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Abstract. A local data assimilation method, Local DA, is introduced. The proposed algorithm aims to perform hybrid and 

multiscale analyses simultaneously yet independently for each grid, vertical column or column group and aims to flexibly 

perform analyses with or without ensemble perturbations. To achieve these goals, an error sample matrix is constructed by 

explicitly computing the localized background error correlation matrix of model variables that are projected onto 

observation-associated grids (e.g., radar velocity) or columns (e.g., precipitable water vapor). This error sample matrix 10 

allows Local DA to apply the conjugate gradient (CG) method to solve the cost function and to perform localization in the 

model-variable space, the observation-variable space, or both spaces (double-space localization). To assess the Local DA 

performance, a typhoon case is simulated, and a multiscale observation network comprising sounding, wind profiler, 

precipitable water vapor, and radar data is built; additionally, a time-lagged ensemble is employed. The results show that 

experiments using the hybrid covariance and double-space localization yield smaller analysis errors than experiments 15 

without the static covariance and experiments without double-space localization. Moreover, the hybrid covariance plays a 

more important role than does localization when a poor time-lagged ensemble is used. The results further indicate that 

applying the CG method for each local analysis does not result in a discontinuity issue, and the wall clock time of Local DA 

implemented in parallel is halved as the number of cores doubles. 

1 Introduction 20 

Data assimilation (DA), which estimates the atmospheric state by ingesting information from model predictions, 

observations, and background error covariances, has been shown to be crucial for the success of numerical weather 

prediction (Bonavita et al., 2017). Therefore, many previous studies on DA have focused primarily on how to utilize 

observations and how to estimate background error covariances (e.g., Huang et al., 2021; Wang et al., 2021; Lei et al., 2021; 

Zhang et al., 2009; Brousseau et al., 2011, 2012; Wang et al., 2013; Wang et al., 2012; Kalnay and Yang, 2008; Buehner and 25 

Shlyaeva, 2015). At present, there are two prevailing approaches of DA: hybrid analysis, which concerns the background 

error covariance, and multiscale analysis, which often addresses the difference in observation scales. 

Hybrid analysis was originally proposed to combine the advantages of two kinds of DA methods, namely, stand-alone 

ensemble-based DA and stand-alone variational DA. The former uses short-term ensemble forecasts as error samples 
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(dynamic samples) to estimate the error covariance (Evensen, 1994), while the latter uses the statistical information extracted 30 

from historical forecasts, such as the scale of correlation  extracted from the differences between monthly 12- and 24-h 

forecasts (e.g., the NMC method, Parrish and Derber, 1992). Using both dynamic and static error covariances leverages the 

advantages of flow-dependent error information and prevents the analysis from degenerating as a result of large sampling 

errors arising from a limited ensemble size (Wang et al., 2009; Etherton and Bishop, 2004). 

Many approaches are applied to conduct hybrid analyses. A widely used approach is to add an ensemble-associated control 35 

variable to a variational DA framework (Lorenc, 2003; Wang et al., 2008). An alternative is to explicitly combine the 

dynamic and static covariances (Hamill and Snyder, 2000). However, these two approaches are equivalent (Wang et al., 

2007). Another method is to average the analyses yielded by the ensemble Kalman filter (EnKF) and the variational method 

(Bonavita et al., 2017; Penny, 2014). Recently, a hybrid scheme based on the EnKF framework was developed (Lei et al., 

2021) that uses a large ensemble size (=800) to simulate the static error covariance. Nevertheless, given the variety of hybrid 40 

approaches available, how to conduct hybrid DA is still a matter of debate. In this study, a hybrid scheme is implemented 

following Hamill and Snyder (2000), though the proposed scheme differs in regard to the details. 

The multiscale DA aims to properly utilize observations on a variety of scales. A fundamental component of multiscale DA 

is performing scale-dependent localization. Localization is inevitable due to sampling errors (e.g., distant spurious 

correlations) in ensemble-based DA, including in hybrid DA (e.g., Huang et al., 2021; Wang et al., 2021). There are two 45 

ways to localize the covariance, either explicitly or implicitly. The explicit multiscale DA often performs localization in 

observation space or model-observation space. The local ensemble transform Kalman filter (LETKF, Hunt et al., 2007) is the 

algorithm that performs localization in observation space. In model-observation space, the multiscale localization is often 

done sequentially; examples include the assimilation of synoptic-scale observations with a large localization radius and then 

performing radar DA with a small radius of influence (e.g., Zhang et al., 2009; Johnson et al., 2015). In comparison, the 50 

implicit method is done in model-variable space, requiring error samples that apply several scales of localization to the 

ensemble members (Buehner and Shlyaeva, 2015). With the implicit method, all observations on different scales can be 

ingested simultaneously. Recent studies have shown that multiscale DA outperforms DA with fixed localization (Caron and 

Buehner, 2018; Caron et al., 2019; Huang et al., 2021). 

In addition to the quality of the hybrid or multiscale DA analysis, the computational efficiency should also be considered 55 

(Bonavita et al., 2017). A highly parallelized DA scheme is preferable due to the continuously increasing model resolution 

and number of available observations. One DA scheme that can be highly parallelized is the LETKF algorithm, whose 

analysis is grid-independent. 

In brief, both hybrid DA and multiscale DA are necessary, and the parallel computation efficiency of the LETKF is 

attractive. Thus, it is desirable to utilize all their advantages. A straightforward idea for achieving the hybrid DA with the 60 

LETKF is to use a large-size static ensemble, similar to the EnKF-based hybrid scheme proposed by Lei et al. (2021). 

However, due to the limited availability of computational and storage resources, a large static ensemble (>=800) is not 

always feasible. The LETKF, however, performs the analysis in the ensemble space, which implies that a static ensemble is 
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necessary. In this situation, a grid-independent analysis scheme is needed that can be flexibly run with or without a large 

static ensemble. Motivated by this necessity, we propose a DA scheme that follows the grid-independent analysis of the 65 

LETKF and can perform both hybrid and multiscale analysis with or without static ensemble members, similar to other 

variational-based hybrid schemes. The scheme is named Local DA hereinafter. 

Compared with other hybrid schemes, Local DA has two features. First, the proposed scheme constructs an error sample 

matrix that replaces the ensemble perturbation in the LETKF. To construct this matrix, Local DA explicitly computes the 

local background error correlation matrix of model variables that are projected onto the observation-associated grids (for 70 

scalar observations) and/or columns (for observations that measure an integrated quantity of the atmosphere, such as 

precipitable water vapor (PWV)). The explicit approach requires much more memory than the LETKF, but we will show that 

the cost is acceptable. Since the correlation matrix is explicitly constructed, we can determine how to compute the matrix 

components (in terms of using an ensemble or not) according to the need. Moreover, we can straightforwardly realize the 

hybrid idea of Hamill and Snyder (2000) that is often utilized with a simple model (Kleist and Ide, 2015; Penny, 2014; 75 

Etherton and Bishop, 2004; Lei et al., 2021) because it explicitly computes and directly combines the background error 

covariance matrices. In this study, we attempt to evaluate the hybrid idea of Hamill and Snyder (2000) in a realistic 

complicated scenario; this is a secondary goal of this study.. 

Second, Local DA can perform the multiscale analysis in the model-variable space, the observation-variable space, or in both 

spaces (double-space localization). In the model-variable space, Local DA adopts a scale-aware localization approach for the 80 

multiscale analysis that applies a bandpass filter to create filtered samples and individually performs localization for each 

waveband. In this approach, the localization radius increases as the wavelength increases, and we attempt to retain the long-

distance covariances of large-scale errors while constraining the small-scale covariances within a smaller radius. A similar 

idea (i.e., lacking cross-waveband covariance) is the scale-dependent localization technique proposed by Buehner (2012). 

Although the use of cross-waveband covariance is likely to further improve the multiscale analysis, but the relative 85 

performance depends on ensemble size (Caron et al., 2019). To simplify this study, we leave this issue to be addressed in 

future work. In contrast, in the observation-variable space, the localization method is similar to the LETKF. The localization 

radius varies according to the scale of an observation: large-scale observations are assigned a large radius, while small-scale 

observations are assigned a small radius. Because model-variable space localization and observation-variable space 

localization are employed for the background error covariance and observation error covariance, respectively, it is possible 90 

to perform localization in both spaces. Although double-space localization may result in a double penalty, it would be 

interesting to note the localization performances of both hybrid and multiscale DA. Note that the LETKF of Wang et al. 

(2021) can also realize double-space localization, but this application has not yet been investigated. 

As the first paper to report on Local DA, this study focuses on the following main issues: i) how to realize both hybrid and 

multiscale local analysis, ii) the spatial continuity of local analysis, iii) the impact of Local DA on the subsequent forecast, 95 

iv) the sensitivity of Local DA to localization (either in the model space or in the observation space) and to the ensemble 

size, and v) comparing Local DA with the LETKF in terms of single deterministic analysis and forecasting. Updating the 
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ensemble perturbation is important for the ensemble forecast and cycling DA, but we plan to investigate this issue in future 

work. To avoid issues associated with the quality control of observations when evaluating the performance of Local DA, we 

adopt observing system simulation experiments (OSSEs). The simulated multiscale observing system consists of sounding, 100 

wind profiler, PWV, and radar (radial velocity and reflectivity) observations on scales varying from the synoptic scale to the 

convective scale. A simulated typhoon case is selected for the evaluation. 

The remainder of this paper is organized as follows. In Sect. 2, Local DA and its associated multiscale localization technique 

are described, including the formula, workflow, and other details. Sect. 3 describes the numerical experiments, and Sect. 4 

discusses the results. A summary and conclusions are given in Sect. 5. 105 

2 Method 

2.1 The Local DA scheme 

Local DA is implemented in the LETKF framework and comprises three steps. In the first step, Local DA maps the model 

state variables to the observation-associated grids or columns; these variables include the background model state (x
f
) and 

the ensemble perturbations (X). The observation prior can be written as h(Hix
f
), where Hi is an operator that interpolates 110 

model variables to the observation-associated grids or columns and h is the observation operator that converts model 

variables into observation variables. Similarly, the tangent linear of h(Hix
f
) can be written as HoHiX, where Ho is the linear 

operator of h. The cost function of Local DA is written in the space of Hix
f
 and HiX. In this space, the size of the local 

background error correlation matrix is much smaller than that in the model-grid space, which allows us to explicitly compute 

the correlation matrix. 115 

In the second step, Local DA computes the minimization of the cost function 

T T 1

o o o o o o o o

1 1
( ) ( )

2 2
J    v v H X v d R H X v d ,                                                   (1) 

where vo is the control variable (or a combination of error samples in the LETKF), the observation error covariance is 

denoted by R, which is a diagonal matrix in this study, and d is the observation innovation vector. 
oX  (=αSoCoo) represents 

a constructed error-sample matrix, where Coo is the local background error correlation matrix (its dynamic part is computed 120 

using HiX, while its static part is computed with a distance-correlation function in the current version of Local DA), So stores 

the standard deviations (STDs) of the model variables, and α is a parameter that adjusts the trace of Coo. We will discuss α 

later. 

In the third step, Local DA computes the model state increment xm on the model grids according to the linear combination of 

moX  such that 125 

m mo ox X v ,                                                                                                        (2) 
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where 
mo m mo

X S C , Sm contains the STDs of the model variables on the model grids, and Cmo is a correlation matrix that 

contains the correlation coefficients between the model variables in the model-grid space and those in the Hix space. Details 

regarding Coo and Cmo will be given later. As long as xm is obtained, we can perform the deterministic analysis in accordance 

with x
a
= x

f
 + xm. 130 

By using the hybrid and localization approaches, the rank of 
o

X  is much higher than that of X of which the rank is not 

higher than the ensemble size. Our early test (not shown) indicates that the rank of 
o

X  is a full rank matrix in most cases. 

For those rank-deficient cases, the rank of 
o

X  is often greater than 97% of the full rank value. The high-rank correlation 

matrix is expected to result in a small analysis error (Huang et al., 2019). 

To use Eqs. (1) and (2), several questions need to be answered: i) How do we construct Coo and Cmo? ii) How do we 135 

calculate α? iii) How do we solve Eq. (1) to obtain vo? iv) How do we deal with nonlinear observation operators? The 

subsequent subsections present the answers to these questions. 

2.1.1 The local background error correlation matrix 

In Local DA, the actual correlation matrix C  is the square of Coo multiplied by a rescaling parameter 
2 : 

2 T

oo ooC C C .                                                                                                             (3) 140 

By using the rescaling parameter, the trace of C  is equivalent to that of Coo. α is computed according to 

oo

T

oo oo

( )
=

( )

tr

tr


C

C C
,                                                                                               (4) 

where tr( ) denotes the calculation of the trace of a matrix. Notably, 
T

oo oo( )tr C C is equal to the sum of squares of all 

elements in Coo. There is no need to compute 
T

oo oo
C C . C  and Coo are identical in terms of Eigenvectors and the trace of the 

matrix (total variance). The eigenvalues of C are the squares of the corresponding Eigenvalues of Coo multiplied by α
2
. 145 

Therefore, C  is an approximation of Coo. Storto and Andriopoulos (2021)  proposed a hybrid DA scheme that also used the 

rescaling parameter to tune the trace of a matrix (see their Eq. (15)), but they constructed the background error covariance in 

a way differing from ours. 

Coo is a K×K matrix, where K is the number of model variables associated with the operators of all ambient observations. K 

is computed according to 150 

1

( )
tN

o op i

i

K N N


 ,                                                                                                       (5) 
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where Nt is the number of observation types, such as the zonal wind from soundings and/or the radial velocity from radars, 

No is the number of observations of the ith type, and Nop is the number of analysis variables used in the observation operator 

of the ith type. Assuming there are three available observations (two zonal wind observations and a surface pressure 

observation), the background error correlation matrix is 155 

1 1 1 2 1 1

2 1 2 2 2 1

1 1 1 2 1 1

u u u u u ps

oo u u u u u ps

ps u ps u ps ps

c c c

c c c

c c c



 
 
 
 
 
 
 
 

C ,                                                                                 (6) 

where c is the correlation coefficient between the model variables projected onto observation-associated grids and the 

subscripts “u1”, “u2”, and “ps” represent the two zonal wind observations and the surface pressure observation, respectively. 

If the model variables to be updated are the zonal wind (u), potential temperature (θ), and water vapor mixing ratio (q) 

located where observation “u1” is, the corresponding Cmo is 160 

1 1 1 2 1 1

1 1 1 2 1 1

1 1 1 2 1 1

u u ps

mo q u q u q ps

u u u u u ps

c c c

c c c

c c c

  



 
 
 
 
 
 
 
 

C .                                                                                   (7) 

where the subscripts “θ1” and “q1” indicate that variables are on the same grid as observation “u1”. For Coo, the 

corresponding So is 

1

2

1

u

o u

ps

s

s

s



 
 
 
 
 
 
 
 

S ,                                                                                             (8) 

where s denotes the STDs of the model variables projected onto observation-associated grids. Sm contains the STDs on the 165 

model grids, which are 
1us , 

1s , and 
1qs  for the aforementioned example. 

Note that the size of Coo grows rapidly as K increases. However, given that Coo is used for the local analysis, the memory 

requirement is still affordable. For high-resolution observations, thinning can help reduce the cost, which is also necessary to 

ensure that the observation errors are uncorrelated (e.g., Hoeflinger et al., 2001). For observations at the same place that are 

associated with the same model variables, such as the radar reflectivity and differential reflectivity, the same Coo components 170 

https://doi.org/10.5194/gmd-2022-112
Preprint. Discussion started: 7 June 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

are used. This strategy is also valid for passive microwave observations at different frequencies obtained by one satellite. 

Therefore, the size of Coo is controllable. In this study, we use a simple thinning approach to control the matrix size, as 

described in the Appendix. 

2.1.2 The solution of Local DA 

There are two approaches to solve the gradient of Eq. (1): i) matrix decomposition and ii) an iterative algorithm. The first 175 

approach is straightforward, but it is time consuming if Coo is large. Therefore, Local DA adopts an iterative algorithm, 

namely, the conjugate gradient (CG) method (Shewchuk, 1994). Theoretically, using the CG method requires the 

background error covariance matrix to be positive definite. However, with the control variable transform, a positive 

semidefinite covariance matrix is sufficient to obtain the best linear unbiased estimate (Ménétrier and Auligné, 2015). A 

strictly diagonally dominant matrix with nonnegative diagonal elements s is positive semidefinite. Performing covariance 180 

localization is a way to generate the matrix; the details of this localization will be given later. 

Note that Local DA performs the CG step locally, unlike other variational-based DA methods that apply the CG method 

globally. Therefore, it is necessary to investigate whether the local application of the CG method causes a nonnegligible 

spatial discontinuity, which will be discussed in Sect. 4. For computational efficiency, the maximum number of iterations is 

100. If the error tolerance ε
2
 defined in (Shewchuk, 1994) cannot reach 1×10

-6
 by the 100

th
 step, the CG method is stopped. 185 

2.1.3 The observation operator 

The EnKF algorithm often approximates the linear projection (H in Eq. (1)) of the model variables onto the observation 

variables according to the departure of the observation priors from their ensemble mean. It is straightforward for Local DA 

to use the ensemble approximation approach. However, for nonlinear observation operators, there is an alternative to the 

ensemble mean, namely, the observation prior calculated by using the ensemble mean of the model variables. Tang et al. 190 

(2014) demonstrated that this alternative could lead to better results. Furthermore, Yang et al. (2015) examined the 

application of this alternative in radar DA and showed that the alternative approach produced smaller analysis errors for the 

model variables associated with radial velocity (three wind components) and reflectivity (mixing ratios of rain, snow, and 

graupel). Given that remote sensing observations such as those obtained by radars and satellites are important parts of any 

multiscale observation network, Local DA adopts the alternative approach proposed by Tang et al. (2014). 195 

Local DA approximates the linear projection 
o o

Y H X  according to 

f f

o o
( ) ( )h h   Y x X x X ,                                                                                 (9) 

where h is the nonlinear observation operator and x
f
 is the background model state vector. Note that Eq. (9) is written for a 

deterministic forecast in this study. Compared with the results using the ensemble mean of observation priors, Eq. (9) 

reduces the analysis error of reflectivity by approximately 2 dBZ in our early test (not shown). This result is consistent with 200 

that of Yang et al. (2015). 
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2.2 The multiscale localization analysis 

To realize multiscale localization, Local DA first performs scale decomposition with a bandpass filter. The decomposed 

perturbation, 
b
X , is 

b

b b

1

N

l

l

 X X ,                                                                                                                (10) 205 

where the superscript “l” represents the lth waveband and Nb is the number of bands. As a localization approach lacking 

cross-waveband covariance, Local DA computes the STD of the perturbation, s, according to 

b
2

b

1 1

1
( ) ( , )

N N

l

l m

s i i m
N 

     X ,                                                                                    (11) 

where i and m denote the ith model variable and the mth sample, respectively, and N is the sample size. Compared with the 

raw STD, 
b

2

b

1 1

1
( , )

NN

l

m l

i m
N  

 
  

 X , the cross influence among different scales of 
b
X  is ignored in Eq. (11). Nevertheless, 210 

we acknowledge the importance of the cross influence of these perturbations and plan to investigate this issue with regard to 

Local DA in our future work. 

The multiscale correlation coefficient c(i,j) is calculated according to 

b

b b

1

cov ( ), ( )
( , )

( ) ( )

l lN

l

i j
c i j

s i s j


  


X X

,                                                                                  (12) 

where i and j denote the ith and jth variables, respectively. For the case of i=j, Eq. (12) ensures c(i,j)=1.0.  215 

We perform localization for each waveband independently to construct the multiscale correlation matrix In principle, our 

multiscale localization method trusts the correlation coefficient of each waveband when the distance between two variables 

is smaller than the lower bound of the waveband. For instance, for the waveband of 50 km – 100 km, Local DA starts the 

localization when the distance d is greater than 50 km. The decorrelation coefficient r(l,i,j) for the lth waveband and c(i,j) is 

calculated according to 220 

2

min

min

( )
8

( )

min

max

( , , ) 1.0,  <= ( ) 

( , , ) ,  > ( )

( , , ) 0.0,  > ( )

r

d d l

d l

r l i j d d l

r l i j e d d l

r l i j d d l



 
 
 


















 ,                                                                          (13) 
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where dmin(l) and dmax(l) are the lower and upper bounds of the lth waveband, respectively, and dr(l) is the localization radius 

for the lth waveband. Note that how to optimally localize the background error covariance is still an open question; rather, 

Eq. (13) is simply a preliminary implementation of multiscale localization for Local DA. 

In addition to localization in the model-variable space, Local DA can perform localization in the observation-variable space, 225 

similar to the LETKF. Observation-space localization is conducted by enlarging the observation error as the distance 

between variables increases. The localization coefficient in the observation space is calculated according to the second 

formula of Eq. (13), but d-dmin(l) and dmin(l) are replaced by d and do, respectively, where do is the localization radius that 

varies among different observation types. In practice, it is possible for Local DA to perform localization in both the model 

space and the observation space. Although performing localization in both spaces may result in a double penalty, it would be 230 

interesting to note the performance of the double-space localization approach, which has not yet been investigated. The 

related experiments and results are given in the following sections. 

2.3 The hybrid analysis 

The current version of Local DA calculates a simple “static” correlation by using the second formula of Eq. (13), except that 

d-dmin(l) and dmin(l) are replaced by d and ds, respectively, where ds is a fixed localization radius. For the ith and jth variables, 235 

the hybrid c(i,j) in Coo is computed according to 

2

b 8
b b

1

cov ( ), ( )
( , ) ( , , ) (1 )

( ) ( )

s

dl l
N

d

l

i j
c i j r l i j e

s i s j
 





 
 
 

  
  


X X

,                                              (14) 

where γ is the weight of the dynamic correlation. The hybrid c(i,j) in Cmo is also computed according to Eq. (14), but 
b
( )

l
iX  

and ( )s i  store the variables at a model grid point. In the case where the ith and jth variables are different types of variables, 

such as a wind component variable and a temperature variable, the second term on the right-hand side of Eq. (14) is forced to 240 

zero. In other words, the current version of Local DA suppresses the cross-variable covariance when the hybrid analysis is 

performed. To prevent s(i) and s(j) in Eq. (14) from being forced to zero (as often occurs for convective-related variables 

such as the mixing ratios of rainwater, snow and graupel), we add small, random perturbations with an STD of 1×10
-7

 to the 

variables for which the STDs are smaller than 1×10
-7

. 

2.4 The workflow of Local DA 245 

Here, we present a step-by-step description of how the hybrid and multiscale analyses described in the previous sections are 

performed for all the model variables. Note that Local DA can perform the analysis in a much faster way; we will discuss 

this method later. 

1) Apply a bandpass filter to generate filtered samples on Nb scales from 
b
X . 
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2) Store the initial condition, filtered perturbation samples, and observations in separate arrays denoted x
f
, 

b
X , and y

o
, 250 

respectively. 

3) For each model variable to be updated, search its ambient observations according to their scales and store these 

observations in array 
o

y ; for example, search for sounding data within 300 km while searching for radar data within 15 km. 

In addition, according to the observation operators of 
o

y , store the observation-associated model variables that have been 

projected onto observation-associated grids or columns into arrays denoted 
f

x and 
b
X , respectively. 255 

4) Calculate the vector d in Eq. (1) with 
o

y  and 
f

x .. 

5) Use 
b
X to generate So, Coo, Sm, and Cmo according to Eqs. (11), (13), and (14). 

6) Compute   for Coo by using Eq. (4). 

7) Compute 
o o oo
=X S C . 

8) Calculate 
0.5

o o


Y R H X  by using Eq. (9). 260 

9) Use the CG method to solve 
T T 0.5

o
( )


 I Y Y v Y R d and obtain vo. 

10) Compute the model state increment xm according to Eq. (2). 

Considering that Sm, Cmo and xm can be applied to all variables influenced by 
o

y , it is not necessary to compute Coo for each 

model variable. In the current version of Local DA, Sm, Cmo and xm may contain all the model variables at a model grid 

point, in one column, or in 5 neighboring columns (N-column analysis). For N-column analysis, 
o

y  contains ambient 265 

observations at all vertical levels. Due to using the same Coo for neighboring columns, the 5-column analysis is slightly 

rasterized (not shown), leading to slightly larger errors than the 1-column analysis. However, the extent of this degeneration 

is acceptable. On the other hand, the wall clock time of the 5-column analysis is close to 1/5 of that of the 1-column analysis. 

In this study, all Local DA results are generated using 5-column analysis. A similar N-column analysis approach is the 

weighted interpolation technique in the LETKF (Yang et al., 2009), which performs the analysis, for example, every 3 grid 270 

points in both the zonal direction and the meridional direction. 

3 Experimental design 

3.1 The simulated typhoon 

The third typhoon of the 2021 western Pacific season, In-Fa, is selected for the OSSEs performed herein. The true 

simulation, starting at 00 UTC on 25 July 2021 and ending at 18 UTC on 26 July 2021, simulates the stage in which In-Fa 275 

approaches China. The Weather Research and Forecast (WRF, Skamarock et al., 2018) model V3.9.1 is used for the 
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simulation. The central latitude and longitude of the forecast domain are 30.5° and 122.0°, respectively. The size of the 

domain is 201 grids ×201 grids×34 levels with a horizontal resolution of 5 km and a model top pressure of 50 hPa. The 

physical parameterization schemes are as follows. The WRF single-moment 6-class ice scheme (Hong and Lim, 2006) is 

adopted for microphysical processes. For longwave and shortwave radiation, the rapid radiative transfer model (RRTM) 280 

scheme (Mlawer et al., 1997) and Dudhia scheme (Dudhia, 1989), respectively, are used. The Yonsei University (YSU) 

scheme (Hong et al., 2006) is employed for the planetary boundary layer simulation. For the cumulus parameterization, the 

Kain–Fritsch (new Eta) scheme (Kain, 2004) is enabled. The unified Noah land surface model is used to simulate the land 

surface. We adopt the global forecast system (GFS) analysis at 00 UTC on 25 July 2021 as the initial condition of the true 

simulation. 285 

3.2 The multiscale observation network 

The multiscale observation network (Figure 1) comprises simulated sounding, wind profiler, PWV, and radar data. 

Soundings are available at 00 UTC and 12 UTC on 26 July 2021, whereas the other types of observations are available 

hourly on 26 July 2021. 

For each sounding, we simply extract the perturbed model variables, u, v, θ, and qv, every 2 model levels as the observations. 290 

The simulated soundings also include records of the perturbed surface pressure, ps. The sounding perturbations follow a 

Gaussian distribution with zero mean. The perturbation STDs are 0.5 m s
-1

, 5 m s
-1

, 0.5 K, 5×10
-5

 kg kg
-1

, and 10 Pa for u, v, 

θ, qv, and ps, respectively. To better reflect the reality, no simulated soundings are available over the ocean, and the 

horizontal resolution of each sounding is 100 km. 

The simulated wind profiler provides data on horizontal wind components, u and v, at all model levels. The perturbations 295 

added to the wind profiler data follow a Gaussian distribution with zero mean and an STD of 0.5 m s
-1

. The wind profilers, 

the data from which have a horizontal resolution of 50 km, provide data only on land. 

The PWV observations are computed according to 

2

v
1

1 p

p
PWV q dp

g
  ,                                                                                             (15) 

where g is the gravitational constant of acceleration and p1 and p2 represent the bottom and top of a model column, 300 

respectively. Perturbations with zero mean and an STD of 0.5 kg m
-2

 are added to the PWV observations. Because the PWV 

is observed by satellites, this type of observation is available for the whole forecast domain, and the horizontal observation 

interval is 50 km in both the x and the y directions. 

The radar data to be assimilated are radial velocity and reflectivity measurements. We adopt Eq. (3) of Xiao and Sun (2007) 

to compute the radial velocity, but we ignore the terminal velocity in the OSSE. For reflectivity, the operator proposed by 305 

Gao and Stensrud (2012) is employed. Three radars located approximately at Shanghai (121.48° E, 31.23°N), Hangzhou 

(120.16° E, 30.28°N), and Ningbo (121.55° E, 29.88°N) are simulated with a maximum observation range of 230 km. The 
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simulated radars work on the volume coverage pattern (VCP) 11 mode, which has 14 elevation levels from 0.5° to 19.5°. 

Radar data are created on volume-scan elevations, but they are on model grids in the horizontal direction, as shown in Xue et 

al. (2006). The radial velocity and reflectivity observation errors are 1.0 m s
-1

 and 2.0 dBZ, respectively. The horizontal 310 

resolution of the radar data is identical to the model grid spacing. 

In total, 2795 simulated soundings, 400 PWV data points, 5332 wind profiler observations, and 391618 radar observations 

(including radial velocity and reflectivity) are utilized in this study. 

3.3 The DA experiments 

In this study, we design several experiments for Local DA to investigate its performance in single deterministic analyses and 315 

to examine the impacts of the hybrid and multiscale analysis approaches. We also run several cycling DA experiments for 

Local DA, but the results of these cycling experiments are used only for reference because the current version of Local DA 

does not update the ensemble perturbations and does not seriously consider the cross-variable balance during/after the 

analysis, which are important for cycling DA experiments (e.g., Zeng et al., 2021). To perform the hybrid analysis, it is 

necessary to generate the ensemble first. Therefore, in this subsection, we first describe the ensemble and then introduce the 320 

experimental design. 

3.3.1 The time-lagged ensemble 

The time-lagged approach (e.g., Branković et al., 1990) is employed to generate the ensemble perturbations, which are 

created by using deterministic forecasts with different initial times and varying GFS data. For example, the first sample at 00 

UTC on 26 July 2021 stores the difference between two deterministic forecasts initialized at 06 UTC on 25 July 2021 and 12 325 

UTC on 25 July 2021. To distinguish these forecasts from the forecasts of the DA experiments, the forecasts used to produce 

ensemble members are referred to as sample forecasts. The sample forecasts used in this study are shown in Figure 2. Note 

that some sample forecasts are initialized by the 3-h or 6-h GFS forecast data (highlighted by the thick tick marks in Figure 

2). Two ensembles differing in size are created: the large ensemble has 36 members and combines 9 sample forecasts 

according to 
9!

(9, 2)=
2!7!

C , while the small ensemble excludes sample forecasts initialized at 03 UTC and 06 UTC on 25 330 

July 2021 and thus has 15 members (
6!

(6, 2)
2!4!

C  ). 

Compared with the root mean square error (RMSE) of the initial condition, the spreads of both ensembles are deficient, 

particularly at lower levels (Figure 3) for u, v, w, θ, and qv. The 36-member ensemble has a larger spread than the 15-

member ensemble, but the difference between the two is not distinct even though the ensemble size of the large ensemble is 

twice that of the small ensemble. This result implies that many members in the ensembles are similar, leading to a small 335 

ensemble spread. Therefore, we emphasize that the aforementioned time-lagged ensemble is only valid for the purpose of the 
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deterministic analysis in this study. For a general ensemble-based algorithm, let alone for the cycling DA experiments, the 

above ensemble may not be good enough. 

3.3.2 The DA configurations 

Two sets of experiments are designed: one for the single deterministic analysis at 00 UTC on 26 July 2021 and one for the 340 

cycling analysis from 00 UTC to 18 UTC on 26 July 2021 with a cycling interval of 6 h. For the single deterministic 

analysis, we first study the influences of the hybrid covariance and multiscale localization on Local DA. Experiment 

LDA_ctrl is conducted with only the dynamic covariance and fixed localization, whereas LDA_HBC_MSL is the 

experiment using the hybrid covariance (HBC) and multiscale localization (MSL) simultaneously, and LDA_HBC disables 

multiscale localization. Second, we investigate the impacts of the localization space. Compared with LDA_HBC_MSL, 345 

experiment LDA_DS adopts double-space localization (DS). LDA_OS uses observation-space localization (OS) and disables 

the static covariance to exclude the impact of horizontal model-space localization. Moreover, due to the use of 5-column 

analysis in LDA_OS, the observation-space localization is valid only in the horizontal direction, while in the vertical 

direction, the localization is in the model-variable space. 

Given that LDA_OS disables the static covariance and performs observation-space localization, we seek to evaluate whether 350 

LDA_OS produces a deterministic analysis similar to or close to that yielded by the LETKF. Therefore, a LETKF test, called 

LETKF_OS, is run for this purpose. Because Local DA approximately follows the LETKF procedure, it is not difficult to 

implement the LETKF for a deterministic analysis within the Local DA framework. 

LDA_HBC_MSL_cyc, LDA_ctrl_cyc, and LDA_DS_cyc are the cycling DA experiments that use the same configurations 

of their counterparts named without the suffix “_cyc”. These experiments perform cycling DA at 00 UTC, 06 UTC, 12 UTC, 355 

and 18 UTC on 26 July 2021. A shorter cycling interval has been tested (not shown), and the resulting forecast errors of most 

variables during the cycling are large, as expected. The shock to the model is simply a cause, as will be shown in Sect. 4. 

Again, we emphasize that the cycling DA experiments of Local DA are just for reference. 

The aforementioned experiments are conducted with the 15-member ensemble. Thus, to examine the sensitivity of Local DA 

to the ensemble size, we rerun LDA_HBC_MSL, LDA_OS, and LETKF_OS with the 36-member ensemble, and the rerun 360 

experiments are referred to as LDA_HBC_MSL_36m, LDA_OS_36m, and LETKF_OS_36m, respectively. In addition, 

LDA_DS is rerun with only the static correlation matrix to discern the contribution of static information to Local DA; the 

experiment is named LDA_DS_noENS. For convenience, all experiments are listed in Table 1, where “M” and “O” denote 

the model-variable and observation-variable spaces, respectively. 

The model variables to be updated are the three wind components (u, v, w), potential temperature (θ), water vapor mixing 365 

ratio (qv), dry-air mass in column (mu), and hydrometeor mixing ratios (qc, qr, qi, qs, and qg). The DA-related parameters are 

listed as follows. The fixed localization radius is 200 km. Multiscale localization uses five bands of samples: <20 km, 20 km 

– 50 km, 50 km – 100 km, 100 km – 200 km, and >200 km; the localization of these bands is enabled as the distance reaches 

0 km, 20 km, 50 km, 100 km, and 200 km, respectively, with corresponding radii of 20 km, 50 km, 100 km, 200 km, and 500 
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km. For observation-space localization, the horizontal radii are 360 km, 150 km, 120 km, and 15 km for sounding, wind 370 

profiler, PWV, and radar data, respectively. The vertical radius for all observations is 5 km. The vertical location of a PWV 

observation is assumed to be 4 km above sea level, which is used in LETKF_OS. For Local DA, we specifically assign fixed 

localization radii of 1000 km and 20 km for the model variable ps and the reflectivity-related variables, respectively. These 

values are tuned for the case in which Typhoon In-Fa made landfall in this study. The other DA parameters are 0.5 for the 

hybrid parameter γ and 1.5 for covariance inflation; both are empirically assigned. 375 

4 Results and discussion 

4.1 The convergence of minimization 

We examine the minimization convergence by using the data extracted from LDA_HBC_MSL. Figure 4 shows the number 

of iterations and the ratio of the final value of the cost function (Jfinal) to the initial value (Jinitial). Fewer than 100 iterations 

indicates that the tolerance ε
2
 reaches 1×10

-6
 within 100 steps. If the minimization does not converge within 100 steps, the 380 

CG iteration is stopped by the program. The number of iterations is large near the center of the forecast domain but decreases 

rapidly outward. According to the distribution of observations (Figure 1), the results (Figure 4a) indicate that the 

minimization converges more slowly as the number of observations to be assimilated increases. 

Although the minimization fails to converge within 100 steps in the area where the observation density is high, the cost 

function is still reduced by 70% or 80% (Figure 4b). In contrast, near the northeastern and southeastern corners of the 385 

domain, where the minimization converges within 10 steps, the final value of the cost function is larger than 70% of its 

initial value. However, in those areas of the domain, the initial cost function is small, implying no need for a large correction. 

The results also indicate that no serious discontinuity occurs in LDA_HBC_MSL, which is desired. Similar to the LETKF, 

the use of slightly different Coo between neighboring columns does not yield remarkably different analyses. 

Further investigation (for data within the yellow rectangle plotted in Figure 4a) indicates that approximately 25% 390 

minimizations fail to converge within 100 steps (Figure 5a), all associated with the application of radar data. Therefore, we 

rerun LDA_HBC_MSL using only radar data and observe that only 4% of all minimizations require more than 100 steps to 

converge. In the case of setting the maximum number of iterations to 500 for LDA_HBC_MSL, all minimizations converge 

within 300 iteration steps. The results also show that assimilating only radar data produces a smaller ratio of Jfinal to Jinitial 

than the case using all observations (Figure 5b). Therefore, we speculate that it may be difficult for the current version of 395 

Local DA to converge within a few iteration steps when multiple types of observations are ingested. Nevertheless, despite 

this difficulty, Local DA reduces the cost function by more than 70% within 100 iteration steps in most cases (Figure 5b). 

Further suppressing the error may require a better background error covariance, which we plan to seek in future work. 
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4.2 The DA performance 

The RMSE is used to evaluate the analysis quality. For the horizontal wind components, all experiments using the 15-400 

member ensemble produce an analysis error smaller than the background error from the lower level to the upper level 

(Figure 6a, b). Moreover, the RMSEs of the experiments using the hybrid method (LDA_HBC_MSL, LDA_HBC, and 

LDA_DS) are consistently smaller than those of the experiments without the static covariance (LDA_ctrl, LDA_OS, and 

LETKF_OS). The RMSE profiles of LDA_HBC_MSL and LDA_HBC are similar, implying that the hybrid method plays a 

more important role than multiscale localization. Huang et al. (2019) has demonstrated that the high-rank ensemble 405 

transform Kalman filter is insensitive to the localization length scale, thus the high-rank background correlation matrix, Coo, 

is likely another cause of the relatively small impact of the multiscale localization. Using double-space localization 

(LDA_DS) further decreases the RMSE of LDA_HBC_MSL at approximately all levels, which is an indicator of using a 

poor ensemble in the analysis because performing localization in the model-variable space alone is insufficient to suppress 

spurious correlations. These results highlight the necessity of using the hybrid covariance when the ensemble is poor. Similar 410 

results can be observed for hydrometeor variables (Figure 6f-i). Although multiscale localization does not produce distinctly 

different wind components between LDA_HBC_MSL and LDA_HBC, it does result in a smaller RMSE for the hydrometeor 

variables in LDA_HBC_MSL. Thus, multiscale localization is beneficial for the analysis performance. For other variables 

(w, θ, and qv), LDA_DS produces consistently smaller errors than the other experiments, while the differences between the 

other experiments are not as distinct. In most cases, LDA_ctrl exhibits the worst performance. Using a fixed radius of 200 415 

km and a poor ensemble are the main causes of the poor performance of LDA_ctrl. 

To qualitatively assess the analysis error, we compute the difference in total energy (DTE, Meng and Zhang, 2007). 

LDA_ctrl (Figure 7 d-f) decreases the large background errors (Figure 7 a-c) at 850 hPa and 500 hPa but generates many 

spurious increments over the ocean, increasing the error there; this problem is more pronounced at 200 hPa. Accordingly, 

LDA_ctrl fails to substantially reduce the error for the entire domain. Because the spurious increment is a result of using a 420 

poor ensemble, utilizing the hybrid method that suppresses the impact of the ensemble yields smaller errors 

(LDA_HBC_MSL, Figure 7 g-i) from the lower to the upper levels. The spurious increment is further reduced in LDA_DS, 

especially at 850 hPa and 500 hPa, corresponding to the smallest analysis error in Figure 6. For LDA_OS and LETKF_OS, 

we consider mainly whether their analyses are similar. According to the results shown in Figure 8, the two experiments 

produce similar analyses, but the Local DA analysis is noisier, which implies that the LETKF is better than Local DA as a 425 

stand-alone ensemble-based algorithm. 

For the perturbation of the dry-air mass in column (mu), although LDA_ctrl corrects the overestimate of the central pressure, 

it severely underestimates mu in the typhoon center (Figure 9b), leading to a larger RMSE after DA. In addition, the analysis 

of LDA_ctrl is noisy, which is attributable to the unreliable error correlation estimated by the ensemble because 

LDA_HBC_MSL and LDA_DS (Figure 9c, d), which weaken the impact of the ensemble, generate smaller analysis errors 430 

and less noise. Many spurious increments are still observed in LDA_HBC_MSL and LDA_DS, which may require a better 
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covariance or a static constraint to resolve. The analysis errors of mu in LDA_OS and LETKF_OS (Figure 9e, f) do not 

differ substantially, as expected. In general, Local DA with the hybrid method and multiscale localization is able to reduce 

the surface pressure error, but the results are not good enough in terms of the spurious increment. 

Figure 10 shows the evolutions of the forecast error for the aforementioned experiments. All the DA experiments produce 435 

smaller forecast errors than the experiment without DA (BAK) throughout the 18-h forecast in terms of the observation 

variables. For nearly all investigated variables, the experiments using the hybrid covariance produce smaller errors than the 

experiments using only the ensemble-based covariance. This finding is consistent with the results in Figure 6. LDA_DS 

often yields the smallest forecast errors for the wind-related variables (radial velocity and wind profiler observations) 

because its analysis errors for u and v are the smallest. Despite the small forecast errors yielded by all the DA experiments, 440 

the shock to the model cannot be ignored, particularly for Z and ps (Figure 10b, f). For this issue, the noisy and imbalanced 

mu analysis is one contributor; the other contributor is likely the lack of a cross-variable-balance adjustment after DA (e.g., 

Zeng et al., 2021). The spin-up time for the shock is approximately 3 h; thus, the current version of Local DA cannot 

perform hourly cycling DA. Although the forecast results are encouraging, we emphasize that these results are obtained 

assuming a perfect model; hence, we plan to conduct experiments with an imperfect model or using real observations in 445 

future work to further assess the capabilities of Local DA. 

4.2.1 The sensitivity to the ensemble size 

Since the 15-member ensemble has large sampling errors that degrade the Local DA analysis quality, in this subsection, we 

investigate whether the 36-member ensemble is helpful for reducing the analysis error. Specifically, LDA_HBC_MSL, 

LDA_OS, and LETKF_OS are rerun by using the 36-member ensemble. Figure 11 shows comparisons between the 450 

experiments using the 15-member and 36-member ensembles. For u, v, qc, qr, and qi (Figure 11a, b, f, g, and h), the positive 

impact of using a large-size ensemble is notable. The reduction in the analysis error is larger in LDA_OS_36m and 

LETKF_OS_36m than in LDA_HBC_MSL_36m; a straightforward reason for this distinction is that the impact of the 

ensemble is reduced by 50% in LDA_HBC_MSL_36m due to the use of the hybrid covariance. Additionally, even though 

the analysis errors of the aforementioned variables are substantially reduced in LDA_OS_36m and LETKF_OS_36m, the 455 

errors are still larger than or comparable to those in LDA_HBC_MSL, further indicating the importance of utilizing the 

hybrid covariance. For the other variables, the impacts of using the 36-member ensemble are relatively small and 

inconsistent. 

The forecast results shown in Figure 12 are consistent with the analysis results in Figure 11; namely, the errors in 

LDA_HBC_MSL_36m, LDA_OS_36m, and LETKF_OS_36m are smaller than their counterparts using the 15-member 460 

ensemble for all the investigated variables. For Vr, Z, u, v, and ps, the forecast errors of LDA_HBC_MSL_36m are often the 

smallest (Figure 12). Although the analysis error difference between LDA_HBC_MSL_36m and LDA_HBC_MSL is not 

large, the difference becomes distinct by the end of the 18-h forecast. Moreover, the shock to the model is alleviated in 
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LDA_HBC_MSL_36m in terms of Z and ps, indicating that the large sampling error is a contributor to the imbalanced 

analysis. In general, Local DA can utilize a large ensemble size to improve the analysis. 465 

4.2.2 The impact of static covariance 

The difference between LDA_ctrl and LDA_HBC highlights the importance of blending the static covariance, even though 

the static covariance is composed only of distance-correlation information. In this subsection, we assess the performance of 

Local DA in the case of using the static covariance only. To achieve this goal, we rerun LDA_DS with the weight of static 

covariance being 1.0 (LDA_DS_noENS). For brevity, only the forecast results are shown in Figure 13, revealing that 470 

LDA_DS yields smaller analysis errors for all the evaluated variables than does LDA_DS_noENS; again, this finding 

highlights the importance of hybrid DA. However, the main contributor to the small analysis error is the static covariance. 

Without the ensemble-based covariance, the analysis error of LDA_DS_noENS is not much larger than that of LDA_DS. 

For PWV and ps, the forecast errors of both experiments are much closer; this result, on the other hand, demonstrates the 

ability of Local DA to run without the ensemble. Nevertheless, considering the poor quality of the time-lagged ensemble 475 

used in this study, the results shown in Figure 13 do not represent the superiority of the static covariance over the dynamic 

covariance. 

4.2.3 The cycling DA performance 

In this subsection, the cycling DA performances are evaluated. For the sake of a fair comparison, the LETKF is not involved 

because we conduct only the single deterministic analysis and forecast. Figure 14 shows that the forecast errors at 12 UTC 480 

and 18 UTC in the cycling DA experiments are smaller than those in the forecasts with a single deterministic analysis, 

indicating that Local DA can be used for cycling DA. LDA_HBC_MSL_cyc and LDA_DS_cyc produce consistently smaller 

forecast errors than LDA_ctrl_cyc for most of the observation variables, except for the radar observations at 18 UTC; this 

outcome is expected because the ensemble is not updated, so the pure ensemble-based Local DA analysis cannot produce 

errors comparable to those of the hybrid approach through cycling DA. Given the poor ensemble used in this study, we 485 

expect that using a well-sampled and updated ensemble would yield a lower forecast error during cycling DA. 

4.3 The computational cost and efficiency 

The computational cost and efficiency of Local DA are discussed in this subsection. All tests are conducted on a 36-core 

workstation with an Intel Xeon Gold 6139 CPU (the maximum frequency is set to 2.30 GHz) and 48 gigabytes of available 

memory. Heretofore, we have implemented the parallel Local DA with OpenMP, which is not suitable for large-scale 490 

parallel computing; however, for the purpose of this study, OpenMP is sufficient. The parallel efficiency is examined first. 

LDA_HBC_MSL is selected as an example. Figure 15 shows the wall clock time as a function of the number of cores. The 

wall clock time covers Local DA steps 3) through 9) (as described in Sect. 2d). As expected, the wall clock time is reduced 

by approximately 50% upon doubling the number of cores, which is valid if the number of cores is not greater than 16. In 
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contrast, increasing the number of cores from 16 to 32 does not shorten the wall clock time; this is attributable to the fact that 495 

OpenMP is suitable only when the number of processors is small (<16) (Hoeflinger et al., 2001). Given that no messages 

need to be passed between the cores for steps 3) through 9), the parallel efficiency of Local DA is likely insensitive to the 

number of cores. In general, the results demonstrate that Local DA can be highly parallelized. 

In addition to its parallelization, the computational speed of Local DA is also investigated. LDA_HBC_MSL takes 225 s to 

complete all local analyses when 16 cores are used. Note that the number of horizontal grid points within the forecast 500 

domain is 40000, and more than 200000 observations are assimilated. Given that the processors work at a frequency of 2.30 

GHz, the computational speed of Local DA is acceptable. On average, nearly 70% of the computational time is used to 

compute Coo and Cmo; for the minimization using the CG method, the corresponding percentage is approximately 18%. 

We also assess the memory consumption of Local DA. To complete Local DA steps 3) through 9), LDA_HBC_MSL uses 

approximately 4 gigabytes when 16 cores are engaged to store Coo and the associated matrices. By contrast, the LETKF uses 505 

only hundreds of megabytes. For each 5-column analysis, the Coo size approximately varies from 2000×2000 to 4500×4500, 

which is affordable. However, for a much larger size, such as 9000×9000, OpenMP is insufficient; under these 

circumstances, the MPI-OpenMP hybrid scheme is likely a viable solution for both the computational speed and the memory 

consumption, which is what we are working on. In general, the total computational cost of Local DA is high, but the cost of 

each local analysis is affordable. With proper data thinning and parallelization, it is possible for Local DA to be used in the 510 

assimilation of real observations. 

5 Summary and conclusions 

This study proposed a local data assimilation scheme (Local DA) that can utilize the hybrid covariance and multiscale 

localization simultaneously. Local DA explicitly computes a local background error correlation matrix and uses the 

correlation matrix to construct a local error sample matrix. After localization, the error sample matrix allows Local DA to 515 

adopt the conjugate gradient (CG) method to solve the cost function. The constructed matrix also allows Local DA to 

perform analyses by using only static correlation information. Local DA is assessed assuming a perfect model and by using 

simulated multiscale observations of a typhoon case. We examine the performance of Local DA in both a single 

deterministic forecast and cycling DA. Only deterministic analyses and forecasts are considered. Several conclusions can be 

drawn from the results of the DA experiments: 520 

i) Applying the CG method independently for each column group does not result in a serious discontinuity in the Local DA 

analysis; 

ii) Explicitly computing the background correlation matrix projected onto observation-associated grids/columns is 

computationally affordable if the observations have been properly thinned; 

iii) Local DA can effectively utilize the hybrid covariance to produce better analysis with a small ensemble size compared 525 

with an analysis using ensemble error information only; 
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iv) In the case of using a poor ensemble, the hybrid covariance plays a more important role than does multiscale localization; 

in such a scenario, performing localization in both the model-variable space and the observation-variable space can further 

decrease the analysis error compared with Local DA featuring only localization of the model-variable space; 

v) Local DA requires a large amount of memory, but its computational efficiency is acceptable. 530 

As the first study to present Local DA, this paper focuses on describing its basic formulation and algorithm. Future efforts to 

enhance the algorithm will include developing an MPI-OpenMP hybrid parallel scheme, a static covariance scheme that 

objectively determines the error variance and scales, and a better multiscale localization scheme. Furthermore, the current 

version of Local DA introduces a strong shock to the model, which limits the applicability of Local DA in cycling DA. 

Therefore, we plan to add a cross-variable balance procedure after Local DA to improve the cycling DA performance. 535 

Moreover, many parameters of Local DA have yet to be tested; hence, the sensitivity of Local DA to each of these 

parameters will also be discussed in a future investigation. 
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Appendix 

This section provides an example of the procedure used to thin the observations (as mentioned in Sect. 2b). The observations 

are thinned horizontally, whereas thinning does not occur in the vertical direction. First, we set several rings with different 

radii at the center point or column of the model variables to be updated. For the 5-column analysis, the center coordinates of 555 

the variable-radius rings are the mean latitude and mean longitude of the 5 columns. The radius of the outer ring is the 

observation search radius mentioned in Sect. 2d (e.g., 300 km for sounding data and 15 km for radar data). From small to 

large, the radii of the rings are denoted rr1, rr2,..., rrNr, where Nr is the number of rings. We successively search the 

observations from the inner ring to the outer ring. Within the smallest ring, all ambient observations are selected; this is 

equivalent to no thinning. For the observations located between two rings (between rri and rri-1), we select one observation 560 

for each quadrant of the space between the two rings. There are four quadrants: the upper-right, lower-right, lower-left and 

upper-left quadrants (numbered I, II, III, and IV, respectively). A schematic plot is shown in Figure A1. If no observation is 

available in the smallest ring, the second ring is treated as the first ring. 

Because no thinning occurs in the smallest ring, in a 1-column analysis, we still utilize all observations throughout the 

forecast domain when Local DA is conducted at a single point. In 5-column analysis, the thinning approach discards some 565 

observations and slightly increases the analysis error relative to the 1-column analysis. Our early test (not shown) indicates 

that Local DA becomes very time-consuming when the thinning process is disabled, as expected. Moreover, the resulting 

analysis error increases because the assumption of observation errors being uncorrelated is not valid, which is not desired.  
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Tables 

Table 1 DA experiment configurations. 

Experiment names DA 

scheme 

Static 

covariance 

Dynamic 

covariance 

Localization 

space 

Multiscale 

localization 

Cycling 

DA 

Ensemble 

size 

LDA_ctrl Local DA No Yes M No No 15 

LDA_HBC_MSL Local DA Yes Yes M Yes No 15 

LDA_HBC Local DA Yes Yes M No No 15 

LDA_DS Local DA Yes Yes M+O Yes No 15 

LDA_OS Local DA No Yes O Yes No 15 

LETKF_OS LETKF No Yes O Yes No 15 

LDA_HBC_MSL_cyc Local DA Yes Yes M Yes Yes 15 

LDA_ctrl_cyc Local DA No Yes M No Yes 15 

LDA_DS_cyc Local DA Yes Yes M+O Yes No 15 

LDA_HBC_MSL_36m Local DA Yes Yes M Yes Yes 36 

LDA_OS_36m Local DA No Yes O Yes No 36 

LETKF_OS_36m Local DA No Yes O Yes No 36 

LDA_DS_noENS Local DA Yes No M+O Yes No 15 
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Figures 

 
Figure 1 The distribution of simulated observations, where the black rings denote the maximum observation ranges of radars. 

 

 680 

https://doi.org/10.5194/gmd-2022-112
Preprint. Discussion started: 7 June 2022
c© Author(s) 2022. CC BY 4.0 License.



25 

 

 

Figure 2 A flow chart of the time-lagged ensemble generation, where the colored arrows represent the sample forecasts used by the 

36-member ensemble. The 15-member ensemble excludes the forecasts shown with orange arrows. The sample forecasts initialized 

by using the GFS forecast data are highlighted with orange tick marks. The ensembles are available at 00 UTC, 06 UTC, 12 UTC, 685 
and 18 UTC on 26 July 2021. 
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Figure 3 The ensemble spread profiles for the 15-member ensemble (orange lines) and the 36-member ensemble (dashed blue 690 
lines), where the model levels of some plots are truncated to highlight the differences. “BAK” (black lines) denotes the RMSE of 

the initial condition without DA. 
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 695 

Figure 4 The spatial distributions of (a) the number of iterations and (b) the ratio of the final value of the cost function to the 

initial value. 
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Figure 5 The boxplots of (a) ε2 and (b) the ratio of the final J to the initial J in the dahsed rectangle area shown in Figure 1, where 700 
“ALL” denotes the DA using all observations and “RADAR” corresponds to the DA using radar data only. The upper and lower 

bounds of the boxes are the 75th and 25th percentiles, respectively. The middle line indicates the median. 
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Figure 6 The RMSE analysis profiles for experiments LDA_HBC_MSL (red lines), LDA_ctrl (blue lines), LDA_HBC (thin yellow 

lines), LDA_DS (dashed green lines), LDA_OS (dot brown lines), and LETKF_OS (cyan lines), where the model levels of some 

plots are truncated to highlight the main differences among the experiments. “BAK” (black lines) denotes the initial condition 710 
without DA. 
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 715 

Figure 7 The DTE at 850 hPa (left column), 500 hPa (middle column), and 200 hPa (right column) for (a-c) BAK, (d-f) LDA_ctrl, 

(g-i) LDA_HBC_MSL, and (j-l) LDA_DS. 
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Figure 8 The same as in Figure 7 but for (a-c) LDA_OS and (d-f) LETKF_OS. 

 720 

 

 

https://doi.org/10.5194/gmd-2022-112
Preprint. Discussion started: 7 June 2022
c© Author(s) 2022. CC BY 4.0 License.



32 

 

 

 725 

Figure 9 The difference in the dry-air mass in column between the truth (contours) and analysis (shading) for (a) BAK, (b) 

LDA_ctrl, (c) LDA_HBC_MSL, (d) LDA_DS, (e) LDA_OS, and (f) LETKF_OS. 

 

 

 730 
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Figure 10 The evolutions of the forecast RMSEs in terms of the (a) radial velocity, (b) reflectivity, (c) u component (wind profiler), 

(d) v component (wind profiler), (e) PWV, and (f) ps for BAK (gray lines), LDA_HBC_MSL (thin magenta lines), LDA_ctrl 735 
(dashed green lines), LDA_HBC (dot red lines), LDA_DS (thick orange lines), LDA_OS (cyan lines), and LETKF_OS (dashed 

black lines). 
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Figure 11 The same as in Figure 6 but for LDA_HBC_MSL_36m (blue lines), LDA_OS_36m (orange lines), and LETKF_OS_36m 740 
(dot green lines). The results of BAK, LDA_HBC_MSL, LDA_OS, and LETKF_OS are plotted for comparison. 
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  745 
Figure 12 The same as in Figure 10 but for LDA_HBC_MSL_36m (thick orange lines), LDA_OS_36m (dashed red lines), and 

LETKF_OS_36m (thin green lines). The results of BAK, LDA_HBC_MSL, LDA_OS, and LETKF_OS are plotted for reference. 
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 750 

Figure 13 The same as in Figure 10 but to compare LDA_DS_noENS (red lines) and LDA_DS (blue lines). The result of BAK is 

plotted for reference. 
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Figure 14 The evolutions of the forecast RMSE in terms of the (a) radial velocity, (b) reflectivity, (c) u component (wind profiler), 755 
(d) v component (wind profiler), (e) PWV, and (f) ps for LDA_ctrl_cyc (blue), LDA_HBC_MSL_cyc (magenta), and LDA_DS_cyc 

(green). The forecasts of LDA_ctrl, LDA_HBC_MSL, and LDA_DS are plotted for reference. 
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Figure 15 The wall clock time as a function of the number of cores used in the parallel test. 760 
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Figure A1 A schematic of the observation searching approach used in Local DA, where stars represent the selected observations 

near the grid point (dark solid dot) to be analyzed. 765 
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