
Fast
::::::::::::::::::::
Approximate Barnes Interpolation

Bruno K. Zürcher
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland

Correspondence: Bruno K. Zürcher (bruno.zuercher@meteoswiss.ch)

Abstract. Barnes interpolation is a method that is widely used in geospatial sciences like meteorology to remodel data values

recorded at irregularly distributed points into a representative analytical field. When implemented naively, the computational

complexity of Barnes interpolation depends directly on both the number of sample points and the number of grid points. In the

era of highly resolved grids and overwhelming numbers of sample points, which originate e.g. from the Internet of Things or

from crowd-sourced data, this computation can be quite demanding even on high-performance machines.5

This paper presents new approaches how very good approximations of Barnes interpolation can be implemented using fast

algorithms. Two use cases are in particular considered, namely (1) where the used grid is embedded in the Euclidean plane and

(2) where the grid is located on the unit sphere.

1 Introduction

In the early days of numerical weather prediction, various objective analysis methods were developed to automatically pro-10

duce the initial conditions from the irregularly spaced observational data (Daley, 1991), one of which was Barnes interpolation

(Barnes, 1964). However, objective analysis soon lost its significance in this field against statistical approaches. Today, Barnes

method is still used to create grid-based isoline visualizations of geospatial data, like for instance in the meteorological work-

station project NinJo (Koppert et al., 2004), which is commonly developed by the Deutscher Wetterdienst, the Bundeswehr

Geophysical Service, MeteoSwiss, the Danish Meteorological Institute and the Meteorological Service of Canada.15

Barnes interpolation f(x) :D −→ R for an arbitrary point x ∈D and a given set of sample points xk ∈D with observation

values fk ∈ R for k = 1, ...,N is defined as

f(x) =

∑N
k=1 fk ·wk(x)∑N
k=1wk(x)

(1)

with Gaussian weights

wk(x) = e−
d(x,xk)2

2σ2 , (2)20

a distance function d :D×D −→ R and a Gaussian width parameter σ.

If Barnes interpolation is computed in a straightforward way for a regularly spacedW×H grid, the computational complex-

ity is given byO(N ·W ·H) as easily can be seen from the threefold nested loops of the algorithm given below. Consequently,

for big values of N or dense grids, a naive implementation of Barnes interpolation turns out to be unreasonably slow.

1

The fact that the Gaussian weight function quickly approaches 0 for increasing distances leads to a first improvement25

attempt, which consists in neglecting all terms in the sums of (1), for which the weights wk drop below a certain limit w0, e.g.

w0 = 0.001. This is equivalent to take only observation points xk into account that lie within the distance r0 = σ
√
−2lnw0

from the interpolation point x. Thus, the described procedure requires the ability to quickly extract all observation points xk

that lie within a distance r0 from point x. Data structures that support such searches are e.g. so called k-d-trees (Bentley, 1975)

or quadtrees (Finkel and Bentley, 1974).30

This improved approach actually reduces the required computation time by a constant factor, but the computational com-

plexity remains in the same order. To see this, note that a specific sample point xk contributes to the interpolation value of

exactly those grid points that are contained in the circular diskBr0(xk) = {q ∈D | d(xk,q)< r0} of radius r0 around it. Note

also that in a regularly spaced grid the number of affected grid points is roughly the same for each sample point. If now the

number of grid points W and H is in each dimension increased by a factor κ – i.e. the grid becomes denser – the number35

of grid points contained in Br0(xk) grows accordingly, namely by a factor κ2, which shows that the algorithmic costs rise in

direct dependency toW andH . Since this is obviously as well true for the number of sample pointsN , the improved algorithm

also has complexity O(N ·W ·H).

In this paper, we discuss a new and fast technique to compute very good approximations of Barnes interpolation. The40

theoretical background
::::::
utilized

:::::::::
underlying

::::::::
principle

::
of

:::::::
applying

:::::::
multiple

::::::::::
convolution

::::::
passes

::::
with

:
a
::::::
simple

:::::::::
rectangular

:::::
filter

::
in

::::
order

::
to

:::::::::::
approximate

:
a
::::::::
Gaussian

::::::::::
convolution

::
is

::::
well

::::::
known

::
in

::::::::::::
computational

::::::::::
engineering.

:::
In

:::::
image

:::::::::
processing

::::
and

::::::::
computer

:::::
vision,

:::
for

::::::::
instance,

::::::::
Gaussian

:::::::
filtering

::
of

::::::
images

::
is
:::::

often
:::::::::
efficiently

:::::::::
calculated

::
by

::::::::
repeated

:::::::::
application

::
of

:::
an

::::::::
averaging

:::::
filter

:::::::::::
(Wells, 1986).

:

2

:::
The

:::::::::
theoretical

::::::::::
background

:::
of

:::
the

:::
new

::::::::
approach

:
is presented in Sect. 2 and 3. After, we investigate two use cases for the45

domain D,

(i) D = R2 the Euclidean plane with the usual distance d(p,q) = ‖p− q‖2 in full detail in Sect. 4 and 5.4,

(ii) D = S2 = {p ∈ R3 | ‖p‖2 = 1} the unit sphere with d(p,q) the spherical distance between p and q as a broad outline

in Sect. 5.5.

2 Conclusions from Central Limit Theorem50

For a set {Xk}nk=1 of independent and identically distributed random variables with mean µ and variance σ2, the central limit

theorem (Klenke, 2020) states that the probability distribution of their sum converges to a normal distribution, if n approaches

infinity, formally

P

[
X1 + · · ·+Xn√

n
≤ a
]

−−−−→
n→∞

1√
2πσ

a∫
−∞

e−
1
2 (t−µσ)

2

dt. (3)55

Without loss of generality we assume in the further discussion µ= 0. Let p(x) denote the PDF (probability density function) of

the scaled random variables { 1√
n
Xk}nk=1 that consequently have the variance σ2

n . Since the PDF of a sum of random variables

corresponds to the convolution of their individual PDFs, we find on the other hand

P

[
X1 + · · ·+Xn√

n
≤ a
]

=

a∫
−∞

p∗n(x)dx,

where p∗n(x) denotes the n-fold convolution of p(x) with itself
:::::
(refer

::
to

::::::::
appendix

:::
A1). With that result we can write relation-60

ship (3) equivalently in an unintegrated form as

p∗n(x) −−−−→
n→∞

1√
2πσ

e−
x2

2σ2 , (4)

which leads directly to

Approximation 1. For sufficiently large n, the n-fold self-convolution of a probability density function p(x) with mean µ= 0

and variance σ2

n approximates a Gaussian with mean 0 and variance σ2, i.e.65

p∗n(x)≈ 1√
2πσ

e−
x2

2σ2 .

Note that this approximation is valid for arbitrary PDFs p(x) with mean µ= 0 and variance σ2

n .

3

A particular simple PDF is given by the uniform distribution. We therefore define a family of uniform PDFs {un(x)}∞n=1,

of which each member un(x) has mean 0 and variance σ2

n . These uniform PDFs can be expressed by means of elementary70

rectangular functions

rn(x) =

 1 for |x| ≤
√

3
n σ

0 otherwise
where n= 1,2, · · · , (5)

such that

un(x) =
1

2
√

3
n σ

rn(x) =

1

2
√

3
n σ

for |x| ≤
√

3
n σ

0 otherwise

where n= 1,2, · · · .
::::
From

::::
this

::::::::
definition

:
it
::
is
:::::
clear

:::
that

::::::
un(x)

:
is
:::::::
actually

::
a

::::
PDF

::::
with

:::::
mean

::::::::
E[un] = 0

::::
and

:::::::
variance75

Var(un) =

∞∫
−∞

x2 ·un(x)dx=
1

2
√

3
n σ

√
3
n σ∫

−
√

3
n σ

x2 dx

:::

=
1

2
√

3
n σ
· 1

3
x3

∣∣∣∣∣∣
√

3
n σ

−
√

3
n σ

=
1

2
√

3
n σ
· 2

3

(√
3

n
σ

)3
=
σ2

n

:::

::
as

:::::::::
postulated. According to convergence relation (4) and approximation 1, the series of the n-fold self-convolutions {u ∗nn (x)}∞n=1

converges to a Gaussian with mean 0 and variance σ2. The converging behavior can actually be examined visually in Fig. 1,

which plots the n-fold self-convolution of the first few family members.80

The central limit theorem can also be stated more generally for i.i.d. m-dimensional random vectors {Xk}nk=1, refer for

instance to (Muirhead, 1982; Klenke, 2020). Supposing the Xk to have a mean vector µ= 0 and a covariance matrix Σ,

we can follow the same line of argument as in the one-dimensional case. Let p(x) be the joint PDF of the scaled random

variables { 1√
n
Xk}nk=1, which therefore have a zero mean vector and the covariance matrix 1

nΣ. Then the limit law writes in85

m dimensions as

p∗n(x) −−−−→
n→∞

1

(2π)
m
2

√
detΣ

e−
1
2x

TΣ−1x.

For the remainder of the discussion, we fix the number of dimensions to m= 2 and for the sake of better readability, we

write the vector argument x in its component form (x,y), if it is appropriate. In case the random vectorsXk are isotropic, i.e.

do not have any preference in a specific spatial direction, the covariance matrix is a multiple of the identity matrix Σ = σ2I90

and the limit law simplifies in two dimensions to

p∗n(x) −−−−→
n→∞

1

2πσ2
e−

1
2σ2
‖x‖2 . (6)

4

Figure 1. From left to right: In blue the plot of the PDFs of the uniform distributions u1(x), u2(x), u3(x) and u4(x) for σ = 1. In black

their self-convolutions u ∗2
2 (x), u ∗3

3 (x) and u ∗4
4 (x). The area covered by the PDF of the normal distribution is indicated in grey.

In the following step, we are aiming to substitute p(x) with the members of the family {u(2)n (x)}∞n=1 of two-dimensional

uniform distributions over a square-shaped domain, which are defined as

u(2)n (x,y) = un(x) ·un(y) =
n

12σ2
rn(x) · rn(y)95

=

 n
12σ2 for |x|, |y| ≤

√
3
n σ

0 otherwise
for n= 1,2, · · · .

With this definition the members u(2)n have a mean vector 0 and an isotropic covariance matrix σ2

n I and hence satisfy the

prerequisite of limit law (6). Note also that u(2)n (x) is separable because u(2)n (x,y) = un(x) ·un(y). As a consequence of the

latter, the n-fold self-convolution of u(2)n (x) is itself separable, i.e.(
u(2)n

)∗n
(x,y) =

(
un (x) ·un (y)

)∗n
100

= un
x∗n(x) ·un

y
∗n(y)

=
(n

12σ2

)n
rn

x∗n(x) · rn
y
∗n(y), (7)

where the operators
x∗ denote one-dimensional convolution in x-direction and

y
∗ one-dimensional convolution in y-direction,

respectively
:::::
(refer

::
to

:::::::
appendix

::::
A2). Substituting p(x) in (6) with the r.h.s. of (7) we obtain(n

12σ2

)n
rn

x∗n(x) · rn
y
∗n(y) −−−−→

n→∞

1

2πσ2
e−

1
2σ2
‖x‖2 ,105

or expressed as

5

Approximation 2. For sufficiently large n, the n-fold self-convolution of the two-dimensional uniform probability density

function n
12σ2 rn(x) · rn(y) approximates a bivariate Gaussian with mean vector 0 and covariance matrix σ2I , i.e.(n

12σ2

)n
rn

x∗n(x) · rn
y
∗n(y)≈ 1

2πσ2
e−

1
2σ2
‖x‖2 ,

where rn(x) is an elementary rectangular function defined as110

rn(x) =

 1 for |x| ≤
√

3
n σ

0 otherwise
for n= 1,2, · · · .

3 Barnes Interpolation as Series of Convolutions

Let ϕµ,σ(x) denote the PDF of a two-dimensional normal distribution with mean vector µ and isotropic variance σ2, i.e.

ϕµ,σ(x) =
1

2πσ2
e−

1
2σ2
‖x−µ‖2 .

Note that ϕ0,σ(x) corresponds to the r.h.s. of approximation 2. Further let δa(x) denote the Dirac or unit impulse function at115

location a with the property δa ∗ f(x) = f(x− a). Then we can write

ϕµ,σ(x) =
1

2πσ2
e−

1
2σ2
‖x−µ‖2 = δµ ∗ (

1

2πσ2
e−

1
2σ2
‖x‖2)

= δµ ∗ϕ0,σ(x).

Thus, a Gaussian weighted sum as found in the numerator of Barnes interpolation (1) for the Euclidean plane R2 can be written

as convolutional operation120

N∑
k=1

fk · e−
1

2σ2
‖x−xk‖2 = 2πσ2

N∑
k=1

fk ·ϕxk,σ(x)

= 2πσ2
N∑
k=1

fk · (δxk ∗ϕ0,σ)(x)

and due to the distributivity and the associativity with scalar multiplication of the convolution operator follows

= 2πσ2
N∑
k=1

(fk · δxk) ∗ϕ0,σ(x)

= 2πσ2

(
N∑
k=1

fk · δxk

)
∗ϕ0,σ(x). (8)125

Substituting ϕ0,σ(x) with approximation 2, we obtain for sufficiently large n

N∑
k=1

fk · e−
1

2σ2
‖x−xk‖2

≈ 2πσ2
(n

12σ2

)n(N∑
k=1

fk · δxk

)
∗
(
rn

x∗n(x) · rn
y
∗n(y)

)
.

6

For the denominator of Barnes interpolation (1) we can use the same expression, but set the coefficients fk to 1. Since the

common factors in the numerator and the denominator cancel each other, we can state130

Approximation 3. For sufficiently large n, Barnes interpolation for the Euclidean plane R2 can be approximated by

f(x,y) ≈

(∑N
k=1 fk · δxk

)
∗
(
rn

x∗n(x) · rn
y
∗n(y)

)
(∑N

k=1 δxk

)
∗
(
rn

x∗n(x) · rn
y
∗n(y)

) , (9)

provided that the quotient is defined.

In other words, Barnes interpolation can very easily be approximated by the quotient of two convolutional expressions, both

consisting of an irregularly spaced Dirac-comb, followed by a sequence of convolutions with a one-dimensional rectangular135

function of width 2σ
√

3/n, executed n-times in x-direction and n-times in y-direction. As the convolution operation is com-

mutative, the convolutions can basically be carried out in any order. The sequence shown in approximation 3, evaluated from

left to right, is however especially favorable regarding the computational effort.

::::::::::::
Approximation

::
3
:::
can

:::
as

::::
well

::
be

::::::
stated

::
in

:
a
:::::

more
::::::::::
generalized

:::::::
context,

:::
i.e.

::::
also

:::
for

:::::::::::
non-uniform

:::::
PDFs.

:::
In

::::
case

::
of

:::::
using

::
a

::::::
normal

:::::::::
distribution

:::::
even

::::::
equality

::::::
holds,

::::
refer

::
to

::::::::
appendix

:::
A3

:::
for

::::
more

:::::::
details.140

4 Discretization

Approximation 3 leads in a straightforward way to a very efficient algorithm for an approximate computation of Barnes inter-

polation on a regular grid Γ that is embedded in the Euclidean plane R2. Let

Γ = {(i ·∆s, j ·∆s) ∈ R2 | 0≤ i <W, 0≤ j < H },

be a grid of dimension W ×H with a grid point spacing ∆s. Without loss of generality, we assume that all sample points xk145

are sufficiently good contained in the interior of Γ.
:
In

:::::
what

:::::::
follows,

:::
we

::::::::::
differentiate

:::::::
discrete

::::::::
functions

::::
from

::::
their

::::::::::
continuous

:::::::
function

::::::::::
counterparts

:::
by

::::::::
enclosing

:::
the

::::::::
arguments

::
in
::::::::
brackets

::::::
instead

::
of

::::::::::
parentheses

:::
and

:::::
write,

:::
for

:::::::
instance,

::::
g[i]

:::
for

::::
g(x)

::
in

:::
the

:::::::::::::
one-dimensional

::::
case

::::
and

:::::
g[i, j]

:::
for

::::::
g(x,y)

::
in

:::
the

::::::::::::::
two-dimensional

::::
case,

::::::::::
respectively.

:

We now compute in an iterative procedure for each point (i, j)
::::
[i, j]

:
of grid Γ the convolutional expression that corresponds

to the numerator (or denominator) of approximation 3. The intermediate fields that result from this iteration are denoted by150

F (m), where m indicates the iteration stage.

The first step consists in discretizing the expression
∑
fk ·δxk , i.e. in injecting the values fk at their respective sample points

xk into the underlying grid. For this purpose, the field F (0) is initialized with 0. From the definition of Dirac’s impulse function

in two dimensions

δ0(x,y) = lim
α→0

1

α2
rα(x,y)155

where rα(x,y) =

 1 for |x|, |y| ≤ 1
2α

0 otherwise
,

7

Figure 2. The nearer a sample point xk is located to a grid point, the larger the weight assigned to it. Grid point (i, j)
:::
[i, j] e.g. receives a

weight of (1−wx) · (1−wy).

we deduce for its discrete version that the grid cell containing the considered sample point receives the weight 1/∆s2, while

all other cells are left unchanged with weight 0. Since a sample point xk in general does not coincide with a grid point (refer

also to Fig. 2) and in order to achieve a good localization, the Dirac impulse δxk is distributed in a bilinear way to its four

neighbouring grid points according to step 5 of algorithm 1.160

Algorithm 1 Inject observation values fk into grid Γ

Input: sample point coordinates xk = (xk,yk) and sample values fk for k = 1, ...,N .

Output: W ×H field F (0) with injected sample values.

1: Initialize field F (0) with 0.

2: for k = 1 to N do

3: Determine indices i= bxk /∆sc and j = byk /∆sc of lower left neighbouring grid point.

4: Compute weights wx = xk /∆s− i and wy = yk /∆s− j, which are both contained in [0,1).

5: Distribute sample value fk in bilinear way among four neighbouring grid points, i.e.

F (0)[i, j] += (1−wx) · (1−wy) · fk /∆s2

F (0)[i, j+ 1] += (1−wx) ·wy · fk /∆s2

F (0)[i+ 1, j] += wx · (1−wy) · fk /∆s2

F (0)[i+ 1, j+ 1] += wx ·wy · fk /∆s2

6: end for

7: return F (0).

Note that if a grid point (i, j)
:::
[i, j]

:
is affected by several sample points, the determined weight fractions are accumulated

accordingly in the respective field element F (0)[i, j]. For the final calculation of quotient (9), the factor 1/∆s2 cancels out and

can therefore be omitted in algorithm 1, but for reasons of mathematical correctness it is shown here. Since we have N input

8

points and we perform a fixed number of operations for each of them, the complexity of algorithm 1 is given by O(N).

165

The other algorithmic fragment we require, is
:::::
which

::
is

:::::::::::
implemented

::
by

:::::::::
algorithm

::
2,

:
is
:
the computation of a one-dimensional

convolution
::
of

::
an

::::::::
arbitrary

:::::::
function

::::
g(x)

:
with the rectangular function rn(x) as defined in (5). Employing the definition of

convolution
:
, we obtain

h(x) = g ∗ rn(x) =

∞∫
−∞

g(x− t) · rn(t)dt

=

τ∫
−τ

g(x− t)dt=

x+τ∫
x−τ

g(t)dt (10)170

where τ = σ
√

3/n. With other words, the convolution g∗rn at point x is simply the integral of g(x) in the window [x−τ,x+τ].

Transferred to a one-dimensional grid with spacing ∆s, the rectangular function rn(x) reads as rectangular pulse

rT [k] =

 1 for |k| ≤ T
0 otherwise

k ∈ Z ,

with a width parameter T
::::::
T ∈ N0 that is gained by rounding τ/∆s to the nearest integer number

T =

⌊
τ

∆s
+

1

2

⌋
=

⌊√
3

n

σ

∆s
+

1

2

⌋
. (11)175

Then equation (10) translates in the discrete case to

h[k] = g ∗ rT [k] =

∞∑
i=−∞

g[k− i] · rT [i] ·∆s

=

T∑
i=−T

g[k− i] ·∆s =

k+T∑
i=k−T

g[i] ·∆s.,

The
:::::
where element h[k] corresponds to h(k ·∆s) and g[i] to g(i ·∆s). Equivalently to the continuous case, the value h[k]

results up to a factor ∆s from putting a window of length 2T + 1 centrally over the sequence element g[k] and summing up all180

elements covered by it.

Assuming that we already computed h[k− 1], it is immediately clear that the following value h[k] results from moving the

window by one position to the right and thus can be obtained very easily from h[k−1] by adding the newly enclosed sequence

element g[k+T], but subtracting element g[k−T − 1] that falls outside the window.

As in the case of algorithm 1 before, the factor ∆s cancels in the final calculation of (9) and can therefore also be omitted185

here. Thus, algorithm 2 has 2T additions in step 1 and another 2(L− 1) additions in the loop of step 3. Assuming that T is

much smaller than L, an algorithmic complexity of O(L) results.

9

Algorithm 2 Convolution
::
of

:
a
::::::::
sequence

::::
g[k] with rectangular pulse of length 2T + 1

Input: sequence g[k] with k = 1, ...,L and length 2T + 1 of rectangular pulse.

Output: the convolution g ∗ rT .

1: Compute w =
∑T
i=−T g[1− i], where all elements g[k] which are not defined are set to 0.

2: Set h[1] = w ·∆s.

3: for k = 2 to L do

4: Update w += g[k+T]− g[k−T − 1], where all elements g[k] which are not defined are set to 0.

5: Set h[k] = w ·∆s.

6: end for

7: return sequence h[k] with k = 1, ...,L, which is the convolution g ∗ rT .

Algorithm 3 n-fold convolution
::
of

:
a
:::::
field

:::::::
F (0)[i, j]

:
with a

::::::::::::::
two-dimensional rectangular pulsein two dimensions

Input: W ×H input field F (0), the length of the rectangular pulse 2T + 1 and the number of convolutions n to be carried out.

Output: n-fold convolved W ×H field F (n), which is equal to F (0) ∗ (rT
x∗n · rT

y
∗n).

1: for k = 1 to n do

2: Rename the (k− 1)-fold convolved field F (k−1) to F .

3: for i= 1 to W do

4: Convolve i-th field row F [i, .] according to algorithm 2 with rectangular pulse rT and store result back in respective field row.

5: end for

6: for j = 1 to H do

7: Convolve j-th field column F [., j] according to algorithm 2 with rectangular pulse rT and store result back in respective field

column.

8: end for

9: Rename F , which is now the k-fold convolved field, to F (k).

10: end for

11: return F (n).

Now we are able to formulate algorithm 3 that computes convolutional expressions as found in the numerator and denomi-

nator of approximation 3.190

Note that due to the commutativity of
x∗ and

y
∗ the outer loop over index k can be moved inward within the loops over the

rows and the columns, respectively. With this alternate loop layout, the field is first traversed row-wise in a single pass, where

each row is in one sweep n-times convolved with rT . After, the field is traversed column-wise and each column is n-times

convolved. In such a way, more economic strategies with respect to memory access can be achieved and moreover, this loop

order is very well suited for parallel execution, such that algorithm 3 can be computed very efficiently. Since in practice n is195

chosen constant (proven values for n lie between 3 and 6), the algorithmic complexity is O(W ·H).

10

Algorithms 1 and 3 now allow us to state the final algorithm 4, which implements the approximative
::::::::::
approximate computa-

tion of Barnes interpolation (9).

Algorithm 4 Approximation of Barnes interpolation

Input: sample point coordinates xk = (xk,yk) and sample values fk for k = 1, ...,N , the number of iterations n and fall-off parameter σ.

Output: W ×H field F that approximates Barnes interpolation.

1: Set T =
⌊√

3
n
σ

∆s
+ 1

2

⌋
.

2: To obtain n-fold convolved numerator field P (n) do:

3: Determine initial numerator field P (0) by invoking algorithm

1 and injecting sample values {fk}Nk=1.

4: Compute P (n) by invoking algorithm 3 with field P (0) and

the rectangular pulse width 2T + 1.

5: To obtain n-fold convolved denominator field Q(n) do:

6: Determine initial denominator field Q(0) by invoking algo-

rithm 1 and injecting constant sample values {1}Nk=1.

7: Compute Q(n) by invoking algorithm 3 with field Q(0) and

the rectangular pulse width 2T + 1.

8: Compute field F by dividing P (n) and Q(n) element-wise, i.e. by setting F [i, j] = P (n)[i, j]/Q(n)[i, j].

9: return F .

If the denominator Q(n)[i, j] in step 4
:
8
:
is 0, which is the case if the grid point (i, j)

:::
[i, j]

:
has at least in one dimension a200

greater distance than 2nT from the nearest sample point, the corresponding field value F [i, j] is undefined and set to NaN .

Since algorithm 1 and 3 are invoked twice and step 8 employs another W ·H divisions, the overall algorithmic complexity

of the presented approach is limited toO(N +W ·H), which is a drastic improvement compared to the costs ofO(N ·W ·H)

of the naive implementation.

5 Results and Further Considerations205

5.1 Test Setup

The described algorithm – in the further discourse denoted with "convolution" – was tested in an experimental setup that con-

tained in total 3490 QFF values (air pressure reduced to mean sea level) obtained from measurements at meteorological stations

distributed over Europe and dating from the 27 July 2020 at 12:00 UTC. More specifically, we considered the geographic area

D = [−26◦E,49◦E]× [34.5◦N , 72◦N]⊂ R2 equipped with the Euclidean distance function defined on D×D, i.e. we mea-210

sured distances in a first examination directly in the plate carrée projection neglecting the curved shape of the earth. The values

of the QFF data range from 992.1 hPa to 1023.2 hPa.

11

Figure 3. Image (a) shows exact Barnes interpolation with naive algorithm for 3490 sample points depicted in red, a 2400× 1200 grid with

a resolution 32 grid points/◦ and σ = 1.0◦.

Image (b) shows approximate Barnes interpolation with convolution algorithm for the same settings as for the naive algorithm above. The

applied 4-fold convolution uses a rectangle mask of size 57. Areas where denominator of (9) drops below a value of 0.001 or is even 0 are

rendered with a darker shade.

The convolution interpolation algorithm is subsequently compared with the results of two alternate algorithms. The first of

them – referred as "naive" – is given by the naive implementation as stated in the introduction. The second one – denoted

with "radius" – consists of the improved naive algorithm that considers in its innermost loop only those observation points215

whose Gaussian weights w exceed 0.001 and thus are located within a radius of 3.717σ around the interpolation point. For

this purpose, the implementation performs a so-called radius search on a k-d-tree, which contains all observation points. Such

a radius search can be achieved with a worst case complexity of O(
√
N).

All algorithms were implemented in Python using the Numba just-in-time compiler (Lam et al., 2015) in order to reduce the

unsteadiness of purely interpreted Python code. The tests were conducted on a computer with a customary 2.6 GHz Intel i7-220

6600U processor with two cores, which is in fact only of minor importance since the tested code was written in single-threaded

manner. All time measurements were performed ten times and the best value among them was set as the final execution time

of the respective algorithm.

12

5.2 Visual Results

In general, Barnes’ method yields a remarkable good interpolation and results in an aesthetic illustration for regions where225

the distance between the sample points has the same order of magnitude as the used Gaussian width parameter σ. However, if

the distance between adjacent sample points is large compared to σ, this method exhibits some shortcomings because then the

interpolation converges towards a step function with steep transitions. This effect can be clearly identified, for example, in the

generation of plateaus of almost constant value over the Atlantic ocean in Fig. 3a. In the limit case, if σ→ 0, the interpolation

produces a Voronoi tessellation with cells of constant value around a sample point that are bordered by discontinuities towards230

the neighbouring cells.

The comparison of the isoline visualizations in Figs. 3a and 3b shows in the well-defined areas an excellent agreement

between the two approaches. The result for the radius algorithm is similarly consistent with the other two and is therefore not

depicted.

Note that the shaded, i.e. the undefined areas of Fig. 3b correspond to those areas, where Barnes interpolation produces the235

plateau effect. In this sense one can state that the convolution algorithm filters out the problematic areas in an inherent way.

5.3 Time Measurements

For a grid of constant size, the measured execution times in Table 1 show for the naive and the radius algorithm a linear depen-

dence to the number N of considered sample points, while they are almost constant for the presented convolution algorithm.

The costs of the injection step are obviously more or less inexistent compared to the costs of the subsequent steps of the algo-240

rithm. This fact is in entire agreement to the deduced complexity O(N +W ·H), since in our test setup the grid size W ×H
clearly dominates over N .

Number of Algorithm

Sample Points Naive Radius Convol.

54 6.198 0.961 0.247

218 21.558 1.776 0.248

872 78.407 4.097 0.245

3490 280.764 11.840 0.247

Table 1. Execution times (in s) of the investigated algorithms for varying numbers of sample points. The grid size of 2400× 1200 points

with a resolution of 32 points/◦ and the Gaussian width σ = 1.0◦ are kept constant. The convolution algorithm applied a 4-fold convolution.

Note also that the speed-up factor between the naive and the convolution algorithm ranges for the considered number of

sample points roughly between 25 and 1000.

245

13

Figure 4. Plot of execution times from Table 1 against number of sample points. Both axis use a logarithmic scale.

If the grid size is varied, all considered algorithms reveal a linear-like dependence to the number of points in the grid as

can be seen in Table 2 and Fig. 5. For smaller grid sizes the convolution algorithm provides a speed-up factor of around 2000

compared to the naive implementation, but for bigger grids the factor drops below 1000.

This effect can be explained by the fact that the crucial parts of the convolution algorithm access memory for smaller grids

with a high spatial and temporal locality and thus making optimal use of the highly efficient CPU cache memory (Patterson250

and Hennessy, 2014). For bigger grids the number of cache misses increases, which result in a slightly degraded performance.

Grid Size Resol. Algorithm

Naive Radius Convol.

300× 150 4 pt/◦ 4.415 0.203 0.002

600× 300 8 pt/◦ 17.626 0.782 0.011

1200× 600 16 pt/◦ 70.871 3.031 0.047

2400× 1200 32 pt/◦ 283.735 11.881 0.247

4800× 2400 64 pt/◦ 1134.265 47.044 1.261

Table 2. Execution times (in s) of the investigated algorithms for varying grid sizes and resolutions, respectively. The number of sample

points N = 3490 and the Gaussian width σ = 1.0◦ are kept constant. The convolution algorithm applied a 4-fold convolution.

As to be expected, the Gaussian width parameter σ has no decisive impact on the execution times measured for the naive and

the convolution algorithm (refer to Table 3 and Fig. 6). The radius algorithm, on the other hand, shows a quadratic dependence,

since the relevant area around a grid point – and thus also the average number of sample points to be considered – grows255

quadratically with the radius of influence, which in turn depends linearly on σ.

The unstable time measurements for the naive algorithm are caused by a peculiar execution time behavior of the exponential

function. Although for distances d > 38.6σ, the value of (2) is less than the smallest representable float and therefore results

14

Figure 5. Plot of execution times from Table 2 against number of grid points. Both axis use a logarithmic scale.

in 0, its computational cost increases in Python to a multiple of the time needed for shorter distances. With growing σ, this

computation overhead is less and less noticeable in the test series.260

Gaussian Width σ Algorithm

Naive Radius Convol.

0.25◦ 652.025 2.376 0.247

0.5◦ 560.094 4.579 0.246

1.0◦ 280.477 11.864 0.245

2.0◦ 126.241 37.244 0.244

4.0◦ 125.848 122.956 0.245

Table 3. Execution times (in s) of the investigated algorithms for varying Gaussian width parameters σ. The number of sample points

N = 3490 and the grid size of 2400× 1200 points with a resolution of 32 points/◦ are kept constant. The convolution algorithm applied a

4-fold convolution.

Figure 6. Plot of execution times from Table 3 against Gaussian width parameter. Both axis use a logarithmic scale.

15

5.4 Algorithm Fine Tuning

In the discretization step, we round the window width parameter T
::::::
T ∈ N0 to the nearest integer, i.e. we set

T =

⌊√
3

n

σ

∆s
+

1

2

⌋
(11 recap)

and then repeatedly convolve the input fields with a rectangular pulse signal rT [k] that has a length 2T + 1. In the extreme,

if n exceeds 12σ2/∆s2 and hence T = 0, the underlying pulse signal degrades to r0[k], which is identical to the discrete unit265

pulse, the neutral element with respect to convolution. Under these circumstances, the algorithm stops to render a meaningful

interpolation. Since normally σ >∆s, the respective bound for n can go into the hundreds, which is why the described extreme

case is typically not encountered for real applications.

Nevertheless, a general consequence of the rounding operation is that the effectively obtained Gaussian width σeff for our

algorithm only approximates the desired width σ. Let for the following considerations uT [k] be the uniform probability distri-270

bution that corresponds to rT [k], i.e.

uT [k] =
1

2T + 1
rT [k].

By algorithmic design, σ 2
eff is the variance of uT [k], which is n-times convolved with itself and which is employed on a grid

with point spacing ∆s. Therefore is

σ 2
eff = nVar(uT) = n

T∑
k=−T

1

2T + 1
(k∆s)2275

=
2n∆s2

2T + 1

T∑
k=1

k2 =
n

3
T (T + 1)∆s2. (12)

For T ≥ 1, the integer number T can be fixed by (11) to the unit interval√
3

n

σ

∆s
− 1

2
< T ≤

√
3

n

σ

∆s
+

1

2
,

which in turn allows, when substituted into (12), to derive sharp bounds for σeff

σ2− n

12
∆s2 < σ 2

eff ≤ σ2 + 2

√
n

3
σ∆s+

n

4
∆s2.280

The last relation reveals that the range of possible values for σeff grows with increasing n until σeff collapses to 0 when

n > 12σ2/∆s2, as we have seen further above.

Summarized can be stated that two diametrically opposed effects determine the result quality of the presented algorithm.

From the perspective of the central limit theorem, the approximation performance is better for large n, while on the other hand

σeff tends to be closer to the target σ for small n.285

16

If full accuracy is required for the Gaussian width and the grid spacing ∆s is not strictly given in advance, one can tune

the spacing such that the resulting width σeff corresponds exactly to the desired σ. For T ≥ 1, equation (12) allows then to

determine the necessary grid step as

∆s=

√
3

nT (T + 1)
σ.290

If however the grid is fixed a priori and cannot be modified, the only option to attain the requested σ exactly is to refrain from

using a stringent rectangular pulse and to employ a slightly more complicated signal
::::::::::::::::::
(Gwosdek et al., 2011). For this purpose,

we set this time

T =

⌊
1

2

(√
1 +

12

n

σ2

∆s2
− 1

)⌋
,

which is gained from taking the positive solution of the quadratic equation (12) for T . Now we have nVar(uT)≤ σ2 <295

nVar(uT+1) and we define the linearly blended signal

rT,α[k] = (1−α)rT [k] +αrT+1[k]

=

1 for |k| ≤ T
α for |k|= T + 1

0 otherwise

k ∈ Z , (13)

for 0≤ α < 1. This modified signal rT,α[k] is basically the pure rectangular signal rT [k] of unit elements with a trailing

element α appended at both ends. Due to the continuity of the variance, there must be a specific α̃ for which nVar(uT,α̃) = σ2,300

whereas uT,α[k] = 1
2(T+α)+1 rT,α[k] designates the probability distribution of rT,α[k]. With

Var(uT,α) =
1

2(T +α) + 1

T+1∑
k=−T−1

rT,α[k] (k∆s)2

=
∆s2

2(T +α) + 1

(
2α(T + 1)2 + 2

T∑
k=1

k2

)

=
∆s2

2(T +α) + 1

(
2α(T + 1)2 +

1

3
T (T + 1)(2T + 1)

)
we conclude that the wanted α̃ is given by305

α̃=
(2T + 1)

(
σ2− 1

3T (T + 1)n∆s2
)

2
(
(T + 1)2n∆s2−σ2

) . (14)

Remember
:::
The

:::::::::
respective

:::::::::
expression

::
for

::̃
α
::::::
derived

::
in
::::::::::::::::::::
(Gwosdek et al., 2011)

:::::::::
corresponds

::
to

::
a

::::::
special

:::
case

::
of
::::
(14)

:::::
when

::::::
setting

:::::::
∆s= 1.

:::::::::
Remember

::::
now

:
that the central limit theorem is valid for any PDF, which means that the mathematical framework pre-

sented in the previous chapters is also valid for the modified signal rT,α̃[k]. Therefore we receive an optimized approximative310

17

Convolution with rT [k] Convolution with rT,α̃[k]

n T σeff RMSE texec T α̃ RMSE texec

1 55 1.0013 0.3557 0.161 54 0.9260 0.3551 0.175

2 39 1.0078 0.1334 0.188 38 0.6868 0.1327 0.216

3 32 1.0155 0.0628 0.216 31 0.4922 0.0606 0.257

4 28 1.0282 0.0492 0.243 27 0.2083 0.0367 0.298

5 25 1.0286 0.0431 0.270 24 0.2799 0.0266 0.337

6 23 1.0383 0.0496 0.297 22 0.1256 0.0213 0.378

7 21 1.0260 0.0356 0.324 20 0.4372 0.0178 0.419

8 20 1.0458 0.0549 0.351 19 0.0956 0.0154 0.459

9 18 1.0010 0.0137 0.378 17 0.9804 0.0136 0.500

10 18 1.0551 0.0639 0.405 17 0.0316 0.0121 0.539

20 12 1.0078 0.0111 0.676 11 0.8922 0.0059 0.943

50 8 1.0825 0.0916 1.488 7 0.3125 0.0024 2.159

Table 4. Key numbers of the original and the optimized convolution algorithm in dependency of the number of performed convolutions

n, where N = 3490, grid size 2400× 1200, resolution 32 points/◦ and σ = 1.0◦. The root mean square error RMSE is computed for the

sub-area displayed in Fig. 9 and with respect to the exact results of the naive algorithm. The execution times texec are measured in seconds.

::::::::::
approximate Barnes interpolation by marginally adapting algorithm 2 to compute the convolution with rT,α̃[k] instead of rT [k].

To do so, steps 2. and 5. of it have to be rewritten to h[k] = (w+ α̃ ·(g[k+T +1]+g[k−T −1])) ·∆s. Although the optimized

approach requires 2L additions and L multiplications more than the original one, the adapted algorithm 2 remains in the com-

plexity class O(L). Measurements (refer to Table 4 and Fig. 7) show that the optimized interpolation in fact needs only about

10% to 30% more time for the depicted range of convolution rounds than the original one.315

Figure 7. Plot of execution times from Table 4 against number of performed convolutions for both, the original and the optimized convolution

algorithm.

18

The unstable behavior of the original convolution algorithm with respect to the number of performed convolutions can be

best observed in the RMSE plot of Fig. 8, where the baseline is given by the exact interpolation of the naive algorithm. This

finds also its visual correspondence in the upper row of the maps shown in Fig. 9a, more precisely e.g. in the fluctuating

diameter of the small high pressure area west of the Balearic Islands.

Figure 8. Root mean square error with respect to the exact Barnes interpolation in dependency of the number of performed convolutions for

both, the original and the optimized convolution algorithm.

In contrast to that, the optimal convolution algorithm shows a stable convergence towards the exact interpolation obtained320

by the naive algorithm, which manifests in strictly monotonic decreasing RMSE values. Moreover, these
:::::
These results suggest

that 3 or 4 performed convolution rounds achieve already a very good approximation of Barnes interpolation .
::::
when

:::::
used

::
to

:::::::
visualize

:::::
data,

::
as

::::
done

:::
in

:::
this

::::::
paper.

:::
For

:::::
other

::::::::::
applications,

::::::
which

::::::
require

::
a
::::::
higher

::::::::
precision,

::
a

::::::
10-fold

::::::::::
convolution

::
or

:::::
even

::::
more

:::::
might

:::::
make

:::::
sense.

:

Figure 9. Results for different number of performed convolutions n. Upper row (a) with results for original convolution algorithm and lower

row (b) with results for optimized convolution algorithm.

5.5 Application on Sphere Geometry325

So far we applied the convolution algorithm on sample points contained in the plane R2 and using the Euclidean distance

measure. For geospatial applications this simplification is acceptable as long as the considered area is sufficiently small enough.

19

If we deal with data, which is distributed over a larger region – as it is actually the case in our test setup – it becomes necessary

to take the curvature of the earth into account.

The adaptation of the naive Barnes interpolation algorithm to the spherical geometry on S2 consists merely in the exchange330

of the Euclidean distance with the spherical distance. Since the calculation of the spherical distance between two points in-

volves several trigonometric function calls, the price of such a switchover is accordingly high and consequently exact Barnes

interpolation for a spherical geometry is in our tests roughly a factor of 2.5 times slower as that with the Euclidean approach.

In other words, an already effortful algorithm becomes even more effortful.

335

Figure 10. Exact Barnes interpolation with naive algorithm for the same setup as for Fig. 3 but using spherical distances from S2 instead of

Euclidean distances from R2. The generated isolines are notably different in the northern part, while they are quite similar in the south.

However, the distance calculation does not occur explicitly in the convolution algorithm, since the latter by virtue of the

central limit theorem is inherently tied to the Euclidean distance measure. Therefore, the convolution algorithm has to be

transferred to the spherical geometry with a different method.

The chosen approach is to first map the sample points to a map projection, which distorts the region of interest as minimal

as possible and then to apply the convolution algorithm directly in that map space. The resulting field is finally mapped back340

to original map projection and provides there an approximation of Barnes interpolation with respect to the spherical geometry

of S2.

Projection types that are considered suitable for this purpose are conformal map projections. Conformal maps preserve

angles and shapes locally, while distances and areas underlie a certain distortion. Often used conformal maps are (Snyder,

1987)345

• Mercator projection for regions of interest that stretch in east-west direction around the equator,

• transverse Mercator projection for regions with north-south orientation,

• Lambert conformal conic projection for regions in the mid-latitudes that stretch in east-west direction or

• polar stereographic projection for polar regions.

20

In order to replicate Fig. 10 with our fast optimized convolution algorithm, we therefore use for our test setup with sample350

points in the mid-latitudes a Lambert conformal conic map projection. We choose the two standard parallels that define the

exact projection at latitudes of 42.5◦N and 65.5◦N , such that our region of interest is evenly captured by them. By nature of

Lambert conformal conic maps, the chosen map scale is exactly adopted along these two latitudes, while it is too small between

them and too large beyond them. Similarly, for a grid with a formal resolution of 32 grid points/◦ that is embedded into this

map, the specified resolution applies only exactly along the standard parallels, while the effective resolution between them is355

smaller and beyond them larger.

Figure 11. The effective scale of a Lambert conformal conic map in dependency of the latitude, if the scale at 42.5◦N and 65.5◦N is set to

1.0. The minimum scale of 0.98 is reached at a latitude of 54.5◦N .

We now employ the optimized convolution algorithm with a nominal Gaussian width parameter σ = 1.0◦ on the Lambert

conformal conic map grid postulated above, in which we injected the given sample points beforehand. The resulting field

shown in Fig. 12 thereby experiences a twofold approximation, the first one caused by the distortion of the map and the second

one due to the approximation property of the convolution algorithm.360

Figure 12. Optimized Barnes interpolation algorithm applied on Lambert conformal map on a 2048× 1408 grid with a resolution 32 grid

points/◦ along the standard parallels at 42.5◦N and 65.5◦N , σ = 1.0◦ and a 4-fold convolution.

21

Target Map Resol. S2 Algorithm Split Times Lambert Map

Grid Size Naive Convol. Actual Back Grid Size

Convol. Proj.

300× 150 4 pt/◦ 10.792 0.005 0.004 0.001 256× 176

600× 300 8 pt/◦ 42.987 0.020 0.016 0.004 512× 352

1200× 600 16 pt/◦ 174.081 0.089 0.070 0.019 1024× 704

2400× 1200 32 pt/◦ 700.089 0.408 0.326 0.082 2048× 1408

4800× 2400 64 pt/◦ 2802.574 1.828 1.493 0.335 4096× 2816

Table 5. Execution times (in s) for the naive and the optimized convolution algorithms using spherical distances on S2 for varying grid

sizes. The number of sample points N = 3490 and the Gaussian width σ = 1.0◦ are kept constant. The convolution algorithm applied a

4-fold convolution and was executed on a Lambert map grid of the indicated size. The two split time columns show the separated execution

times for the actual convolution and the subsequent back projection to the plate carrée map. For the investigated scenarios, the optimized

convolution algorithm is more than 1000 times faster than the naive one.

In a last step, the result field is mapped back to the target map, which uses in our case a plate carrée projection. In order to

do this, the location of a target field element is looked up in the Lambert map source field and subsequently its element value

is determined by bilinear interpolation of the four neighbouring source field element values. This last operation performs an

averaging and thus adds a further small error to the final result shown in Fig. 13. Similar to the case for the Euclidean distance,

the comparison with the exact Barnes interpolation on S2 in Fig. 10 yields a very good correspondence. This perception is also365

supported by measurement of the RMSE, which adds up for the same sub-area as investigated in Table 4 to 0.0467, which is

negligible larger than the corresponding 0.0367 measured for the Euclidean case.

Figure 13. Resulting field from Fig. 12 projected back to a plate carrée map.

22

5.6 Round-off Error Issues

Computing the convolution of a rectangular pulse in floating point arithmetic using the moving window technique as described

in algorithm 2 of chapter 4 is extremely efficient, but is also prone to imprecisions since round-off errors are steadily accu-370

mulated during the progress. Different approaches are known to reduce this error. The Kahan summation algorithm (Kahan,

1965), for instance, implements an intelligent error compensation scheme, at the expense of requiring essentially more basic

operations than used for ordinary addition.

Another, in the context of Barnes interpolation very effective error reduction technique, is to center the numbers to be added

around 0.0, where the mesh density of representable floating point numbers is highest. For this purpose, an offset375

f̄ =
1

2

(
min

1≤k≤N
fk + max

1≤k≤N
fk

)
is initially subtracted from the sample values fk, such that their range is exactly located around 0.0. The presented convolution

algorithm is then applied to the shifted sample values. In a final step, the elements of the resulting field F [i, j] are shifted back

to the original range by adding f̄ to each of them. This modification needs basically N +W ·H extra additions, such that the

computational complexity of the convolution algorithm is not harmed and stays unchanged.380

Figure 14. Constellation of QFF values over Iceland with generated isolines for σ = 0.75. Note the 980.0 hPa observation value in the

northeast of Iceland, which triggers the creation of the faulty isoline for the same value. By increasing the quantization degree of the

resulting field values, the visual appearance is gradually improved.

Minimal numerical round-off errors can generate surprisingly prominent artefacts when areas of constant or near-constant

data are rendered with an isoline visualization. In such cases, the value obtained by the convolution algorithm fluctuates

seemingly randomly around the true constant value, and if it happens that one of the rendered isolines represents exactly this

value, the visualized result may appear like a fractal curve as shown in Fig. 14. A counter measure against this effect is to apply

a quantization scheme to the resulting values, which basically suppresses a suitable number of least significant bits and rounds385

23

the value to the nearest eligible floating point number. After this operation the obtained values in areas of constant data are

actually constant and thus result in a more pleasant isoline visualization. In areas with varying data values, the quantization of

the result data has no harmful impact.

6 Conclusions

We presented a new technique for computing very good approximations of Barnes interpolation, which promise speed-up390

factors for realistic scenarios that can reach into the hundreds or even into the thousands when applied on a spherical geometry.

The underlying convolutional algorithm exhibits a computational complexity ofO(N+W ·H), in which the number of sample

points N is decoupled from the grid size W ×H .

The usage of the algorithm is not restricted to R2 or S2 and it can be easily extended to higher dimensional spaces Rn. The

algorithm allows to incorporate quality measures that assign each sample point xk a weight of certainty ck, which specifies395

how much this point shall contribute to the overall result. To achieve this, the terms in the two sums in (1) are simply multiplied

by the additional factor ck, and likewise the same factors then also appear in approximation 3.

Barnes interpolation is often used in the context of successive correction methods (Cressman, 1959; Bratseth, 1986) with or

without a first guess from a background field. In this technique, the interpolation is not performed just once, but applied several

times with decreasing Gaussian width parameters to the residual errors in order to minimize them successively. Needless to400

say, that instead of exact Barnes interpolation, the convolutional algorithm can equally be used for the method of successive

correction.

Since the presented solution for spherical geometries is only suitable for the treatment of local maps, we plan in a next step

to generalize the approach to global maps. This could for instance be done by smoothly merging local Barnes interpolation

approximation patches into a global approximation.405

Furthermore, we also want to provide a statement about the quality of the calculated approximation depending on the number

of performed convolutions by deriving a theoretical upper bound for the maximum possible error.
:
It

:::
will

::::
also

:::
be

::
of

:::::::
interest,

::
in

:
a
::::::
similar

::::
way

::
to

::::::::::::::
(Getreuer, 2013),

::
to

::::::::
consider

::::
other

:::::::::::
distributions

::
for

:::
the

:::::::::::::
approximation

:::
and

:::::::::
investigate

::::
their

::::::::
behavior

::
in

:::::
terms

::
of

::::::::::::
computational

:::::
speed

:::
and

::::::::
accuracy.

Code and data availability. The formal algorithms introduced in this paper are provided as Python implementation on GitHub410

https://github.com/MeteoSwiss/fast-barnes-py under the terms of the BSD 3-clause license and are archived on Zenodo

https://doi.org/10.5281/zenodo.6792664. There are also the sample dataset and the scripts included, which allow to reproduce the figures

and tables presented earlier.

24

Appendix A

A1
::::::
n-fold

:::::::::::::::
Self-Convolution415

:::
For

::
an

:::::::::
integrable

:::::::
function

::
f(x) ∈ L1(R) = {f : R→ R |

∫∞
−∞ | f(t) | dt <∞},

:::
the

:::::
n-fold

::::::::::
convolution

:::::
with

::::
itself

:::::::
f∗n(x)

::
is

:::::::::
recursively

::::::
defined

:::
by

f∗(n+1)(x) = f ∗ f∗n(x)
::::::::::::::::::::

=

∞∫
−∞

f(t) · f∗n(x− t) dt for n= 1,2, · · ·

::::::::::::::::::::::::::::::::::::::

(A1)

::::
with

:::::::::::::
f∗1(x) = f(x).

:::
The

:::::::::
equivalent

:::::
closed

:::::
form

::::::::::::
representation420

f∗(n+1)(x)
:::::::::

=

∞∫
−∞

· · ·
∞∫
−∞

f(t1) · · ·f(tn)f(x− t1− ·· ·− tn) dt1 · · ·dtn

::

:
is
::
in

:::::
most

::::
cases

::::
only

:::
of

:::::
formal

:::::::
interest,

:::::
since

::
in

:::::::
practice

::
the

::::::::
effective

:::::::::
calculation

::
of

:::
the

:::::::
multiple

:::::::
integral

:::
will

::::
lead

:::::
again

:::
via

:::
the

:::::::
recursive

::::::::
definition

:::::
(A1).

:

:::::::::::
Analogously,

::
in

::
the

::::
case

::
of

::
an

:::::::::
integrable

:::::::
function

::
of

:::
two

::::::::
variables

:::
f(x,y) ∈ L1(R2) = {f : R2→ R |

∫∞
−∞
∫∞
−∞ | f(s, t) | ds dt <∞},425

::
the

::::::
n-fold

::::::::::
convolution

::::
with

:::::
itself

::::::::
f∗n(x,y)

:
is
::::::::::
recursively

:::::
given

::
by

:

f∗(n+1)(x,y) = f ∗ f∗n(x,y)
:::::::::::::::::::::::

=

∞∫
−∞

∞∫
−∞

f(s, t) · f∗n(x− s,y− t) ds dt

::::::::::::::::::::::::::::::::::::

(A2)

::
for

::::::::::
n= 1,2, · · ·

::::
and

::::
with

::::::::::::::::
f∗1(x,y) = f(x,y).

:

A2
:::::::::
Separable

::::::::::
Functions430

:
A
::::::::
function

::
of

:::
two

::::::::
variables

::::::::::::::
g(x,y) ∈ L1(R2)

::
is
::::::
called

::::::::
separable,

::
if

::::
there

:::::
exist

:::
two

::::::::
functions

::
of

::::
one

:::::::
variable

:::::
g1(x)

:::
and

::::::
g2(y),

::::
both

::
in

::::::
L1(R),

::::
such

::::
that

::
the

:::::::::
following

:::::::
equality

::::
holds

:

g(x,y) = g1(x) · g2(y).
::::::::::::::::::

(A3)

:::
The

::::::::::
convolution

:::
of

::::::
f(x,y)

::::
with

::
a

::::::::
separable

:::::::
function

::::
can

::
be

:::::::::::
decomposed

::::
into

:::
two

::::::::::::
unidirectional

:::::::::::
convolutions

::::
that

:::
act

::::
only

::::
along

::::
one

::
of

:::
the

:::::::::
coordinate

:::::
axis.

::
In

:::::
order

::
to

:::::
make

:::
this

:::::
clear,

:::
we

::::::
define

:::
two

:::::::::::::
left-associative

::::::::
operators

:

x∗
::::

and
::

y
∗

:::
that

::::
map

:::::
from435

25

:::::::::::::::::::::::
L1(R2)×L1(R)→ L1(R2)

::
by

::::::
setting

:

f
x∗ g1 (x,y) =

∞∫
−∞

f(s,y) · g1(x− s) ds,

::::::::::::::::::::::::::::::::

(A4)

f
y
∗ g2 (x,y) =

∞∫
−∞

f(x,t) · g2(y− t) dt,

:::::::::::::::::::::::::::::::

(A5)

:::::
where

:

x∗
:::::::::
convolves

:::::
along

:::
the

:::::
x-axis

::::
and

:

y
∗
:::::
along

:::
the

::::::
y-axis.

::::
With

:::::
these

:::::::::
definitions

:::
we

::::
then

:::
find

:

f ∗ g (x,y) =

∞∫
−∞

∞∫
−∞

f(s, t) · g(x− s,y− t) ds dt

:::::::::::::::::::::::::::::::::::::::

440

=

∞∫
−∞

 ∞∫
−∞

f(s, t) · g1(x− s) ds

g2(y− t) dt

:::

=

∞∫
−∞

(
f

x∗ g1(x,t)
)
· g2(y− t) dt= f

x∗ g1
y
∗ g2 (x,y).

::

::::
From

:::
the

::::
fact

:::
that

:::
we

:::
can

:::::::
change

::
the

:::::
order

::
of

::::::::::
integration,

:::
we

::::
infer

::::::
finally

f ∗ g (x,y) = f ∗
(
g1(x) · g2(y)

)
::::::::::::::::::::::::::

= f
x∗ g1

y
∗ g2 (x,y) = f

y
∗ g2

x∗ g1 (x,y).
:::::::::::::::::::::::::::::::::::

(A6)445

::::::
Hence,

:::
the

:::
two

::::::::
operands

::
g1::::

and
::
g2:::::::::

commute,
:::
but

::::
note

::::
here

::::
that

:::
the

:::::::::::
unidirectional

:::::::::
operators

::
to

::::
their

:::
left

:::::
have

::
to

::
be

::::::::
swapped

::::
with

::::
them

::
as

:::::
well.

:::
The

::::::
n-fold

::::::::::
convolution

::::
with

:
a
::::::::
separable

:::::::
function

:::::::::::
decomposes

::::
thus

:::
into

:

f ∗ g∗n (x,y) = f ∗
(
g1(x) · g2(y)

)∗n
::::::::::::::::::::::::::::::

= f
x∗ g1

y
∗ g2 · · ·

x∗ g1
y
∗ g2 (x,y).

::::::::::::::::::::::::::::::

:::
Due

::
to
:::

the
::::::::::::

commutation
:::
law

:::::
(A6),

:::
we

:::
can

::::::::
basically

::::
write

:::
the

::::::::
operands

:::
on

:::
the

::::
r.h.s.

:::
of

:
f
::
in
::::
any

:::::
order,

:::
but

:::
we

:::::
prefer

::
to
::::::

group450

::::
them

:::
as

:

f ∗ g∗n (x,y) = f
x∗ g1 · · ·

x∗ g1
y
∗ g2 · · ·

y
∗ g2 (x,y)

::

= f
x∗

::::::::
g1
:

x∗n y
∗

:::
g2
:

y
∗n (x,y).
:::::::

(A7)

26

:::::::
Because

:::
the

:::
last

:::::::
formula

:::::
looks

::
a
:::
bit

:::::::::::
cumbersome,

:::
we

:::::
again

::::
use

::::
(A6)

::
to
::::

join
:::
the

::::
two

::::::
n-fold

:::::::::::::
self-convoluted

::::::::
operands

::
to

::
a

::::::::
separable

:::::::
function,

::::::
which

::::
then

::::
reads

::
as

:
455

f ∗ g∗n (x,y) = f ∗
(

:::::::::::::::::

g1
:

x∗n(x)·
:::::

g2
:

y
∗n(y)

)
.

::::::

(A8)

:::::::::
Throughout

::::
the

:::::
paper

:::
we

:::
use

:::
the

:::::::
concise

::::::::::::
representation

::
of

:::::
(A8),

:::
but

::::
keep

:::
in

::::
mind

::::
that

::
it

::
is

:::::::::
equivalent

::
to

:::::
(A7),

:::::
where

:::::
each

:::::::::
convolution

:::::::
operand

::
is
:::::::::
expressed

:::::::::
separately,

:::
and

::::
thus

:::::::
indicates

::::::
clearly

::::
how

::::
this

:::::::::
expression

:
is
:::
to

::
be

:::::::::
calculated.

:

A3
:::::::::::
Generalized

::::::::::::
Approximate

::::::
Barnes

::::::::::::
Interpolation

:::
For

:::
the

::::::::
derivation

::
of

::::::::::::
approximation

::
3,

:::
we

::::
used

:
a
::::::::
separable

::::::::::::::
two-dimensional

::::
PDF

::::
that

:::::::
consists

::
of

:::
two

:::::::
uniform

::::::::::::::
one-dimensional460

::::::::::
distributions.

:::::
This

:::::
result

:::
can

:::
be

:::::::::
broadened,

::
if

:::::
more

::::::
general

::::::::
marginal

:::::::::::
distributions

:::
are

:::::::::
employed.

:::
Let

:::
for

::::
this

::::::
purpose

::::::
p1(x)

:::
and

:::::
p2(x)

:::
be

:::
two

::::::::::::::
one-dimensional

:::::
PDFs

::::
with

:::::
mean

::
0
::::
and

:::::::
variance

:::

σ2

n .
:::::
Now

:::
we

:::::
define

:::
the

::::::::
separable

::::::::::::::
two-dimensional

:::::
PDF

:::::::::::::::::::
p(x,y) = p1(x) · p2(y),

:::::
which

::::
has

:
a
:::::
mean

:::::
vector

::
0
::::
and

:
a
:::::::::
covariance

::::::
matrix

:::::

σ2

n I .
::::::::::::
Consequently,

:::
the

::::
PDF

::::::
p(x,y)

::::::::::
constructed

::
in

:::
this

::::
way

:::::::
satisfies

:::
the

::::::::::
assumptions

::
of

:::
the

:::::
limit

:::::::
theorem

:::
(6)

:::
and

::::
thus,

:::::
after

:::::::::
performing

:::
the

:::::
same

:::::::::
conversion

:::::
steps

::
as

:::::
taken

::
in

::::::
chapter

::
3,

::::::
follows

:::
the

::::::::::
generalized465

Approximation 4.
:::
For

:::::::::
sufficiently

:::::
large

::
n,

::::::
Barnes

:::::::::::
interpolation

::
on

:::
the

:::::::::
Euclidean

:::::
plane

:::
R2

:::
can

:::
be

:::::::::::
approximated

::
by

:

f(x,y) ≈

(∑N
k=1 fk · δxk

)
∗
(
p1

x∗n(x) · p2
y
∗n(y)

)
(∑N

k=1 δxk

)
∗
(
p1

x∗n(x) · p2
y
∗n(y)

) ,

::

(A9)

:::::::
provided

:::::
that

:::
the

:::::::
quotient

:
is
:::::::
defined.

:

::
In

:::::::
practice,

:::::
p1(x)

::::
and

:::::
p2(x)

::::
will

:::::
most

::::
often

:::
be

::::::
chosen

::
to

:::
be

::::::::
identical.

:::::
Using

:::
the

:::::::
normal

::::::::::
distribution

:::::::
ϕ0,σ(x)

::::
with

:::::
mean

::::
value

::
0

:::
and

:::::::
variance

::::
σ2,

::
i.e.

:
470

ϕ0,σ(x) =
1√
2πσ

e−
x2

2σ2 ,

::::::::::::::::::::

:
it
::
is

::::
clear

:::::
from

:::
(8)

:::
that

:::
we

:::
can

::::::::
formulate

::::::
Barnes

:::::::::::
interpolation

:::::
based

:::
on

:
a
:::::::::::
convolutional

:::::::::
expression

::::::
where

::::
even

:::::::
equality

:::::
holds.

:

Theorem 1.
:::
Let

:::::::
ϕ0,σ(x)

::
be

::::
the

::::::
normal

::::::::::
distribution

::::
with

:::::
mean

:::::
value

::
0
::::
and

:::::::
variance

::::
σ2.

:::
For

:::::::
Barnes

:::::::::::
interpolation

:::
on

:::
the

::::::::
Euclidean

:::::
plane

:::
R2,

::::
then

:::::
holds

:

f(x,y) =

(∑N
k=1 fk · δxk

)
∗
(
ϕ0,σ(x) ·ϕ0,σ(y)

)
(∑N

k=1 δxk

)
∗
(
ϕ0,σ(x) ·ϕ0,σ(y)

) .

:::

(A10)475

::::
Note

:::
that

::
in
:::
the

::::
case

::
of
:::
the

:::::::
normal

::::::::::
distribution,

:
it
::
is
::::::::
sufficient

::
to

:::::
apply

:::
the

::::::::::
convolution

:::
just

:::::
once.

:

Competing interests. The author declares that he has no conflict of interest.

27

Acknowledgements. All map backgrounds were made with Natural Earth, which provides free vector and raster map data at naturalearth-

data.com.

28

References480

Barnes, S. L.: A Technique for Maximizing Details in Numerical Weather Map Analysis, J. Appl. Meteorol., 3, 396 – 409, 1964.

Bentley, J. L.: Multidimensional Binary Search Trees Used for Associative Searching, Commun. ACM, 18, 509 – 517, 1975.

Bergthórsson, P. and Döös, B. R.: Numerical Weather Map Analysis, Tellus, 7, 329 – 340, 1955.

Bratseth, A. M.: Statistical interpolation by means of successive corrections, Tellus A: Dynamic Meteorology and Oceanography, 38, 439 –

447, 1986.485

Cressman, G. P.: An Operational Objective Analysis System, Mon. Weather Rev., 87, 367 – 374, 1959.

Daley, R.: Atmospheric Data Analysis, Cambridge University Press, Cambridge, 1991.

van Dijk, G.: Distribution Theory: Convolution, Fourier Transform, and Laplace Transform, De Gruyter Graduate Lectures, De Gruyter

Berlin, 2013.

Finkel, R. A. and Bentley, J. L.: Quad Trees, a Data Structure for Retrieval on Composite Keys, Acta Inform., 4, 1 – 9, 1974.490

:::::::
Getreuer,

::
P.:

::
A

:::::
Survey

::
of

:::::::
Gaussian

:::::::::
Convolution

::::::::::
Algorithms,

:::::
Image

::::::::
Processing

::
On

:::::
Line,

:
3,
::::
286

:
–
::::
310,

::::
2013.

:::::::
Gwosdek,

:::
P.,

::::::::
Grewenig,

:::
S.,

::::::
Bruhn,

:::
A.,

:::
and

::::::::
Weickert,

::
J.:

:::::::::
Theoretical

:::::::::
foundations

:::
of

:::::::
Gaussian

:::::::::
convolution

:::
by

:::::::
extended

::::
box

:::::::
filtering,

:::::::::
International

:::::::::
Conference

::
on

:::::
Scale

::::
Space

:::
and

:::::::::
Variational

::::::
Methods

::
in
::::::::
Computer

::::::
Vision,

:::
447

:
–
::::
458,

::::
2011.

:

Kahan, W.: Further remarks on reducing truncation errors, Commun. ACM, 8, 40, 1965.

Klenke, A.: Probability Theory: a Comprehensive Course, Third Edition, Universitext, Springer, 2020.495

Koch, S. E., desJardins, M., and Kocin, P. J.: An Interactive Barnes Objective Map Analysis Scheme for Use with Satellite and Conventional

Data, J. Clim. Appl. Meteorol., 22, 1487 – 1503, 1983.

Koppert, H. J., Pedersen, T. S., Zürcher, B., and Joe, P.: How to make an international meteorological workstation project successful, Twen-

tieth International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, 84th

AMS Annual Meeting, Seattle, WA, 11.1, 2004.500

Lam, S. K., Pitrou, A., and Seibert, S.: Numba: A LLVM-based Python JIT Compiler, LLVM ’15: Proceedings of the Second Workshop on

the LLVM Compiler Infrastructure in HPC, 1 – 6, 2015.

Muirhead, R. J.: Aspects of Multivariate Statistical Theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc.,

1982.

Patterson, D. A. and Hennessy, J. L.: Computer Organization and Design: the Hardware/Software Interface, 5th edition, Elsevier, 2014.505

Snyder, J. P.: Map Projections: A Working Manual, US Geological Survey Professional Paper 1395, US Government Printing Office, Wash-

ington, 1987.

:::::
Wells,

::
W.

:::
M.:

:::::::
Efficient

:::::::
Synthesis

::
of

:::::::
Gaussian

:::::
Filters

::
by

::::::::
Cascaded

::::::
Uniform

::::::
Filters,

::::
IEEE

::
T.

:::::
Pattern

:::::
Anal.,

::
8,

::
2,

:::
234

:
–
::::
239,

::::
1986.

:

29

