
We would like to thank the two anonymous referees for the time and effort they took to 

carefully review our manuscript and for their valuable comments and suggestions that 

contributed to improve its quality. Below, we give our responses (in blue) to the specific 

comments of the referees (in black). 

 

Referee 1 

It is a good paper. The idea of approximating Guassian weights using the central limit 

theorem (CLT) is very good.  The Approximation 3 is a happy result mainly because of 

cancellation of the common factors in the numerator and the denominator. The algorithms 

for implementation are also nice and thorough. It is surprising to read how the computing 

time is reduced from a naive Barnes interpolation. Nevertheless, I have some comments 

and questions, basically for a better presentation. 

 

1. It uses a special kind of the uniform random variable on an interval with  a threshold.  

Hope the author describe why this threshold (sqrt(3/n) sigma) was chosen. 

The calculation, why the interval has the length (sqrt(3/n) sigma) is actually not obvious. It 

is basically chosen in this way, such that the variance of the resulting uniform distribution 

u_n(x) is (sigma^2/n). 

We added on page 3, line 65 of the manuscript a short comment about that and a 

calculation that verifies this. 

 

2. page 3, line 54: hope the author provide the definition of the n-fold convolution of p(x) 

with itself. 

We provide the definition of the n-fold convolution of p(x) with itself in the new Appendix 

A1 of the manuscript. 

 

3. p5 line 92: hope the author provide more concretely what *^nx and *^yn are, because 

some readers may know it  after reading the Algorithms 2, 3, and 4. 

We fully agree, the explanation of the operators *^xn and *^yn in the text is minimalistic. 

We give now a thorough derivation of them in the new Appendix A2 of the manuscript 

 

4. In Section 5, the author applied 4-fold convolution. It is known that a summation of 

uniform random variables converge slowly to the CLT compared to other uni-modal 

random variables, even though the convergence in distribution and the convergence in pdf 

are different. Thus I think only 4-fold is too small. I would recommend to apply at least 10-

fold convolutions in real applications to ensure a good approximation. 

Maybe one has to differentiate from application to application. When Barnes interpolation 

is used to visualize data by means of isolines - as done in the manuscript - we noticed that 

the resulting isolines found more or less their stable form already after applying a 3-fold 

convolution. For other applications, which require a higher precision, a 10-fold convolution 

or even more might make sense. 

We extended the corresponding remark on p. 18 line 295 accordingly. 

 



5. The result in this paper is only a nice approximation to Barnes interpolation. I think the 

title can be changed to 'Fast approximation to Barnes interpolation'. 

We did not use the term "approximate" in the title, because other _feasible_ methods to 

compute Barnes interpolation are approximations as well, but do not emphasize this in an 

obvious way. 

The title of the manuscript is now “Fast Approximate Barnes Interpolation”.  

 

6. It uses a special kind of the uniform random variable and a numerical integration for 

convolution in Algorithm 2. It is still good, but  I guess one may consider other random 

variables which may accelerate the convergene to the CLT. Then numerical integration 

may be a little more complex than that in this paper. This may increase computing time in 

Algorithm 2, but may be alright with a smaller n. 

In fact, there are many other PDFs that have a faster CLT-convergence to a Gaussian 

than the uniform PDF - in the extreme case one could even take a normal distribution itself 

for which we would have n = 1. 

But when using a non-trivial PDF, it is clear that putting and moving the weight window (as 

described on p. 9 line 161) over the data to be convolved requires in general 2T+1 

multiplications and 2T additions per element. Thus, the simplicity of algorithm 2 is lost to a 

far part and the algorithmic complexity of it grows to O(L*T) instead of O(L). Overall we 

then could not claim a complexity of O(N+W*H) anymore, this would be rather 

O(N+W*H*T). 

Your comment leads us to consider to add a remark on p. 6 line 128 that Approximation 3 

is valid in a much more general context, i.e. also for other (non-uniform) PDFs. In the case 

of a normal distribution even equality holds. These relationships are now described in the 

new Appendix A3 of the manuscript.  

 

7. In Algorithms 2 and 3, I was a bit confused with the notations g, r_T, and F[i,j]. Hope the 

author kindly give short descriptions on these notations to improve reader's understanding. 

These notations basically refer to the formulae and text given around the Algorithms.  

We addressed this problem in chapter 4 Discretization by first adding a hint about the 

notation that we use round parentheses for functions g(x) defined on the continuum and 

square brackets for discrete functions g[x]. Throughout the chapter, we carefully improved 

the readability by giving more context here and there and by being more specific. 

 

8. Finally, I think that the idea of approximating Guassian weights using the CLT is very 

good and so it can be applied to the other area of numerical computations which use 

Gaussian weights. Hope the author try to search the literature if any body has already 

published or applied this idea.  

This is a good question. The CLT is used by some applications to quickly generate the 

weights of a normal distribution (as above, of course only in an approximate way). Further 

we assume that some image processing programs like Photoshop employ this technique 

in order to apply a Gaussian blur filter on an image. This process can be regarded as a 

special case of the method presented in this manuscript, where the observation points in 



question are given by the image matrix. In this case the points are located on a regular 

grid and the denominator of equation (8) simplifies to 1. 

We refer in the last paragraph of the Introduction to applications of the CLT in image 

processing and computer vision (Wells, 1986). Further we refer in chapter 5.4 on p. 16, 

line 269 and on p. 17, line 283 to (Gwosdek et al., 2011), where in principle the same 

considerations are made for so called “extended box filters”. Finally, we mention in the 

Conclusions (Getreuer, 2013), who investigated different “Gaussian convolution 

algorithms”. 

The References were updated with (Getreuer, 2013), (Gwosdek et al., 2011) and (Wells, 

1986). 

 

 

Referee 2 

This is a nice paper. It presents an efficient method to perform a Gaussian smoothing, 

which takes advantage of the CLT by using the repeated convolution of a computationally 

cheap (uniform) smoothing to approximate the desired Gaussian result (and further that 

the 2D result is the product of two 1D calculations). 

 

I see that the author already improved the first version of the manuscript in response to 

previous comments, and I found it very readable. I found that the questions that arose on 

my first reading were answered later on. I have a minor suggestion about the presentation 

of the computational complexity of the main result, which is that the wording could be more 

precise. For example, in the abstract "When implemented naively, the computational 

complexity of Barnes interpolation depends directly on both the number of sample points 

and the number of grid points." This initially confused me as all algorithms (including the 

proposed one as well as the naive approach) must surely depend directly on these 

numbers, simply from the time taken to read and write them. It would be better expressed 

as varying with the *product* of the number of sample points and grid points. Or else 

(additionally?) write it in O() notation so there can be no confusion. The Abstract should 

also explicitly present the complexity of the new result (and perhaps both old and new 

complexities could be placed again in the Conclusions). 

We agree that this can be written more precise and also should be written with more 

emphasis, as it is ultimately the main achievement of the presented manuscript. Hence, 

the Abstract now contains the computational complexity in explicit O() notation for both, 

the naive approach and the newly presented method. 

As you suggested, the first paragraph of the Conclusions now also contrasts the 

computational complexity of the naive approach and the presented approach. 

 

Also one piece of ungrammatical English at l133: "are sufficiently good contained" could 

be "sufficiently well contained" perhaps? 

This is corrected, thank you for the hint. 

 



I suggest that the Conclusion contain a repetition of the author's suggestion that 4 

convolutions seems to work well in most practical applications. 

We agree with this. This suggestion is now also included in the first paragraph of the 

Conclusions. 

 


