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Abstract. Implicit structural modeling using sparse and unevenly distributed data is essential for various scientific and societal

purposes ranging natural source exploration to geological hazard forecasts. Most advanced implicit approaches formulate

structural modeling as least-squares minimization or spatial interpolation problem and solve partial differential equations

(PDEs) for a scalar field that optimally fits all the input data under smooth regularization assumption. Most advanced implicit

approaches formulate structural modeling as least-squares minimization or spatial interpolation, using various mathematical5

methods to solve for a scalar field that optimally fits all the inputs under an assumption of smooth regularization. However,

the PDEs in these approaches may not be insufficient toreasonably represent highly complicated structurescomplex geometries

and relationships of structures and may fail to fit a global structural trend when the known data are too sparse or unevenly dis-

tributed. Additionally, solving the PDEsa large system of mathematical equations with iterative optimization solvers could be

computationally expensive in 3-D. To deal with these issues, we propose an efficient deep learning method using a convolution10

neural network to create a full structural model from parse structural data associated with multiplethe sparse interpretations

of stratigraphic interfaces and faults. The deep learning architecture is beneficial for the flexible incorporation of empirical

knowledge and geological rules when trained with numerous and realistic structural modelsThe network is beneficial for flex-

ible incorporation of geological empirical knowledge when trained by numerous synthetic models with realistic structures

that are automatically generated from a data simulation workflow. It also presents an impressive characteristic of integrating15

various types of geological constraints by optimally minimizing a hybrid loss function in training, opening new opportuni-

ties for further improving the structural modeling performance. Moreover, the deep neural network, after training, is highly

efficient to predict structural models in many geological applications. The capacity of our approach for modeling complexly

deformedhighly deformed geological structures is verified by using both synthetic and field datasets, in which the produced

models can be geologically reasonable and structurally consistent with the inputs.20

1 Introduction

A structurally reasonable geological model structurally consistent with subsurface is essential to well understand the subsur-

face spatial organization and quantitatively simulate geological processes for a wide variety of earth science applications (Li

et al., 2016; Wellmann and Caumon, 2018). Structural modeling intendsis aimed to accurately represent the geometry of geo-
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logical structures with a numerical model by using various mathematical methods. The traditional modeling approach can be25

described as explicit or surface modeling (Caumon et al., 2009). It intends to reproducereproduces the complex geometries and

relationships of structures by digitizing the interpreted surface elements and their arrangements, and the resultant model typi-

cally incorporates a series of geological interfaces derived by a triangulation algorithm. In addition to being time-consuming,

the modeling process is also related to each individual geologist’s interpretation and might not be replicated by others (Caumon

et al., 2009; Chaodong et al., 2010).30

Recently, more and more implicit structural modeling methods have been proposed for constructing geological models

because of their automatic, efficientefficient, updatable, and reproducible characteristics (Calcagno et al., 2008; Caumon et al.,

2012; Hillier et al., 2014; Laurent et al., 2014; Collon et al., 2015). The implicit method is distinguished from the explicit

approach because it consists in interpretinginterpolating field structural observations into a volumetric scalar function that is

defined on the entire region of interest to implicitly represent geological structures. In this function, the geological interfaces35

are embedded as its iso-surfaces, while the structural discontinuities are indicated by discontinuous value jumps of the function.

Thus, the scalar function is also called the implicit model. The implicit method benefits from incorporating all available

geological information into the resultant model by integrating the observed data and the empirical knowledge, providing an

effective alternative to reproduce the geometry of the subsurface from a global respectiveview (Calcagno et al., 2008; Fossen,

2016). File observations are interpreted to obtain the input structural data of the implicit method that typically included various40

types of modeling objects, such as spatial points, vectors, polylines, and surfaces. The input structural data of the implicit

method typically included various types of modeling objects, such as spatial points, vectors, polylines, and surfaces, interpreted

from field observations. The empirical knowledge can be manually inferred from the structural data by the geologists and

geophysicists to define the possible geometrical relationships among the geological interfaces and drive the modeling behaviors

of the implicit methods. The output model requiring representing geologically reasonable structures while honoring the input45

structural data. As it is hardly possible to observe ground truth of subsurface, the geological structures are often sparse and

heterogeneously sampled or regional available in a limited number of highly developed mining and oil fields. This arises

the necessity of adding prior geological rules and simplifications as the structural constraints inassumptions to constrain the

modeling process. For example, the existing implicit interpolants typically impose explicit smoothness criteria to simplify local

variations for computing a unique structural model.50

The discrete smooth interpolation (DSI) is one class of implicit methods that compute structural models by discretizing

the scalar function on a volumetric mesh (Mallet, 1988, 1992, 1997, 2014; Souche et al., 2014; Renaudeau et al., 2019).

In DSI and its variant approaches, structural modeling is performed by solving a least-squares minimization problem with

smooth constraint to compute a scalar field compatible with the inputs. This smooth constraint incorporates empirical geo-

logical knowledge into the modeling process with a fundamental assumption that the desired model should be as smooth as55

possible. However, the mesh elements prohibit from crossing structural discontinuities because the scalar function is always

continuous on the mesh elements, and the method cannot correctly estimate the gradients of the scalar function near the faults

or unconformities (Shewchuk, 2002). To deal with this problem, we require to compute a constrained unstructured mesh by

independently modeling the discontinuous structures, such that the approaches can work well in these cases. In addition to
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DSI, the potential field method (PFM) is another class of implicit approaches (Lajaunie et al., 1997; Jessell, 2001; McInerney60

et al., 2007; Phillips et al., 2007). PFM typically formulates structural modeling as a dual cokriging interpolation (Chiles et al.,

2004; Calcagno et al., 2008) or as a radial basis function interpolation (Carr et al., 2001). In comparison to DSI, although the

models are evaluated on a volumetric mesh for a visual purpose, PFM does not use any mesh grids when computing the scalar

function. Instead, structure interpolation is fully dependent on the distribution of the observed structural data and the influence

range of each data point is determined by the chosen interpolants. However, PFM usually yields a dense system to scale the65

influence of the interpolants over the entire volume for obtaining a structurally valid solution, which causes the computational

cost quickly increase with the input data size and soon become prohibitive.

The existing approaches exhibit many promising characteristics, however, reproducing structures of highly deformed re-

gions remains a challenging task regarding geological consistency because the modeling reliability depends on the availability

and quality of the observed data. Structural interpolation fully guided by mathematical equations might not always produce a70

geologically valid model given sparse or unevenly distributed data (sparse or clustered) in some complex geological circum-

stances. Corresponding structural models often have erroneous geometries that are inconsistent with geological knowledge

and spatial relationships with relevant structures. This problem is mainly attributed to limitations on thethe limited constraints

that are permitted in structural interpolants, in which all the data and knowledge are mathematically represented as a form

of linear constraints to compute a continuous scalar function as smoothly as possible. Although this assumption is helpful to75

derive a unique model, imposing such a smoothness criterion might compromise the influence of local structural variations

and negatively impact the modeling accuracy of highly variant structures (de Kemp et al., 2017; Hillier et al., 2021). Because

the modeling flexibility is limited to the models that a specific interpolant can generate, the implicit methods usually suffer

from artifactsartefacts or geometrical features physically impossible from a geological modeling point of view. Therefore, it

is significant to improve implicit modeling by using all availableflexibly aggregating all available geological information to80

ensure that we can obtain a structurally reasonable model (Grose et al., 2018, 2021).

In this study, we present a deep learning method using a convolutional neural network (CNN) as an alternative to conven-

tional implicit structural modeling. Deep learning is a type of data-driven and statistical approach that estimate an implicit

function that maps inputs to outputs from past experiences or example data by minimizing given quality criteria (Donmez,

2010). In contrast with traditional approaches, deep learning is beneficial for making a prediction without fully defining a85

specific physical process and solving a sophisticated linear system of equations under prior mathematical constraints at cost

of expensive computation. Among current learning-based methods, CNN is essential for its remarkable power in analyzing

geometrical features and capturing complexly nonlinear spatial relations given a sufficiently large training dataset. To find an

optimal trade-off between accuracy and efficiency, there exist many convolutional modules available for constructing the CNN

architecture, such as depth-wise separable convolution (Chollet, 2017; Howard et al., 2017), attention mechanism (Iandola90

et al., 2016; Howard et al., 2019), and residual learning structure (Sandler et al., 2018). It is not a surprise that the CNN-

related applications in geosciences have been growing rapidly during the past years, including seismic interpretation (Shi et al.,

2019; Wu et al., 2019; Geng et al., 2020; Bi et al., 2021), earthquake detection and location (Wu et al., 2018; Perol et al., 2018),

remote-sensing image classification (Chen et al., 2016; Maggiori et al., 2016), geochemical map interpolation (Kirkwood et al.,
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Figure 1. Our implicit modeling method produces a volumetric scalar function as an implicit representation of all the geological structures

from input point data by using CNN. Trained with numerous synthetic data, the network can be applied to field structural data to efficiently

predict a geologically reasonable model that well matches the input structure data.

2022), and so on. It is worth noting that a novel learning-based method using Graph Neural Networks (GNN) (Hillier et al.,95

2021) has been recently developed to integrate structural observations into a graphic mesh encoding all relevant geometrical

relations for producing a structural scalar field. This method presents a promising foundation for introducing interpolation con-

straints that current implicit mathematical methods cannot permit by comparing the prediction and the structural observations,

showing an impressive performance to deal with implicit and discrete geological data. It shows an impressive performance

to deal with implicit and discrete geological data, opening new opportunities for improving the modeling capacity in many100

geological applications. However, the method cannot exactly reproduce the modeling results under the same inputs as the net-

work parameters are initialized randomly in each run of computation. By measuring structural errors only on the structural

observationsscalar field constraints, it remains a challenging taskmay fail to incorporate information associated with structural

discontinuities into graphic structures, such as representing the spatial relation of the modeling elements across faults. Another

potential limitation results from a bottle-necking problem in the current GNN’s architecture (Alon and Yahav, 2020), in which105
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Figure 2. Our network has a U-shaped architecture that consists of encoder and decoder branches shown in (a). The encoder uses an inverse

residual block (b) supplemented by a lightweight channel-based attention (c) to deal with the input structural data at each of the 5 different

spatial scales. The decoder computes the hidden representations at the corresponding 5 resolution scales to form a sufficiently deep CNN.

Note that square brackets represent the dimensional expansion of the corresponding 2-D networks to 3-D ones.
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further improvement of the modeling capacity is restrained by network depth with a few layers. A network with a simple

structure might not be sufficient to deal with relatively complex geological structures.

As is shown in Figure 1, we formulate implicit modeling as an image inpainting problem with deep learning, in which a full

structural model is estimated from the sparse and heterogeneously sampled data based on the past experiences and knowledge

learned from the training dataset. This characteristic permits a flexible introduction of empirical geometrical relations and110

structural interpolation constraints by defining an appropriate loss function to measure the differences between the structural

models being compared. Our network, also called DeepISMNet, can produceproduces a scalar field as an implicit represen-

tation of all the structures from various types of structural data including horizons that encode the stratigraphic sequence of

the sampled interfaces and faults that indicate geological boundaries. We parameterize faulting and folding simulations to au-

tomatically create numerous geological models with realistic and diverse structures by randomly choosing parameters within115

reasonable ranges, which are considered as the example data or labels. In training the network, we randomly extract horizon

and fault structures from these models to further generate unevenly distributed structural data as inputs which the network takes

to predict a full geological model as output. We further mask some parts from the models to generate the unevenly distributed

horizon data, which together with the faults are used as the inputs of the network. Also, we demonstrate that the normal vec-

tors sampled near geological interfaces can be used to constrain local structural orientations associated with the gradients of120

the predicted model. In training the CNN, we define a hybrid loss function that combines element-wisely measurement on

the input horizonshorizon data and multi-scale structural similarity over the entire modellocal sliding windows to guarantee a

geologically consistent prediction. Once obtaining an implicit structural model, we can simply compute the horizon surfaces

by using the iso-surface extraction method while detecting the faults near the local value jumps or discontinuities (Figure 1). In

both synthetic and field data applications, the trained CNN can efficiently provide a geologically reasonable structural model,125

showing promising potential for further leveraging deep learning to improve many geological applications. We find that the

trained CNN can efficiently create a geologically reasonable and structurally consistent model in both synthetic and field data

applications, showing promising potential for further leveraging deep learning to improve modeling capacity in many geolog-

ical applications. In addition, the solutions are reproducible as it is not necessary to randomly initialize the parameters of the

trained network at each modeling process.130

We organize this paper as follows. In the Methodology section, we describe the CNN architecture designed for implicit

modeling and its associated loss function definition. In the Data Preparation section, we introduce the methodology used

to automatically generates training data and simulate the partially missing horizons. The Implementation and Application

sections include both synthetic and real-world case studies to verify the performance of our network in representing complex

geological structures. The Discussion section presents the promising characteristics of the proposed CNN approach and its135

current limitations and possible improvements that we will focus on in future research. Finally, we summarize our work in the

Conclusions section.
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2 METHODOLOGY

In this section, we describe the CNN architecture and its associated loss function used in training the network to generate

implicit structural models.140

2.1 Network Architecture

Our developed CNN architecture uses a U-shaped framework modified from UNet and its associated variants (Ronneberger

et al., 2015; Zhou et al., 2018), where we include further improvements based on previous works to find an optimal trade-off

between accuracy and efficiency in geological modeling. In many image recognition tasks where inputs and outputs share the

same spatial resolution, UNet is typically regradedregarded as a standard principle due to its excellent performance (Lin et al.,145

2017; Yu et al., 2018a). Its great representational power results from ana linked encoder-decoder architecture, in which features

are first downsampled at multiple spatial resolutions in the encoder and then recombined with their upsampled counterparts

through skip connections in the decoder at each spatial resolution. The localized components of the inputs are typically ex-

tracted at an early stage of the CNN, while the relatively high-level and global features are obtained when the receptive fields

are increasingly large in deep convolutional layers. Thus, as the hidden representations with different spatial resolutions have150

much distinctive geometrical information, systematically aggregating the hierarchical multi-scale features with skip connec-

tions can provide hierarchical constraintsis attributed to to make a reliable and stable structural field prediction. Furthermore,

the low-level features computed from the shallow layers better follow the input structures than the deep high-level features

because the structural information might be gradually missing in recursive feature compressions at the downsampled spatial

resolutions. The use of skip connections also helps to enhance the low-level features throughout the network and produce a155

model structurally consistent with the inputs.

We show the proposed 2-D and 3-D CNNs with the same architecture in Figure 2a, in which square brackets represent the

dimensional expansion of the corresponding 2-D networks to 3-D ones. The encoder branch in our proposed network consists

of 5 successive inverse residual blocks dealing with the input structural data at 5 different spatial scales (from E0 to E4) related

to 2, 4, 8, 16, and 32 downsampling rates, respectively. When downsampling the hidden representations at each spatial scale160

by using the max pool layer, the encoder simultaneously doublesexpands its channels. As is shown in Figure 2b, we adopt a

linear bottleneck and inverted residual architecture in each block to make an efficient convolutional structure by leveraging

the low-rank nature of the structural interpolationinputs. This structure is composed of a 1× 11× 1[×1] expansion convolu-

tional layer, a 3× 33× 3[×3] depth-wise convolutional layer, and another 1× 11× 1[×1] projection convolutional layer, and

each convolution is followed by a Batch Normalization (BN) and a Rectified Linear Unit (ReLu). The two 1× 11× 1[×1]165

convolutional layers at the ends of the depth-wise convolutional layer are designed to expand the inputs to higher-dimensional

feature space (one and a half times of the channels) and project them back to the output channels, such that the inverse residual

block forms a compact feature embedding to improve the expressiveness of the nonlinear transformation at each channel. We

did not try a larger expansion factor because of the GPU memory limitation, but we would suggest choosing a larger size if

the GPU memory is allowed. With a residual connection over the expansion and projection convolutional layers, the block is170
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formulated as a residual learning function to speed up the backpropagation of gradient responses. Although the deep encoder

layers aggregate rich structural features through recursive channel expansions, not all the features are informative for making

predictions because there exist many invalid features with zeros everywhere due to the spare and heterogeneously distributed

characteristics of the inputs. Treating the zero features equally would negatively influence the performance of the network and

degrade its representational power. Although the encoder layers aggregate abundant information through recursive channel175

expansions, not all the features are useful for modeling geological structures. There exist many structurally irrelevant features

with mostly zeros across channels due to the sparse and heterogeneous characteristics of the inputs. Treating all channel-wise

features equally would waste unnecessary computations to focus on the informative features and thus negatively influences the

representational power of the network. To enhance the CNN’s discriminative learning ability, we insert a lightweight channel-

based attention module into the bottleneck structure of the inverse residual block in the last three spatial scales of the encoder.180

The attention block (Figure 2c) consists of squeeze and citation modules, in which the input features are first compressed into

lower-dimensional feature space in the squeeze module and then transformed to the channel-wise attention weights with the

same channels as the inputs in the citation module. This module (Hu et al., 2018) encourages the network to adaptively learn

the relations across hundreds of high-level features with relatively global structural information and rescale their importance

to stabilize the modeling process by emphasizing the informative features and suppressing the irrelevant ones.185

The decoder branch includes the 5 spatial scales (from D4 to D0) consistent with the encoder to form a sufficiently deep

network and large receptive field for structural interpolating. It is responsible for integrating the hidden representations in the

encoder branch into the outputfrom the previous unmaxpooling layers and the encoder skip connections while compensating

for the spatial resolution mismatch between the concatenated features. In each spatial scale, the upsampled decoded features

are first combinedconcatenated with their downsampled counterparts from a skip connectionin the encoder branch and then190

sequentially fed into the two convolutional layers to further refine the features. We use depth-wise separable convolutional

layers (Howard et al., 2017) as an efficient replacement for the traditional convolutional layers. The depth-wise separable

convolutional layer factorizes the convolutional operation as two separate layers including a lightweight 3× 33× 3[×3] con-

volutional layer for spatial feature fusionfiltering features within each channel and a relatively heavy 1× 11× 1[×1] convo-

lutional layer for combining features across channels. By splitting the standard convolution as the two-step process, we can195

dramatically reduce the computation complexity and the GPU memory to construct a lightweight decoder network. By splitting

standard convolution as a two-step process of fusing and combining, we obtain a lightweight decoder that dramatically reduces

Multiply–Accumulate Operations (MAdds) and the GPU memory consumption. In the final layer, we adopt a simple linear

transform implemented by a 1× 11× 1[×1] convolutional layer to cross all the decoded features for producing a full geologi-

cal model.200

Figure 3 visualizes the normalized hidden representations at each resolution scale of the encoder and decoder unitsour 3-D

structural modeling network that the inputs are passed through. As the amplitude ranges of the hidden representations are

much varying from each other, we rescale them to obtain the normalized features with values restrained from zero and one

for a visual purpose. Our CNN is designed to progressively complete structural features layer by layer through sequential

non-linear convolutional filtersunits that are conditioned on the previous convolutions. As is displayed in Figure 3, the valid205
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convolutional responses only exist near the input structures in the starting layer of the network. To spread geological struc-

tures elsewhere, every convolutional layer collects features from the previous layer outputs within an increasingly expanding

receptive region by staking convolutions and recursively downsampling the input hidden features. Therefore, at the bottom

layers of the network, the structural information in the inputs can be used to constrain the modeling process over the entire

model from a global receptive region of view. This characteristic allows the network to correctly understand the relations of210

the spatially distant but contextually close features. Although weighting on spatial proximity is typically used in many tradi-

tional structural interpolation methods, the nearby features are not necessarily more significant than distinct ones for making

geological-related predictions. For example, when the stratigraphic layers are located the opposite of a large shear zone or

other discontinuous structures, the correlations of distinct data points computed from a global review can be helpful to capture

a more accurate structural pattern. The structural information in the inputs can be used to constrain the modeling process over215

the entire volume in the bottom layer of our CNNencoder from a global receptive region of view. This characteristic imposes

a fundamental assumption that nearby features are more important than distant ones for geologically related predictions. As

the modeling result of our method is estimated from the recursive aggregations of the structural information, the more local

features exert a greater impact than distant ones, which is consistent with the traditional spatial interpolation scheme.

2.1.1 Loss Function220

The network provides an attractive characteristic to integrate various structural constraints by minimizing the corresponding

errors between the predicted and reference models. For geologically valid CNN predictions, we combine element-wise accuracy

with multi-scale structural similarity to define a hybrid loss function. We introduce notations and formal definitions used in

this loss function. Let x be reference structural model, and m be its binary mask where the pointspixels or voxels on the input

horizons are set to 1 and the rests are set to 0. The dimensional sizes of x and m are consistent with the samples in our training225

dataset. Let m be a binary mask, in which the points on the input horizons are set to 1 and the rests are set to 0. For each

reference model x, the CNN fθ with trainable parameters θ takes horizon h= x�m and fault data f and creates a structural

field ŷ = fθ(h, f) as outputs. We denote the predicted model replaced with the inputs on the points of the horizon data as

y = ŷ� (1−m)+x�m. We denote the geological structures interpreted from the inputs as y = ŷ� (1−m)+x�m.

In many geologically related regression problems, Mean Square Error (MSE) and Mean Absolute Error (MAE) are com-230

monly used to element-wisely measure the accuracy of the solutions (Geng et al., 2020; Hillier et al., 2021). However, MSE

typically emphasizes the elements with larger errors but is more tolerant of smaller ones, regardless of the underlying spa-

tial pattern of the data. In comparison to MSE, MAE can be more sensitive to the local structural variations and reduce the

artifactsartefacts caused by excessively penalizing large errors between modeling results and targets. We adopt masked MAE

as a point-wise measurement in the hybrid loss function, which is formulated as follows:235

Lmae(p) =
1

N

∑
p∈p
|x(p)− ŷ(p)|, (1)
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a)

b)

c)

Figure 4. Four pairs of 3-D training data samples. The first row shows 3-D synthetic implicit structural models used as labels in training our

3-D network. The second and third rows, respectively, display the fault volumes and sparse horizon points extracted from the label models

(first row), which are together used as inputs of the CNN.

where N represents the number of grid points within the patch p cropped from the same spatial location from the two

structural models being compared. where N represents the total number of the points within a square patch p. We crop the

patches from the same spatial location in the two structural models being compared.

Although MAE can outperform MSE in geological modeling scenarios, the results are still not optimal. CNN trained by240

using MAE alone might not correctly capture geometrical features that are represented by the distribution of the neighboring

points, whereas blurring high-frequency and sharp structural discontinuities. Thus, the two models with similar MAE might

appear significantly distinct structures, which negatively impacts the optimization of the CNN’s parameters. To alleviate such

smooth effectiveness, we use a hybrid loss function by combining MAE with Structural Similarity (SSIM) (Wang et al.,

2003, 2004; Zhao et al., 2016). By adaptively assigning higher weights to the structural boundaries in which the geological245
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a)

b)

c)

Figure 5. Four pairs of 2-D training data samples. The first row displays 2-D synthetic implicit structural models used as labels in training

our 2-D CNN. The second and third rows, respectively, show the fault images and sparse horizon points extracted from the label models (first

row), which are together used as inputs if the CNN. It is worth noting that the points denoted by the same color in each image of the third

row correspond to the same horizon.

structures present significant contrasts, SSIM can better preserve the high-frequency geometrical features than the other loss

functions. SSIM loss measuring the CNN prediction and the reference model on a single point p (p ∈ p)within the patch p can

be represented as follows,

Lssim(p) = 1− (
2µxµy +C1

µ2
x +µ2

y +C1
)β(

2σxy +C2

σ2
x +σ2

y +C2
)γ

= 1− l(p)β · cs(p)γ , (2)

where µx and µy represent the means of model x and y within p, respectively. σx and σy are the variances, while σxy is250

the covariance of the two patches being measured. The means, variances and covariance are computed by using an isotropic

Gaussian filter Gσg
with standard deviation σg and zero mean. Approximately, µx and σx can be viewed as estimates of the

stratigraphic sequences and structural variations in a local patch of model x, and σxy measures the tendency of the patches in

model x and y to vary together, thus an indication of structural similarity. β and γ define the relative significance of the two

terms l and cs, which are both set to 1 based on Wang et al. (2003). In addition, we use two small constant factors C1 and C2255

to avoid the numerically unstable circumstance of dividing by zero.

The standard deviation σg of the Gaussian filter Gσg
is a super-parameterhyper-parameter that requires to be defined before

training. However, the choice of σg might influencecan impact the prediction accuracy of the network trained by using SSIM.

The network trained by SSIM with a large standard deviation Gσg might overly emphasize the local variations and generate
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spurious features in the proximity of edges while blurring sharp structural boundaries for a small standard deviationGσg
(Zhao260

et al., 2016). Instead of fine-tuning the parameter Gσg
, we use Multi-scale Structural Similarity (MS-SSIM) (Wang et al.,

2003, 2004) with a dyadic pyramid of M scale levels and formulate it as follows,

Lms-ssim(p) = 1− lS(p)β ·
S∏
j=1

csj(p)
γj , (3)

in which γj are parameters to define the relative importance of each scale level in the variance-related scheme csj . MS-

SSIM computes a pyramid of patches p with S spatial scales defined by various σg of the used Gaussian filterGσg
. We define 5265

different scales of σg = {0.5,1,2,4,8}, and set each to half of the previous one by recursively downsampling the full-resolution

patch using 2× 2 average pool layer (S = 5). According to the recommendation, we set γj = {0.05,0.29,0.3,0.24,0.12} for

each scale level and make sure the sum of them is equal to 1. We adopt γj = {0.05,0.29,0.3,0.24,0.12} to rescale the losses

estimated from the 5 scale levels, and make sure the sum of them is equal to 1 for computing the MS-SSIM loss.

MS-SSIM can highlight structural variations focusing on a neighborhood of point p as large as the given Gaussian filterGσg
,270

but its derivatives cannot be correctly estimated near the boundary regions of patch p in backpropagation, which might produce

artifacts in predictions.but might produce artefacts in the predictions because its derivatives cannot be correctly estimated near

the boundary regions of the patch in the optimization. This can be alleviated by supplying an element-wise criterion such

as MAE to the MS-SSIM that is only relatedcomputed on a single point of the processed and reference patchesthe patches

being compared in the loss function. Additionally, MS-SSIM is not sensitive to uniform biases, which might cause unexpected275

changes in stratigraphic sequences or shifts of geological interfaces in modeling results. In comparison, although MAE can

better preserve stratigraphic sequences by minimizing error at each point equally within the patch, it might not produce quite

the same high-frequency contrast as MS-SSIM regardless of local structures. To capture the best characteristics of both loss

functions, we thus propose to combine them as,

Lsum =
1

K

K∑
i=1

(λLmae(pi)+Lms-ssim(pi)), (4)280

where λ is a weighting factor used to balance the relative importance of different losses, and K represents the number of

the cropped patches. In training the CNN, we point-wisely crop square patches from the structural models being measured and

compute the loss within each patch based on Equation 4, in which we empirically set the dimensional size of each patch to 7

and the λ to 1.25. The total loss Lsum is estimated by averaging the losses computed for the K patches. All the parameters

in the loss function are selected based on many numerical experiments and kept fixed throughout the study to avoid the need285

for tuning. Although we cannot ensure the used parameter combination is the best one, further parameter tuning is much more

time-consuming for training a deep CNN but hardly obtain further improvements.
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a) b)

c) d)

Figure 6. Training (cyan) and validation (orange) curves of using our developed hybrid loss (a), and the adaptive adjustment of the learning

rate during the training (b). We run 20 times of the trained CNN to compute the MSE (c) and MAE (d) for the 100 models randomly chosen

from the validation dataset, in which the input structural data are regenerated in each computation. The black dot represents the average error

while the blue and red lines indicate the error ranges of the MSE and MAE, respectively.

3 DATA PREPARTION

Our CNN architecture is beneficial for the flexible incorporation of empirical geological knowledge in a supervised learning

framework with numerous structural models that are all automatically generated from an automatic data simulation workflow.290

We randomly delete some segments from the models to obtain the partially missing horizons similar to the modeling objects

collected from field observations. In training our network, the incomplete horizons, together with the faults, are used as inputs

to predict a structural scalar field under the supervision of the full model.
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Figure 7. We apply the trained CNN to the 5 geological models (a) not included in the training dataset. We randomly generate horizon and

fault structural data (b) from the models as the inputs of our network. By visual comparison, the modeling results (c) are nearly identical

to the original models (a), which can be supported by the great consistency between the scalar field iso-lines (dashed curves) and the input

horizons (solid curves) in (d).

3.1 Automatic Data Generator

One of the limitations of applying the supervised learning method is the preparation of many example data and especially the295

corresponding geological labels for training the network. In the structural modeling, the training dataset should incorporate

structurally varying geological models as much as possible to enable the CNN to learn representative knowledge for achieving

its reliable generalization in real-world applications. However, it is hardly possible to manually label all geological structures

in a field survey because the ground truth of the subsurface is inaccessible. To overcome this problem, we use an automatic

workflow to simulate geological structural models with some typical folding and faulting features that are controlled by a300

set of random parameters (Wu et al., 2020). In this workflow, we first create a flat layered model with horizontally constant

and vertically monotonically increasing values as an initial model, and then sequentially add folding, dipping, and faulting

structures to complicate the features of this model. We simulate the folding and dipping structures by vertically shearing

the initial model through a combination of linear and Gaussian-like shift fields, while creating faulting structures by using

volumetric vector fields defined around the fault surfaces. By randomly choosing the parameters within the reasonable ranges,305

we can simulate numerous geological models with diverse and realistic features not limited to a specific pattern. Based on the

generated models with known structures, we can simply obtain the corresponding ground truth of the fault model with ones on

faults and zeros elsewhere. These models can be viewed as the volumetric scalar functions as their iso-surfaces represent the
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corresponding stratigraphic interfaces while the local value jumps indicate the structural discontinuities. This is important for

our next step of constructing training dataset to optimize our CNN for geological structural modeling. A supervised learning310

method typically requires enough example data with various feature patterns to achieve its reliable generalization in real-world

applications. In our implicit modeling problem, the training dataset should incorporate structurally various models as much

as possible to guarantee that the CNN can learn representative geological knowledge to interpolate a model from relatively

sparse inputs. However, as the ground truth of the subsurface is inaccessible, it is hardly possible to acquire sufficient example

data by fully labeling all the structures in a field geological survey. To build a large training dataset, we adopt a workflow that315

automatically generates synthetic models with realistic geological structures. In this workflow, we first create a flat layered

model with horizontally constant and vertically monotonically increasing values as an initial model, and then sequentially

apply folding, dipping, and faulting deformations to further complicate the structures in this model. By randomly choosing

deformation parameters within reasonable ranges, we can generate numerous models that are not limited to a specific structural

and stratigraphic pattern to enrich the training dataset. Such a synthetic model can be viewed as a structural scalar function320

because its iso-surfaces track stratigraphic interfaces while the structural discontinuities indicate faults. While adding structural

discontinuities, we also record the positions of faults to obtain fault structural data with ones on faults and zeros elsewhere.

By using this workflow, we totally obtain 600 3-D structural models shown in Figure 4a, and each model contains 256×
256× 128 grid points. These models are vertically flipped up-down and horizontally left-right to build an augmented dataset

consisting of a total of 2,400 pairs of models. At the same time as vertically flipping models, we reverse the sign of their values325

to ensure that they vertically increase except across a reverse fault. As is shown in Figure 5a, we extract 4 evenly spaced slices

along crossline and inline from the 3-D structural models, respectively, to further build a training dataset for the 2-D network.

We use 90% of the datasets for training and the rest for validating the trained network.

3.2 Masked Structural Data

The input structural data of our network consists of scattered points that are gridded into a volumetric mesh with valid anno-330

tations on structures and zeros elsewhere. As is displayed in Figure 4b and Figure 5b, we label the points only on faultsnear

the faults within one pixel to ones and zeros elsewhere to obtain the input fault data. To obtain the input horizon data, we set

the points near the horizon surfaces within one pixel to the corresponding iso-values of the structural model, which ensures the

points on the same horizon have consistent annotations. In the horizon data, we set the scattered points on the same geological

interfaces to the corresponding iso-value of the model to ensure that they are labeled with the same values. Furthermore, we335

randomly remove some points from the horizon data in each run of the data generation to simulate the unevenly distributed

horizon interpretations from a field geological survey. To simulate the sparse and unevenly sampled horizon data, we randomly

delete some segments from the model to simulate incomplete horizons in each run of data generation. The geological interfaces

are implicitly embedded within the scalar field with the iso-values and can be obtained by iso-surface extraction methods.

As the geological interfaces are implicitly embedded in the scalar field with the iso-values and can be obtained by iso-surface340

extraction methods, we adopt Jittered sampling (Cook, 1986; Hennenfent and Herrmann, 2008) to randomly choose iso-values

and compute their horizons. This sampling method benefits from remedying the deficiency of the regular sampling method that
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introduces a specific pattern in the inputs while preserving the beneficial properties of randomness. Specifically, we first divide

all the iso-values into uniformly spaced intervals in descending order and then randomly choose one within every interval to

extract the corresponding horizons, such that the extracted horizons can be varying instead of being spaced closely. Specifically,345

we first sort all the iso-values into a uniformly spaced grid in descending order and then randomly extract one within each grid

unit to compute the corresponding horizon. Thus, the horizons extracted from the structural model can be spatially varying and

not spaced closely Numerous strategies can be used to mask the horizons and generate partially missing data. The simplest

approach is to generate one or more square patches to mask the extracted horizons within the patches. To remove the points

from the horizon data, the simplest method is to randomly generate many square patches and mask the scattered points within350

the patches. Although this method is commonly used for many image inpainting tasks (Yeh et al., 2017; Yu et al., 2018b),

it might negatively impact the CNN to be well generalized in real-world applications for which the inaccessible regions are

unlikely in the shape of squares. ThusTo solve this issue, we randomize this process by randomly removing points from an

individual horizon to prevent the network from learning a specific pattern that all the horizon data are partially missing in

the same square regions. Specifically, we estimate the top and bottom positions of the horizon and divide them into segments355

based on the depth coordinate of each point, and randomly mask one or more segments to generate the complete or incomplete

horizons. Similar to the iso-value selection, we first sort the points on this horizon into a uniformly spaced grid in descending

order based on their vertical coordinates, and then randomly mask out the points from one or more grid units. As is displayed in

Figure 4c and Figure 5c, the generated partially missing data are highly similar to the structural elementsthe horizons manually

interpreted by geologists and geophysicists, which enables the CNN to learn more representative features. Thus, we use this360

masking method for all the 2-D and 3-D synthetic data experiments in this study.

4 IMPLEMENTATION

We present the geological structural models derived from our CNN for both synthetic data examples and field data applications

in this section to demonstrate its modeling performance.

4.1 Training and Validation365

Considering the coordinate ranges of the geological dataset can be much varying from each other, we rescale all the structural

data to obtain the normalized training samples. This normalization is implemented by applying a global shift to the entire

model to make it range from zero and one, which would not change its geological structures. Considering the coordinate

ranges of the field geological datasets can be much different from each other, we rescale every structural model to obtain the

normalized one that ranges from zero to one. This normalization is implemented by first subtracting the minimum and then370

dividing its maximum and thus would not change its geological structures. When normalizing the structural data, we assign

the scattered points on the same geological interface to the corresponding iso-values of the normalized model. In training the

network, we formulate these normalized training samples in batches and set bathbatch size to 4 based on our computational

resources. Within each epoch, the training data are all passed throughout the network to compute the hybrid loss function. We
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3-D Network architecture Computational cost Modeling quality metric 
Name Backbone GFLOPs #Params[MB] SSIM EVS MAE MSE×10-1 MSLE×10-1 R2S MDAE HFA 
UNet - 32.715 34.526 0.989 0.990 0.019 0.009 0.005 0.972 0.017 1.078 

AttUNet - 33.265 34.878 0.981 0.978 0.027 0.035 0.018 0.901 0.025 1.029 
NestUNet - 76.406 39.091 0.839 0.773 0.129 0.250 0.126 0.288 0.115 3.025 

DeepLabv3+ Xception 10.328 54.510 0.988 0.990 0.194 0.008 0.004 0.977 0.017 1.634 
DeepLabv3+ DRNet54 23.293 40.672 0.989 0.991 0.019 0.008 0.004 0.978 0.018 1.228 
DeepLabv3+ ResNet101 11.042 59.226 0.986 0.985 0.024 0.014 0.007 0.956 0.022 1.623 
DeepLabv3+ MobileNetv2 4.364 7.555 0.985 0.982 0.027 0.017 0.008 0.949 0.025 1.843 
RefineNet MobileNetv2 1.015 3.250 0.973 0.963 0.031 0.035 0.019 0.887 0.028 1.223 
RefineNet MobileNetv3 0.937 2.600 0.977 0.981 0.030 0.022 0.011 0.937 0.028 1.735 

DeepISMNet* - 4.711 4.300 0.993 0.996 0.016 0.004 0.002 0.988 0.015 0.331 
 
 
Table 1. A quantitative comparison between our network and the widely used powerful networks using various quality metrics. For each

of the quality metrics, the best performance is highlighted in bold. The proposed network (DeepISMNet) is marked with an asterisk to

distinguish it from the others.

 

Quality metric 
 Training loss function 

L1 L2 SmoothL1 SSIM MS-SSIM MS-SSIM&L1 MS-SSIM&L2 
SSIM 0.991 0.989 0.990 0.989 0.991 0.993 0.990 
EVS 0.994 0.995 0.995 0.992 0.994 0.996 0.995 
MAE 0.017 0.017 0.017 0.017 0.017 0.016 0.016 

MSE×10-1 0.005 0.005 0.005 0.006 0.005 0.004 0.004 
R2S 0.986 0.987 0.988 0.978 0.986 0.988 0.987 

MDAE 0.016 0.016 0.017 0.018 0.016 0.015 0.015 
HFA 0.527 1.321 0.511 0.643 0.630 0.331 1.040 

 

Loss function 
Modeling quality metrics 

MAE MSE×10-1 EVS R2S MDAE SSIM HFA 
L1 0.017 0.005 0.994 0.986 0.016 0.991 0.527 
L2 0.017 0.005 0.995 0.987 0.016 0.989 1.321 

SmoothL1 0.017 0.005 0.995 0.988 0.017 0.990 0.511 
SSIM 0.017 0.006 0.992 0.978 0.018 0.989 0.643 

MS-SSIM 0.017 0.005 0.994 0.986 0.016 0.991 0.630 
MS-SSIM&L1 0.016 0.004 0.996 0.988 0.015 0.993 0.331 
MS-SSIM&L2 0.016 0.004 0.995 0.987 0.015 0.990 1.040 

 
Table 2. A quantitative analysis of our network trained with the distinct loss functions using multiple modeling quality metrics. For each of

the quality metrics, the best modeling result is highlighted in bold.

utilize Adam optimization (Kingma and Ba, 2014) with an adaptive learning step length to speed up the network optimization.375

The initial learning rate is set to 0.01, which reduces gradually when the criterion performance has stopped further improving.

We fold the learning rate by a factor of 0.5 once the loss stagnates within 2 iterations. As is shown in Figure 6a, the training

and validation loss curves gradually converge to low levels (less than 0.1) when the optimization stops after 120 epochs, which

demonstrates that the CNN has learned representative geometries and relationships of geological structures from the training

dataset. The convergence of the loss curves demonstrates that the CNN has captured general representations of geological380

structures from very few structural data and generated a geologically valid model based on these features. The learning rate is

adaptively adjusted as is displayed in Figure 6b during the training process.
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Furthermore, we evaluate the modeling stability of our network in terms of the perturbations of the input structures created

from the same geological model. In this experiment, we randomly choose 100 synthetic models from the validation dataset

and run 20 times of the trained network to calculate the MSE and MAE for each model. During each modeling process, we385

randomly generate the horizon scattered points to ensure that the input data are different from each other even for the same

structural model. The model stability is evaluated by using horizon fitting error (HFA) which measures the average nearest

distance between the input horizons and the corresponding geological interfaces extracted from the modeling results. In this

test, we randomly choose 100 models in the validation dataset and run 20 times using the trained network to compute the

MSE and MAE for each model. During the inference step, it is worth noting that the input horizons are regenerated in each390

computation to ensure that they are different even for the same structural model. We show the variations of MSE and MAE

for each model in Figure 6c and 6d, respectively, in which the MSE and MAE are represented by black dots while the error

ranges are denoted by the blue and red lines. As is displayed in Figure 6, we can observe that most MSE and MAE are less than

0.5×10−5 and 0.2×10−3, which are considered to be not very significant in geological modeling scenarios. This demonstrates

the proposed CNN architecture is beneficial for implicit structural modeling.395

4.2 Synthetic Data Examples

When the CNN is well trained, the modeling experiences and knowledge learned from the synthetic dataset are implicitly em-

bedded in the network parameters. To verify its modeling performance, we apply the trained CNN to the 5 synthetic structural

models not included in the training dataset. As is shown in Figure 7a, the models are of complexlycomplex faulted layered

volumes, in which the folded interfaces are reformed by multiple high-angle normal faults. From the original structural mod-400

els, we generate the incomplete horizon and the fault data (Figure 7b) used as inputs of our network. By visual comparison in

Figure 7c, the modeling results with similar geometrical features to the inputs maintain the localized variations of the folded in-

terfaces despite no global structural information used to constrain the model. We further overlap scattered horizon points on the

iso-lines of the field predictions (Figure 7d), in which the great consistency between the given structures and the interpolated

features again supports our observation in Figure 7c.405

As is tabulated in Table 1, the CNN’s modeling ability is quantitatively measured by using various quality metrics including

SSIM, MSE, MAE, Explained Variance Score (EVS), Mean Squared Log Error (MSLE), Median Absolute Error (MDAE),

and R Square Score (R2S) on the entire validation dataset. In addition, we also measure the modeling accuracy of geological

interfaces that correspond to the input horizons by using HFAevery geological interface related to the input horizon data by

computing Horizon Fitting Error (HFA). This metric measures an average distance between the horizon scattered points and410

the corresponding iso-surfaces of the predicted model along the vertical axis. Table 1 also shows a quantitative comparison of

the proposed method (DeepISMNet) and the other powerful networks commonly used in similar scenarios. Our method not

only shows better performance on all the metrics but also has a more lightweight architecture with fewer trainable parameters

and GFLOPs in comparison to other CNNs. Simplification of the network architecture is mainly associated with the use of

inverse residual modules followed by depth-wise separable convolutions in each spatial scale level throughout the network,415

enabling our CNN to be applied to a large 3-D field modeling task. To guarantee the representational ability of the simplified
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Figure 8. We use a synthetic model (a) to study how the varying horizon values impact the CNN’s modeling results. The experiments are

used to verify that our network can produce almost identical structural models from the same faults and the horizons with varying values, as

shown from (b) to (f). This indicates that our approach is not sensitive to the annotation assigned to each horizon in the input structural data,

which facilitates its applications in field surveys.

CNN, the channel-wise dependencies have been explicitly learned by using an attention module that can adaptively highlight

more informative features while suppressing irrelevant ones. Therefore, although the number of hidden representations is less

than the conventional CNN architectures such as UNet, our network can still achieve stable structural interpolation and reliable

generalization performance.420

Another improvement of our approach is attributed to the use of a loss function based on element-wise accuracy and

structural similarity in updating the CNN’s parameters. To demonstrate the improved modeling performance, we implement a

quantitative analysis of our CNN trained with the different loss functions using the multiple quality metrics. The averages of

these metrics on the validation dataset are tabulated in Table 2. The CNN trained with the hybrid loss function of MS-SSIM

and MAE (denoted by MS-SSIM&L1) can outperform the others in Table 2 on all the quality metrics even including the425

quality metrics which we use as cost function to train the network. This loss function is attributed to a better reconstruction of

fault-related features in the resultant model by assigning high weights to regional structural contrasts. Also, reliable identification

of faults is useful to constrain the lateral occurrence of stratigraphic interfaces across structural discontinuities.

4.3 Horizon Annotation Experiment

The scatted points along the input horizons can be assigned to iso-values of the implicit model in the training dataset, but how to430

annotate each horizon before modeling remains a problem in real-world applications. We supplement a data experiment using a

synthetic model (Figure 8a) to study how the varying horizon values impact the CNN’s modeling results. In this experiment, we
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set values ranging from 0.3 to 0.8 with a fixed interval to the scattered points on the two distinct horizons. The annotated value

interval is computed by averaging the differences in vertical coordinates of the horizons. As is shown from Figure 8b to 8f, the

horizons with varying values, together with the faults, are used as inputs in our network. By visual comparison, the modeling435

results using different horizon values are nearly identical to each other, which indicates that our method is not sensitive to the

iso-value definition of the input horizons, which is what we expect. Nevertheless, we recommend assigning scattered points

on each of the input horizons to their average vertical coordinate. The input horizons are required to be normalized for being

consistent with the training data.

5 APPLICATION440

It might not be surprising that the CNN trained with a synthetic dataset works well to produce a geologically valid and consistent

model by using the structural data created from the same workflow for creating the training dataset. In this section, we further

present structural modeling results from our trained network for real-world data that are acquired at different geological surveys

to demonstrate proof of concept. The modeling objects collected from field observations or seismic data are required to convert

into the uniformly sampling grids to obtain the input structural data of our CNN.445

5.1 Structural Data Preprocessing

In most cases, the structural data collected from field surveys are discrete and not necessarily located on the sampling grid of

the model, such that we need a preprocessing step that scatters the structural data into a volumetric mesh with annotations.

To scatter the structural data, we simply shift the horizon and fault interpretations to their nearest sampling grids of the model

and obtain the associated scattered points. In both the synthetic and the field data applications, the annotation of fault scattered450

points is straightforward by simply assigning ones near the faults and zeros elsewhere. However, although the points along

the horizons can be assigned to the corresponding iso-values of the model in the synthetic data experiments, this might not be

feasible when modeling real-world geology from structural interpretations.

As the ground truth of geological structures is typically inaccessible before modeling, how to properly annotate the in-

terpreted horizons remains a problem. We implement a numerical experiment using the horizon data labelled with different455

iso-values in a synthetic structural model (Figure 8a) to study how they impact the predictions of our CNN. In this experiment,

the scattered points on two horizons are assigned by the normalized iso-values that range from 0.3 to 0.8 with three distinct

intervals of 0.2, 0.3, and 0.4. As shown from Figure 8b to 8f, the network takes the horizon data with various iso-values and

the same fault data to produce structural models as outputs. By visual comparison, the nearly identical modeling results in-

dicate that the method is not sensitive to the different data annotations within a reasonable range, which is what we expect.460

Additionally, we can observe that a larger interval of the horizon annotations is contributed to a more significant displacement

of geological layers on the opposite of the fault structures in the predicted model (Figure 8c and 8e). Based on this observa-

tion, we recommend labeling the scattered points on each horizon with their average vertical coordinate to correctly model the
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Figure 9. Application in a seismic field dataset. We display seismic images (a), input structural data (b) interpreted from the seismic images,

predicted structural models (c), and horizon fitting results (d), respectively.

stratigraphic sequences of geology. Note that the annotations on horizons require to be consistently rescaled by the model size

to keep consistent with the normalized training dataset.465

5.2 Real World 2-D Case Studies

We apply the trained CNN to a 2-D field data to verify its modeling performance for the structural data with geometrical patterns

distinct from the training data. The input structural data are manually interpreted from the seismic images that are acquired from

Westcam dataset. This dataset is acquired in regions with closely spaced and complexly crossing faults with large slips, in which

the seismic images are of low resolution due to insufficient coverage and data stacking. The ambiguous seismic reflections470

shown in Figure 9a are difficult to be continuously tracked across the entire seismic images, which causes the partially missing

horizon data displayed by different colors in Figure 9b. The faults also might not be fully detected from the seismic images in

the presence of data-incoherent noise and the stratigraphic features that are similar to structural discontinuities. Moreover, the

structural contradictions and hard-to-reconcile features in the structural data might negatively impact the modeling performance

of the implicit methods. Thus, there remains a challenging task for many traditional approaches to obtain a geologically475

reasonable model that is structurally consistent with the inputs.

21



We apply the trained CNN to a field 2-D seismic dataset to interpolate structures from horizon and fault interpretations with

geometrical patterns distinct from the training data. The structural interpolations are acquired in regions with closely spaced

and complexly crossing faults, in which the seismic images are of low resolution due to insufficient data coverage. As is shown

in Figure 9a, the ambiguous reflections are difficult to be continuously tracked from seismic images, which causes the noisy480

and partially missing horizon data shown by different colors in Figure 9b. The faults (Figure 9c) might not be fully annotated

from the seismic images because of data-incoherent noise and stratigraphic features apparent to discontinuous structures.

The structural contradictions and hard-to-reconcile features in the inputs might negatively impact the modeling quality of

geological structures. Therefore, it remains a difficulty for many traditional methods to obtain a geologically reasonable model

that is structurally consistent with the inputs.485

As is shown in Figure 9d, our method presents geologically valid models (Figure 9d) with the structural discontinuities and

the stratigraphic interface variations that consistently honor the faults and horizons, respectively. From Figure 9e, we observe

that the iso-lines (black lines) extracted from the modeling results can accurately follow the horizon interpretations in Figure 9b,

which again supports our previous observation. In comparison to the scattered point-sets, a full structural model is more useful

to well understand geological structures and qualify reservoir properties of continuity and morphology. Furthermore, the deep490

learning method with the high computational efficiency can even produce real-time predictions to correct interpretation errors

and improve the geological consistency of the model by taking all the structural interpretations into account.

The second 2-D field data experiment uses the dataset acquired from a geological survey and mineral exploration of Araripe

Basin in the region of the Borborema Province of Northeastern Brazil (Fabin et al., 2018). We collect the outcrop observations

shown in Figure 10a and 10f from exposures of quarries on the southwestern and northern borders of the basin. There exist a495

series of moderate to high angle faults caused by local subsidence due to the syn-depositional dissolution of the gypsum in a

large exposure of deposits of Romualdo Formation. These syn-depositional faults control the lateral thickness variations of the

stratigraphic interfaces that the field observations sample from outcrops. The field observations are integrated into the uniform

sampling grids and used as inputs of our trained CNN to predict a full structural model. As is displayed in Figure 10b and 10g,

the dataset incorporates four stratigraphic interfaces with three and four faults, respectively, exhibiting a structural pattern of500

syn-depositional deformation that is not included in our training dataset.

The modeling results presented in Figure 10c and 10h are obtained from the trained CNN, in which all the sharp edges are

structurally consistent with the faults shown in Figure 10b and 10g, respectively. The same structural models can be displayed

in Figure 10e and 10j using a discrete color map to indicate dislocated stratigraphic layers on the opposites of the faults.

The iso-lines extracted from the modeling results for the four distinct horizons are shown in Figure 10d and 10i, respectively.505

Both figures highlight the excellent fitting characteristic of the trained CNN on the input structural data. Therefore, although

the CNN is trained with the automatically simulated data, it still provides a promising performance on the real-world dataset

acquired at totally different surveys with complex geological structures.
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Figure 10. Application in an outcrop field dataset. We display two outcrop images (Fabin et al., 2018) in (a) and (f), input structural data in

(b) and (g) manually interpreted from the outcrop images within the dashed boxes, predicted structural models using a continuous color map

in (c) and (h), and a discrete color map in (e) and (j), and horizon fitting results in (d) and (i), respectively.

5.3 Real World 3-D Case Studies

Using the automatically simulated dataset, we train a 3-D modeling network with the same architecture to the 2-D CNN510

above for correctly capturing geometrical characteristics of 3-D geology. We adopt the trained CNN in two 3-D field seismic

datasets to validate its modeling capability toTo validate its modeling ability, we apply the trained CNN to 3-D field data

and construct a full structural model from unevenly distributed scattered points obtained from seismic interpretation. The

first seismic data sampled in regions with complexly deformed structures have relatively low resolution and signal-to-noise

ratio. As is shown in Figure Figure 11a, some seismic reflections are noisy and difficult to be continuously tracked across515

the entire volume of interest. The closely spaced and curved faults further complicate the structures especially when there

exists data-incoherent noise and stratigraphic features that are similar to structural discontinuities (highlighted by arrows in

Figure 11a). The first seismic data are sampled in regions with complex geological settings and have relatively low resolution

and signal-to-noise ratio because of insufficient coverage and data stacking. As is shown in Figure 11a, the seismic reflections
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Figure 11. The first real-world data application. We display seismic volumes (a), input horizon and fault data interpreted from the seismic

volumes (b), modeling results (c), geological interfaces extracted from the modeling results and overlaid with the faults (d), and one of the

recovered full horizon surfaces(e), respectively.

are ambiguous and difficult to be continuously tracked across the entire volume of interest. The closely spaced and crossing520

faults further complicate structures in the presence of seismic data-incoherent noise and stratigraphic features that appear to be

structural discontinuities. The scattered points are heterogeneously sampled and might be sparse or clustered in some localized

regions because the large variations of the distances between these points occur around the geological interface. Therefore, it

is difficult for the existing approaches to model the highly deformed structures from the noisy and partially missing horizons

and faults (Figure 11b). The modeling results shown in Figure 11c demonstrate that the CNN architecture is beneficial for525

3-D structural modeling by predicting a geologically valid model, where the structural discontinuities and the interfaces are

consistent with the given point data (Figure 11d). The predicted models even maintain the variations of the folded layer

structures (highlighted by arrows in Figure 11c and 11d) without global plunge information used to constrain the modeling

process. By visual comparison, Figure 11c shows that a group of horizon points sampled at the same geological layer can be

accurately located on the corresponding iso-surface of the model, which again demonstrates a great fitting characteristic of our530

network.

The second 3-D real-world case study is of a conformably folded and layered model with numerous faults that are curved

and complexly intersected with each other. As is shown in Figure 12a, the available horizon data are manually interpreted on

the two stratigraphic interfaces, while the fault data are derived by using the automatic fault detection method from the seismic
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Figure 12. The second real-world data application. We display seismic volume (a) overlaid with structural data (b), input horizon and fault

data (c) interpreted from the seismic volume, modeling result (d) overlaid with faults (e), geological interfaces extracted from the modeling

result (f), and each of the recovered full horizon surfaces in (g) and (h), respectively. Noting that we rotate the horizon surfaces (g) and (h)

by 180◦ for a better visual comparison.

volume (Figure 12b and 12c). In our CNN’s prediction shown in Figure 12d, the geological layers represented by iso-values535

with the same color accurately follow the tendency of seismic structural variations near the faults (highlighted by arrows in

Figure 12a and 12d) even though we do not input any seismic data in our CNN. We also display the modeling result overlaid

with the input fault data in Figure 12e, from which we can observe dislocations of geological layers on the opposites of the

fault structures (highlighted by arrows in Figure 12e). In Figure 12f, we extract the geological interfaces that correspond to

the input horizons using the iso-surface extraction approach. To show more details, Figure 12g and 12h display each of the540

horizon surfaces, by which we rotate 180◦ for a better visual comparison. A great consistency between the input and recovered

structures highlights the CNN’s fitting characteristics on the given geological knowledge and structural constraints.

6 DISCUSSION

In this section, we discuss the modeling characteristic of our method and its abilities for structural uncertainty analysis, along

with the current limitations. We also demonstrate a potential improvement that we will focus on in future research to incorporate545

structural orientation constraints in the CNN-based structural modeling.
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Figure 13. Geological uncertainty analysis. We display multiple sets of modeling elements interpreted from the borehole and the outcrop

observations (a), input horizon and fault data (b), modeling result (c) , and iso-curves extracted from the prediction (d), respectively.

6.1 Structural Uncertainty AnalysisCharacterization

When modeling complex geological structures, the reliability of the implicit methods is heavily dependent on the quality and

availability of the input structural data. However, the heterogeneously distributed structural data pose an ill-posed problem

that there exist multiple plausible structural models which equally fit the inputs. However, the inputs typically sparse and550

regional available in a geological survey cause an ill-posed problem because there exist multiple plausible resultant models that

equally fit the inputs. Therefore, data uncertainty analysis is necessarily critical to looking for an optimal solution, especially

for the noisy and hard-to-reconcile structural observations (Viard et al., 2011; Lindsay et al., 2012). Although the existing

implicit methods can generate various models by perturbing the inputs to characterize uncertainties, they might not explore

a broad range of possible geological patterns and structural relationships in nature through a single model suit for stochastic555

simulation (Jessell et al., 2022). Our CNN is beneficial for the flexible interpretation of this data uncertainty by generating

a diverse set of modeling realizations instead of one best due to its higher computational efficiency than the conventional

approaches. Working on the automating of modeling workflow, our CNN is beneficial for a flexible interpretation of aleatory

and epistemic uncertainties (Pirot et al., 2022) by generating diverse modeling realizations instead of one best due to its high

computational efficiency.560
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We can use various combinations of modeling objects with the horizons and faults interpreted from the borehole and the

outcrop observations shown in 13a to study the uncertainties associated with the position variations of geological structures.

By contrast, the modeling situations are more complex when considering additional geometrical objects of faults that dislocate

the geological layers. The model with the simplest structures consists of multiple continuous and conformal geological layers

shown in the first data example. The modeling situations become more complex and various when considering additional geo-565

metrical objects such as faults or unconformities to dislocate the continuous layers. In addition, we randomly perturb horizon

positionsFurthermore, we randomly perturb the interpreted geological interfaces to yield the variations of layer thickness as

the stratigraphic boundary transition often might not be accurately observed from the vertical boreholes. As is shown in Fig-

ure 13b, the network takes a diverse set of the combinations to model the possible structural geometries and relationshipsThese

two distinct horizons and the faults displayed in Figure 13b are used as inputs into the network to compute the structural models570

(Figure 13c) to demonstrate proof of concept. All the results are computed by using a desktop PC with Intel Xeon-5120 CPU

(2.20GHz) and a single NVIDIA Tesla V100 GPU. Although we take a few hours in training the CNN, the average time for

generating each model is approximate 0.2 seconds using a 128× 256 image size. We display the iso-curves of the models

(Figure 13c) overlaid with the horizons in Figure 13d, which verifies an excellent fitting characteristic of our approach on the

given geological structures.575

6.2 Structural Orientation Constraint

Our CNN architecture permits the flexible incorporation of varying types of geological information by defining an appropriate

loss function to measure the modeling error for each structural constraint. In our method, the input data are not limited to

horizons and faults and can include the structural angular observations in the modeling process. We can use the structural

angular information that represents local orientations of geological layers to permit geometrical relationships in the gradient of580

the scalar function to be considered. The loss function of orientation constraint is aimed to measure the angle errors between

the gradientsdirectional derivatives of the predicted model and the orientation observations using cosine similarity. We adopt a

central differences method to compute local structural orientations by using the second-order Taylor series approximation

of the model z. We adopt the second-order accurate central differences method (Fornberg, 1988) using the Taylor series

approximation to estimate the local orientation at each interior point of the given structural model z. The cosine similarity585

at every single point between the orientations of the predicted model and the normal vector
→
n can be represented as follows,

f pred
cs (p) =

→
n ·∇z(p)
‖→n ‖‖∇z(p)‖

. (5)

This is also used to compute the cosine similarity between the orientations in the reference model f obs
cs (p) and the normal

vector n. Therefore, the loss function that measures the structural angle errors in comparison to the observed orientation

constraintsbetween the two models being compared can be formulated as follows,590
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Figure 14. The faults and incomplete horizons, together with the structural orientations, are used as inputs (a) into the network to predict

implicit structural models (b). The sets of regularly spaced iso-lines and local orientations are obtained from the modeling results (c) and

compared with the given normal vectors (red arrows). The iso-lines and normal vectors (blue arrows) extracted on the predicted stratigraphic

interfaces can well match the two distinct input horizons (d).

Lnormal(p) =
1

N

∑
p∈p
|f pred

cs (p)− f obs
cs (p)|, (6)

in which N represents total number of the points within a patch p. Therefore, the total loss function is defined by combining

the various types of geological constraints as,

Lsum(p) =
1

K

K∑
i=1

(λLmae(pi)+Lms-ssim(pi)+βLnormal(pi)), (7)

where β is used to balance the relative significance of the orientation loss, and K represents the number of the patches595

cropped from the model. β and λ are empirically set to 1.00 and 1.25, respectively, according to many prior numerical tests. As

is displayed in Figure 13a, the faults and the incomplete horizons, together with the structural orientations sparsely distributed

on the horizons, are used as inputs to the network to model geological structures. The modeling results shown in Figure 13b

exhibit the remarkable performance of our method when using various types of geological data inputs. We compute regularly

spaced iso-lines and local orientations from every modeling result and compare them with the input normal vectors (red600

arrows) in Figure 13c, respectively, which presents a great consistency between the predicted and given geological structures.

The interpolated structures by using the CNN maintain the large localized geometrical variations even though there is no global
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geological information to constrain the modeling process. In addition, the iso-lines and normal vectors (blue arrows) extracted

along the stratigraphic interfaces of the predictions can well match the two distinct input horizons (Figure 13d), which again

highlights the CNN’s fitting characteristic on the given structural constraints.605

6.3 Current Limitations and Improvements

The CNN trained by using the synthetic dataset presents excellent modeling capacities in real-world cause studies to represent

complicated geological structures that are distinct from the simulated structural models. Instead of imposing any explicit math-

ematical constraints in the traditional implicit method, our CNN-based structural modeling is implemented by the recursive

spatial convolutions with trainable kernel parameters and the loss function related to various geological constraints. The spatial610

convolutions in the CNN can be viewed as the implicit interpolants used in the traditional interpolation methods, and the only

difference is that the parameterization of their kernel functions can be optimized through training. As structural modeling is

dependent on the analysis of the spatial relations of the observed structures to interpolate new geologically valid structures

elsewhere, acquiring representative example data is essential for training the CNN to achieve its reliable generalization per-

formance. Therefore, we adopt an automatic workflow to generate numerous models with realistic structures and simulate615

partially missing horizons in building the training dataset. It is a significant reason why our network could be applied to the

real-world datasets acquired in different geological surveys with distinct structural patterns.

Another improvement of our approach is attributed to the use of a loss function based on element-wise accuracy and struc-

tural similarity in updating the CNN’s parameters. To demonstrate the improved modeling performance, we implement a

quantitative analysis of our CNN trained with the different loss functions using the multiple quality metrics. The averages of620

these metrics on the validation dataset are tabulated in Table 2. The CNN trained with the hybrid loss function of MS-SSIM

and MAE (denoted by MS-SSIM&L1) can outperform the others in Table 2 on all the quality metrics even including the quality

metrics which we use as cost function to train the network. This loss function is attributed to a better reconstruction of fault-

related features in the resultant model by assigning high weights to regional structural contrasts. Also, reliable identification of

faults is useful to constrain the lateral occurrence of stratigraphic interfaces across structural discontinuities.625

Although working well to recover faulted and folded structures, the proposed method might not represent other geological

structures that are not considered in the training dataset, such as unconformities and igneous intrusions. The trained network

also might not correctly construct low dip-angle thrust faults in predicted models because we still do not include this type of

fault in the currently used data generator. Despite the current limitations, the proposed CNN architecture still shows promising

potential to compute a geological valid and structurally consistent model honoring the observed structures. Considering the630

used training dataset is still not sufficiently large to train a 3-D deep network, future works will focus on further complicating

the simulation workflow by adding more complex and diverse geological structural patterns in the models. Considering the

used training dataset is still not sufficiently large to train a 3-D deep network, future works will focus on expanding our

training dataset to a broader range of geological geometries and relationships. For example, we can further complicate the used

simulation workflow by adding more complex and diverse features in the structural models, or adopting a recently developed635

3-D geological modeling dataset (Jessell et al., 2022) where dykes, plugs, and unconformities are incorporated.
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7 Conclusions

A CNN-based deep learning method has been used to represent geological structures over the entire volume of interest from

typically sparesparse and hard-to-reconcile structural interpretation data. The network is composed of encoder and decoder

branches and supplemented with lightweight depth-wise separable convolution and channel-wise attention to find an optimal640

trade-off between modeling accuracy and computational efficiency. The developed CNN architecture leverages the low-rank

nature of the sparse and heterogeneously sampled structural data to adaptively suppress uninformative features by using a

linear bottleneck and inverted residual structure in each of the encoded convolutional layers. Our approach is beneficial for the

flexible incorporation of empirical geological knowledge constraints in a supervised learning framework using numerous and

realistic structural models that are generated from an automatic data simulation workflow. This also provides an impressive645

characteristic to flexibly integrate multiple types of structural constraints into the modeling by using an appropriate loss func-

tion, exhibiting a promising perspective for further improving geological modeling. We verify the effectiveness of the proposed

approach by using the case studies acquired in distinct geological surveys, including synthetic examples created by the same

workflow for acquiring the training dataset, the randomly created modeling objects without any ground truth of geology, and

the structural interpretations obtained from the seismic images. In both synthetic data and real-world data applications, we ver-650

ify its modeling capacities in representing complex and noisy structures with a model geologically reasonable and structurally

consistent with the inputs.

Code and data availability. The synthetic structural models, used for training and validating our network, are uploaded to Zenodo and

are freely available through the DOI link https://doi.org/10.5281/zenodo.6480165. The source codes for the neural network developed in

Pytorch are uploaded to Zenodo and provided at the Github URL https://github.com/zfbi/DeepISMNetDOI link https://doi.org/10.5281/655

zenodo.6684269.

Appendix A: Regression metric functions

To verify the modeling performance of our CNN, we quantitatively measure the differences between the ground truth structural

models and predictions by using various regression metrics including SSIM (Structural Similarity), MSE (Mean Square Error),

MAE (Mean Absolute Error), EVS (Explained Variance Score), MSLE (Mean Square Logarithm Error), MDAE (Median Ab-660

solute Error), and R2S (R Square Score, also called the Coefficient of Determination) in the validation dataset. MSLE measures

the prediction performance that corresponds to the expected value of the squared logarithmic error, which is formulated as,

fMSLE(y, ŷ) =
1

N

N∑
i=1

(loge(1+yi)− loge(1+ ŷi))
2, (A1)

where y and ŷ are the structural models being measured, respectively, and N represents the total number of points in the

model. MDAE is computed by using the median of all absolute differences and thus can be robust to outliers,665
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fMDAE(y, ŷ) =
1

N

N∑
i=1

median(yi− ŷi). (A2)

EVS is used to measure the proportion of the variability of the solutions in a machine learning method, and the score value

ranges from zero to one. Higher EVS typically indicates a stronger strength of association between regression targets and

predictions and thus represents better network performance. It can be formulated as follows,

fEVS(p) =
1

M

∑
p∈p

(1− variance(y− ŷ)

variance(y)
), (A3)670

where p represents the patch cropped from the same spatial location from the structural models being measured, and M is

the number of the cropped patches. R2S offers a measurement of how well the predictions of the network are based on the

proportion of total variations. R2S can be written as follows,

fR2S(p) =
1

M

∑
p∈p

(1−
∑N
i=1(y− ŷ)2∑N
i=1(y−y)2

), (A4)

in which N represents the total number of points within the cropped patch p. R2S is similar to EVS, with the notable675

improvement that it can account for systematic offsets in the predictions. In addition, EVS and R2S can be more robust and

informative than MAE and MSE in regression analysis evaluation because the former can be represented as percentage errors.
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