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Abstract. All current global climate models (GCMs) only utilize grid-averaged surface heat fluxes to drive the atmosphere, 15 

and thus, their subgrid horizontal variations and partitioning are absent. This can result in many simulation biases. To address 

this shortcoming, a novel parameterization scheme considering the subgrid variations of the sensible and latent heat fluxes to 

the atmosphere and the associated partitioning is developed and implemented into the National Center for Atmospheric 

Research (NCAR) Climate Earth System Model 1.2 (CESM1.2). The evaluations show that in addition to the improved boreal 

summer precipitation simulation over eastern China and the coastal areas of the Bay of Bengal, the longstanding 20 

overestimations of precipitation on the southern and eastern margins of the Tibetan Plateau (TP) in most GCMs are alleviated. 

The improved precipitation simulation on the southern margin of the TP is from suppressed large-scale precipitation, while 

that on the eastern edge of the TP is due to decreased convective precipitation. Moisture advection for precipitation production 

is blocked toward the southern edge of the TP, and the anticyclonic moisture transport anomaly over northern China extends 

westward, suppressing the development of local convection on the eastern edge of the TP. The altered large-scale circulation 25 

in the lower atmosphere due to anomalous heating/cooling in the planetary boundary layer is responsible for the change in 

moisture transport. The performance of other key variables (e.g., surface energy fluxes, clouds and 2 m temperature) is also 

evaluated among the default CESM1.2, the new scheme, and the scheme stochastically allocating the subgrid surface heat 

fluxes to the atmosphere (i.e., without subgrid partitioning included). This study highlights the importance of subgrid surface 

energy variations and partitioning to the atmosphere in the simulation of the hydrological and energy cycles in GCMs. 30 
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1 Introduction 

The importance of land surface heterogeneity has been proven through many observational and modeling studies (e.g., Taylor 

et al., 2007; Lothon et al., 2011; Rochetin et al., 2017; Wang et al., 2017). The variability of the surface heat fluxes caused by 

the heterogeneity of the surface properties is crucial to the turbulence in the planetary boundary layer (PBL), as well as the 

evolution of large-scale atmospheric circulation and clouds (Rieck et al., 2014; Lee et al., 2019). In most global climate models 35 

(GCMs), confined by the horizontal resolution (~100–200 km), the subgrid surface heat fluxes to the atmosphere are averaged 

out, thus degrading the simulation of convection and PBL processes. This is one of the causes of many precipitation simulation 

errors in GCMs, such as the bias of the rainfall intensity spectrum (e.g., Dai, 2006; O’Brien et al., 2016; Na et al., 2020; Wang 

et al., 2021a) and the unrealistic precipitation over the Indian summer monsoon region (e.g., Waliser et al., 2012; Wang et al., 

2018) and the eastern and southern parts of the steep Tibetan Plateau (TP) (e.g., Zhou et al., 2021).  40 

The land surface energy balance involves many biophysical and biogeochemical processes (Lee et al., 2011; Liu et al., 2014; 

Duveiller et al., 2018; Chakraborty and Lee, 2019; Liu et al., 2022), which are closely related to surface properties. For instance, 

forests dissipate sensible heat to the PBL more efficiently than open landscapes (Rotenberg and Yakir, 2010; Wei et al., 2021), 

and the increase in vegetation density has been found to favor the release of latent heat rather than sensible heat during the past 

three and a half decades (Forzieri et al., 2020). The different performance of the energy terms also suggests the potential 45 

importance of surface energy partitioning. However, the grid-scale surface heat fluxes to the atmosphere are rudimentarily 

treated by calculating the weighted averages within each grid cell in all GCMs. This simplified approach inevitably hampers 

our understanding of small-scale land-atmosphere feedback, which is among the critical processes in efforts to predict future 

climate change through GCMs (Miralles et al., 2019; Forzieri et al., 2020). 

To incorporate the subgrid horizontal variations in the surface heat fluxes to the atmosphere resulting from land cover 50 

heterogeneity, a recent study (Sun et al., 2021) proposed a parameterization using stochastic sampling and tested it in the 

National Center for Atmospheric Research (NCAR) Climate Earth System Model 1.2 (CESM1.2). It was found that this 

scheme improved the boreal summer precipitation simulation over eastern China. However, Sun et al. (2021) did not 

comprehensively assess the performance of other variables, and another important limitation is that the simulated summer 

precipitation on the southern and eastern margins of the TP, similar to most GCMs, is still overestimated compared to 55 

observations. The simulation of the TP, which plays an important role in controlling the Asian and global climate, is a 

longstanding challenge for all of the current GCMs (Mueller and Seneviratne, 2014; Ma et al., 2015). These difficulties arise 

from the heterogeneity of the underlying surface, the complex terrain, and the sparse observation data used for constraints 

(Zhou et al., 2019; Liu et al., 2021). All of these factors make it difficult for the existing parameterization schemes to accurately 

reproduce complex subgrid-scale processes, resulting in degradation of the simulation in the TP region. 60 

In the Sun et al. (2021) scheme, although the subgrid surface heat fluxes to the atmosphere are parameterized via stochastic 

sampling and internally multiple calls of the PBL and convection schemes, the underlying relationship between the subgrid 

heat fluxes is neglected. The conversion of the surface available energy into latent and sensible heat fluxes on a subgrid scale 
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exerts a strong control on global water and energy cycles (Pitman, 2003; Tang et al., 2014; Wang et al., 2021b) by regulating 

land-atmosphere feedback, especially in regions with complicated land surface features, such as the TP and its surrounding 65 

areas (Pielke et al., 2001; Findell et al., 2011; Forzieri et al., 2018, 2020). As the next logical step, in this study, the Sun et al. 

(2021) parameterization is updated by taking the partitioning between the subgrid sensible and latent heat fluxes into account. 

It is highly desirable to alleviate the precipitation simulation biases in the TP region through this modification. Given that only 

the simulated precipitation by the Sun et al. (2021) scheme was investigated, its performance on the simulations of other 

variables such as grid scale surface energy fluxes, clouds and 2 m temperature is evaluated thoroughly in this study along with 70 

that in the modified parameterization. 

The manuscript is organized as follows. Section 2 briefly describes the Sun et al. (2021) parameterization scheme and the 

modifications, CESM and experiments, and the observation and reanalysis datasets. The evaluations of the two schemes based 

on observations and reanalyses are presented in Sect. 3. The uncertainties are discussed in Sect. 4, while the conclusions are 

given in Sect. 5. 75 

2 Methodology 

2.1 CESM and Subgrid Heat Flux Scheme 

To compare with Sun et al. (2021), the GCM used in this study is the NCAR CESM1.2. The atmospheric component is the 

Community Atmosphere Model, version 5 (CAM5). The land model is the Community Land Model, version 4 (CLM4). The 

spatial land surface heterogeneity in the default CLM4 is represented as a nested subgrid hierarchy in which the grid cells are 80 

composed of multiple land units, snow/soil columns, and plant functional types (PFTs) (Oleson et al., 2010). All of the fluxes 

to and from the surface, including the heat fluxes, are defined at the PFT level. Since the subgrid heat fluxes exported to the 

CAM5 are weighted averages and their weights depend on the fractional coverage of each PFT within the grid cell, the subgrid 

variations in the land surface fluxes are missing during the land-atmosphere coupling process (Sun et al., 2021). 

To consider the influences of the heterogeneity of the subgrid heat fluxes to the atmosphere in CESM1.2, a parameterization 85 

scheme was developed and implemented in CLM4. This scheme established the truncated normal distributions of the subgrid 

sensible and latent heat fluxes independently within the grid cell at each time step. The probability density function (PDF) of 

subgrid sensible and latent heat flux in a given grid cell was calculated by  

𝑓(𝑥|�̅�, 𝜎, 𝐹𝑚𝑖𝑛 , 𝐹𝑚𝑎𝑥) =
1

𝜎
𝜙(

𝑥−�̅�

𝜎
)

Ψ(
𝐹𝑚𝑎𝑥−�̅�

𝜎
)−Ψ(

𝐹𝑚𝑖𝑛−�̅�

𝜎
)
, 𝑥 ∈ [𝐹𝑚𝑖𝑛 , 𝐹𝑚𝑎𝑥]                                                                                                          (1) 

where �̅� is the weighted average value of all subgrid heat fluxes, 𝜎 is the standard deviation, 𝐹𝑚𝑖𝑛 and 𝐹𝑚𝑎𝑥 are the minima 90 

and maxima of the subgrid heat fluxes respectively, and 𝜙 and Ψ are the PDF and the cumulative distribution function (CDF) 

of the standard normal distribution, respectively. N (i.e., the maximum number of PFTs coexisting in the grid cell) samples of 

sensible heat fluxes and N samples of latent heat fluxes were independently and randomly paired with each other to drive N 
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independent groups of the PBL and the deep convection parameterization schemes in CAM5. The outputs from these N calls 

of the schemes were then averaged with equal weights as the inputs of the other schemes.  95 

The stochastic sampling implicitly parameterized the uncertainties of the PBL and convection processes to a certain degree. 

As stated in Sun et al. (2021), using the sampled fluxes from a statistical distribution rather than the fluxes directly from 

individual PFTs can represent the mix of subgrid fluxes from horizontally mixed land cover types in reality. Moreover, the 

distribution of the sampled subgrid surface heat fluxes based on the assumed normal distribution resembles the distribution of 

realistic subgrid PFT heat fluxes within the grid cell in long-term statistics. As shown in Fig. 1 for the sensible heat flux, over 100 

the grid cells with 16 and 8 PFTs, the two distributions are highly consistent, in terms of mean value, variance and skewness. 

The latent heat flux has similar results (figure not shown). Given that those grid cells are stochastically selected and cover 

different climatic regimes (Fig. S1), the assumed normal distribution works well and thus the sampled samples can represent 

the realistic features for climate simulation. 

  105 

Figure 1. The histogram and Gaussian kernel density estimate (KDE) (dashed line) of the sensible heat fluxes at the PFT in the eight 

grid cells with 16 (top row) and 8 (bottom row) PFTs, respectively. Green histograms and KDE estimates show the distribution of 

realistic sensible heat fluxes at the PFT within each grid cell, while purple histograms and KDE estimates show the distribution of 

sampled sensible heat fluxes based on the assumed normal distribution. 
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Note that the surface energy balance closure at the grid scale is not affected by the stochastic sampling method. The surface 110 

energy balance has been closed at the grid scale in the default land-atmosphere coupling way. Therefore, the stochastic 

sampling at the subgrid scale based on the truncated normal distributions with the mean values equal to the default grid 

averages calculated by the weighted fluxes on each PFT within the grid cell (Fig. 1) can assure that the grid-scale surface 

energy balance is closed as well in the long-term statistics, although at a given time step this might be broken up. 

2.2 Modified Subgrid Heat Flux Scheme 115 

In the stochastic scheme proposed by Sun et al. (2021), the subgrid sensible heat and latent heat fluxes were individually and 

randomly selected from their truncated normal distributions, without considering the underlying relationship between these 

two energy terms. However, we can compute the correlation coefficients between the subgrid sensible and latent heat fluxes 

within each grid cell at every time step (i.e., 30 mins) using the following equation: 

𝑟 =
∑𝑖=1

𝑛 𝑤𝑖(𝐹𝑆𝐻𝑖
−𝐹𝑆𝐻)(𝐹𝐿𝐻𝑖

−𝐹𝐿𝐻)

𝜎𝑆𝐻𝜎𝐿𝐻
                                                                                                                           (2) 120 

where n is the number of PFTs within a grid cell in the land model; 𝑤𝑖  is the area percentage of each PFT within the grid cell; 

𝐹𝑆𝐻𝑖
 and 𝐹𝐿𝐻𝑖

 are the subgrid surface sensible and latent heat fluxes of each PFT, respectively; �̅�𝑆𝐻 and �̅�𝐿𝐻 are the weighted 

averages of the subgrid sensible and latent heat fluxes in one grid cell, respectively; and 𝜎𝑆𝐻 and 𝜎𝐿𝐻 are the standard deviations 

of the subgrid sensible and latent heat fluxes in one grid cell, respectively. The correlation coefficients vary with time. Figure 

2a shows the annual mean distribution of the energy partitioning between the sensible heat and latent heat fluxes at the subgrid 125 

scale. There are negative correlations at low latitudes in the Northern Hemisphere (NH) and most of the Southern Hemisphere 

(SH), whereas in the middle and high latitude regions in the NH and on the TP, most of the regions have positive correlations. 

The spatial patterns of the June-July-August (JJA) mean and December-January-February (DJF) mean correlation coefficients 

are given in Fig. 2b&c. In boreal summer, the sensible and latent heat fluxes in most regions of the world are negatively 

correlated, except for the TP, Greenland, the central US, and southern Australia (Fig. 2b). In boreal winter, the global 130 

distribution is similar to that of the annual mean, showing larger magnitudes of the positive correlation coefficients and smaller 

magnitudes of the negative correlation coefficients (Fig. 2c). The regions where the correlation coefficients are positive in both 

summer and winter are mainly located in high latitudes and altitudes. In summer, owing to the melting of snow, latent heat 

flux increases accordingly as the land surface gains more water for evaporation, and sensible heat flux increases synchronously 

from enhanced surface net radiation due to increased incoming solar radiation and reduced snow albedo. For winter, decreased 135 

solar radiation and increased snow cover reduce both sensible and latent heat fluxes. 
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Figure 2. Spatial distribution of (a) annual, (b) JJA (June-JulyAugust) and (c) DJF (December-January-February) mean correlation 

coefficients r between the subgrid surface sensible heat and latent heat fluxes in the EXP_COR simulation. 

Based on the notion that subgrid energy partitioning between the surface and the PBL is important in the land-atmosphere 140 

coupling process, several improvements are made to the Sun et al. (2021) scheme in this study. Two simplified methods are 

developed. 



7 

 

(1) Arrange the randomly selected N subgrid sensible heat (SH) fluxes and N subgrid latent heat (LH) fluxes in each grid cell 

from largest to smallest and use the N pairs of matching sensible and latent heat fluxes to drive the atmosphere independently. 

That is, a large (small) SH flux corresponds to a large (small) SH flux. 145 

(2) Arrange the randomly selected N subgrid sensible heat fluxes from largest to smallest and arrange the N latent heat fluxes 

from smallest to largest in each grid cell. Then, the N pairs of matching sensible and latent heat fluxes are used to drive the 

atmosphere independently. That is, a large (small) subgrid SH flux corresponds to a small (large) subgrid LH flux. 

Which one is used for a given grid cell depends on the time-varying correlation coefficient r. If the correlation coefficient r in 

the grid cell is positive, the PBL and convection parameterizations are driven using the heat fluxes derived in method one. 150 

Otherwise, the heat fluxes selected using method two will be passed to the atmosphere. The arithmetic mean of the outputs 

from N calls of the PBL and the convection parameterizations is input into the other following schemes. Given that the surface 

energy balance closure at the grid scale is not affected by the stochastic sampling method, the follow-up collocation of the 

sampled sensible and latent heat fluxes according to their correlation coefficient does not break up this rule. This is because 

this process does not alter the sampled subgrid values just arranging them in a given sequence. 155 

2.3 Experiments 

Three Atmospheric Model Intercomparison Project (AMIP)-type experiments with a finite volume dynamical core at a 

horizontal resolution of 1.9°×2.5° (~2°) and 30 vertical levels from the surface to 3.6 hPa were conducted using observed 

climatological (1982–2001 mean) monthly sea surface temperature and sea ice extent data (Stone et al., 2018). One control 

simulation (CTL) uses the standard CESM1.2, another experimental simulation (EXP) uses the Sun et al. (2021) 160 

parameterization in CESM1.2 (also the same as the EXP run in their study), and the third improves the EXP run using the 

modifications described in Sect. 2.2 (EXP_COR). All of the simulations were run for six years, with the first year discarded 

as the spin-up stage. The value of N in each grid cell was fixed to 16, which equals the maximum number of PFTs ever 

coexisting on a single column in the land model, although different grid cells have different numbers of PFTs (Sun et al., 2021). 

As noted by Sun et al. (2021), further increasing N has negligible impacts on the model performance compared with setting N 165 

to 16 and enhances computational loading instead. 

2.4 Observations and Reanalyses 

To evaluate the model performance, the simulation results are compared with the available observation and reanalysis datasets. 

The Tropical Rainfall Measuring Mission (TRMM; Huffman et al., 2014) observations (0.25°×0.25°) and the Modern-Era 

Retrospective Analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017) reanalysis (0.5°×0.625°) 170 

are used for precipitation. The other datasets include surface radiative fluxes from the Clouds and the Earth’s Radiation Energy 

Systems (CERES) Energy Balanced and Filled (1.0°×1.0°) (EBAF; Loeb et al., 2012), sensible heat and latent heat fluxes from 

the Global Land Data Assimilation System Version 2.1 (GLDAS-2.1) Noah monthly data (1.0°×1.0°) (Rodell et al., 2004) and 
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2 m air temperature from the Climatic Research Unit with a 0.5° resolution (CRU; Harris et al., 2020). For consistency, all of 

the observation/reanalysis datasets are regridded to the same grid size as CAM5. 175 

3 Results 

Sun et al. (2021) found that the improved precipitation simulation with the parameterization of subgrid surface heat fluxes to 

the atmosphere is most prominent for boreal summer and in Asia. In this study, the following analyses are still mainly focused 

on boreal summer because one improvement we expected in the new scheme is the alleviation of the overestimated summer 

precipitation on the southern and eastern margins of the Tibetan Plateau (TP) as shown in most GCMs. Moreover, a thorough 180 

evaluation of the two parameterizations on simulated climate variables at the global scale and for four seasons is performed. 

Their global annual and seasonal statistics are given in Sect. 3.3. 

3.1 Precipitation 

Sun et al. (2021) (i.e., the EXP run) improved the simulation of the summer precipitation over eastern China and the coastal 

areas of the Bay of Bengal (Fig. 3b-d), which was attributed to altered vertical diffusion and convection. The simulated 185 

precipitation over Arabia and Indonesia is improved as well while that over the southeastern US is degraded. In particular, it 

still produces excessive precipitation on the eastern and southern margins of the TP. After taking the subgrid energy 

partitioning into account in the EXP_COR run, the overall performance in terms of the globally averaged root mean square 

error (RMSE) and the spatial correlation coefficient (COR) is comparable to that of the EXP run (Fig. 3d&f). In addition to 

the improved boreal summer precipitation simulation over eastern China and the coastal areas of the Bay of Bengal, the 190 

longstanding overestimations of precipitation on the southern and eastern margins of the TP are alleviated by up to -2.5 mm 

d-1 (Fig. 3b-f), although the simulated precipitation is still excessive. Over other regions such as southern China, the Middle 

East and Indonesia, there are some slight degradations in the EXP_COR run compared to the EXP run. 
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Figure 3. Spatial distributions of the JJA (June-July August) mean precipitation for (a) TRMM, the biases of (b) CTL, (d) EXP, and 195 
(f) EXP_COR with respect to TRMM, and the differences between EXP and CTL (c) and between EXP_COR and CTL (e). The 

crossed areas are significant at the 95% level. The regionally averaged spatial correlation coefficient (COR) and root mean square 

error (RMSE) are calculated at the top of (b), (d) and (f). 

Figure 4 zooms in on the region (20-50°N, 75-125°E) where the simulated precipitation exhibits obvious improvements in the 

EXP_COR run. In the CTL run, the wet bias over the southern margin of the TP can exceed 11 mm d -1 while that over the 200 

eastern margin of the TP is approximately 7 mm d-1. Additionally, seen in other CMIP5&6 models, the biases there are much 

larger than those in the rest of the world (Fig. 3) (Su et al., 2013; Yu et al., 2015; Zhu and Yang, 2020; Lun et al., 2021). In 

contrast, in the EXP_COR run, the reduced biases over these two regions can be as much as 2.5 mm d -1 accounting for a 

reduction of approximately 25%, especially over the southern margin of the TP. Given that there are many causes (e.g., 

unrealistic water vapor advection and the absence of subgrid topographic effects) resulting in the severe overestimation of 205 

precipitation along the TP, the improvement in this study, to some extent, is impressive. The regionally averaged RMSE 

decreases from 4.51 in the CTL run and 4.07 in the EXP run to 3.71 in the EXP_COR run, and the COR increases from 0.48 

in the CTL run to 0.60 in both the EXP and EXP_COR runs. 
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Figure 4. Same as Fig. 3 but focusing on the study area (20-50°N, 75-125°E). The regionally averaged spatial COR and RMSE are 210 
calculated at the top of (b), (d) and (f). 

The total precipitation in the model consists of convective and large-scale precipitation. Their contributions are analyzed 

accordingly. Figures 5a&c show that in the EXP run, compared with the CTL run, both large-scale precipitation and convective 

precipitation slightly increase on the southern border of the TP. On the eastern border of the TP, large-scale precipitation 

increases, and convective precipitation decreases. In contrast, in the EXP_COR run, large-scale precipitation is significantly 215 
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suppressed on the southern fringe, and both large-scale precipitation and convective precipitation are reduced on the eastern 

margin. 
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Figure 5: Spatial distribution of the differences in (a&b) large-scale precipitation and (c&d) convective precipitation between (left) 

EXP and CTL and between (right) EXP_COR and CTL, and the differences of (e-h) the contributions (moisture convergence Qcnvg, 220 
moisture advection Qadvt, evaporation E, and the sum TOT) to total precipitation between EXP_COR and CTL. The crossed areas 

are significant at the 95% level. 

A moisture budget analysis widely used in previous studies (Gao et al., 2017; Wang et al., 2016) is conducted to examine the 

causes of precipitation changes. Following Sun et al. (2021), the atmospheric water vapor budget equation is given below: 

𝜕𝑊

𝜕𝑡
= (−𝑊∇ ∙ �⃗� ) + (−�⃗� ∙ ∇𝑊) − 𝑃 + 𝐸                                                                                                                                   (3) 225 

where P is precipitation and E is evaporation. W is the column-integrated moisture given by ∫ 𝑞𝑑𝑝/𝑔
𝑃𝑏𝑜𝑡

𝑃𝑡𝑜𝑝
, in which q is the 

specific humidity, Ptop and Pbot are the top and surface pressures, respectively, and g is the acceleration due to gravity. The 

vector �⃗�  with units of m s-1, given by 𝑊−1 ∫ (𝑞�⃗� )𝑑𝑝/𝑔
𝑃𝑏𝑜𝑡

𝑃𝑡𝑜𝑝
, represents the total horizontal moisture transport normalized to 

the column-integrated moisture, where �⃗�  is the horizontal wind vector. The first term on the right-hand side of Eq. (3) is the 

moisture convergence Qcnvg, and the second term is the moisture advection Qadvt. The tendency of the term 
𝜕𝑊

𝜕𝑡
 on the left-hand 230 

side of Eq. (3) is negligible for seasonal averages of multiple years. 

Compared with the CTL run, moisture convergence weakens on the eastern edge of the TP, while moisture advection increases 

in the EXP_COR run (Figs. 5e&f). On the southern edge of the TP, moisture advection decreases, and moisture convergence 

slightly increases. Overall, consistent with the change of total precipitation, the total water vapor contributions decrease on the 

eastern and southern edges of the TP (Fig. 5h). We note that the spatial pattern of Qcnvg, changes in the EXP_COR run relative 235 

to the CTL run, resembles that in the EXP run (Figs 4d&f in Sun et al., 2021), which is linked with the changes in the heating 

rate due to vertical diffusion in the PBL caused by the subgrid variations in land surface heat fluxes. In comparison with the 

EXP run, the negative moisture convergence anomaly is further aggravated, and the positive bias of moisture advection on the 

eastern margin of the TP is smaller (Sun et al. 2021). The negative maximum of the total contribution thus shifts westward to 

the eastern margin of the TP. Overall, moisture convergence dominates the change of precipitation on the eastern border of the 240 

TP (Fig. 5e&h). On the southern edge of the TP, the main term contributing to precipitation changes is due to the reduced 

moisture advection (Fig. 5f&h). 

The causes of the altered moisture convergence and advection are illustrated in Figs. 6 and S2 where the MERRA-2 reanalysis 

is included for reference. In the EXP run, the subgrid variations of the land surface heat fluxes increase (decrease) PBL heating 

over southern (northern) China (Fig. 6a). After further taking the partitioning of subgrid surface heat fluxes into account, the 245 

increase (decrease) in the heating rate over southern (northern) China is strengthened (Fig. 6b). Therefore, destabilization 

(stabilization) in the lower atmosphere is further enhanced, promoting (suppressing) the development of local convection. 

Lower (higher) sea level pressure (SLP) anomalies over southern (northern) China are generated in the EXP_COR run than in 

the EXP run. In particular, compared with the EXP run, the anomalous high SLP over northern China slightly extends to the 

south and the anomalous low SLP over southern China retreats (Fig. 6d-h). The anomalous anticyclone over northern China 250 

expands accordingly, which engenders decreased precipitation on the eastern border of the TP and a slight dry bias over 
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southern China. Similar to the EXP run, convective precipitation dominates the changes of total precipitation over eastern 

China and the eastern margin of the TP in the EXP_COR run. In the EXP run, negative SLP anomalies appear along the Bay 

of Bengal leading to cyclonic moisture transport from the ocean in the south (Fig. 6e). As a result, excessive moisture is 

transported to the southern edge of the TP producing excessive rainfall there. In contrast, in the EXP_COR run (Fig. 6g), the 255 

easterly anomaly along 25° N-30° N partly blocks moisture transport from the ocean in the south to the southern margin of the 

TP, and therefore, the decrease of large-scale precipitation dominates the change of precipitation simulation on the southern 

margin of the TP. 
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Figure 6. Spatial distributions of the differences of JJA-mean PBL heating (a) between EXP and CTL, and (b) between EXP_COR 260 

and CTL, JJA-mean SLP superposed by the vector �⃗⃗�  from (c) MERRA-2, and the differences (d) between CTL and MERRA-2, (e) 

between EXP and CTL, (f) between EXP and MERRA2, (g) between EXP_COR and CTL, and (h) between EXP_COR and 

MERRA2. The vector �⃗⃗�  is defined in Eq. (3). 
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3.2 Surface Heat Fluxes, Clouds and 2 m Air Temperature 

The above analysis indicates that the precipitation simulation is improved through the adjustment of large-scale atmospheric 265 

circulation in the lower atmosphere, which is highly linked with grid-scale surface heating/cooling (Sun et al., 2021). The 

following analyses will evaluate the performance of other variables such as surface energy budgets, clouds, and 2 m air 

temperature in JJA globally. 

The evaluations of the latent heat flux simulation are shown in Fig. 7. In those regions with large latent heat fluxes in GLDAS 

(e.g., the eastern US, northern South America, eastern China, etc.), the simulated values are generally underestimated in the 270 

CTL run, while in the regions with relatively small latent fluxes (e.g., the Arabian Peninsula, the Sahara Desert, and the 

northwestern TP, etc.), CTL tends to overestimate their values. Overall, the three simulations have similar distributions and 

comparable CORs. The EXP run has the smallest RMSE, followed by the EXP_COR run. Specifically, with subgrid variations 

of surface heat fluxes incorporated, compared with the CTL run, the EXP run reduces the biases over the central US, 

northeastern China and southeastern Russia (Fig. 7b, c&e). Also, the positive biases over southern China, the northwestern TP, 275 

the Arabian Peninsula, the Sahara Desert, northwest India and along the Bay of Bengal are reduced, although some 

degradations along 60°N over the Eurasian continent and southeastern Australia are found. In the EXP_COR run, it inherits 

most improvements in the EXP run (Fig. 7b, d&f). Furthermore, the biases on the southern and eastern margins of the TP and 

along 60°N in both the CTL and EXP runs are reduced (Fig. 7b-f). However, in the regions where the correlation coefficients 

r are small (Australia, the Arabian Peninsula, the Sahara Desert, etc.) (Fig. 2a), there are no improvements noticed in the 280 

EXP_COR run, or even the simulation is degraded. 
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Figure 7. Spatial distributions of the JJA-mean latent heat flux in (a) GLDAS (upward positive), the biases of (b) CTL, (c) EXP, and 

(d) EXP_COR with respect to GLDAS, and the differences between (e) EXP and CTL, and between (f) EXP_COR and CTL. The 

crossed areas are significant at the 95% level. The averaged spatial COR and RMSE for the three simulations are given in (b - d). 285 

For the sensible heat flux simulation (Fig. 8), in general, the simulated sensible heat fluxes in CTL are underestimated and 

overestimated over those regions with large and small values in GLDAS, respectively. The RMSE in the EXP run is the 

smallest among the three experiments, which have comparable correlations. In comparison with the CTL run, the EXP run 

slightly reduces the positive biases in Europe but degrades the underestimation in Australia (Fig. 8b, c&e). Other improvements 

can be found in the central US, the Sahara Desert, the Arabian Peninsula, northwestern India, eastern China, the TP, and 290 

southeastern Russia. On top of the EXP run, EXP_COR further alleviates the overestimation along 45°N-60°N over the 

Eurasian continent where sensible heat fluxes and latent heat fluxes are highly correlated in this region (Fig. 2b). The positive 

changes over the southern and eastern margins of the TP in the EXP_COR run are more significant than those in the EXP run 

(Fig. 8e&f). Nonetheless, we note some degradations from EXP to EXP_COR (e.g., over southern China). 
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   295 

Figure 8. Spatial distributions of the JJA-mean sensible heat flux in (a) GLDAS (upward positive), the biases of (b) CTL, (c) EXP, 

and (d) EXP_COR with respect to GLDAS, and the differences between (e) EXP and CTL, and between (f) EXP_COR and CTL. 

The crossed areas are significant at the 95% level. The averaged spatial COR and RMSE for the three simulations are given in (b - 

d). 

As indicated in Sect. 3.1, large-scale atmospheric circulation in the lower atmosphere and local convection are altered as PBL 300 

heating changes affect clouds as well. The changes in clouds in turn influence surface radiation and thus surface heat fluxes. 

The cloud properties affecting the cloud radiative effects include their macrostructures (e.g., fraction, top and base heights, 

and vertical overlap) and microphysical properties (e.g., particle size distribution and geometric configuration, cloud phase 

and water condensation). As shown in Fig. 9c, the EXP_COR run reduces low clouds over northern China and southeastern 

Russia, and increases them over southern China, the central US and along 60°N in comparison with the CTL run. The EXP 305 

run has a similar pattern of changes but with smaller magnitudes compared with the EXP_COR run (Fig. 9a-c). Low clouds 

reflect a larger amount of incoming solar radiation and emit longwave radiation at relatively high temperatures, so they exert 

an overall net cooling effect on the Earth (Klein and Hartmann, 1993; Hartmann, 1994). Compared with the CTL run, the 

middle and high clouds on the TP are dramatically decreased in the EXP_COR run, and the land surface is warmed because it 
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gains more net solar radiation. Especially for high clouds, the decrease in the EXP_COR run is much larger than that in the 310 

EXP run. 

The simulations of the total cloud water path (vertically integrated cloud liquid and ice water content, CWP) are shown in Fig. 

10d-f. A higher cloud water content reflects more solar radiation. The EXP run increases the total CWP over southern China, 

central Africa, the central US, southeastern Australia and along the Bay of Bengal. The CWP is decreased over northern China, 

the TP, and southeastern Russia. In the EXP_COR run, the simulated CWP is further decreased on the TP and over northern 315 

China, while it is increased in southern China and along 45°N-60°N especially over the Eurasian continent. The spatial 

distribution of the total ice water path (IWP) changes resembles that of the total CWP changes (Fig. 10g-i). 

  

Figure 9. Spatial distributions of the CTL run (left), and the differences in low clouds (the first row), middle clouds (the second row), 

and high clouds (the third row) between EXP and CTL (middle) and between EXP_COR and CTL (right). The crossed areas are 320 
significant at the 95% level.  

Generally, the radiative effect of clouds is quantified by cloud radiative forcing (CRF) (the difference in the surface net flux 

between all sky and clear sky conditions). It includes shortwave cloud forcing (SWCF) and longwave cloud forcing (LWCF). 

Realistic simulation of the CRF is another important measure of the performance of climate models (Sun et al., 2016). The 

SWCF is negative, and a smaller value indicates a stronger reflection of the solar shortwave radiation. Fig. 10b demonstrates 325 

that in the EXP run, SWCF is weakened over northeastern China, the TP, and southeastern Russia and is enhanced over 
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southern China, central Africa, the central US, southeastern Australia and along the Bay of Bengal compared with the CTL 

run. In the EXP_COR run, the reductions are mainly located in northern China, the TP, and southeastern Russia, while the 

enhancements are over the central US, over the Eurasian continent along 60°N, over southern China and along the Bay of 

Bengal. The increased SWCF originates from the increased cloud water (Fig. 10f) and low clouds (Fig. 9c) reflecting more 330 

solar shortwave radiation, while the decreased SWCF is due to the reduction of cloud water content and cloud fraction. The 

LWCF is positive, and a larger value means a stronger warming effect on the land surface. The LWCF increases over southern 

China and decreases over northern China (figure not shown). The distribution of the net CRF (figure not shown) resembles 

that of the SWCF, which implies that the SWCF is dominant in the CRF variations. 

 335 

Figure 10. Same as Figure 9 but for (a - c) shortwave cloud radiative forcing (units: W m−2), (d - f) total cloud water path (units: g 

m−2), and (h - k) ice water path (units: g m−2).  

The simulation of the net surface shortwave flux is demonstrated in Fig. 11. Globally, the averaged RMSE and COR are similar 

to each other in the three simulations. In the EXP_COR run, the underestimation over northern China and the TP in both the 

CTL and EXP runs is alleviated, although it slightly degrades the simulated shortwave flux over southern China. The negative 340 

biases over southeastern Russia in EXP_COR are also larger than those in EXP. The changes in the net surface shortwave flux 

(Fig. 11e&f) are very consistent with those in SWCF (Fig. 10b&c) implying that the net surface radiation fluxes are mainly 

dominated by the shortwave radiation reflected by the adjustment of clouds as a result of the altered PBL heating rates and the 
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associated local convection. The simulated patterns of the net surface shortwave and longwave fluxes (upward positive) are 

essentially consistent (figure not shown). The more (less) shortwave radiation is received by the surface, the more (less) heat 345 

it directly obtains, and the more (less) sensible heat flux it emits to warm (cool) the atmosphere. 

  

Figure 11. Spatial distributions of the JJA-mean net surface shortwave flux in (a) CERES-EBAF (downward positive), the biases of 

(b) CTL, (c) EXP, and (d) EXP_COR with respect to CERES-EBAF, and the differences between (e) EXP and CTL and between (f) 

EXP_COR and CTL. The crossed areas are significant at the 95% level. The averaged spatial COR and RMSE for the three 350 
simulations are given in (b - d). 

In response to the adjustment of the surface energy budget, the global distributions of JJA mean 2 m air temperature from CRU 

and the difference between the observations and the three experiments are shown in Fig. 12. Overall, the three simulations 

have comparable CORs and RMSEs globally. Compared with the CTL run, the EXP run alleviates the overestimations in the 

middle and high latitudes, although the performance over central Africa and northern South America is slightly degraded (Fig. 355 

12b, c&e). The positive biases over southern China are reduced in the EXP run. However, over northeastern China and 

southeastern Russia, the improvements are not significant. In the EXP_COR run, the overestimations over the central US and 
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the Eurasian continent are alleviated, while the negative biases over central Africa and the positive biases over southern South 

America are worsened (Fig. 12b, d&f). The simulated 2 m air temperature over northern China, and the TP is increased 

reintroducing some positive biases. In short, in the EXP_COR run, the decreased net surface shortwave flux associated with 360 

the increases of low clouds and cloud water content over southern China, the central US, over the Eurasian continent along 

60°N, and along the Bay of Bengal might contribute to the cooling there, while the warming on the TP and northern China is 

attributed to the increased net surface shortwave flux associated with the decreased cloud fraction and cloud water content 

(Figs. 9 - 11). 

  365 

Figure 12. Spatial distributions of the JJA-mean 2 m temperature in (a) the CRU, the biases of (b) CTL, (c) EXP, and (d) EXP_COR 

with respect to CRU, and the differences between (e) EXP and CTL and between (f) EXP_COR and CTL. The crossed areas are 

significant at the 95% level. The averaged spatial COR and RMSE for the three simulations are given in (b - d). 
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3.3 Mean States 

The analyses presented above demonstrate that the introduction of the subgrid heat flux schemes (EXP and EXP_COR), 370 

compared to the default model, improves the simulations of summer precipitation in Asia. The improvements and degradations 

in simulated surface heat fluxes, cloud properties and 2 m air temperature in boreal summer at the global scale are also 

discussed. The precipitation improvements over eastern China are mainly from the consideration of subgrid variations in 

surface heat fluxes (i.e., the EXP run where the sampled subgrid sensible and latent heat fluxes are stochastically paired with 

each other), while the improved precipitation simulations on the southern and eastern margins of the TP are attributed to the 375 

further inclusion of the partitioning of the subgrid surface heat fluxes (the EXP_COR run). A thorough evaluation of the global 

annual and seasonal means of those variables is necessary because from the perspective of climate model development, the 

incorporation of a new parameterization scheme to improve some aspects should not cause the degradation of other aspects 

(Wang et al., 2021b). As presented in Table 1 (global distributions shown in Figs. S3-9), overall, the simulation statistics of 

the EXP and EXP_COR runs are comparable to those of the CTL run, although slightly different in some seasons. When 380 

focusing on East Asia (Table S1), the new schemes outperform the default scheme in terms of COR and RMSE, implying the 

necessity and importance of parameterizing the subgrid land surface heat fluxes to the atmosphere in GCMs in regions with 

complex terrain (e.g., the TP) and multiple surface types (e.g., eastern China). 

Table 1. The COR and RMSE values in the CTL, EXP and EXP_COR runs. MAM is for March-April-May, JJA for June-July-

August, SON for September-October-November, and DJF for December-January-February. The best performance among the three 385 
experiments is highlighted in bold.  

Variables Period 
COR RMSE 

CTL EXP EXP_COR CTL EXP EXP_COR 

Precipitation 

MAM 0.82 0.82 0.81 1.55 1.55 1.61 

JJA 0.78 0.80 0.79 2.11 2.03 2.04 

SON 0.85 0.85 0.85 1.53 1.52 1.53 

DJF 0.85 0.84 0.84 1.62 1.65 1.73 

Annual 0.86 0.86 0.86 1.29 1.27 1.30 

2 m 

Temperature 

MAM 0.98 0.98 0.98 2.57 2.50 2.49 

JJA 0.95 0.95 0.95 2.70 2.66 2.67 

SON 0.98 0.98 0.98 2.64 19.94 2.61 

DJF 0.99 0.99 0.99 4.01 3.76 3.80 

Annual 0.98 0.98 0.98 2.50 5.86 2.42 

Sensible Heat 

Flux 

MAM 0.67 0.65 0.65 34.08 34.73 34.43 

JJA 0.55 0.56 0.56 30.67 30.57 30.89 

SON 0.86 0.86 0.86 23.40 25.79 23.92 

DJF 0.88 0.87 0.87 23.71 24.42 24.42 

Annual 0.74 0.73 0.73 22.71 23.72 23.28 

Latent Heat 

Flux 

MAM 0.89 0.88 0.88 15.84 16.37 16.23 

JJA 0.82 0.82 0.81 24.24 23.18 23.40 

SON 0.88 0.88 0.88 17.34 17.57 17.33 
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DJF 0.92 0.91 0.92 15.99 16.93 16.44 

Annual 0.90 0.90 0.90 13.92 14.17 14.15 

Net Surface 

Shortwave Flux 

MAM 0.92 0.91 0.91 21.89 23.20 23.47 

JJA 0.83 0.83 0.83 29.75 29.84 30.21 

SON 0.96 0.96 0.96 20.35 26.06 21.10 

DJF 0.96 0.96 0.97 24.28 24.51 24.32 

Annual 0.93 0.93 0.93 19.35 21.04 20.05 

 

The zonal means of temperature and specific humidity from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA-Interim reanalysis dataset and the model biases are shown in Fig. 13. In the CTL run, the temperature is 

overestimated at lower levels in the tropics and midlatitude regions in the SH, whereas at other latitudes and levels, it is 390 

underestimated (Fig. 13a). The EXP run reverses the positive biases back to negative biases with an excessive reduction at 

lower levels, and the negative biases in other regions are further exacerbated (Figs. 13b&S10b). In contrast, the biases in the 

EXP_COR run are comparable to those in the CTL run (Fig. 13a&c). The low-latitude overestimations in the lower troposphere 

and the high-latitude underestimations across the troposphere are alleviated to some extent (Fig. S10c). In the simulation of 

specific humidity, compared to the observations, the main positive biases occur in the low latitude and midlatitude regions 395 

below 400 hPa. For the midlatitude region, there are negative biases at lower levels (Fig. 13d). Generally, the performance 

among the three simulations is similar to each other (Figs. 13d-f). In the EXP run, the biases are alleviated (Fig. S10e). The 

values of the EXP_COR run are comparable to those of the CTL run, and their differences are minor and negligible from the 

perspective of the annual zonal averages (Fig. S8f). In summary, the performance of the mean state simulations does not 

change significantly when using the two modified schemes (the EXP and EXP_COR runs) in terms of the variables discussed 400 

above. 
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Figure 13. Annual and zonal mean cross-sections of the (a–c) temperature and (d–f) specific humidity differences for (a&d) CTL-

ERAI, (b&e) EXP- ERAI , and (c&f) EXP_COR- ERAI.  

4 Discussion 405 

Despite the uncertainties in the observations, the overestimated rainfall on the southern and eastern margins of the Tibetan 

Plateau in the GCMs is widely acknowledged when comparing multiple observations (Mehran et al., 2014; Yu et al., 2015). 

The uncertainties for the evaluations of other modeled variables are discussed below. The CERES-EBAF datasets provide 

long-term global Earth radiation budget records from the surface to the top of the atmosphere (TOA) together with the 

associated cloud and aerosol properties. Extensive validation has been conducted for both TOA and surface radiation in 410 

CERES-EBAF using TOA consistency tests and direct comparisons of surface fluxes with ground-based measurements over 

both land and ocean (Loeb et al., 2007; Loeb et al., 2012). Although some weaknesses are noted (e.g., LW cloud radiative 

effects at the surface on the TP are overestimated due to poor sampling of clear sky scenes during the night), they are widely 

used for climate model evaluations (Loeb et al., 2018; Hinkelman et al., 2019), and this flaw does not affect the conclusions 
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in this study. As for surface sensible and latent heat fluxes, there are few observations covering the whole TP. Instead, among 415 

various reanalysis datasets, GLDAS has been evaluated and investigated extensively (Novick et al., 2018; Sun et al., 2018; 

Laloyaux et al., 2016). For instance, Jiménez et al. (2011) conducted a global intercomparison of monthly mean land surface 

heat flux products, including space-based observations and reanalyses including GLDAS. They demonstrated that the spatial 

distributions related to the major climatic regimes and geographical features are well reproduced by GLDAS. With 

comprehensive validations, the GLDAS product has been widely used in evaluating model-based studies (Saha et al., 2014; 420 

Xia et al., 2019) such as water resource management (Zaitchik et al., 2010), and drought monitoring and prediction (Hao et al., 

2016). The CRU gridded dataset for 2 m air temperature has undergone a series of technical validations, such as quality control 

of input data, comparisons between versions and with alternative datasets, and cross-validation of the interpolated anomalies 

(Osborn et al., 2017; Harris et al., 2020). 

In addition to subgrid variation and partitioning of surface heat fluxes, there are other factors that can impact the precipitation 425 

simulation on the TP. For instance, subgrid topographic effects have large effects on latent heat and sensible heat fluxes. It is 

found that parameterizing them in GCMs influences the simulated surface energy balance and boundary conditions, as well as 

precipitation on the TP (Lee et al., 2019; Hao et al., 2021, 2022). Alternatively, the accurate representation of land cover types 

and soil properties is vital to the realistic simulation of surface radiative and heat fluxes and thus TP rainfall (Liu et al., 2021; 

Yue et al., 2021). 430 

With 208 CPU cores in total for each simulation, the total run time per step (~0.50 sec) in the EXP_COR run is almost twice 

that in the CTL run (~0.26 sec) as a result of calling the PBL and convective parameterizations 16 times and the resulting extra 

communication cost (Table S2). However, compared with the four-mode version of the Modal Aerosol Module (MAM4) 

updated from MAM3 and the Cloud Layers Unified by Binormals (CLUBB) scheme instead of the CAM5 boundary layer 

turbulence, shallow convection, and cloud macrophysics schemes in CAM6, the computational cost here is much smaller and 435 

thus acceptable. Given the heavy computational cost of CLUBB, this could be challenging for computational efficiency if 

using this scheme in CESM2 (CESM version 2). Therefore, further improvements are needed. For example, according to the 

number of PFTs in each grid cell, the number of multiple calls (up to 16) of the CLUBB can be varied in different grid cells. 

Alternatively, do this only when the number of PFTs is larger than a threshold. In the meantime, parallel optimization should 

be applied to multiple calls. 440 

The GCM used to test the schemes is CESM1.2, in which the land model is CLM4. Similar to CLM4, CLM5 (CLM version 

5) in CESM2 and other land surface models in the GCMs use the PFT structure as well. Additionally, the parameterization of 

subgrid heat fluxes proposed in this study is not dependent on the specific parameterizations of the PBL and convection 

processes. Therefore, it is conveniently applied to other GCMs. 
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5 Conclusions 445 

In this study, a parameterization of the subgrid variations and partitioning of the land surface heat fluxes to the atmosphere 

was developed and implemented in the NCAR CESM1.2. The modification to the Sun et al. (2021) scheme is based on the 

fact that energy redistribution with complex climate impacts between the land surface and the PBL plays an essential part in 

the global and regional energy cycles (Liu et al., 2014; Chakraborty and Lee, 2019; Wei et al., 2021). Three experiments were 

conducted to evaluate the updated scheme (CTL, EXP, and EXP_COR). The precipitation improvements over eastern China 450 

derived using the original scheme (EXP) still exist in the new scheme (EXP_COR), although slight dry biases are reintroduced 

over southern China. In addition, the stubborn overestimations of precipitation on the southern and eastern margins of the TP 

are alleviated. 

The causes are briefly summarized in Fig. 14a. The subgrid variations of the land surface heat fluxes increase (decrease) PBL 

heating over southern (northern) China. With the further introduction of the partitioning of subgrid surface heat fluxes, the 455 

increase (decrease) in PBL heating over southern (northern) China is elevated, thus destabilizing (stabilizing) the lower 

atmosphere. As a result, local convection is promoted (suppressed) over southern (northern) China. The changes of convective 

precipitation dominate the changes of total precipitation over eastern China and the eastern margin of the TP. The altered large-

scale circulation associated with the easterly anomaly along 25° N-30° N partly blocks moisture transport from the ocean in 

the south to the southern margin of the TP. Accordingly, the decrease of large-scale precipitation is responsible for the reduced 460 

precipitation there. 

The links among clouds, net surface shortwave flux and 2 m air temperature over eastern China are shown in Fig. 14b. As PBL 

heating decreases in northern China, the lower atmosphere stabilizes and local convection is suppressed. Accordingly, middle 

and high clouds, and the associated CWP decrease (Figs. 9&10). Thus, SWCF decreases over northern China, which increases 

the net surface shortwave flux. As the surface gains more energy, the near-surface air temperature warms. In contrast, southern 465 

China features the opposite changes in the storyline. 
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Figure 14. Schematic diagram summarizing the climate impacts of parameterizing subgrid variations and partitioning of land 

surface heat fluxes to the atmosphere. 470 

The Sun et al. (2021) scheme offers a novel method of parametrizing the subgrid heterogeneity of surface heat fluxes to the 

atmosphere in GCMs. As a further modification, the significance of the correlation coefficients between the subgrid-scale 

sensible and latent heat fluxes is considered for a more realistic interpretation of the energy exchange processes. The findings 

of these two studies highlight the importance of the energy variation and redistribution between the land surface and the lower 

atmosphere at the subgrid scale. 475 

Code and data availability 

The CESM1.2.1-CAM5.3 source code can be downloaded through the CESM official website 

https://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/x290.html#download_ccsm_code. The modified CESM 

code as well as the CAM5 output for all simulations in the study are provided in an open repository Zenodo 

(https://zenodo.org/record/6606418#.YpiHWKhBw2w). The TRMM data are available from 480 

https://gpm.nasa.gov/data/directory. The MERRA-2 data files are available from 

https://disc.gsfc.nasa.gov/datasets/M2IMNPASM_5.12.4/summary?keywords=M2IMNPASM_5.12.4%20instM_3d_asm_N

p and 

https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX_5.12.4/summary?keywords=M2TMNXFLX_5.12.4%20tavgM_2d_flx_N

x. The CERES EBAF data are available from https://climatedataguide.ucar.edu/climate-data/ceres-ebaf-clouds-and-earths-485 

radiant-energy-systems-ceres-energy-balanced-and-filled. The GLDAS-2.1 data are available from 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.1/summary?keywords=GLDAS. The CRU data are available 
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