeling as a dual

cokriging interpolation (Chiles et al., 2004; Calcagno et al., 2008) or as a radial basis function interpolation (Carr et al., 2001).

In comparison to DIS, although the modeling results can be evaluated on a volumetric mesh for a visual purpose, PFM does50

not use any mesh grids in computing the scalar function. Instead, structure interpolation is fully dependent on the distribution

of the observed structural data and the influence range of each structural point data is determined by the chosen interpolants.

However, PFM usually yields a dense system to scale the influence of the interpolants over the entire volume of interest for

acquiring a structurally valid solution, which causes the computational cost quickly increase with the input data size and soon

become prohibitive.55

The existing approaches exhibit many promising characteristics, however, reproducing structures of highly deformed regions

remains a challenging task regarding geological consistency as their modeling reliability depends on the availability and quality

of the observed data. Structural interpolation fully guided by mathematical equations might not always produce a geologically

valid model given sparse or unevenly distributed data in some complex geological circumstances. Corresponding structural
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Figure 1. Our implicit modeling method produces a volumetric scalar function as an implicit representation of all the geological structures

from input point data by using CNN. Trained with numerous synthetic data, the network can be applied to field structural data to efficiently

predict a geologically reasonable model that well match the input structure data.

models often have erroneous geometrical features that are inconsistent with geological knowledge and spatial relationships60

with relevant structures. The problem is mainly attributed to limitations on the implicit constraints permitted in structural

interpolants, in which all sorts of the observed data and empirical rules are mathematically represented as linear forms of

constraints to compute the scalar function as smoothly as possible. Although this assumption contributes to a unique model,

imposing such an explicit smoothness criterion might compromise the influence of local structural variations and negatively

impact the modeling accuracy of highly variant structures (de Kemp et al., 2016; Hillier et al., 2021). Because the modeling65

flexibility is limited to the models that a specific interpolant can generate, the current implicit methods usually suffer from

artifacts or geometrical features physically impossible from a geological modeling point of view. Therefore, it is significant to

improve implicit modeling by using all available geological information to ensure that we can obtain a structurally reasonable

model.

In this study, we present a deep learning method using a convolutional neural network (CNN) as an alternative to conven-70

tional implicit structural modeling. Deep learning is a type of data-driven and statistical approach that estimate an implicit

function that maps inputs to outputs from past experiences or example data by optimizing a quality criteria or loss func-

tion (Donmez, 2010). By contrast with the traditional approach, deep learning is beneficial for making prediction without fully

defining a specific physical process and solving a sophisticated linear system of equations under prescribed mathematical con-

straints at cost of expensive computation. Among current learning-based methods, CNN is essential for its remarkable power75
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Figure 2. Our network has a U-shaped architecture that consists of encoder and decoder branches shown in (a). The encoder uses an inverse

residual block (b) supplemented by a lightweight channel-based attention (c) to deal with the input structural data at each of the 5 different

spatial scales. The decoder computes the hidden representations at the corresponding 5 resolution scales to form a sufficiently deep CNN.
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Figure 3. The hidden feature representations computed in each spatial scale of the encoder and decoder networks.

in analyzing geometrical features and capturing complexly nonlinear spatial relations given a sufficiently large training dataset.

To find an optimal trade-off between prediction accuracy and efficiency, there exist many convolutional modules available

for constructing our CNN’s architecture, such as depth-wise separable convolution (Ioffe and Normalization, 2014; Howard

et al., 2017), attention mechanism (Iandola et al., 2016; Howard et al., 2019), and residual learning structure (Sandler et al.,

2018). It is not a surprise that the CNN-related applications in geosciences have been growing rapidly during the past years,80

including seismic interpretation (Shi et al., 2019; Wu et al., 2019; Geng et al., 2020; Bi et al., 2021), earthquake location and

4

https://doi.org/10.5194/gmd-2022-117
Preprint. Discussion started: 5 May 2022
c© Author(s) 2022. CC BY 4.0 License.



detection (Wu et al., 2018; Perol et al., 2018), remote-sensing image classification (Chen et al., 2016; Maggiori et al., 2016),

and so on. It is worth noting that a novel learning-based method using Graph Neural Networks (GNN) (Hillier et al., 2021)

has been recently developed to integrate structural observations into a graphic mesh encoding all relevant geometrical relations

for producing a structural scalar field. This method presents a promising foundation for introducing interpolation constraints85

that current implicit mathematical methods cannot permit in modeling by comparing the GNN’s prediction and the structural

observations. It shows an impressive performance to deal with implicit and discrete geological data, opening new opportunities

for improving the modeling capacity in many geological applications. However, the method cannot reproduce the modeling

results under the same inputs as the network parameters are initialized randomly in each run of computation. By measuring

prediction error only on the sparse structural observations, it remains a challenging task to incorporate constraints associated90

with structural discontinuities into graphic structures, such as representing the spatial relation of the modeling elements across

faults. Another potential limitation results from a bottle-necking problem in the current GNN’s architecture (Alon and Yahav,

2020), in which further improvement of the modeling capability is restrained by network depth with a few layers. A network

with a simple structure might not be sufficient to deal with relatively complex geological structures.

As is shown in Figure 1, we formulate implicit modeling as image inpainting with deep learning, in which a full model95

is interpolated from the sparse and heterogeneously sampled structural data based on the past experiences and knowledge

learned from a large training dataset. This characteristic permits a flexible introduction of empirical geometrical relations and

structural interpolation constraints by defining an appropriate loss function to measure the structural differences between the

CNN predictions and the reference models. Our network, also called DeepISMNet, produces a structural scalar field as an

implicit representation of all the geological structures from various types of the input data including horizons that encode100

the stratigraphic sequence of the sampled interfaces and faults in the presence of the geological boundaries. In preparing for

training dataset, we use an automatic data simulation workflow to generate numerous geological models with realistic faulted

and folded structures that are not limited to a specific pattern by randomly choosing simulating parameters within reasonable

ranges. In addition, we randomly mask the synthetic models for generating the sparsely and unevenly distributed horizon data,

which together with the fault data are used as inputs of the network to make structural field predictions. We also demonstrate105

that the normal vectors sampled on geological interfaces can be used to constrain structural orientations associated with the

gradient of the model. In training the network, we use a hybrid loss function combining element-wisely fitting on the known

horizons and multi-scale structural similarity over the entire model to guarantee a structurally consistent CNN prediction. Once

obtaining an implicit model, the horizon surfaces can be computed by using the iso-surface extraction method, while the faults

can be represented by the local jumps in the structural scalar field (Figure 1). In both synthetic and field data applications,110

our trained CNN can efficiently construct a geologically reasonable and reproducible model, showing promising potential for

further leveraging deep learning to improve many geological applications.

We organize this paper as follows. In the Methodology section, we describe the CNN architecture designed for implicit

modeling and its associated loss function definition. In the Data Preparation section, we introduce the methodology used

to automatically generates training data and simulate the partially missing horizons. The Implementation and Application115

sections include both synthetic and real-world case studies to verify the performance of our network in representing complex

5

https://doi.org/10.5194/gmd-2022-117
Preprint. Discussion started: 5 May 2022
c© Author(s) 2022. CC BY 4.0 License.



geological structures. The Discussion section presents the promising characteristics of the proposed CNN approach and its

current limitations and possible improvements that we will focus on in future research. Finally, we summarize our work in the

Conclusions section.

2 METHODOLOGY120

In this section, we describe the CNN architecture and its associated loss function used in training the network to generate

implicit structural models.

2.1 Network Architecture

Our developed CNN architecture uses a U-shaped framework modified from UNet and its associated variants (Ronneberger

et al., 2015; Zhou et al., 2018), in which we include further improvements based on previous works to find an optimal trade-off125

between accuracy and efficiency in geological modeling. In many image recognition tasks where inputs and outputs share the

same spatial resolution, UNet is typically regraded as a standard principle due to its excellent performance (Lin et al., 2017;

Yu et al., 2018a). Its great representational power results from an encoder-decoder architecture, in which features are first

downsampled in the encoder and then recombined with their upsampled counterparts through skip connections at each spatial

resolution in the decoder. The localized components of the inputs are typically extracted at an early stage of the CNN, while the130

relatively high-level and global features are obtained when the receptive fields are increasingly large in deep convolutional lay-

ers. Thus, because the hidden representations with different spatial resolutions have much distinctive geometrical information,

systematically aggregating the multi-scale features provides hierarchical constraints to make a reliable and stable structural

field prediction. Furthermore, the low-level features computed from the shallow layers better follow the input structures than

the deep high-level features because the structural information might be gradually missing in recursive feature compressions135

at the downsampled spatial resolutions. The use of skip connections helps to enhance the low-level features throughout the

network and produce a model structurally consistent with the inputs.

The encoder branch in our proposed network consists of 5 successive inverse residual blocks dealing with the input structural

data at 5 different spatial scales (from E0 to E4) related to 2, 4, 8, 16, and 32 downsampling rates, respectively (Figure 2a).

When downsampling the hidden representations at each spatial scale by using the max pool layer, the encoder network simulta-140

neously doubles its channels. As is shown in Figure 2b, we adopt a linear bottleneck and inverted residual architecture to make

an efficient convolutional structure by leveraging the low-rank nature of the structural interpolation in each block. This struc-

ture is composed of a 1× 1 expansion convolutional layer, a 3× 3 depth-wise convolutional layer, and another 1× 1 projection

convolutional layer, and each convolution is followed by a Batch Normalization (BN) and a Rectified Linear Unit (ReLu). The

two 1× 1 convolutional layers at the ends of the depth-wise convolutional layer are designed to expand the input features to145

higher-dimensional feature space and project them back to the output channels, such that the block forms a compact feature

embedding to improve the expressiveness of the nonlinear transformation at each channel. With a residual connection over the

expansion and projection convolutional layers, the block is formulated as an implicit residual learning function to speed up
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the backpropagation of gradient responses. Although the deep encoder layers aggregate rich structural features through recur-

sive channel expansions, not all the features are informative for making predictions because there exist many invalid features150

with zeros everywhere due to the spare and heterogeneously distributed characteristics of the inputs. Treating the zero features

equally might negatively influence the performance of the network and degrade its representational power. To enhance the

CNN’s discriminative learning ability, we insert a lightweight channel-based attention module into the bottleneck structure of

the residual block in the last three spatial scales of the encoder network. The attention block (Figure 2c) consists of squeeze and

citation modules, in which the input features are first compressed into lower-dimensional feature space in the squeeze module155

and then transformed to the channel-wise attention weights with the same channels as the inputs in the citation module. This

module encourages the network to adaptively learn the relations across hundreds of high-level features with relatively global

structural information and rescale their importance to stabilize the modeling process by emphasizing the informative features

and suppressing the irrelevant ones.

The decoder branch includes the 5 spatial scales (from D4 to D0) consistent with the encoder to form a sufficiently deep160

network. It is responsible to integrate the hidden representations in the encoder branch into the output and compensate for

the spatial resolution mismatch between the concatenated features. In each spatial scale, the upsampled decoded features are

first combined with their downsampled counterparts from a skip connection of the encoder branch and then fed into the two

successive convolutions to further refine these features. We use depth-wise separable convolutional layers (Howard et al., 2017)

as an efficient replacement of the traditional convolutional layers. The depth-wise separable convolutional layer factorizes the165

convolutional operation as two separate layers including a lightweight 3× 3 convolutional layer for spatial feature fusion

within each channel and a relatively heavy 1× 1 convolutional layer across multiple channels for feature combination. By

expressing convolution as a two-step process of fusing and combining, we can reduce the number of operations (MAdds)

and GPU memory consumption to build a lightweight decoder network. In the final layer, we adopt a simple linear transform

implemented by a 1× 1 convolutional layer to cross all the decoded features for producing a full geological model.170

Figure 3 visualizes the hidden representations at each resolution scale of the encoder and decoder units that the inputs are

passed through. Our method is designed to progressively complete structural features layer by layer through sequential non-

linear convolutional filters that are conditioned on the previous convolutions. As is displayed in Figure 3, the valid convolutional

responses only exist near the input structures in the starting layer of the network. To spread geological structures elsewhere,

every convolutional filter collects features from the previous layer outputs within an increasingly expanding receptive region175

by recursively downsampling the input hidden features. The structural information in the inputs can be used to constrain the

modeling process over the entire volume in the bottom layer of our CNN from a global receptive region of view. This charac-

teristic imposes a fundamental assumption that nearby features are more important than distant ones for geologically related

predictions. As the modeling result of our method is estimated from the recursive aggregations of the structural information,

the more local features exert a greater impact than distant ones, which is consistent with the traditional spatial interpolation180

scheme.
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a)

b)

c)

Figure 4. Four pairs of 3-D training data samples. The first row shows 3-D synthetic implicit structural models used as labels in training our

3-D network. The second and third rows, respectively, display the fault volumes and sparse horizon points extracted from the label models

(first row), which are together used as inputs of the CNN.

2.1.1 Loss Function

The network provides an attractive characteristic to integrate various structural constraints by minimizing the corresponding

errors between the predicted and reference models. For geologically valid CNN predictions, we combine element-wise accuracy

with multi-scale structural similarity to define a hybrid loss function. We introduce notations and formal definitions used in185

this loss function. Let m be a binary mask, in which the points on the input horizons are set to 1 and the rests are set to 0.

For each reference model x, the network fθ with trainable kernel parameters θ receives horizon data h = x�m and fault

data f as inputs to make field prediction ŷ = fθ(h, f). We denote the geological structures interpreted from the inputs as

y = ŷ� (1−m) +x�m.

In many geologically related regression problems, Mean Square Error (MSE) and Mean Absolute Error (MAE) are com-190

monly used to element-wisely measure the accuracy of the solutions. However, MSE typically emphasizes the elements with

larger errors but is more tolerant to smaller ones, regardless of the underlying spatial pattern of the data. In comparison to MSE,
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a)

b)

c)

Figure 5. Four pairs of 2-D training data samples. The first row displays 2-D synthetic implicit structural models used as labels in training

our 2-D CNN. The second and third rows, respectively, show the fault images and sparse horizon points extracted from the label models (first

row), which are together used as inputs if the CNN. It is worth noting that the points denoted by the same color in each image of the third

row correspond to the same horizon.

MAE can be more sensitive to the local structural variations and reduce the artifacts caused by excessively penalizing large

errors between modeling results and targets. We adopt masked MAE as a point-wise measurement in the hybrid loss function,

which is formulated as follows:195

Lmae(p) =
1
N

∑

p∈p
|x(p)− ŷ(p)|, (1)

where N represents the grid point number within the patch p cropped from the same spatial location from the two structural

models being compared, respectively.

Although MAE can outperform MSE in geological modeling scenarios, the results are still not optimal. CNN trained by

using MAE alone might not correctly recover geometrical features that are represented by the distribution of the neighboring200

points (Wang et al., 2003, 2004), and might blur high-frequency and sharp discontinuous structures. Therefore, the two models

with similar MAE might might appear significantly distinct structures, which negatively impact the optimization of the CNN’s

parameters. To alleviate such smooth effectiveness, we use a hybrid loss function by combining MAE with Structural Simi-

larity (SSIM). By adaptively assigning higher weights on the structural boundaries in which the geological structures present

significant contrasts, SSIM can better preserve the high-frequency geometrical features than the other loss functions. SSIM205

measuring the CNN prediction and the reference model on a single grid point p (p ∈ p) can be represented as follows,

fssim(p) = (
2µxµy +C1

µ2
x +µ2

y +C1
)β(

2σxy +C2

σ2
x +σ2

y +C2
)γ

= l(p)β · cs(p)γ , (2)
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where µx and µy represent the mean values of model x and y within p, respectively. σx and σy are the corresponding

variances, while σxy denotes the covariance of the two patches being measured. The means, variances and covariance are

computed by using a Gaussian filter Gσg with standard deviation σg . Approximately, µx and σx can be viewed as estimates210

of the stratigraphic sequences and structural variations in a local patch of model x, and σxy measures the tendency of the two

patches in model x and y to vary together, thus an indication of structural similarity. β and γ define the relative significance of

the two terms l and cs, which are both set to 1 based on Wang et al. (2003). In addition, we use two small constant factors C1

and C2 to avoid the numerically unstable circumstance of dividing by zero.

The standard deviation σg of the Gaussian filterGσg
is a super-parameter that requires to be defined before training. However,215

the choice of σg might influence the prediction accuracy of a network trained with SSIM. The network trained by SSIM with

a large standard deviation Gσg might overly emphasize the local variations and generate spurious features in the proximity of

edges while blurring sharp structural boundaries for a small standard deviation Gσg
(Zhao et al., 2016). Instead of fine-tuning

the parameter Gσg
, we use Multi-scale Structural Similarity (MS-SSIM) (Wang et al., 2003, 2004) with a dyadic pyramid of

M scale levels and formulate it as follows,220

fms-ssim(p) = lS(p)β ·
S∏

j=1

csj(p)γj , (3)

in which γj are parameters to define the relative importance of every scale level in the variance-related scheme csj . MS-

SSIM computes a pyramid of patches p with S spatial scales defined by various σg of the used Gaussian filter Gσg . To save

computational cost, we define 5 different values of σg = {0.5,1,2,4,8}, and set each to half of the previous one by recursively

downsampling full-resolution patch using 2× 2 average pool layer (S = 5). According to the recommendation from Wang225

et al. (2003), we set γj = {0.05,0.29,0.3,0.24,0.12} for each scale level and make sure the sum of them is equal to 1. Thus,

the loss function for MS-SSIM used in our CNN training is formulated as follow:

Lms-ssim(p) =
1
N

∑

p∈p
(1− fms-ssim(p)). (4)

SSIM can highlight structural variations focusing on a neighborhood of grid point p as large as the given Gaussian filterGσg
,

but its derivatives cannot be correctly estimated near the boundary regions of patch p in backpropagation and thus introduce230

artifacts in predictions. This can be alleviated by supplying an element-wise criterion such as MAE to the MS-SSIM as it is

only related to the values on a single point in the processed and reference patches. Also, MS-SSIM is not sensitive to uniform

biases, which might cause unexpected changes in stratigraphic sequences or shifts of geological interfaces in modeling results.

In comparison, although MAE can better preserve stratigraphic sequences by minimizing error at each point equally within the

patch, it might not produce quite the same high-frequency contrast as MS-SSIM regardless of local structures. To capture the235

best characteristics of both loss functions, we thus propose to combine them as,
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a) b)

c) d)

Figure 6. Training (cyan) and validation (orange) curves of using our developed hybrid loss (a), and the adaptive adjustment of the learning

rate during the training (b). We run 20 times of the trained CNN to compute the MSE (c) and MAE (d) for the 100 models randomly chosen

from the validation dataset, in which the input structural data are regenerated in each computation. The black dot represents the average error

while the blue and red lines indicate the error ranges of the MSE and MAE, respectively.

Lsum =
1
M

∑

m∈M
(λLmae(pm) +Lms-ssim(pm)), (5)

where λ is a balancing factor used to adjust the relative significance of different loss schemes, and M denotes the number

of all the cropped patches. In training the CNN, we point-wisely crop patches from the reference and processed models being

measured and compute the loss function within each patch according to Equation 5, in which we empirically set the size of240

each patch to 7× 7 and the λ to 1.25. These parameters are kept fixed throughout the study to avoid the need for tuning. The

total loss Lsum is estimated by averaging all the computed losses in the patches.
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a)

b)

c)

d)

Figure 7. We apply the trained CNN to the 5 geological models (a) not included in the training dataset. We randomly generate horizon and

fault structural data (b) from the models as the inputs of our network. By visual comparison, the modeling results (c) are nearly identical

to the original models (a), which can be supported by the great consistency between the scalar field iso-lines (dashed curves) and the input

horizons (solid curves) in (d).

3 DATA PREPARTION

Our CNN architecture is beneficial for the flexible incorporation of empirical geological knowledge in a supervised learning

framework with numerous structural models that are all automatically generated from an automatic data simulation workflow.245

We randomly delete some segments from the models to obtain the partially missing horizons similar to the modeling objects

collected from field observations. In training our network, the incomplete horizons, together with the faults, are used as inputs

to predict a structural scalar field under the supervision of the full model.

3.1 Automatic Data Generator

A supervised learning method typically requires enough example data with various feature patterns to achieve its reliable250

generalization in real-world applications. In our implicit modeling problem, the training dataset should incorporate structurally

various models as much as possible to guarantee that the CNN can learn representative geological knowledge to interpolate a

model from relatively sparse inputs. However, as ground truth of the subsurface is inaccessible, it is hardly possible to acquire

sufficient example data by fully labeling all the structures in a field geological survey. To build a large training dataset, we

adopt a workflow (Wu et al., 2020) that automatically generates synthetic models with realistic geological structures. In this255

workflow, we first create a flat layered model with horizontally constant and vertically monotonically increasing values as an

initial model, and then sequentially apply folding, dipping, and faulting deformations to further complicate the structures in

this model. By randomly choosing deformation parameters within reasonable ranges as recommended by Wu et al. (2020), we
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can generate numerous models that are not limited to a specific structural and stratigraphic pattern to enrich the training dataset.

Such a synthetic model can be viewed as a structural scalar function because its iso-surfaces track stratigraphic interfaces while260

the structural discontinuities indicate faults. While adding structural discontinuities, we also record the positions of faults to

obtain fault structural data with ones on faults and zeros elsewhere. By using this workflow, we totally obtain 600 3-D structural

models shown in Figure 4a, and each model contains 256×256×128 grid points. These models are vertically flipped up-down

and horizontally left-right to build an augmented dataset consisting of a total of 2,400 pairs of models. At the same time as

vertically flipping models, we reverse the sign of their values to ensure that they vertically increase except across a reverse265

fault. As is shown in Figure 5a, we extract 4 evenly spaced slices along crossline and inline from the 3-D structural models,

respectively, to further build a training dataset for the 2-D network. We use 90% of the datasets for training and the rest for

validating the trained network.

3.2 Masked Structural Data

The input structural data of our network consists of many horizon and fault points that are scattered into a regular volumetric270

mesh with valid annotations on structures and zeros elsewhere. As is displayed in Figure 4b and Figure 5b, we set the scattered

points only on faults to 1 and 0 elsewhere in the fault data. In the horizon data, we set the scattered points on the geologi-

cal interfaces to the iso-values of the model to ensure that the points on the same horizon are labeled with the same value.

To simulate the sparse and unevenly sampled horizon data, we randomly delete some segments from the model to simulate

incomplete horizons in each run of data generation. The geological interfaces are implicitly embedded within the scalar field275

with the iso-values and can be obtained by iso-surface extraction methods. Jittered sampling method (Cook, 1986; Hennenfent

and Herrmann, 2008) is adopted to choose iso-values of the model and obtain initial complete horizons, from which we ran-

domly mask some segments to further generate incomplete horizons. This benefits from remedying the deficiency of a regular

sampling grid that introduce a specific pattern in the horizon data while preserving the beneficial properties of randomness.

Specifically, we first divide all the iso-values into uniform intervals and then randomly extract one value within each interval280

and the corresponding horizon surface, such that the horizon distribution can be varying instead of being spaced closely.

Numerous strategies can be used to randomly mask the initial horizons to generate partially missing data. The simplest

masking approach is to construct one or more square patches that cross all available horizons in the model. Although this

pattern is commonly used for numerous image inpainting tasks (Yeh et al., 2017; Yu et al., 2018b), which might negatively

impact the CNN to be well generalized in real-world applications where the inaccessible regions are unlikely in the shape285

of squares. Thus, we further randomize this process by masking the segments of every individual horizon to prevent the

network from learning a specific pattern that all the horizons are partially missing in the same square regions. Specifically,

we estimate the top and bottom positions of each horizon and divide them into segments based on the depth coordinate of

each point, and randomly mask one or more segments to generate the complete or incomplete horizons. As is displayed in

Figure 4c and Figure 5c, the partially missing horizons are highly similar to the structural elements interpreted by geologists290

and geophysicists, allowing the network to learn more effective feature representations. We use this masking strategy for all

the 2-D and 3-D synthetic experiments in this study.
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Network architecture Computational cost Quality metric 
Name Backbone GFLOPs #Params[MB] SSIM EVS MAE MSE×10-1 MSLE×10-1 R2S MDAE HFA 
UNet - 32.715 34.526 0.989 0.990 0.019 0.009 0.005 0.972 0.017 1.078 

AttUNet - 33.265 34.878 0.981 0.978 0.027 0.035 0.018 0.901 0.025 1.029 
NestUNet - 76.406 39.091 0.839 0.773 0.129 0.250 0.126 0.288 0.115 3.025 

DeepLabv3+ Xception 10.328 54.510 0.988 0.990 0.194 0.008 0.004 0.977 0.017 1.634 
DeepLabv3+ DRNet54 23.293 40.672 0.989 0.991 0.019 0.008 0.004 0.978 0.018 1.228 
DeepLabv3+ ResNet101 11.042 59.226 0.986 0.985 0.024 0.014 0.007 0.956 0.022 1.623 
DeepLabv3+ MobileNetv2 4.364 7.555 0.985 0.982 0.027 0.017 0.008 0.949 0.025 1.843 
RefineNet MobileNetv2 1.015 3.250 0.973 0.963 0.031 0.035 0.019 0.887 0.028 1.223 
RefineNet MobileNetv3 0.937 2.600 0.977 0.981 0.030 0.022 0.011 0.937 0.028 1.735 

DeepISMNet* - 4.711 4.300 0.993 0.996 0.016 0.004 0.002 0.988 0.015 0.331 
 
 Table 1. A quantitative comparison between our network and the widely used powerful networks using various quality metrics. For each

of the quality metrics, the best performance is highlighted in bold. The proposed network (DeepISMNet) is marked with an asterisk to

distinguish from the others.

 

Quality metric 
 Training loss function 

L1 L2 SmoothL1 SSIM MS-SSIM MS-SSIM&L1 MS-SSIM&L2 
SSIM 0.991 0.989 0.990 0.989 0.991 0.993 0.990 
EVS 0.994 0.995 0.995 0.992 0.994 0.996 0.995 
MAE 0.017 0.017 0.017 0.017 0.017 0.016 0.016 

MSE×10-1 0.005 0.005 0.005 0.006 0.005 0.004 0.004 
R2S 0.986 0.987 0.988 0.978 0.986 0.988 0.987 

MDAE 0.016 0.016 0.017 0.018 0.016 0.015 0.015 
HFA 0.527 1.321 0.511 0.643 0.630 0.331 1.040 

 

Loss function 
Modeling quality metrics 

MAE MSE×10-1 EVS R2S MDAE SSIM HFA 
L1 0.017 0.005 0.994 0.986 0.016 0.991 0.527 
L2 0.017 0.005 0.995 0.987 0.016 0.989 1.321 

SmoothL1 0.017 0.005 0.995 0.988 0.017 0.990 0.511 
SSIM 0.017 0.006 0.992 0.978 0.018 0.989 0.643 

MS-SSIM 0.017 0.005 0.994 0.986 0.016 0.991 0.630 
MS-SSIM&L1 0.016 0.004 0.996 0.988 0.015 0.993 0.331 
MS-SSIM&L2 0.016 0.004 0.995 0.987 0.015 0.990 1.040 

 
Table 2. A quantitative analysis of our network trained with the distinct loss functions using multiple modeling quality metrics. For each of

the quality metrics, the best modeling result is highlighted in bold.

4 IMPLEMENTATION

We present the geological structural models derived from our CNN for both synthetic data examples and field data applications

in this section to demonstrate its modeling performance.295

4.1 Training and Validation

Considering the coordinate ranges of the geological dataset can be much varying from each other, we rescale all the structural

data to obtain the normalized training samples. This normalization is implemented by applying a global shift to the entire

model to make it range from zero and one, which would not change its geological structures. In training the network, we

formulate these normalized training samples in batches and set bath size to 4 based on our computational resources. Within300

each epoch, the training data are all passed throughout the network to compute the hybrid loss function. We utilize Adam

optimization (Kingma and Ba, 2014) with an adaptive learning step length to speed up the network optimization. The initial
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learning rate is set to 0.01, which reduces gradually when the criterion performance has stopped further improving. We fold

the learning rate by a factor of 0.5 once the loss stagnates within 2 training iterations. As is shown in Figure 6a, the training

and validation loss curves gradually converge to low levels when the optimization stops (less than 0.1 after 120 epochs). The305

convergence of the loss curves demonstrates that the CNN has captured general hidden representations of geological structures

from very few structural data and generated a geologically valid model based on these features. The learning rate is adaptively

adjusted as is displayed in Figure 6b during the training process.

The model stability is evaluated by using horizon fitting error (HFA) which measures the average nearest distance between

the input horizons and the corresponding geological interfaces extracted from the modeling results. In this test, we randomly310

choose 100 models in the validation dataset and run 20 times using the trained network to compute the MSE and MAE for each

model. During the inference step, it is worth noting that the input horizons are regenerated in each computation to ensure that

they are different even for the same structural model. We show the variations of MSE and MAE for each model in Figure 6c

and 6d, respectively, where the MSE and MAE are represented by black dots while the error ranges are denoted by the blue

and red lines. We observe that most MSE and MAE are less than 0.5× 10−5 and 0.2× 10−3, which are considered to be not315

very significant in geological modeling scenarios. This demonstrates the proposed CNN architecture is beneficial for implicit

structural modeling.

4.2 Synthetic Data Examples

To verify the modeling performance, we apply this trained CNN to the 5 synthetic structural models not included in the training

dataset. As is shown in Figure 7a, the models are of complexly faulted layered volumes, in which the folded interfaces are320

reformed by multiple high-angle normal faults. From the original structural models, we generate the incomplete horizon and

the fault data (Figure 7b) used as inputs of our network. By visual comparison in Figure 7c, the modeling results with similar

geometrical features to the inputs maintain the localized variations of the folded interfaces in spite of no global structural

information used to constrain the model. We further overlap scattered horizon points on the iso-lines of the field predictions

(Figure 7d), in which the great consistency between the given structures and the interpolated features again supports our325

observation in Figure 7c.

As is tabulated in Table 1, the CNN’s modeling ability is quantitatively measured by using various quality metrics including

SSIM, MSE, MAE, Explained Variance Score (EVS), Mean Squared Log Error (MSLE), Median Absolute Error (MDAE),

and R2 Score (R2S) for the validation dataset. In addition, we also measure the modeling accuracy of geological interfaces

that correspond to the input horizons by using HFA. Table 1 also shows a quantitative comparison of the proposed method330

(DeepISMNet) and the other powerful networks commonly used in similar scenarios. Our method not only shows better

performance on all the metrics but also has a more lightweight architecture with fewer trainable parameters and GFLOPs

in comparison to other CNNs. Simplification of the network architecture is mainly associated with the use of inverse residual

modules followed by depth-wise separable convolutions in each spatial scale level throughout the network, enabling our CNN to

be applied to a large 3-D field modeling task. To guarantee the representational ability of the simplified CNN, the channel-wise335

dependencies have been explicitly learned by using an attention module that can adaptively highlight more informative features
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Figure 8. We use a synthetic model (a) to study how the varying horizon values impact the CNN’s modeling results. The experiments are

used to verify that our network can produce almost identical structural models from the same faults and the horizons with varying values, as

shown from (b) to (f). This indicates that our approach is not sensitive to the annotation assigned to each horizon in the input structural data,

which facilitates its applications in field surveys.

while suppressing irrelevant ones. Therefore, although the number of hidden representations is less than the conventional CNN

architectures such as UNet, our network can still achieve stable structural interpolation and reliable generalization performance.

Another improvement of our approach is attributed to the use of a loss function based on element-wise accuracy and struc-

tural similarity in updating the CNN’s parameters. To demonstrate the improved modeling performance, we implement a340

quantitative analysis of our CNN trained with the different loss functions using the multiple quality metrics. The average of

these metrics on the validation dataset are tabulated in Table 2. The CNN trained with the hybrid loss function of MS-SSIM

and MAE (denoted by MS-SSIM&L1) can outperform the others in Table 2 on all the quality metrics even including the quality

metrics which we use as cost function to train the network. This loss function is attributed to a better reconstruction of fault-

related features in the resultant model by assigning high weights to regional structural contrasts. Also, a reliable identification345

of faults is useful to constrain the lateral occurrence of stratigraphic interfaces across structural discontinuities.

4.3 Horizon Annotation Experiment

The scatted points along the input horizons can be assigned to iso-values of the implicit model in the training dataset, but how to

annotate each horizon before modeling remains a problem in real-world applications. We supplement a data experiment using a

synthetic model (Figure 8a) to study how the varying horizon values impact the CNN’s modeling results. In this experiment, we350

set values ranging from 0.3 to 0.8 with a fixed interval to the scattered points on the two distinct horizons. The value interval is

computed by averaging the differences in vertical coordinates of these horizons. As is shown from Figure 8b to 8f, the horizons

with varying values, together with the faults, are used as inputs in our network. By visual comparison, the modeling results

using different horizon values are nearly identical to each other, which indicates that our method is not sensitive to the iso-value
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Figure 9. Application in a seismic field dataset. We display seismic images (a), input structural data (b) interpreted from the seismic images,

predicted structural models (c), and horizon fitting results (d), respectively.

definition of the input horizons, which is what we expect. Nevertheless, we recommend assigning scattered points on each of355

the input horizons to their average vertical coordinate. The input horizons are required to be normalized for being consistent

with the training data.

5 APPLICATION

It might not be surprising that the CNN trained with a synthetic dataset works well to produce a geologically valid and consistent

model by using the structural data created from the same workflow for creating the training dataset. In this section, we further360

present structural modeling results from our trained network for real-world data that are acquired at different geological surveys

to demonstrate proof of concept. The modeling objects collected from field observations or seismic data are required to convert

into the uniformly sampling grids to obtain the input structural data of our CNN.

5.1 Real World 2-D Case Studies

We apply the trained CNN to a field 2-D seismic dataset to interpolate structures from horizon and fault interpretations with365

geometrical patterns distinct from the training data. The structural interpolations are acquired in regions with closely spaced

and complexly crossing faults, in which the seismic images are of low resolution due to insufficient data coverage. As is shown

in Figure 9a, the ambiguous reflections are difficult to be continuously tracked from seismic images, which causes the noisy

and partially missing horizon data shown by different colors in Figure 9b. The faults (Figure 9c) might not be fully annotated

from the seismic images because of data-incoherent noise and stratigraphic features apparent to discontinuous structures. The370
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Figure 10. Application in an outcrop field dataset. We display two outcrop images (Fabin et al., 2018) in (a) and (f), input structural data in

(b) and (g) manually interpreted from the outcrop images within the dashed boxes, predicted structural models using a continuous color map

in (c) and (h), and a discrete color map in (e) and (j), and horizon fitting results in (d) and (i), respectively.

structural contradictions and hard-to-reconcile features in the inputs might negatively impact the modeling quality of geological

structures. Therefore, it still remains a challenging task for many traditional methods to obtain a geologically reasonable model

that is structurally consistent with the inputs.

As is shown in Figure 9d, our method presents geologically valid models (Figure 9d) with the structural discontinuities and

the stratigraphic interface variations that consistently honor the faults and horizons, respectively. From Figure 9e, we observe375

that the iso-lines (black lines) extracted from the modeling results can accurately follow the horizon interpretations in Figure 9b,

which again supports our previous observation. In comparison to the scattered point-sets, a full structural model is more

useful to well understand geological structures and qualify reservoir properties of continuity and morphology. Furthermore,

the method benefiting from high computational efficiency of deep learning can even produce real-time prediction to correct

interpretation errors for improving the geological consistency of the model by taking all the structural interpretations into380

account.

The second 2-D field data experiment uses the dataset acquired from a geological survey and mineral exploration of Araripe

Basin in the region of the Borborema Province of Northeastern Brazil (Fabin et al., 2018). We collect the outcrop observations

shown in Figure 10a and 10f from exposures of quarries on the southwestern and northern borders of the basin. There exist a

series of moderate to high angle faults caused by local subsidence due to the syn-depositional dissolution of the gypsum in a385
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Figure 11. The first real-world data application. We display seismic volumes (a), input horizon and fault data interpreted from the seismic

volumes (b), modeling results (c), geological interfaces extracted from the modeling results and overlaid with the faults (d), and one of the

recovered full horizon surfaces(e), respectively.

large exposure of deposits of Romualdo Formation. These syn-depositional faults control the lateral thickness variation of the

stratigraphic interfaces that the field observations sample from outcrops. The field observations are integrated into the uniform

sampling grids and used as inputs of our trained CNN to predict a full structural model. As is displayed in Figure 10b and 10g,

the dataset incorporates four stratigraphic interfaces with three and four faults, respectively, exhibiting a structural pattern of

syn-depositional deformation that is not included in our training dataset.390

The modeling results presented in Figure 10c and 10h are obtained from the trained CNN, in which all the sharp edges are

structurally consistent with the faults shown in Figure 10b and 10g, respectively. The same structural models can be displayed

in Figure 10e and 10j using a discrete color map to clearly indicate dislocated stratigraphic layers on the opposites of the faults.

The iso-lines extracted from the modeling results for the four distinct horizons are shown in Figure 10d and 10i, respectively.

Both figures highlight the excellent fitting characteristic of the trained CNN on the input structural data. Therefore, although395

the CNN is trained with the automatically simulated data, it still provides a promising performance on the real-world dataset

acquired at totally different surveys with complex geological structures.

5.2 Real World 3-D Case Studies

We adopt the trained CNN in two 3-D field seismic datasets to validate its modeling capability to construct a full implicit model

from spare and unevenly distributed structural points obtained by seismic interpretation. The first seismic data are sampled in400

regions with complex geological settings and have relatively low resolution and signal-to-noise ratio because of insufficient
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Figure 12. The second real-world data application. We display seismic volume (a) overlaid with structural data (b), input horizon and fault

data (c) interpreted from the seismic volume, modeling result (d) overlaid with faults (e), geological interfaces extracted from the modeling

result (f), and each of the recovered full horizon surfaces in (g) and (h), respectively. Noting that we rotate the horizon surfaces (g) and (h)

by 180◦ for a better visual comparison.

coverage and data stacking. As is shown in Figure 11a, the seismic reflections are partially ambiguous and difficult to be

continuously tracked across the entire volume of interest. The closely spaced and crossing faults further complicate structures

in the presence of seismic data-incoherent noise and stratigraphic features that appear to be structural discontinuities. Therefore,

it is difficult for the existing approaches to model the highly deformed structures from the noisy and partially missing horizons405

and faults (Figure 11b). The modeling results shown in Figure 11c demonstrate that our CNN architecture is beneficial for

3-D structural modeling by predicting a geologically valid model, where the structural discontinuities and the interfaces are

consistent with the given point data (Figure 11d). They even maintain the variations of the folded layer structures without

global plunge information used to constrain the modeling. By visual comparison, Figure 11c shows that a group of horizon

points sampled at the same geological layer can be accurately located on the corresponding iso-surface of the model, which410

again demonstrates a great fitting characteristic of our network.

The second 3-D real-world case study is of a conformably folded and layered model with numerous faults that are curved

and complexly intersected with each other. As is shown in Figure 12a, the available horizon data are manually interpreted on

the two stratigraphic interfaces, while the fault data are derived by using the automatic fault detection method from the seismic

volume (Figure 12b and 12c). In our CNN’s solution shown in Figure 12d, the geological layers represented by iso-values415

with the same color accurately follow the tendency of seismic structural variations even though we do not input any seismic

data in our CNN. We also display the modeling result overlaid with the input fault data in Figure 12e, from which we can

observe relative dislocations of geological layer on the opposites of the fault structures. In Figure 12f, we extract the geological
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Figure 13. Geological uncertainty analysis. We display multiple sets of modeling elements interpreted from the borehole and the outcrop

observations (a), input horizon and fault data (b), modeling result (c) , iso-curves extracted from the prediction (d), respectively.

interfaces that correspond to the input horizons using the iso-surface extraction approach. To show more details, Figure 12g

and 12h display each of the horizon surfaces, by which we rotate 180◦ for a better visual comparison. A great consistency420

between the input and recovered structures highlights the CNN’s fitting characteristics on the given geological knowledge and

structural constraints.

6 DISCUSSION

In this section, we discuss the modeling characteristic of our method and its abilities for structural uncertainty analysis, along

with the current limitations. We also demonstrate a potential improvement that we will focus on in future research to incorporate425

structural orientation constraints in the CNN-based structural modeling.

6.1 Structural Uncertainty Analysis

In modeling complex geological structures, the reliability of the implicit methods is heavily dependent on the quality and

availability of the input structural data. However, the inputs typically spare and regional available in a geological survey

causes an ill-posed problem because there exist multiple plausible resultant models that equally fit the inputs. Therefore, data430

uncertainty analysis is necessarily critical to looking for an optimal solution, especially for the noisy and hard-to-reconcile

structural observations (Viard et al., 2011; Lindsay et al., 2012). Our CNN is beneficial for the flexible interpretation of this
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Figure 14. The faults and incomplete horizons, together with the structural orientations, are used as inputs (a) into the network to predict

implicit structural models (b). The sets of regularly spaced iso-lines and local orientations are obtained from the modeling results (c) and

compared with the given normal vectors (red arrows). The iso-lines and normal vectors (blue arrows) extracted on the predicted stratigraphic

interfaces can well match the two distinct input horizons (d).

data uncertainty by generating a diverse of possible modeling realizations instead of one best due to its higher computational

efficiency than the conventional approaches.

We use multiple combinations of modeling objects with the horizons and faults interpreted from the borehole and the435

outcrop observations shown in 13a to study the uncertainties associated with the positions of geological structures at depth.

The simplest possible structural model consists of multiple continuous and conformal horizons in the first data example. By

contrast, the modeling situations are more complex when considering additional geometrical objects of faults that dislocate

the geological layers. In addition, we randomly perturb horizon positions to yield the variations in layer thickness because the

stratigraphic interface transition might not be accurately observed from the vertical boreholes. The two distinct horizons and440

faults displayed in Figure 13b are used as inputs into the network to compute the structural models presented in Figure 13c to

demonstrate proof of concept. All the four models are obtained by using a desktop PC with Intel Xeon-5120 CPU (2.20GHz)

and a single NVIDIA Tesla V100 GPU. Although we take a few hours in training the CNN, the average time for generating each

structural model is approximately 0.2 seconds using a 128× 256 image size. Iso-curves extracted from the models (Figure 13c)

for the two distinct horizons are displayed in Figure 13d, which verify an excellent fitting characteristic of our method on the445

given geological structures.

6.2 Structural Orientation Constraint

Our CNN architecture permits a flexible incorporation of varying types of geological information by defining an appropriate

loss function to measure the modeling error for each structural constraint. In our method, the input data are not limited to
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horizons and faults and also include the structural angular observations. The new angular constraints represent local orientations450

of geological layers and permit geometrical relationships in the gradient of the scalar function to be considered. The loss

function for orientation constraints measures the angle differences between the gradient of the predicted model and orientation

observations. We adopt a central differences method to compute structural orientations by using the second-order Taylor series

approximation of the predicted model z. The cosine similarity in every single point between the gradient vector of the scalar

function ∇z and a prescribed orientation vector n can be represented as follows,455

F pred
cs (p) =

np · ∇z(p)
‖np‖‖∇z(p)‖ , (6)

which is also used to compute the cosine similarity of the reference model gradient F obs
cs (p). The loss function used to

measure the angle errors in comparison to the observed orientation constraints can be formulated as follows,

Lnormal(p) =
1
N

∑

p∈p
|F pred

cs (p)− f obs
cs (p)|. (7)

Therefore, the total loss function is defined by combining varying types of geological constraints as,460

Lsum(p) =
1
M

∑

i∈M
(λLmae(pi) +Lms-ssim(pi) +βLnormal(pi)), (8)

in which β is used to balance the relative significance of different constraints. As is displayed in Figure 13a, the faults and

the incomplete horizons, together with the structural orientations sparsely distributed on the horizons, are used as inputs in the

network to interpolate geological structures. The modeling results shown in Figure 13b exhibit the remarkable performance of

our method when using multiple types of geological data inputs. We compute regularly spaced iso-lines and local orientations465

from every modeling result and compare them with the input normal vectors (red arrows) in Figure 13c, respectively, which

presents a great consistency between the predicted and given geological structures. The interpolated structures by using the

CNN maintain the large localized geometrical variations even though there is no global geological information to constrain the

modeling process. In addition, the iso-lines and normal vectors (blue arrows) extracted along the stratigraphic interfaces of the

predictions can well match the two distinct input horizons (Figure 13d), which again highlights the CNN’s fitting characteristic470

on the given structural constraints.

6.3 Current Limitations and Improvements

The CNN trained by using the synthetic dataset presents excellent modeling capacities in real-world cause studies to represent

complicated geological structures that are distinct from the simulated structural models. Instead of imposing any explicit math-

ematical constraints in the traditional implicit method, our CNN-based structural modeling is implemented by the recursive475

spatial convolutions with trainable kernel parameters and the loss function related to various geological constraints. The spatial
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convolutions in the CNN can be viewed as the implicit interpolants used in the traditional interpolation methods, and the only

difference is that the parameterization of their kernel functions can be optimized through training. As structural modeling is

dependent on the analysis of the spatial relations of the observed structures to interpolate new geologically valid structures

elsewhere, acquiring representative example data is essential for training the CNN to achieve its reliable generalization perfor-480

mance. Therefore, we adopt an automatic workflow to generate numerous models with realistic faulted and folded structures

and simulate partially missing horizons in building the training dataset. It is a significant reason why our network could be

applied to the real-world datasets acquired in different geological surveys with distinct structural patterns.

Although working well to recover faulted and folded structures, the proposed CNN might not represent other geological

structures that are not considered in the training dataset, such as unconformities and igneous intrusions. The trained network485

also might not correctly construct low dip-angle thrust faults in predicted models because we still do not include this type

of fault in the currently used training data generator. Despite the current limitations, the proposed CNN architecture still

shows promising potential to compute a geological valid and structurally consistent model honoring the observed structures.

Considering the used training dataset is still not sufficiently large to train a 3-D deep network, future works will focus on

further complicating the data simulation workflow by adding more complex and diverse geological structural patterns in the490

synthetic models.

7 Conclusions

A CNN-based deep learning method has been used to represent geological structures over the entire volume of interest from

typically spare and hard-to-reconcile structural interpretation data. The network is composed of encoder and decoder branches

and supplemented with lightweight depth-wise separable convolution and channel-wise attention to find an optimal trade-off495

between modeling accuracy and computational efficiency. The developed CNN architecture leverages the low-rank nature of

the spare and heterogeneously sampled structural data to adaptively suppress uninformative features by using a linear bottle-

neck and inverted residual structure in each of the encoded convolutional layers. Our approach is beneficial for the flexible

incorporation of empirical geological knowledge constraints in a supervised learning framework using numerous and realistic

structural models that are generated from an automatic data simulation workflow. This also provides an impressive charac-500

teristic to flexibly integrate multiple types of structural constraints into the modeling by using an appropriate loss function,

exhibiting a promising perspective for further improving geological modeling. We verify the effectiveness of the proposed

approach by using the case studies acquired in distinct geological surveys, including synthetic examples created by the same

workflow for acquiring the training dataset, the randomly created modeling objects without any ground truth of geology, and

the structural interpretations obtained from the seismic images. In both synthetic data and real-world data applications, we ver-505

ify its modeling capacities in representing complex and noisy structures with a model geologically reasonable and structurally

consistent with the inputs.
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