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Abstract. Integrating the hybrid and multiscale analyses and the parallel computation is necessary for current data 

assimilation schemes. A local data assimilation method, Local DA, is introduced. The proposed designed to fulfill these 

needs. This algorithm aims to perform hybrid and multiscale analyses simultaneously yet independently for each follows the 

grid, vertical column or column group and aims to flexibly perform analyses with or without -independent framework of the 

local ensemble perturbations. To achieve these goals,transform Kalman filter (LETKF) and is more flexible in hybrid 10 

analysis than the LETKF. Local DA employs an error sample matrix is constructed by explicitly computing the 

localizedcomputed background error correlation matrix of model variables that are projected onto observation-associated 

grids (e.g., radar velocity) or mapped to observed grid points/columns (e.g., precipitable water vapor). This error sample. 

This matrix allows Local DA to apply the calculate static covariance with a preset correlation function. It also allows using 

the conjugate gradient (CG) method to solve the cost function and to performallows performing localization in the model-15 

variable space, the observation-variable space, or both spaces (double-space localization). To assess theThe Local DA 

performance, a typhoon case is evaluated with a simulated, and a multiscale observation network comprisingthat includes 

sounding, wind profiler, precipitable water vapor, and radar data is built; additionally, aobservations. In the presence of a 

small-size time-lagged ensemble is employed. The results show that experiments using the , Local DA can produce a small 

analysis error by combining multiscale hybrid covariance and double-space localization yield smaller analysis errors than 20 

experiments without the static covariance and experiments without double-space . The multiscale covariance is computed 

using error samples decomposed into several scales and independently assigning the localization. Moreover, the hybrid 

covariance plays a more important role than does localization when a poor time-lagged ensemble radius for each scale. 

Multiscale covariance is used.conducive to error reduction, especially at a small scale. The results further indicate that 

applying the CG method for each local analysis does not result in a discontinuity issue, and the. The wall clock time of Local 25 

DA implemented in parallel is halved as the number of cores doubles, indicating a reasonable parallel computational 

efficiency of Local DA. 
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1 Introduction 

Data assimilation (DA), which estimates the atmospheric state by ingesting information from model predictions, 

observations, and background error covariances, has been shown to beis crucial for the success of numerical weather 30 

prediction (Bonavita et al., 2017). Therefore, many previous studies on DA have focused primarily on how to utilize 

observations and how to estimate background error covariances (e.g., Huang et al., 2021; Wang et al., 2021; Lei et al., 2021; 

Zhang et al., 2009(e.g., Huang et al., 2021; Wang et al., 2021; Lei et al., 2021; Zhang et al., 2009; Brousseau et al., 2011, 

2012; Wang et al., 2013; Wang et al., 2012; Kalnay and Yang, 2008Wang et al., 2013a; Wang et al., 2012; Kalnay and Yang, 

2008; Buehner and Shlyaeva, 2015). At present, there are two prevailing approachesresearch orientations of DA: hybrid 35 

analysis, which concerns the background error covariance, and multiscale analysis, which often addresses the difference in 

observation scales. 

Hybrid analysis was originally proposed to combine the advantages of two kinds of DA methods, namely, stand-alone 

ensemble-based DA and stand-alone variational DA. The former uses short-term ensemble forecasts as error samples 

(dynamic samples) to estimate the error covariance (Evensen, 1994), while the latter uses the statistical information extracted 40 

from historical forecasts, such as the scale of correlation  extracted from the differences between monthly 12- and 24-h 

forecasts (e.g., the NMC method, Parrish and Derber, 1992). Using both dynamic and static error covariances leverages the 

advantages of flow-dependent error information and prevents the analysis from degenerating as a result of large sampling 

errors arising from a limited ensemble size (Wang et al., 2009; Etherton and Bishop, 2004). 

Many approaches are applied to conduct hybrid analyses. A widely used approach is to add an ensemble-associated control 45 

variable to a variational DA framework (Lorenc, 2003; Wang et al., 2008). An alternative is to explicitly combine the 

dynamic and static covariances (Hamill and Snyder, 2000). However, these two approaches are equivalent (Wang et al., 

2007). Another method is to average the analyses yielded by the ensemble Kalman filter (EnKF) and the variational method 

(Bonavita et al., 2017; Penny, 2014). Recently, a hybrid scheme based on the EnKF framework was developed (Lei et al., 

2021) that uses a large ensemble size (=800) to simulate the static error covariance. Nevertheless, given the variety of hybrid 50 

approaches available, how to conduct hybrid DA is still a matter of debate. In this study, a hybrid scheme is implemented 

following Hamill and Snyder (2000), though the proposed scheme differs in regard to the details. 

The multiscale DA aims to properly The hybrid analysis aims to utilize both the ensemble and static covariances to leverage 

the advantages of flow-dependent error information and prevents the analysis from degrading due to a limited ensemble size 

(Wang et al., 2009; Etherton and Bishop, 2004). A widely used hybrid approach is to add an ensemble-associated control 55 

variable to a variational DA framework (Lorenc, 2003; Wang et al., 2008). An alternative combines the ensemble and static 

covariances (Hamill and Snyder, 2000). These two approaches are equivalent (Wang et al., 2007). Another hybrid method 

averages the analyses yielded by the ensemble Kalman filter (EnKF) and the variational method (Bonavita et al., 2017; 

Penny, 2014). Recently, a hybrid scheme based on the EnKF framework was developed (Lei et al., 2021) that uses a large 

ensemble size (=800) to simulate the static error covariance. Nevertheless, given the variety of hybrid approaches available, 60 
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how to conduct hybrid DA is still a matter of debate. In this study, a hybrid scheme is implemented following Hamill and 95 

Snyder (2000), although the proposed scheme differs regarding the details. 

Multiscale DA is designed to utilize observations on a variety ofat different scales. A fundamental component of and 

performs multiscale DA is performing scale-dependent localization. in either the model or observation space. Localization is 

inevitable due to sampling errors (e.g., distant spurious correlations) in ensemble-based DA, including in hybrid DA (e.g., 

Huang et al., 2021; Wang et al., 2021)(e.g., Huang et al., 2021; Wang et al., 2021). There are two ways to localize the 100 

covariance, either explicitly or implicitly. The explicit multiscale DA often performs localization in observation space or 

model-observation space. The local ensemble transform Kalman filter (LETKF, Hunt et al., 2007) is the algorithm that 

performs localization in observation space. In model-observation space, the multiscale localization is often done 

sequentially. Varying the localization radius for observations according to the observation scale or density is a 

straightforward method; examples include the assimilation of synoptic-scale observations with a large localization radius and 105 

then performing radar DA with a small radius of influence (e.g., Zhang et al., 2009; Johnson et al., 2015)(e.g., Zhang et al., 

2009; Johnson et al., 2015). In comparison, the implicit methodAn alternative is done to perform multiscale localization in 

model-variable space, requiring error samples that apply several scalesthe scale decomposition of localization to the 

ensemble members (Buehner and Shlyaeva, 2015). With the implicit method,The model space localization allows ingesting 

all observations on different scales can be ingested simultaneously. Recent studies have shown that multiscale DA 110 

outperforms DA with fixed localization (Caron and Buehner, 2018; Caron et al., 2019; Huang et al., 2021). 

In addition to the analysis quality of the hybrid or multiscale DA analysis, the, computational efficiency should also be 

considered (Bonavita et al., 2017). A highly parallelized DA scheme is preferable due to the continuously increasing model 

resolution and the number of available observations. One DA scheme that can be highly parallelized is the LETKF 

algorithm,local ensemble transform Kalman filter (LETKF, Hunt et al., 2007), whose analysis is grid-independent. 115 

In brief, both hybrid DA and multiscale DA are necessary, and the parallel computation efficiency of the LETKF is 

attractive. Thus, it is desirable to utilize all their advantages. A straightforward idea for achieving the hybrid DA with the 

LETKF is to use a large-size static ensemble, similar to the EnKF-based hybrid scheme proposed by Lei et al. (2021)Lei et 

al. (2021). However, due to the limited availability of computational and storage resources, a large static ensemble (>=800) 

is not always feasible. because of the limited computational and storage resources. The LETKF, however, performs the 120 

analysis in the ensemble space, which implies that a static ensemble is necessary. In this situation, a grid-independent 

analysis scheme is needed that can be flexibly run with or without a large static ensemble. Motivated by this necessity, we 

propose ait is desirable to design a flexible DA scheme that follows the grid-independent analysis of the LETKF and can 

perform both hybrid and multiscale analysis with or without static ensemble members, similar to other variational-based 

hybrid schemes. The scheme is named Local DA hereinafterhereafter. 125 

Compared with other hybrid schemesthe LETKF, Local DA has two features. First, the proposed scheme constructs an error 

sample matrix that replaces the ensemble perturbation in the LETKF. To construct this matrix, Local DA explicitly computes 

the linear combination of columns of a local background error correlation matrix of rather than the combination of ensemble 
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members. The local background error correlation matrix is in model space, but the model variables that are projected onto 

the observation-associatedinterpolated to observed grid points/columns. In other words, Local DA works on unstructured 130 

grids (. This framework is friendly for scalar assimilating integrated observations) and/or columns (for observations that 

measure an integrated quantity of the atmosphere, such as precipitableprecipitation water vapor (PWV)). The explicit 

approach ), because vertical localization can be performed in model grid space. Explicitly computing the error correlation 

matrix requires much more memory than the LETKF, but we will show thatallows Local DA to calculate the static 

background error correlation with a preset correlation function, such as the distant correlation function. Moreover, the 135 

computational cost of the matrix is acceptable.  if observations are appropriately thinned. 

Since the error correlation matrix is explicitly constructed, we can determine how to compute the matrix components (in 

terms of using an ensemble or not) according to the need. Moreover, we can straightforwardly it is straightforward to realize 

the hybrid DA according to the idea of Hamill and Snyder (2000) that Hamill and Snyder (2000). This approach is often 

utilized with a simple model (Kleist and Ide, 2015; Penny, 2014(Kleist and Ide, 2015; Penny, 2014; Etherton and Bishop, 140 

2004; Lei et al., 2021)Lei et al., 2021) because it explicitly computes and directly combines the background error covariance 

matrices. In this study, we attempt to evaluate the hybrid idea of Hamill and Snyder (2000) in a realistic complicated 

scenario; this is a secondary goal of this study... 

Second,Another feature of Local DA canis the ability to perform the multiscale analysis in the model-variable space, the 

observation-variable space, or in both spaces (double-space localization). In the model-variable space, Local DA adopts a 145 

scale-aware localization approach for the multiscale analysis that applies a bandpass filter to create filtereddecompose 

samples and individually performs localization forat each waveband. In this approach, the localization radius increases as the 

wavelength increases, and we attempt to retain the long-distance covariances of large-scale errors while constraining the 

small-; no cross-scale covariances within a smaller radius.covariance is considered in current Local DA. A similar idea (i.e., 

lacking cross-wavebandscale covariance) is the scale-dependent localization technique proposed by Buehner (2012). 150 

Although the use of cross-wavebandscale covariance is likely to further improve the multiscale analysis, but the relative 

performance depends on ensemble size (Caron et al., 2019). To simplify this study, we leave this issue to be addressed in 

future work. In contrast, in the observation 

Local DA can perform observation-variable space, the localization method is similar to the LETKF. The, which magnifies 

the observation error as the distance between the observation and model variables increases. For the multiscale analysis in 155 

the observation space, the localization radius varies according toincreases as the scale of an observation: large- increases. 

Compared with radar data, the scale observations are assignedof sounding data is larger so that a largelarger radius, while 

small-scale observations are is assigned a small radius. .   

Because model-variable space localization and observation-variable space localization are employedconducted for the 

background error covariance and observation error covariance, respectivelycovariances in different spaces, it is possible to 160 

perform localization in both spaces.localizations synchronously. Although double-space localization may result in a double 

penalty, it would be interesting to note the localization performances of both hybrid and multiscale DA. Note that the 
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LETKF of Wang et al. (2021)performance. Note that the LETKF of Wang et al. (2021) can also realize double-space 

localization, but this application has not yet been investigated. 

As the first paper to report on Local DA, this study focuses on the following main issues: i) how to realize both locally 195 

conduct the hybrid and multiscale local analysis, ii) the spatial continuity of local analysis, iii) the impact of the hybrid 

covariance, and multiscale localization on Local DA on the subsequent forecast, , and iv) the sensitivity of Local DA to 

localization (either in the model space orperformance of Local DA on cycling DA. Since Local DA is designed to be a more 

flexible hybrid scheme than LETKF, we do not expect Local DA to outperform LETKF in all scenarios. The comparison of 

both methods only focuses on i) if they yield similar results in the case of using observation space) localization and to the 200 

ensemble size,covariance only and v) comparingii) if Local DA with the LETKF in terms of single deterministic analysis 

and forecasting. Updating thehybrid covariance outperforms the LETKF with a poor ensemble perturbation is important for 

the ensemble forecast and cycling DA, but we plan to investigate this issue in future work. To. 

 Observing system simulation experiments (OSSEs) are adopted to avoid issues associated with the quality control of 

observations when evaluating the performance of Local DA, we adopt observing system simulation experiments (OSSEs).. 205 

The simulated multiscale observing system consists of sounding, wind profiler, PWV, and radar (radial velocity and 

reflectivity) observations on; the scales varyingof these observations vary from the synoptic scale to the convective scale. A 

simulated typhoon case is selected for the evaluation. 

The remainder of this paper is organized as follows. In Sect. 2, Local DA and its associated multiscale localization technique 

are described, including the formula, workflow, and other details. Sect. 3 describes the numerical experiments, and Sect. 4 210 

discusses the results. A summary and conclusions are given in Sect. 5. 

2 Method 

2.1 The Local DA scheme 

As mentioned above, Local DA is implementedperforms analysis in the LETKF framework and comprises three steps. In the 

first step, Local DA maps the model state space, but it needs to map model variables to the observation-associated grids or 215 

onto observed grid points/columns; these variables include before the analysis. All DA methods conduct the mapping, but 

Local DA updates the mapped model variables. Both the background model state (x
f
) and the ensemble perturbations (X). 

The observation prior can be written as h(Hix
f
), where Hi is an operator that interpolates model variables) are mapped 

according to the observation-associated grids or columnsHi, the vector of interpolation operators. The mapped model state 

and perturbations are denoted by 
f

ox  
and h isXo, respectively, where the subscript “o” represents the observation operator 220 

that converts model variables into observation variables. Similarly, the tangent linear of h(Hix
f
) can be written as HoHiX, 

where Ho is the linear operator of h. observed grid points/columns. Note that Local DA only stores 
f

ox  and Xo for a local 
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analysis rather than the whole forecast domain. An example of the spatial distribution of variables involved in Local DA is 

shown in Figure 1.  

The cost function of Local DA is written in the space of Hix
f
 and HiX. In this space, the size of the local background error 225 

correlation matrix is much smaller than that in the model-grid space, which allows us to explicitly compute the correlation 

matrix.as  

In the second step, Local DA computes the minimization of the cost function 

T T 1

o o o o o o o o

1 1
( ) ( )

2 2
J    v v H X v d R H X v d T T 1

o o o o o o o o

1 1 ˆ ˆ( ) ( )
2 2

J    v v H X v d R H X v d ,                                                   (1) 

where vo is the control variable (or a combination of error samples in the LETKF), the observation error covariance is 230 

denoted by R, which is a diagonal matrix in this study, Ho is the linear operator of h that converts the model variables into 

observation variables, and d is the observation innovation vector. 
oX

oX̂  (=αSoCoo) represents a constructed error-sample 

matrix, where Coo is the local background error correlation matrix (its dynamic part is computed using HiX, while its static 

part is computed with a distance-correlation function in the current version of Local DA),, So stores the standard deviations 

(STDs) of the model variables, and α is a parameter that adjusts the trace of Coo. We will discuss Coo and α later. 235 

In the third step, Local DA computesOnce vo is obtained, the model state increment xmx
i
 on the model grids according to the 

linear combinationcan be computed  in terms of 
moX  such that 

m mo ox X v , i

mo o
ˆx X v ,                                                                                                       (2) 

where 
mo m mo

X S C
mo m mo

ˆ X S C , Sm contains the STDs of the model variables on the model grids, and Cmo is a 

correlation matrix that contains the correlation coefficients between the model variables in the model-grid spaceXo and those 240 

in the Hix space.X. Details regarding Coo and Cmo will be given later. As long as xmThe analyzed model state x
a
 is obtained, 

we can perform the deterministic analysiscomputed in accordance with x
a
= x

f
 + xmx

i
. 

By using the hybrid and localization approaches, the rank of 
o

X  is much higher than that of X of which the rank is not 

higher than the ensemble size. Our early test (not shown) indicates that the rank of 
o

X  is a full rank matrix in most cases. 

For those rank-deficient cases, the rank of 
o

X  is often greater than 97% of the full rank value. The high-rank correlation 245 

matrix is expected to result in a small analysis error (Huang et al., 2019). 

To use Eqs. (1) and (2), several questions need to be answered: i) How do we construct Coo and Cmo? ii) How do we 

calculate α? iii) How do we solve Eq. (1) to obtain vo? iv) How do we deal with nonlinear observation operators?To update 

ensemble perturbations, the current version of Local DA adopts the stochastic method (Houtekamer and Mitchell, 1998) that 

treats observations as random variables. This method adds random perturbations with zero mean to d in Eq. (1). For an M-250 

member ensemble, equations (1) and (2) are conducted M times to update members with perturbed observations, similar to 

the procedure of Li et al. (2012). These analyses share the same background error covariance but use different observations. 
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The stochastic approach was reported to be less accurate than the deterministic approach (e.g., Whitaker and Hamill, 2002) 280 

because it introduces additional sampling error. At this stage, Local DA mainly concerns the deterministic analysis; further 

improvement of the analysis ensemble is left in future work. 

Compared with the LETKF or the En4DVar of Liu et al. (2008), Local DA seeks the combination (v0) in model space, or 

more specifically, the combination of the columns of a local background error correlation matrix of model variables, rather 

than the combination in ensemble space. Thus how to construct Coo and Cmo is key for Local DA. Explicitly computing Coo 285 

raises the question of how to solve the cost function of Local DA in the case of large-size Coo. In addition, how to deal with 

nonlinear observation operators should be determined. The subsequent subsections present the answers to these questions. 

2.1.1 The local background error correlation matrix 

In Local DA, the actual correlation matrix C  is the square of Coo multiplied by a rescaling parameter 
2 : 

2 T

oo ooC C C .                                                                                                             (3) 290 

By using the rescaling parameter, the trace of C  is equivalent to that of Coo. α is computed according to 

oo

T

oo oo

( )
=

( )

tr

tr


C

C C
,                                                                                               (4) 

where tr( ) denotes the calculation of the trace of a matrix. Notably, 
T

oo oo( )tr C C is equal to the sum of squares of all 

elements in Coo. There is no need to compute 
T

oo oo
C C . C  and Coo are identical in terms of Eigenvectorseigenvectors and the 

trace of the matrix (total variance). The eigenvalues of C  are the squares of the corresponding Eigenvalueseigenvalues of 295 

Coo multiplied by α
2
. Therefore, C  is an approximation of Coo. Storto and Andriopoulos (2021) Storto and Andriopoulos 

(2021) proposed a hybrid DA scheme that also used the rescaling parameter to tune the trace of a matrix (see their Eq. (15)), 

but they constructed the background error covariance in a way differing from ours. 

Coo is a K×K matrix, where K is the number of model variables associated with the operators of all ambient observations. to 

be assimilated. K is computed according to 300 

1

( )
tN

o op i

i

K N N


 ,       
1

[ )]( ) (
tN

o op

i

K N Ni i


 ,                                                                                                (5) 

where Nt is the number of observation types, such as the zonal wind from soundings and/or the radial velocity from radars, 

No(i) is the number of observations of the ith type, and Nop(i) is the number of analysismodel variables used inby the 

observation operator of the ith type. For instance, if radar reflectivity is the only available observation type and there are 100 

observations, K is equal to 300 (100×3) in the case of using the observation operator of Gao and Stensrud (2012) because 305 

the operator requires three hydrometeors (qr, qs, and qg). Now we are going to give an example of Coo. Assuming there are 
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three available observations (two zonal wind observations and a surface pressure observation), the background error 

correlation matrix is 

1 1 1 2 1 1

2 1 2 2 2 1

1 1 1 2 1 1

u u u u u ps

oo u u u u u ps

ps u ps u ps ps

c c c

c c c

c c c



 
 
 
 
 
 
 
 

C

1 1 1 2 1 1

oo 2 1 2 2 2 1

1 1 1 2 1 1

u u u u u ps

u u u u u ps

ps u ps u ps ps

c c c

c c c

c c c



 
 
 
 
 
 
 
 

C ,                                                                                 (6) 325 

where c is the correlation coefficient between the model variables projected onto observation-associated gridsin the space of 

Xo and the subscripts “u1”, “u2”, and “psps1” represent the two zonal wind observations and thea surface pressure 

observation, respectively. If the model variables to be updated are the zonal wind (u), potential temperature (θ), and water 

vapor mixing ratio (q) located where observation “u1” is, the corresponding Cmo isCorrespondingly, the STD matrix So can 

be written as 330 

1 1 1 2 1 1

1 1 1 2 1 1

1 1 1 2 1 1

u u ps

mo q u q u q ps

u u u u u ps

c c c

c c c

c c c

  



 
 
 
 
 
 
 
 

C .

1

2

1

u

o u

ps

s

s

s



 
 
 
 
 
 
 
 

S ,                                                                                             (7) 

where the subscripts “θ1” and “q1” indicate that variables are on the same grid as observation “u1”. For Coo, the 

corresponding So is 

1

2

1

u

o u

ps

s

s

s



 
 
 
 
 
 
 
 

S ,    where s denotes the STDs of the model variables projected onto the observed grids. So is a K×K 

matrix, but a K×1 array is sufficient to store So. After Coo and So are formed, vo can be solved. In this example, vo is in the 335 

following form: 

 
T

1 2 1o u u psv v vv ,

                                                                                         

(8) 

where s denotessubscripts “u1”, “u2”, and “ps1” have the STDs of same meaning in Eqs. (6) and (7). 
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To obtain the model state increment x
i
, it is necessary to form Cmo and the corresponding Sm. If the model variables projected 

onto observation-associated grids. Sm contains the STDsto be updated are the zonal wind (v1), potential temperature (θ1), 340 

and water vapor mixing ratio (q1), Cmo is written as 

1 1 1 2 1 1

1 1 1 2 1 1

1 1 1 2 1 1

u u ps

mo q u q u q ps

v u v u v ps

c c c

c c c

c c c

  



 
 
 
 
 
 
 
 

C ,                                                                                    (9) 

where subscripts “u1”, “u2”, and “ps1” are the same as those in Eqs. (6) and (7), while subscripts “v1”, “θ1”, and “q1” 

denote the model variables to be updated. Cmo comprises the error correlation coefficients between X and Xo. The size of 

Cmo is NmK which depends on the model grids, which are 
1us ,number (Nm) of model variables to be updated. However, there 345 

is no need to store full Cmo in practice because one row of Cmo is needed to update the corresponding model variable. Sm is 

the STD matrix of model variables, containing 
1vs , 

1s , and 
1qs  for the aforementionedin this example. For convenience, a 

summary of the dimensions of variables involved in Local DA is listed in Table 1. 

Note that the variational DA methods seek the combination of the columns of the square root of the background error 

covariance matrix, while Local DA combines the columns of the error correlation matrix. It is based on the consideration of 350 

computational cost because it is expensive to obtain the square root of Coo if the size of Coo is large. Moreover, modeling the 

square root of the background error covariance matrix, as many variational DA methods do, is also difficult for Local DA 

because the irregular distribution of observations makes it infeasible to utilize a recursive filter.  

Additionally, note that the size of Coo grows rapidly as K increases. However, given that Coo is used for the local 

analysisHowever, the memory requirement is still affordable. since Coo is only used for local analysis. For high-resolution 355 

observations, thinning can help reduce the cost, which is also necessary to ensure that the observation errors are uncorrelated 

(e.g., Hoeflinger et al., 2001)(e.g., Hoeflinger et al., 2001). For observations at the same place that are associated with the 

We use the same model variables, such as for the data observing the same grid point/column. For example, the same 

hydrometeor variables (qr, qs, and qg) are used to compute the radar reflectivity and differential reflectivity, the same Coo 

components are used. at the same observed grid point. In this situation, the size of Coo does not increase with the 360 

observations. This strategy is also valid for passive microwave observations at different frequencies obtained by onea 

satellite. because they observe the same column of the atmosphere. Therefore, the size of Coo is controllable. In this study, 

weWe use a simple thinning approach to control the matrix size in this study, as described in the Appendix. 
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2.1.2 The solution of Local DA 

There are two approachesmethods to solve the gradient of Eq. (1): i) matrix decomposition and ii) an iterative algorithm. The 365 

first approach is straightforward, but it is time -consuming and sometimes infeasible if the Coo size is large. Therefore, Local 

DA adopts an iterative algorithm, namely, the conjugate gradient (CG) method (Shewchuk, 1994)(Shewchuk, 1994). 

Theoretically, using the CG method requires the background error covariance matrix to be positive definite. However, with 

the control variable transform, a positive semidefinite covariance matrix is sufficient to obtain the best linear unbiased 

estimate (Ménétrier and Auligné, 2015)(Ménétrier and Auligné, 2015). A strictly diagonally dominant matrix with 370 

nonnegative diagonal elements s is positive semidefinite. Performing 

Although a positive semidefinite covariance localizationmatrix is a way to generatesufficient, using a higher-rank 

background error covariance matrix helps obtain a lower analysis error (Huang et al., 2019). Compared with the matrix;rank 

of X, which is not higher than the ensemble size, that of 
o

X̂  is much higher after Coo is localized. Our early test (not shown) 

indicates that 
o

X̂  is a full rank matrix in most cases. For rank-deficient cases, the rank of 
o

X̂  is often greater than 97% of 375 

the full rank value. The details of this localization will be given later. 

Note that Local DA performs the CG step locally, unlike other variational-based DA methods that apply the CG method 

globally. Therefore, it is necessary to investigate whether the local application of the CG method causes a nonnegligible 

spatial discontinuity, which will be discussed in Sect. 4. For computational efficiency, the maximum number of iterations is 

100. If the error tolerance ε
2
 defined in (Shewchuk, 1994)(Shewchuk, 1994) cannot reach 1×10

-6
 by the 100

th
 step, the CG 380 

method is stopped. 

2.1.3 The observation operator 

The EnKF algorithm often approximates the linear projection (, H in Eq. (1)) of the model variables onto the observation 

variables), according to the departure of the observation priors from their ensemble mean. It is straightforward for Local DA 

to use the ensemble approximation approach. However, for nonlinear observation operators, there is an alternative to the 385 

ensemble mean, namely, the observation prior calculated by using the ensemble mean of the model variables. Tang et al. 

(2014)Tang et al. (2014) demonstrated that this alternative could lead to better results. Furthermore, Yang et al. (2015)Yang 

et al. (2015) examined the application of this alternative in radar DA and showed that the alternative approach produced 

smallerlower analysis errors for the model variables associated with radial velocity (three wind components) and reflectivity 

(mixing ratios of rain, snow, and graupel). Given that remote sensing observations such as those obtained by radars and 390 

satellites are important parts of anya multiscale observation network, Local DA adopts the alternative approach proposed by 

Tang et al. (2014)Tang et al. (2014). 

Local DA approximates the linear projection 
o o

Y H X
o o

ˆY H X  according to 
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f f

o o
( ) ( )h h   Y x X x X ,                                                                                 (9) 

f f

o o

ˆ ˆ( ) ( )h h   Y x X x X ,                                                                                 (10) 395 

where h is the nonlinear observation operator and x
f
 is the background model state vector. Note that Eq. (910) is written for a 

deterministic forecast in this study. Compared with the results using the ensemble mean of observation priors, Eq. (910) 

reduces the analysis error of reflectivity by approximately 2 dBZ in our early test (not shown). This result is consistent with 

that of Yang et al. (2015)Yang et al. (2015). 

2.2 The multiscaleMultiscale localization analysis 400 

To realize multiscale localization in model space, Local DA first performs scale decomposition with a bandpass filter. The 

decomposed perturbation, 
b
X , is 

b

b b

1

N

l

l

 X X ,                                                                                                                (1011) 

where the superscript “l” represents the lth wavebandscale and Nb is the number of bands.scales. As a localization approach 

lacking cross-wavebandscale covariance, Local DA computes the STD of the perturbation, s, according to 405 

b
2

b

1 1

1
( ) ( , )

N N

l

l m

s i i m
N 

     X ,                                                                                    (1112) 

where i and m denote the ith model variable and the mth sample, respectively, and N is the sample size. Compared with the 

raw STD, 
b

2

b

1 1

1
( , )

NN

l

m l

i m
N  

 
  

 X , the cross influence among different scales of 
b
X  is ignored in Eq. (1112). 

Nevertheless, we acknowledge the importance of the cross influence of these perturbations and plan to investigate this issue 

with regard to Local DA in our future work. 410 

The multiscale correlation coefficient c(i,j) is calculated according to 

b

b b

1

cov ( ), ( )
( , )

( ) ( )

l lN

l

i j
c i j

s i s j


  


X X

,                                                                                  (1213) 

where i and j denote the ith and jth variables, respectively. For the case of i=j, Eq. (1213) ensures c(i,j)=1.0.  

We perform localization for each wavebandscale independently to construct the multiscale correlation matrix. In principle, 

our multiscale localization method trusts the correlation coefficient of each wavebandscale when the distance between two 415 

variables is smaller than the lower bound of the waveband.scale. For instance, for the wavebandscale of 50 km – 100 km, 

Local DA starts the localization when the distance d is greater than 50 km. The decorrelation coefficient r(l,i,j) for the lth 

wavebandscale and c(i,j) is calculated according to 
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2

min

min

( )
8

( )

min

max

( , , ) 1.0,  <= ( ) 

( , , ) ,  > ( )

( , , ) 0.0,  > ( )

r

d d l

d l

r l i j d d l

r l i j e d d l

r l i j d d l



 
 
 


















 ,                                                                          (13 (14) 

where dmin(l) and dmax(l) are the lower and upper bounds of the lth wavebandscale, respectively, and dr(l) is the localization 420 

radius for the lth waveband.scale. Note that how to optimally localize the background error covariance is still an open 

question; rather, Eq. (1314) is simply a preliminary implementation of multiscale localization for Local DA. 

In addition to Substituting equations (13) and (14) into equation (6), an example of Coo in equation (6) is written as: 

b

b

b

b b

1

b b

oo

1

b b

1

cov ( 1), ( 1)

( 1) ( 1)

cov ( 2), ( 1)

( 2) ( 1)

cov ( ), ( )

( ) ( )

( , 1, 1)

( , 2, 1)

1 1
( , 1, 1)

1 1

l l
N

l

l l
N

l

l l
N

l

u u

s u s u

u u

s u s u

s s

r l u u

r l u u

ps u
r l ps u

ps u









    
 
 
   
 
 
    
 
 







X X

X X
C

X X

,                                                        (15) 

where i and j in equation (13) are replaced by subscripts in equation (6). For brevity, only the first column of Coo is listed. 425 

Obviously, applying multiscale localization in the does not change the size of Coo. Correspondingly, an example of Cmo in 

equation (8) can be written as: 

b

b

b

b b

1

b b

mo

1

b b

1

cov ( 1), ( 1)

( 1) ( 1)

cov ( ), ( 1)

( ) ( 1)

cov ( ), ( )

( ) ( )

( , 1, 1)

1
( , 1, 1)

1

1 1
( , 1, 2)

1 1

l l
N

l

l l
N

l

l l
N

l

v u

s v s u

u

s s u

s s

r l v u

r l u

q u
r l q u

q u














    
 
 
   
 
 
    
 
 







X X

X X
C

X X

.                                                         (16) 

Because the sizes of Coo and Cmo do not change, there is no modification for vo, x
i
, x

f
, and x

a
. The only modification to 

realize multiscale localization in model-variable space is to store the error sample of each scale and compute the 430 

corresponding correlation coefficient. Therefore, realizing multiscale analysis within the Local DA framework is easy. 

The multiscale localization proposed in this subsection gradually diminishes the contribution of small-scale covariance as the 

distance between two variables increases while retaining that of large-scale covariance until the distance is very large. Table 

2 shows an example of multiscale localization. In this example, there are two arbitrary variables of which the error samples 

are decomposed into three scales. The values of covariance between the two variables are C1, C2, and C3 at three scales. 435 
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When the two variables are close (8 km), the localization coefficients of C2 and C3 are 1.0, according to the first formula in 

equation (14). As the distance increases to 300 km, the localization coefficients of C1 and C2 become nearly zero, and the 

total covariance is mainly attributable to C3. 

In addition to multiscale localization in the model space, Local DA can perform localization in the observation-variable 

space, similar to the LETKF. Observation- space localization is conducted by enlarging the observation error as the distance 440 

between variables increases. The localization coefficient in the observation space is calculated according to the second 

formula of Eq. (1314), but d-dmin(l) and dmin(l) are replaced by d and do, respectively, where do is the localization radius that 

varies among different observation types. In practice, it is possible for 

Because Coo and R are independently localized, Local DA tocan perform localization in both the model space and the 

observation space.localizations synchronously. Although performing localization in both spaces may result in a double 445 

penalty, it would be interesting to note the performance of the double-space localization approach, which has not yet been 

investigated. The related experiments and results are given in the following sections. 

2.3 The hybrid analysiscovariance 

The current version of Local DA calculates a simple “static” correlation matrix by using the second formula of Eq. (1314), 

except that d-dmin(l) and dmin(l) are replaced by d and ds, respectively, where ds is a fixed localizationpreset radius. For the ith 450 

and jth variables, the hybrid correlation coefficient c(i,j) in Coo is computed according to 

2

b 8
b b

1

cov ( ), ( )
( , ) ( , , ) (1 )

( ) ( )

s

dl l
N

d

l

i j
c i j r l i j e

s i s j
 





 
 
 

  
  


X X

,                                              (1417) 

where γ is the weight of the dynamic correlation. The hybrid c(i,j) in Cmo is also computed according to Eq. (1417), but 

b
( )

l
iX  and ( )s i  storerepresent the variables variable at a the model grid point. In the case where the ith and jth variables are 

different types of variables, such as a wind component variable and a temperature variable, the second term on the right-hand 455 

side of Eq. (14) is forced to zero. In other words, the current version of Local DA suppresses the cross-variable covariance 

when the hybrid analysis is performed. To prevent s(i) and s(j) in Eq. (1417) from being forced to zero (aswhich often occurs 

for convective-related variables such as the mixing ratios of rainwater, snow, and graupel), we add small, random 

perturbations with an STD of 1×10
-7

 to the variables for which the STDs are smaller than 1×10
-7

. 

Note that the static part of equation (17) represents merely a distant correlation. It is valid for the univariate correlation rather 460 

than the cross-variable scenario. Therefore, the static part of equation (17) is forced to zero if the ith and jth variables are 

different types of variables. In other words, the cross-variable correlation is contributed only by the ensemble part. The 

authors acknowledge that the cross-variable correlation is important for DA, but the static cross-variable correlation must be 

carefully modeled, such as the correlation between wind components and geopotential height, or between the stream function 

and potential temperature. The modeling work is in progress. 465 
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2.4 The workflow of Local DA 

Here, we present a step- by- step description of how the hybrid and multiscale analyses described in the previous sections are 

performed for all the model variables. Note thatThere is a way for Local DA canto perform the analysis in a much faster 

way; we will discuss this method later. 

1) Apply a bandpass filter to generate filtered samples ondecompose 
b
X  into Nb scales from 

b
X ..  470 

2) Store the initial condition, filtered perturbationdecomposed samples, and observations in separate arrays denoted by x
f
, 

b
X , and y

o
, respectively. 

3) For each model variable to be updated, search its ambient observations according to their scales and store these 

observations in array 
o

y o
ŷ ; for example, search for sounding data within 300 km while searching for radar data within 15 

km. In addition, according to the observation operators of 
o

y o
ŷ , store the observation-associated model variables that have 475 

been projected onto observation-associatedobserved grids or /columns into arrays denoted 
f

x by 
f

x̂ and 
b
X

b
ˆ X , 

respectively. 

4) Calculate the vector d in Eq. (1) with 
o

y
o

ŷ  and 
f

x ..
f

x̂ . 

5) Use 
b
X

b
ˆ X to generate So, Coo, Sm, and Cmo according to Eqs. (11), (1312), (15), and (1416). 

6) Compute   for Coo by using Eq. (4). 480 

7) Compute 
o o oo
=X S C

o o oo
ˆ =X S C . 

8) Calculate 
0.5

o o


Y R H X

0.5

o o
ˆ

Y R H X  by using Eq. (9). 

9) Use the CG method to solve 
T T 0.5

o
( )


 I Y Y v Y R d and obtain vo. 

10) Compute the model state increment xm according to Eq. (2). 

In step 1), there are many ways to realize the bandpass filter. In this study, the difference between two low-pass analyses 485 

defines the bandpass field (Maddox, 1980), where the low-pass filter is the Gaussian filter. An example of a bandpass field is 

shown in Figure 2. For convenience, the radius of the Gaussian filter is used to represent the scale in this study. For the scale 

of 0 km - 20 km (Figure 2a), the small-scale feature prevails and corresponds to convection in the simulated typhoon. As the 

radius increases (Figure 2b), larger-scale information is extracted. A large-scale anticyclonic shear is observed when the 

radius is greater than 200 km (Figure 2c). The results (Figure 2d-f) also show that the contribution of the small-scale 490 

ensemble spread is often less than 10% out of the convective area, while in most areas of the forecast domain, the 

contribution of the large-scale (> 200 km) spread is greater than 20%.   



 

15 

 

Steps 5) to 9) contribute the most to the computational cost of Local DA. Computing Coo requires MK
2
 operations, which is 

not less than No
2
, where M represents the size of the ensemble, and No denotes the number of observations to be assimilated. 

Step 7) requires 2K
2
 operations. To calculate step 8), NoK

2
 operations are needed. For each iteration step of the CG method, 495 

the number of operations is slightly larger than 2NoK. Ni iteration steps require 2Ni NoK operations.  

As mentioned above, Step 9) can also be solved through eigenvalue decomposition as the LETKF does. However, Y in Local 

DA has more columns than the LETKF. In the LETKF, Y has M columns, while the corresponding value is K in Local DA. 

Therefore, Local DA has to deal with a K by K matrix, while the LETKF only needs to solve an M by M matrix. M is often 

smaller than 10
2
, thus, I+Y

T
Y can be handled efficiently by eigenvalue decomposition. In contrast, K could be 10

3
 or higher, 500 

thus, the CG method is more suitable. 

Despite the large amount mentioned above, we do not have to do that many operations in practice. For example, step 8) 

requires just No
2 
operations if only scalar observations are available. Notably, for a 3-D domain containing Ng grid points and 

Nv variables, the total number of operations will be as NgNv times that of one local analysis. However, it is possible to reduce 

the cost.  505 

Considering that Sm, Cmo, and xm can be applied to all variables influenced by 
o

y o
ŷ , it is not necessary to compute Coo for 

each model variable. In the current version of Local DAMoreover, Sm, Cmo, and xm may contain all the model variables at a 

model grid point, in more than one vertical column, or in 5 neighboring columns  (N-column analysis). For The total number 

of operations in an N-column analysis, 
o

y  contains ambient observations at all vertical  is reduced to Ng/(NNz) times as one 

local analysis, where Nz is the number of levels. in one column. Due to using the same Coo for neighboring columns, the 5N-510 

column analysis is slightly rasterized (not shown), leading to slightly largerhigher errors than the 1-column analysis. 

However, the extent of this degeneration is acceptable. On the other hand, the  as long as N is not too large (<9). The wall 

clock time of the 5N-column analysis is close to 1/5 of thatN of the 1-column analysis. In this study, allAll Local DA results 

are generated using a 5-column analysis in this study. A similar N-column analysis approach is the weighted interpolation 

technique in the LETKF (Yang et al., 2009)(Yang et al., 2009), which performs theLETKF analysis, for example, every 3 515 

grid points in both the zonal direction and the meridional directiondirections. 

3 Experimental design 

3.1 The simulated typhoon 

The third typhoon of the 2021 western Pacific season, In-Fa, is selected for the OSSEs performed herein. The true 

simulation, starting at 00 UTC on 25 July 2021 and ending at 18 UTC on 26 July 2021, simulates the stage in which In-Fa 520 

approaches China. The Weather Research and Forecast (WRF, Skamarock et al., 2018)(WRF, Skamarock et al., 2018) model 

V3.9.1 is used for the simulation. The central latitude and longitude of the forecast domain are 30.5° and 122.0°, 

respectively. The size of the domain size is 201 grids ×201 grids×34 levels with a horizontal resolution of 5 km and a model 
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top pressure of 50 hPa. The physical parameterization schemes are as follows. The WRF single-moment 6-class ice scheme 

(Hong and Lim, 2006) is adopted for microphysical processes. For longwave and shortwave radiation, the rapid radiative 525 

transfer model (RRTM) scheme (Mlawer et al., 1997)(Mlawer et al., 1997) and the Dudhia scheme (Dudhia, 1989), 

respectively, are used. The Yonsei University (YSU) scheme (Hong et al., 2006) is employed for the planetary boundary 

layer simulation. For the cumulus parameterization, the Kain–Fritsch (new Eta) scheme (Kain, 2004)(Kain, 2004) is enabled. 

The unified Noah land surface model is used to simulate the land surface. We adopt the global forecast system (GFS) 

analysis at 00 UTC on 25 July 2021 as the initial condition of the trueTruth simulation. 530 

3.2 The multiscale observation network 

The According to Hoffman and Atlas (2016), a criterion for reasonable OSSEs is that true simulation agrees with the real 

atmosphere. The typhoon central pressure in the Truth simulation gradually increases from 968 hPa to 980 hPa by 18 UTC 

on 26 July 2021 (not shown), which is consistent with the real observation obtained from the China Meteorological 

Administration (CMA), except that the observed pressure increases more rapidly, reaching 985 hPa by 18 UTC on 26 July 535 

2021. The simulated typhoon’s central location also agrees with the CMA observation. Therefore, the Truth simulation is 

eligible for OSSEs. 

3.2 Multiscale observation network 

The simulated multiscale observation network (Figure 3Figure 13) comprises simulated sounding, wind profiler, PWV, and 

radar data.observations. Soundings are available at 00 UTC and 12 UTC on 26 July 2021, whereas the other types of 540 

observations are available hourly on 26 July 2021. 

For each sounding, we simply extract the perturbed model variables, u, v, θ, and qv, every 2 model levels as the observations. 

The simulated soundings also include records ofrecord the perturbed surface pressure, ps. The sounding perturbations follow 

a Gaussian distribution with zero mean. The perturbation STDs are 0.5 m s
-1

, 5 m s
-1

, 0.5 K, 5×10
-5

 kg kg
-1

, and 10 Pa for u, 

v, θ, qv, and ps, respectively. To better reflect the reality, no simulated soundings are available over the ocean, and the 545 

horizontal resolution of each sounding is 100 km. 

The simulated wind profiler provides data on horizontal wind components, u and v, at all model levels. The perturbations 

added to the wind profiler data follow a Gaussian distribution with zero mean and an STD of 0.5 m s
-1

. The wind profilers, 

the data from which have a horizontal resolution of 50 km, provide data only on land. 

The PWV observations are computed according to 550 

2

v
1

1 p

p
PWV q dp

g
  ,                                                                                             (1518) 

where g is the gravitational constant of acceleration and p1 and p2 represent the bottom and top of a model column, 

respectively. Perturbations with zero mean and an STD of 0.5 kg m
-2

 are added to the PWV observations. Because the PWV 
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is observed by satellites, this type of observation is available for the whole forecast domain, and the horizontal observation 

interval is 50 km in both the x and the y directions. 555 

The radar data to be assimilated are radial velocity and reflectivity measurements. We adopt Eq. (3) of Xiao and Sun 

(2007)The radar data to be assimilated are radial velocity and reflectivity. We adopt Eq. (3) of Xiao and Sun (2007) to 

compute the radial velocity, but we ignore the terminal velocity in the OSSE. For reflectivity, the operator proposed by Gao 

and Stensrud (2012)OSSEs. For reflectivity, the operator proposed by Gao and Stensrud (2012) is employed. Three radars 

located at approximately at Shanghai (121.48° E, 31.23°N), Hangzhou (120.16° E, 30.28°N), and Ningbo (121.55° E, 560 

29.88°N) are simulated with a maximum observation range of 230 km. The simulated radars work on the volume coverage 

pattern (VCP) 11 mode, which has 14 elevation levels from 0.5° to 19.5°. Radar data are created on volume-scan elevations, 

but they are on model grids in the horizontal direction, as shown in Xue et al. (2006)Xue et al. (2006). The radial velocity 

and reflectivity observation errors are 1.0 m s
-1

 and 2.0 dBZ, respectively. The horizontal resolution of the radar data is 

identical to the model grid spacing. 565 

In total, 2795 simulated soundings, 400 PWV data points, 5332 wind profiler observations, and 391618 radar observations 

(including radial velocity and reflectivity) are utilized in this study. 

3.3 The DA experiments 

In this study, we design severaltwo sets of experiments for Local DA to investigate its performance in are designed. The first 

set of experiments consists of single deterministic analyses and is used to examine the impactsimpact of the hybrid and 570 

covariance, the multiscale analysis approaches. We also runlocalization in model space, and the double-space localization. 

The other set of experiments comprises several cycling DA experiments for Local DA, but the results of these cycling 

experiments are used only for reference because the current version of Local DA does not updateanalyses, mainly focusing 

on the ensemble perturbations and does not seriously consider the cross-variable analysis balance during/after the (in terms 

of surface pressure tendency) and the impact of Local DA on cycling analysis, which are important for cycling DA 575 

experiments (e.g., Zeng et al., 2021).. To perform the hybrid analysis with ensemble covariance, it is necessary to generate 

the ensemble first. Therefore, in this subsection, we first describe the generation of the ensemble and then introduce the 

experimental design. 

3.3.1 The time-lagged ensembleEnsemble perturbations 

TheFor the single deterministic analysis, the time-lagged approach (e.g., Branković et al., 1990) is employed to generate the 580 

ensemble perturbations, which are created by using deterministic forecasts with different initial times and varying GFS data. 

For example, the first sample at 00 UTC on 26 July 2021 stores the difference between two deterministic forecasts initialized 

at 06 UTC on 25 July 2021 and 12 UTC on 25 July 2021. To distinguish these forecasts from the forecasts of the DA 

experiments, the forecasts used to produce ensemble members are referred to as sample forecasts. The sample forecasts used 

in this study are shown in Figure 4Figure 24.a. Note that some sample forecasts are initialized by the 3-h or 6-h GFS forecast 585 
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data (highlighted by the thick tick marks in Figure 4Figure 24). Two ensembles differing in ). A small size are created: the 

large ensemble has 36 members andis employed; it combines 96 sample forecasts according to 
9!

(9, 2)=
2!7!

C , while the 

small ensemble excludes sample forecasts initialized at 03 UTC and 06 UTC on 25 July 2021
6!

(6, 2)
2!4!

C   and thus has 

15 members (
6!

(6, 2)
2!4!

C  )..  

Compared with the root mean square error (RMSE) of the initial condition, the spreads of both ensembles are deficient, 590 

particularly at lower levels (Figure 3) for u, v, w, θ, and qv. The 36-member ensemble has a larger spread than the 15-

member ensemble, but the difference between the two is not distinct even though the ensemble size of the large ensemble is 

twice that of the small ensemble. This result implies that many members in the ensembles are similar, leading to a small 

ensemble spread. Therefore, we emphasize that the aforementioned time-lagged ensemble is only valid for the purpose of the 

deterministic analysis in this study. For a general ensemble-based algorithm, let alone for the cycling DA experiments, the 595 

above ensemble may not be good enough. 

Focusing on the result of a small size ensemble is based on two concerns. First, Local DA is designed as a flexible scheme 

for hybrid analysis; hybrid analysis is often beneficial in the presence of a small ensemble or a poor ensemble. In the case of 

using a well sampled ensemble, the pure ensemble DA is preferred. Second, the available computational resources are not 

always sufficient to support a large size ensemble. The authors have tested a larger ensemble with 36 members and obtained 600 

lower analysis errors than the 15-member counterpart. For brevity, the results with the 36-member ensemble are not shown.  

For the cycling analysis, the first analysis uses the time-lagged 15-member ensemble. In the remaining cycles, the ensemble 

forecast initialized from the previous analysis ensemble provides the ensemble perturbations. The analysis ensemble is 

created by performing Local DA 15 times with perturbed observations. The perturbations are added to Ctrl so that the 

ensemble center on Ctrl. The Ctrl in the first cycle is obtained using GFS analysis at 00 UTC on 26 July 2021. Figure 605 

4Figure 4b shows the flowchart of the cycling DA.  

3.3.2 The DA configurations 

Two sets of experiments are designed: one for the single deterministic analysis at 00 UTC on 26 July 2021 and one for the 

cycling analysis from 00 UTC to 18 UTC on 26 July 2021 with a cycling interval of 6 h. For the single deterministic 

analysis, we first study the influences of the hybrid covariance and multiscale localization on Local DA. Experiment 610 

LDA_ctrl is conducted with only the dynamic covariance and fixed localization, whereas LDA_HBC_MSL is the 

experiment using the hybrid covariance (HBC) and multiscale localization (MSL) simultaneously, and LDA_HBC disables 

multiscale localization. Second, we investigate the impacts of the localization space. Compared with LDA_HBC_MSL, 

experiment LDA_DS adopts double-space localization (DS). LDA_OS uses observation-space localization (OS) and disables 
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the static covariance to exclude the impact of horizontal model-space localization. Moreover, due to the use of 5-column 615 

analysis in LDA_OS, the observation-space localization is valid only in the horizontal direction, while in the vertical 

direction, the localization is in the model-variable space. 

Given that LDA_OS disables the static covariance and performs observation-space localization, we seek to evaluate whether 

LDA_OS produces a deterministic analysis similar to or close to that yielded by the LETKF. Therefore, a LETKF test, called 

LETKF_OS, is run for this purpose. Because Local DA approximately follows the LETKF procedure, it is not difficult to 620 

implement the LETKF for a deterministic analysis within the Local DA framework. 

LDA_HBC_MSL_cyc, LDA_ctrl_cyc, and LDA_DS_cyc are the cycling DA experiments that use the same configurations 

of their counterparts named without the suffix “_cyc”. These experiments perform cycling DA at 00 UTC, 06 UTC, 12 UTC, 

and 18 UTC on 26 July 2021. A shorter cycling interval has been tested (not shown), and the resulting forecast errors of most 

variables during the cycling are large, as expected. The shock to the model is simply a cause, as will be shown in Sect. 4. 625 

Again, we emphasize that the cycling DA experiments of Local DA are just for reference. 

The aforementioned experiments are conducted with the 15-member ensemble. Thus, to examine the sensitivity of Local DA 

to the ensemble size, we rerun LDA_HBC_MSL, LDA_OS, and LETKF_OS with the 36-member ensemble, and the rerun 

experiments are referred to as LDA_HBC_MSL_36m, LDA_OS_36m, and LETKF_OS_36m, respectively. In addition, 

LDA_DS is rerun with only the static correlation matrix to discern the contribution of static information to Local DA; the 630 

experiment is named LDA_DS_noENS. For convenience, all experiments are listed in Table 1, where “M” and “O” denote 

the model-variable and observation-variable spaces, respectively. 

The model variables to be updatedA total of 14 experiments for deterministic analyses at 00 UTC on 26 July 2021 are 

examined. The first three experiments investigate the influence of using the pure ensemble covariance (Ens_noFLTR), 

distant correlation covariance (Static_BE), and hybrid covariance (Hybrid_noFLTR) on the Local DA analysis. The model 635 

variables to be analyzed are the three wind components (u, v, w), potential temperature (θ), water vapor mixing ratio (qv), 

dry-air mass in column (mu), and hydrometeor mixing ratios (qc, qr, qi, qs, and qg). The DA-related parameters are listed as 

follows. The A fixed localization radius is of 200 km. Multiscale is used for most variables. For ps and hydrometeor 

variables (qc, qr, qi, qs, and qg), the fixed influence radii are 1000 km and 20 km, respectively. These values are tuned for the 

case in which Typhoon In-Fa made landfall in this study and are only used for static correlation and experiments without 640 

multiscale localization (e.g., Ens_noFLTR). The background error covariance is empirically inflated by 50%. For 

Hybrid_noFLTR, the weight between the dynamic and static covariances is 0.5.  

Then, the impact of model-space multiscale localization is evaluated through 6 experiments with/without the hybrid 

covariance. Ens_2band, Ens_3band, and Ens_5band use the pure ensemble covariance, but the ensemble is decomposed into 

2, 3, and 5 scales, respectively. The 2-band experiment uses five bands of samples: <20 km, 20 km – 50 with a scale of 0 km, 645 

- 200 km and a scale greater than 200 km. In this experiment, the contribution of a scale greater than 200 km is amplified 

because the localization coefficient is 1.0 until the distance between two grid points is greater than 200 km. For the 

Ens_3band, the three scales are 0 km - 50 km –, 50 km - 200 km, and >200 km. The corresponding values for Ens_5band are 
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0 km - 20 km, 20 km - 50 km, 50 km - 100 km, 100 km – 200 km, and >200 km; the localization of these bands is enabled as 680 

the distance reaches 0 km, 20 km, 50 km, 100 km, and 200 km, respectively, with corresponding radii of 20 km, 50 km, 100 

km, 200 km, and 500 km. For - 200 km, and >200 km, respectively. Through the above three experiments, we can examine 

the sensitivity of Local DA to the configuration of multiscale analysis. Hybrid_2band, Hybrid_3band, and Hybrid_5band use 

the same ensemble covariance as Ens_3band, and Ens_5band, respectively; the ensemble covariance and static covariance 

weight equally in the hybrid covariance.   685 

The last five experiments are designed to discuss the impact of the localization space. Ens_noFLTR_OL performs 

localization in observation- space localization, the. The horizontal radii are 360 km, 150 km, 120 km, and 15 km for 

sounding, wind profiler, PWV, and radar data, respectively. The vertical radius for all observations is 5 km. The vertical 

location of a PWV observation is assumed to be 4 km above sea level, which is used in LETKF_OS. For Local DA, we 

specifically assign fixed localization radii of 1000 km and 20 km for the model variable ps and the reflectivity-related 690 

variables, respectively. These values are tuned for the case in which Typhoon In-Fa made landfall in this study. The other 

DA parameters are 0.5 for the hybrid parameter γ and 1.5 for covariance inflation; both are empirically assignedNotably, 

Ens_noFLTR_OL performs vertical localization in model space, identical to Ens_noFLTR. Ens_LETKF uses the LETKF 

algorithm and the same horizontal localization radii as Ens_noFLTR_OL. The vertical radius for all observations is 5 km, 

where the PWV observations are supposed to be available at 4000 m for LETKF localization. Ens_noFLTR_DSL performs 695 

localization in both the model and observation space. In the model space, a fixed localization radius is used, as in 

Ens_noFLTR, while the localization parameters of Ens_noFLTR_OL are adopted for observation-space localization. By 

using 5-band samples, Ens_noFLTR_DSL becomes Ens_5band_DSL. Adding hybrid covariance to Ens_5band _DSL yields 

Hybrid_5band_DSL. For convenience, all single deterministic analysis experiments are listed in Table 3Table 3, where “M” 

and “O” denote the model and observation spaces, respectively. 700 

For experiments with cycling analysis, we examine Local DA in the cases of i) using the ensemble covariance without 

multiscale localization and ii) using hybrid covariance and multiscale localization. The DA configuration of Ens_noFLTR is 

employed for the first scenario, while that of Hybrid_5band_DSL is adopted for the second scenario. Cycling intervals of 3-h 

and 6-h are examined, where we mainly focus on the experiments with the 6-h interval. The experiment with a 3-h cycle 

interval is used to show the impact of imbalance analysis to forecast. A total of three experiments are examined, namely, 705 

Ens_noFLTR_6h, Hybrid_5band_DSL_6h, and Hybrid_5band_DSL_3h, where the suffixes represent the cycling intervals. 

During cycling, sounding observations are available at 00 UTC and 12 UTC, while other observation types are available 

hourly. Fifteen sets of perturbed observations are created to update 15 members in cycling DA. The standard deviations of 

observation perturbations are identical to the observation errors mentioned in sect. 3.2. The covariance inflation factor is also 

1.5 for cycling analysis.  710 
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4 Results and discussion 

4.1 The convergence of minimization 

We examine the minimization convergence by using the data extracted from LDA_HBC_MSLHybrid_5band. Figure 

5Figure 45 shows the number of iterations and the ratio of the final value of the cost function (Jfinal) to the initial value 

(Jinitial). Fewer than 100 iterations indicatesindicate that the tolerance ε
2
 reaches 1×10

-6
 within 100 steps. If the minimization 715 

does not converge within 100 steps, the CG iteration is stopped by the program. The number of iterations is large near the 

center of the forecast domain but decreases rapidly outward. According to the distribution of observations (Figure 3Figure 

13), the results (Figure 5Figure 45a) indicate that the minimization converges more slowly as the number of observations to 

be assimilated increases. 

Although the minimization fails to converge within 100 steps in the area where the observation density is high, the cost 720 

function is still reduced by 70% or 80% (Figure 5Figure 45b). In contrast, near the northeastern and southeastern corners of 

the domain, where the minimization converges within 10 steps, the final value of the cost function is largergreater than 70% 

of its initial value. However, in those areas of the domain, the initial cost function is small, implying no need for a large 

extent of correction. The results also indicate that no serioussevere discontinuity occurs in LDA_HBC_MSLHybrid_5band, 

which is desired. Similar to the LETKF, the use ofusing slightly different Coo between neighboring columns does not yield 725 

remarkably different analyses. 

Further investigation (for data within the yellow rectangle plotted in Figure 5Figure 45a) indicates that approximately 25% 

of minimizations fail to converge within 100 steps (Figure 6Figure 56a), all associated with the application of radar data. 

Therefore, we rerun LDA_HBC_MSLHybrid_5band using only radar data and observe that only 4% of all minimizations 

require more than 100 steps to converge. In the case of setting the maximum number of iterations to 500 for 730 

LDA_HBC_MSLHybrid_5band, all minimizations converge within 300 iteration steps. The results also show that 

assimilating only radar data produces a smaller ratio of Jfinal to Jinitial than the case using all observations (Figure 6Figure 

56b). Therefore, we speculate that it may be difficult for the current version of Local DA to converge within a few iteration 

steps when multiple types of observations are ingested. Nevertheless, despite this difficultyb). According to previous studies 

(e.g., Wang and Wang, 2017), the inefficient minimization may be caused by the assimilation of radar reflectivity due to the 735 

use of the mixing ratios as state variables. Too small hydrometeor mixing ratio values can lead to an overestimated cost 

function gradient. Nevertheless, despite the slow convergence, Local DA reduces the cost function by more than 70% within 

100 iteration steps in most cases (Figure 6Figure 56b). Further suppressing the error may require a better background error 

covariance, which we plan to seek in future work. 

4.2 The DA performancesingle deterministic analysis 740 

The RMSE is used to evaluate the analysis quality. For the horizontal wind components, all experiments using the 15-

member ensemble produce an analysis error smaller than the background error from the lower level to the upper level 



 

22 

 

(Figure 6a, b). Moreover, the RMSEs of the experiments using the hybrid method (LDA_HBC_MSL, LDA_HBC, and 

LDA_DS) are consistently smaller than those of the experiments without the static covariance (LDA_ctrl, LDA_OS, and 

LETKF_OS). The RMSE profiles of LDA_HBC_MSL and LDA_HBC are similar, implying that the hybrid method plays a 745 

more important role than multiscale localization. Huang et al. (2019) has demonstrated that the high-rank ensemble 

transform Kalman filter is insensitive to the localization length scale, thus the high-rank background correlation matrix, Coo, 

is likely another cause of the relatively small impact of the multiscale localization. Using double-space localization 

(LDA_DS) further decreases the RMSE of LDA_HBC_MSL at approximately all levels, which is an indicator of using a 

poor ensemble in the analysis because performing localization in the model-variable space alone is insufficient to suppress 750 

spurious correlations. These results highlight the necessity of using the hybrid covariance when the ensemble is poor. Similar 

results can be observed for hydrometeor variables (Figure 6f-i). Although multiscale localization does not produce distinctly 

different wind components between LDA_HBC_MSL and LDA_HBC, it does result in a smaller RMSE for the hydrometeor 

variables in LDA_HBC_MSL. Thus, multiscale localization is beneficial for the analysis performance. For other variables 

(w, θ, and qv), LDA_DS produces consistently smaller errors than the other experiments, while the differences between the 755 

other experiments are not as distinct. In most cases, LDA_ctrl exhibits the worst performance. Using a fixed radius of 200 

km and a poor ensemble are the main causes of the poor performance of LDA_ctrl. 

To qualitatively assess the analysis error, we compute the difference in total energy (DTE, Meng and Zhang, 2007). 

LDA_ctrl (Figure 7 d-f) decreases the large background errors (Figure 7 a-c) at 850 hPa and 500 hPa but generates many 

spurious increments over the ocean, increasing the error there; this problem is more pronounced at 200 hPa. Accordingly, 760 

LDA_ctrl fails to substantially reduce the error for the entire domain. Because the spurious increment is a result of using a 

poor ensemble, utilizing the hybrid method that suppresses the impact of the ensemble yields smaller errors 

(LDA_HBC_MSL, Figure 7 g-i) from the lower to the upper levels. The spurious increment is further reduced in LDA_DS, 

especially at 850 hPa and 500 hPa, corresponding to the smallest analysis error in Figure 6. For LDA_OS and LETKF_OS, 

we consider mainly whether their analyses are similar. According to the results shown in Figure 8, the two experiments 765 

produce similar analyses, but the Local DA analysis is noisier, which implies that the LETKF is better than Local DA as a 

stand-alone ensemble-based algorithm. 

For the perturbation of the dry-air mass in column (mu), although LDA_ctrl corrects the overestimate of the central pressure, 

it severely underestimates mu in the typhoon center (Figure 9b), leading to a larger RMSE after DA. In addition, the analysis 

of LDA_ctrl is noisy, which is attributable to the unreliable error correlation estimated by the ensemble because 770 

LDA_HBC_MSL and LDA_DS (Figure 9c, d), which weaken the impact of the ensemble, generate smaller analysis errors 

and less noise. Many spurious increments are still observed in LDA_HBC_MSL and LDA_DS, which may require a better 

covariance or a static constraint to resolve. The analysis errors of mu in LDA_OS and LETKF_OS (Figure 9e, f) do not 

differ substantially, as expected. In general, Local DA with the hybrid method and multiscale localization is able to reduce 

the surface pressure error, but the results are not good enough in terms of the spurious increment. 775 
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Figure 10 shows the evolutions of the forecast error for the aforementioned experiments. All the DA experiments produce 

smaller forecast errors than the experiment without DA (BAK) throughout the 18-h forecast in terms of the observation 

variables. For nearly all investigated variables, the experiments using the hybrid covariance produce smaller errors than the 

experiments using only the ensemble-based covariance. This finding is consistent with the results in Figure 6. LDA_DS 

often yields the smallest forecast errors for the wind-related variables (radial velocity and wind profiler observations) 780 

because its analysis errors for u and v are the smallest. Despite the small forecast errors yielded by all the DA experiments, 

the shock to the model cannot be ignored, particularly for Z and ps (Figure 10b, f). For this issue, the noisy and imbalanced 

mu analysis is one contributor; the other contributor is likely the lack of a cross-variable-balance adjustment after DA (e.g., 

Zeng et al., 2021). The spin-up time for the shock is approximately 3 h; thus, the current version of Local DA cannot 

perform hourly cycling DA. Although the forecast results are encouraging, we emphasize that these results are obtained 785 

assuming a perfect model; hence, we plan to conduct experiments with an imperfect model or using real observations in 

future work to further assess the capabilities of Local DA. 

4.2.1 The sensitivity to the ensemble size 

Since the 15-member ensemble has large sampling errors that degrade the Local DA analysis quality, in this subsection, we 

investigate whether the 36-member ensemble is helpful for reducing the analysis error. Specifically, LDA_HBC_MSL, 790 

LDA_OS, and LETKF_OS are rerun by using the 36-member ensemble. Figure 11 shows comparisons between the 

experiments using the 15-member and 36-member ensembles. For u, v, qc, qr, and qi (Figure 11a, b, f, g, and h), the positive 

impact of using a large-size ensemble is notable. The reduction in the analysis error is larger in LDA_OS_36m and 

LETKF_OS_36m than in LDA_HBC_MSL_36m; a straightforward reason for this distinction is that the impact of the 

ensemble is reduced by 50% in LDA_HBC_MSL_36m due to the use of the hybrid covariance. Additionally, even though 795 

the analysis errors of the aforementioned variables are substantially reduced in LDA_OS_36m and LETKF_OS_36m, the 

errors are still larger than or comparable to those in LDA_HBC_MSL, further indicating the importance of utilizing the 

hybrid covariance. For the other variables, the impacts of using the 36-member ensemble are relatively small and 

inconsistent. 

The forecast results shown in Figure 12 are consistent with the analysis results in Figure 11; namely, the errors in 800 

LDA_HBC_MSL_36m, LDA_OS_36m, and LETKF_OS_36m are smaller than their counterparts using the 15-member 

ensemble for all the investigated variables. For Vr, Z, u, v, and ps, the forecast errors of LDA_HBC_MSL_36m are often the 

smallest (Figure 12). Although the analysis error difference between LDA_HBC_MSL_36m and LDA_HBC_MSL is not 

large, the difference becomes distinct by the end of the 18-h forecast. Moreover, the shock to the model is alleviated in 

LDA_HBC_MSL_36m in terms of Z and ps, indicating that the large sampling error is a contributor to the imbalanced 805 

analysis. In general, Local DA can utilize a large ensemble size to improve the analysis. 
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4.2.2 The impact of static covariance 

The difference between LDA_ctrl and LDA_HBC highlights the importance of blending the static covariance, even though 

the static covariance is composed only of distance-correlation information. In this subsection, we assess the performance of 

Local DA in the case of using the static covariance only. To achieve this goal, we rerun LDA_DS with the weight of static 810 

covariance being 1.0 (LDA_DS_noENS). For brevity, only the forecast results are shown in Figure 13, revealing that 

LDA_DS yields smaller analysis errors for all the evaluated variables than does LDA_DS_noENS; again, this finding 

highlights the importance of hybrid DA. However, the main contributor to the small analysis error is the static covariance. 

Without the ensemble-based covariance, the analysis error of LDA_DS_noENS is not much larger than that of LDA_DS. 

For PWV and ps, the forecast errors of both experiments are much closer; this result, on the other hand, demonstrates the 815 

ability of Local DA to run without the ensemble. Nevertheless, considering the poor quality of the time-lagged ensemble 

used in this study, the results shown in Figure 13 do not represent the superiority of the static covariance over the dynamic 

covariance. 

4.2.3 The cycling DA performance 

In this subsection, the cycling DA performances are evaluated. For the sake of a fair comparison, the LETKF is not involved 820 

because we conduct only the single deterministic analysis and forecast. Figure 14 shows that the forecast errors at 12 UTC 

and 18 UTC in the cycling DA experiments are smaller than those in the forecasts with a single deterministic analysis, 

indicating that Local DA can be used for cycling DA. LDA_HBC_MSL_cyc and LDA_DS_cyc produce consistently smaller 

forecast errors than LDA_ctrl_cyc for most of the observation variables, except for the radar observations at 18 UTC; this 

outcome is expected because the ensemble is not updated, so the pure ensemble-based Local DA analysis cannot produce 825 

errors comparable to those of the hybrid approach through cycling DA. Given the poor ensemble used in this study, we 

expect that using a well-sampled and updated ensemble would yield a lower forecast error during cycling DA. 

Let us have a quick look at the results. For convenience, the initial condition extracted from GFS analysis is referred to as 

BAK. All experiments reduce the root mean square root errors (RMSEs) in the observation space after DA, but their 

differences are significant (Figure 7). The experiments (Ens_noFLTR, Ens_noFLTR_OL, Ens_LETKF, and 830 

Ens_noFLTR_DSL) without the hybrid covariance and model-space multiscale localization produce relatively higher 

analysis errors than other experiments for wind components, temperature, radial velocity, and reflectivity. Using distance 

correlation (Static_BE) results in lower errors than Ens_noFLTR for most variables, while Hybrid_noFLTR further 

suppresses the errors except for reflectivity. The benefit of using hybrid covariance is consistent with many previous studies 

(e.g., Wang et al., 2009; Wang et al., 2013b; Tong et al., 2020).  835 

Model-space multiscale localization (Ens_2band, Ens_3band, and Ens_5band) is conducive to error reduction. Even with 2-

scale samples, Ens_2band dramatically reduces the errors of wind-related variables, compared with Ens_noFLTR. Involving 

more scales further improves the analysis, but the benefit is not as great as the case of comparing Ens_noFLTR with 
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Ens_2band. Combining the hybrid covariance and model-space multiscale localization does not further narrow the gap 

between the analysis and observation. 840 

Double-space localization does not necessarily ensure small analysis errors (Ens_noFLTR_DSL).  However, when the 

localization is combined with the hybrid covariance and model-space multiscale localization (Hybrid_5band_DSL and 

Ens_5band_DSL), the analysis error can be substantially reduced, especially for PWV and reflectivity. 

In model space, similar results can be observed (Figure 8). The hybrid covariance, model-space localization, and double-

space localization are helpful for error reduction. Notably, unlike the result in the observation space, the analysis errors in 845 

some experiments are higher than that of BAK. Because the RMSE in model space counts for grid points that are not directly 

observed and are updated through error covariance, the error becoming higher after DA is likely due to the poor error 

covariance in model space. 

In the following subsections, the background and analysis errors in model space are decomposed into three scales by using a 

Gaussian filter with radii of 50 km and 200 km, respectively, representing errors of the small scale (0 km - 50 km), middle-850 

scale (50 km – 200 km), and large scale (>200 km). Through this decomposition, we can investigate the results in detail. The 

vertical velocity (w) and hydrometeor variables (qc, qr, qi, qs, and qg) are not decomposed because their scales are often small. 

In addition, convective-scale DA usually computes the errors for grid points with reflectivity larger than a threshold, which 

is another way to investigate small-scale errors. The difference between errors in the convective area (reflectivity >10 dBZ) 

and the rest area is similar to that between small-scale and large-scale errors (not shown). Therefore, the errors in the 855 

convective area are not discussed in the subsequent sections. 

4.2.1 Hybrid analysis 

Figure 9 shows that the smallest scale error contributes most to the background and analysis error, while the quantities of 

large-scale errors are often half of their small-scale counterparts. Ens_noFLTR reduces errors at all scales for horizontal 

wind components, where the error reduction is relatively higher at a large scale. For T, qv, and ps, Ens_noFLTR suppresses 860 

the large-scale errors but amplifies the small-scale ones. This result implies that the large-scale error covariance is likely 

reliable but the smaller one is not.  

When the static correlation is enabled for Local DA (Static_BE and Hybrid_noFLTR), the small-scale and middle-scale 

errors are substantially decreased. This difference becomes much larger for ps when Ens_noFLTR is compared with 

Static_BE, even at a large scale. The analysis errors of Static_BE and Hybrid_noFLTR are nearly identical at all scales for u, 865 

v, T, and qv, but the reason for this phenomenon is still unknown. We plan to determine the cause in future work. Overall, the 

main contribution of employing static correlation to the lower analysis errors of Static_BE and Hybrid_noFLTR is at a small 

scale. The result implies that constraining the small-scale ensemble correlation in a small radius may be conducive to the 

small analysis error, which is what the model-space multiscale localization does. 
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4.2.2 Multiscale analysis 870 

After decomposing the ensemble samples into two parts (Ens_2band) and independently applying the localization radius for 

each scale, the small-scale analysis error becomes lower than that of Ens_noFLTR for all examined variables (Figure 10). 

Compared with Ens_2band, further decomposing the ensemble samples into more scales (Ens_3band and Ens_5band) and 

using smaller radii for small scales slightly reduces the analysis error for wind components and surface pressure but 

increases the error for qv. This result confirms the speculation that restricting the impact of small-scale correlation in a small 875 

region is beneficial. The difference between Ens_3band and Ens_5band is small, indicating that three or five scales should be 

sufficient for the model-space multiscale localization in Local DA. 

Experiments combining multiscale localization with hybrid covariance (Hybrid_2band, Hybrid_3band, and Hybrid_5band) 

produce lower analysis errors for most variables, compared with Ens_2band, Ens_3band, and Ens_5band. However, the 

improvement is not substantial. The small difference implies that we need more approaches to make further improvements. 880 

Employing double-space localization is one of the approaches, according to the result shown in Figure 8. 

4.2.3 Double-space localization 

Compared with Ens_noFLTR, Ens_noFLTR_DSL has a small but positive impact on the analysis of u, v, T, and qv at a small 

scale, while its influence on larger scale errors is negligible (Figure 11). In contrast, Ens_noFLTR_DSL substantially 

reduces the analysis error of ps at all scales.  After combining the model-space localization (Ens_5band_DSL), the analysis 885 

errors further decline at a small scale. Adding a hybrid covariance to Ens_5band_DSL (Hybrid_5band_DSL) leads to lower 

analysis error for most variables. The large-scale analysis error of ps is increased after using hybrid covariance, implying that 

the large-scale error correlation related to ps and computed by using ensemble samples is better than the distant correlation 

with a fixed influence radius. It is encouraging to see that Hybrid_5band_DSL and Ens_5band_DSL produce the analysis 

error of qv lower than BAK at small and middle scales, while Ens_5band and Hybrid_5band yield a higher analysis error 890 

than BAK. The result indicates the benefit of double-space localization. 

To qualitatively assess the analysis error, we compute the difference in total energy (DTE, Meng and Zhang, 2007). Wang et 

al. (2012) used the square root of the mean DTE to evaluate the error of DA to simplify the presentation. The DTE is 

computed in the form of the difference between the analysis and truth. Ens_noFLTR (Figure 12 d-f) decreases the 

background errors (Figure 12 a-c) at 850 hPa and 500 hPa but generates many spurious increments over the ocean, 895 

increasing the error there; this problem is more pronounced at 200 hPa. Accordingly, the error after Ens_noFLTR analysis is 

still high. The spurious increment corresponds to the large analysis error at a small scale. In contrast, utilizing the hybrid 

covariance and model-space multiscale localization suppresses the small-scale spurious errors (Hybrid_5band, Figure 12 g-i) 

from the lower to the upper levels. The spurious increment is further reduced in Hybrid_5band_DSL, especially at 850 hPa 

and 500 hPa.  900 
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4.2.4 The similarity between Local DA with observation space localization and the LETKF 

Considering that Local DA can perform observation space localization only as in the LETKF, it is interesting to see if their 

analyses are similar. Note that Ens_noFLTR_OL and Ens_LETKF merely share the same horizontal localization 

configuration; they differ in vertical localization. Figure 13 shows that the difference in analysis error between 

Ens_noFLTR_OL and Ens_LETKF is small for all variables and at all scales. Figure 14 gives an intuitive comparison 905 

between the Ens_noFLTR_OL and Ens_LETKF analyses. The overlarge negative-increment in both experiments is 

constrained in a much smaller area than Ens_noFLTR (marked by red rectangles in Figure 14). They also suppress the small-

scale noise in the Ens_noFLTR analysis, corresponding to the lower error in Figure 13e. Overall, in the case of using 

observation-space localization, Local DA can produce an analysis similar to the LETKF. 

In addition, the small-scale error of qv yielded by Ens_noFLTR_OL is lower than that of Ens_noFLTR (Figure 13d). The 910 

result is similar to the difference between Ens_noFLTR_DSL and Ens_noFLTR, indicating that the improvement of 

Ens_noFLTR_DSL on qv analysis compared with Ens_noFLTR is mainly attributable to observation-space localization.  

4.2.5 Error and ensemble spread 

For a well-sampled ensemble, a criterion is that the spatial distribution of the ensemble spread is similar to that of RMSE. In 

addition, the amplitudes of the ensemble spread must be close to the RMSE. The relationship is shown in Figure 15 for the 915 

time-lagged ensemble at 00 UTC on 26 July 2021. For u, v, and ps, the ratio of ensemble spread to RMSE ascends as the 

error scale increases, indicating that the quality of the time-lagged ensemble is rational at a large scale. This relationship is 

also valid for the spatial distribution (Figure 15b), but the correlation coefficient does not vary from small scale to large scale 

too much for most variables, except for ps. The correlation coefficient for ps is nearly 1.0 at a large scale, while it is 

approximately 0.6 at a small scale. This large difference explains why the hybrid covariance and multiscale localization can 920 

substantially reduce the error at a small scale for ps. For qv, the small-scale spread is greater than the large-scale spread; the 

correlation coefficients at all scales are close. This result implies that suppressing the small-scale error covariance does not 

necessarily improve the analysis quality of qv. Therefore, it is not irrational for Ens_5band and Hybrid_5band to produce a 

higher analysis error for qv than Ens_2band. 

An example related to the ensemble spread and RMSE of ps is shown in Figure 16. The RMSE is smooth at a small scale, 925 

and there is a maximum near the typhoon center. Although the ensemble spread also has a maximum near the typhoon center, 

there is a large bias concerning the location. Moreover, the ensemble spread is much noisier than the RMSE, which is a 

cause of the noisy analysis shown in Figure 14b. In contrast, the large-scale ensemble spread matches the error well, which is 

conducive to error reduction. Therefore, even with a large localization radius, the surface pressure analysis of Ens_noFLTR 

at a large scale is not much worse than that of the other experiments. 930 
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4.3 The cycling DA 

Because ensemble DA approaches often take several cycles to obtain a reasonable analysis, it is worth seeing if 

Ens_noFLTR produces a better analysis after some cycles and if Hybrid_5band_DSL maintains the advantage in cycling DA. 

Before looking at the RMSE evolution during cycling, the ps tendency is examined as it is a metric of dynamic imbalance 

(Zeng et al., 2021). If the unphysical ps tendency is large, the analysis may be degenerated, and the forecast could be 935 

unstable. Although it is better to analyze the ps tendency at each time step, in this study, the hourly ps tendency is sufficient 

to demonstrate the impact of imbalance analysis. The forecast from GFS analysis is referred to as BAK in this subsection. 

4.3.1 The tendency of ps 

The ps tendency in the truth simulation is selected as a criterion as it is assumed to be in balance status after a 24-h forecast. 

The balanced tendency is approximately 20 Pa h
-1

 (Figure 17), which is reached by BAK in 3 h. After the first DA cycle, the 940 

ps tendency becomes much larger than that of BAK, no matter the DA configuration. The large ps tendency after the first 

DA cycle is not surprising because the landing typhoon is not fully observed by the simulated observation network, 

especially for the wind field, causing an imbalance between the corrected part and the rest of the analyzed typhoon. A similar 

phenomenon was discussed by Wang et al. (2012) in a simulated supercell case. They concluded that such an imbalance 

shocks the model forecast and increases the forecast error. 945 

After a 6-h forecast, the ps tendencies in Hybrid_5band_DSL_6h and Ens_noFLTR_6h are close to the balance status. As 

expected, the ps tendency increases again after the second DA cycle. However, Hybrid_5band_DSL_6h produces a much 

smaller ps tendency than Ens_noFLTR_6h, indicating that Hybrid_5band_DSL_6h has a more balanced analysis. The peaks 

of ps tendency in Hybrid_5band_DSL_6h and Ens_noFLTR_6h gradually decline as the number of cycles increases. By 18 

UTC, Hybrid_5band_DSL_6h reaches the balance status while Ens_noFLTR_6h does not. The above result indicates that 950 

using the hybrid covariance and multiscale localization is beneficial for cycling DA.  

Note that the advantage of Hybrid_5band_DSL_6h has a precondition that the cycling interval is sufficiently long for the 

model to spin up. When the cycling interval becomes shorter (Hybrid_5band_DSL_3h), the ps tendency cannot be 

effectively suppressed as Hybrid_5band_DSL_6h does. 

4.3.2 The performance of cycling DA 955 

We only discuss the results of u, v, qv, and ps in this subsection for brevity. For u and v, all experiments reduce the forecast 

error compared with BAK (Figure 18Figures 18a and b). However, the error evolutions of these experiments substantially 

differ. Ens_noFLTR_6h fails to decrease the forecast error after the second cycle, while Hybrid_5band_DSL_6h 

successively reduces the forecast and analysis error as the number of cycles increases. For Hybrid_5band_DSL_3h, an 

oscillation in error evolution is observed, which is likely associated with the imbalance analysis and the insufficient cycle 960 
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interval for spinup. Despite the oscillation, the forecast and analysis errors of Hybrid_5band_DSL_3h are comparable to 

those of Hybrid_5band_DSL_6h for wind components. 

However, in regard to water vapor and surface pressure (Figure 18c and d), Hybrid_5band_DSL_6h becomes better than 995 

Hybrid_5band_DSL_3h. Hybrid_5band_DSL_6h also outperforms Ens_noFLTR_6h; the latter fails to suppress the forecast 

error of qv and produces a higher ps error after analysis. Figure 19 shows the spatial distribution of forecast error at 18 UTC 

for Hybrid_5band_DSL_6h and Ens_noFLTR_6h. The area of large error in Hybrid_5band_DSL_6h is much lower than that 

of Ens_noFLTR_6h for both v and ps. The large error in Ens_noFLTR_6h corresponds to a weak cyclonic rotation and weak 

low pressure. The above result confirms the benefit of using the hybrid covariance and multiscale localization.   1000 

4.3.3 The evolution of the relationship between ensemble spread and RMSE 

For Hybrid_5band_DSL_6h, the initial ensemble spread is smaller than the RMSE at all scales (Figure 20a) for both u and ps. 

As the number of cycles increases, the ratio of ensemble spread to RMSE increases. By 18 UTC, the ensemble spread is 

comparable to or greater than the corresponding RMSE at all scales for u. The underestimation of RMSE by the ensemble 

spread is alleviated for ps (Figure 20b). For the spatial distribution, the relationship between the ensemble spread and RMSE 1005 

does not vary much for u at all scales (Figure 20c). In contrast, the relationship becomes better for ps at a small scale (Figure 

20d). Overall, the ensemble is improved in Hybrid_5band_DSL_6h. 

For Ens_noFLTR_6h, the ensemble spread of u and ps at the small-scale remains smaller than the corresponding RMSE 

during the cycling DA. In contrast, the ensemble spread at the large scale dramatically increases after the second cycle. The 

amplitude of the large-scale ensemble spread is even higher than that of the small-scale spread, leading to a severe 1010 

overestimation of the large-scale error. Meanwhile, the correlation between ensemble spread and RMSE at the small scale is 

not improved during cycling. In general, the ensemble in Ens_noFLTR_6h does not become better after four cycles, which 

explains why Ens_noFLTR_6h produces a large analysis error. 

4.4 The computational cost and efficiency 

The computational cost and efficiency of Local DA are discussed in this subsection. All tests are conducted on a 36-core 1015 

workstation with an Intel Xeon Gold 6139 CPU (the maximum frequency is set to 2.30 GHz) and 48 gigabytes of available 

memory. Heretofore, we have implemented the parallel Local DA with OpenMP, which is not suitable for large-scale 

parallel computing; however, for the purpose of this study, OpenMP is sufficient. The parallel efficiency is examined first. 

LDA_HBC_MSL is selected as an example. Figure 15Figure 21 shows the wall clock time as a function of the number of 

cores. The wall clock time covers Local DA steps 3) through 9) (as described in Sect. 2d). As expected, the wall clock time 1020 

is reduced by approximately 50% upon doubling the number of cores, which is valid if the number of cores is not greater 

than 16. In contrast, increasing the number of cores from 16 to 32 does not shorten the wall clock time; this is attributable to 

the fact that OpenMP is suitable only when the number of processors is small (<16) (Hoeflinger et al., 2001)(Hoeflinger et 

al., 2001). Given that no messages need to be passed between the cores for steps 3) through 9), the parallel efficiency of 
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Local DA is likely insensitive to the number of cores. In general, the results demonstrate that Local DA can be highly 1025 

parallelized. 

In addition to its parallelization, the computational speed of Local DA is also investigated. LDA_HBC_MSLHybrid_5band 

takes 225 s to complete all local analyses when 16 cores are used. Note that the number of horizontal grid points within the 

forecast domain is 40000, and more than 200000 observations are assimilated. Given that the processors work at a frequency 

of 2.30 GHz, the computational speed of Local DA is acceptable. On average, nearly 70% of the computational time is used 1030 

to compute Coo and Cmo; for the minimization using the CG method, the corresponding percentage is approximately 18%. 

We also assess the memory consumption of Local DA. To complete Local DA steps 3) through 9), 

LDA_HBC_MSLHybrid_5band uses approximately 4 gigabytes when 16 cores are engaged to store Coo and the associated 

matrices. ByIn contrast, the LETKF uses only hundreds of megabytes. For each 5-column analysis, the Coo size 

approximately varies from 2000×2000 to 4500×4500, which is affordable. However, for a much larger size, such as 1035 

9000×9000, OpenMP is insufficient; under these circumstances, the MPI-OpenMP hybrid scheme is likely a viable solution 

for both the computational speed and the memory consumption, which is what we are working on.in progress. In addition to 

Coo, the model-space multiscale localization requires large memory. Memory consumption is proportional to the number of 

scales. For example, Ens_3band requires three times as much memory as Ens_noFLTR to store the decomposed 

perturbations. In general, the total computational cost of Local DA is high, but the cost of each local analysis is affordable. 1040 

With proper data thinning and parallelization, it is possible for Local DA to be used in the assimilation of real observations. 

5 Summary and conclusions 

This study proposed a local data assimilation scheme (Local DA) that can utilize the hybrid covariance and multiscale 

localization simultaneously.. Local DA explicitly computes a local background error correlation matrix and uses the 

correlation matrix to construct a local error sample matrix. After localization, theThe error sample matrix with proper 1045 

localization allows Local DA to adopt the conjugate gradient (CG) method to solve the cost function. The constructed matrix 

also allowsrenders Local DA to perform analyses by using only static correlation information.be a flexible hybrid analysis 

scheme. Local DA is assessed assumingevaluated in a perfect model and by using scenario that includes a simulated 

multiscale observations of observation network for a typhoon case. We examineexamined the impacts of the hybrid 

covariance and multiscale localization on Local DA and evaluated the performance of Local DA in both a single 1050 

deterministic forecast and cycling DA. Only deterministic analyses and forecasts are considered. Several conclusions can be 

drawn from the results of the DA experiments: 

i) Applying the CG method independently for each column group does not result in a serioussevere discontinuity in the 

Local DA analysis; 

ii) Explicitly computing the background correlation matrix projected onto observation-associated grids/columns is 1055 

computationally affordable if the observations have been properly thinned; 
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iii) Local DA can effectively utilize the hybrid covariance to produce a better analysis with a small ensemble size compared 

with an than the analysis using ensemble error information onlycovariance with a fixed localization radius; 

iv) In the case of using a poor ensemble, the hybrid covariance plays a more important role than does The model-space 

multiscale localization; in such a scenario, performing localization in both the model-variable space and the observation-1060 

variable space can further decrease can reduce the analysis error compared with Local DA featuring onlyat a small scale; 

combining the hybrid covariance with the multiscale localization of the model-variable spaceyields a small improvement; 

adding double-space localization to the combination can further reduce the analysis error; 

v) Local DA requires a large amount of memory, but its computational efficiency is acceptable. 

As the first study to present Local DA, this paper focuses on describing its idea and basic formulation and algorithm.. Future 1065 

efforts to enhance the algorithm will include developing an MPI-OpenMP hybrid parallel scheme, a static covariance scheme 

that objectively determines the error variance and scales, and a better multiscale localization scheme. Furthermore, the 

current version of Local DA introduces a strong shock to the model, which limits the applicability of Local DA in cycling 

DA. Therefore, we plan to add a cross-variable balance procedure after Local DA to improve the cycling DA performance. 

Moreover, many parameters of Local DA have yet to be tested; hence, the sensitivity of Local DA to each of these 1070 

parameters will also be discussed in a future investigation. 
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Appendix 

This section provides an example of the procedure used to thin the observations (as mentioned in Sect. 2b). The observations 

are thinned horizontally, whereas thinning does not occur in the vertical direction. First, we set several rings with different 

radii at the center point or column of the model variables to be updated. For the 5-column analysis, the center coordinates of 

the variable-radius rings are the mean latitude and mean longitude of the 5 columns. The radius of the outer ring is the 1090 

observation search radius mentioned in Sect. 2d (e.g., 300 km for sounding data and 15 km for radar data). From small to 

large, the radii of the rings are denoted rr1, rr2,..., rrNr, where Nr is the number of rings. We successively search the 

observations from the inner ring to the outer ring. Within the smallest ring, all ambient observations are selected; this is 

equivalent to no thinning. For the observations located between two rings (between rri and rri-1), we select one observation 

for each quadrant of the space between the two rings. There are four quadrants: the upper-right, lower-right, lower-left and 1095 

upper-left quadrants (numbered I, II, III, and IV, respectively). A schematic plot is shown in Figure A1.Figure A1Figure A1. 

If no observation is available in the smallest ring, the second ring is treated as the first ring. 

Because no thinning occurs in the smallest ring, in a 1-column analysis, we still utilize all observations throughout the 

forecast domain when Local DA is conducted at a single point. In the 5-column analysis, the thinning approach discards 

some observations and slightly increases the analysis error relative to the 1-column analysis. Our early test (not shown) 1100 

indicates that Local DA becomes very time-consuming when the thinning process is disabled, as expected. Moreover, the 

resulting analysis error increases because the assumption of observation errors being uncorrelated is not valid, which is not 

desired.  
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Tables 

Table 1 DA experiment configurations.The dimensions of variables in Local DA 

LDA_OS_36m Local DA No Yes O Yes No 36 

LETKF_OS_36m Local DA No Yes O Yes No 36 

LDA_DS_noENS Local DA Yes No M+O Yes No 15 
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M denotes the ensemble size, Nm is the total number of analysis variables, and K is proportional to the number of 

observations (No) 
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Table 2 Examples of applying the model-space multiscale localization 

Case 

Distance 

between two 

variables 

Variable name 
Scale 

 0 km -20 km 

Scale 

20 km -200 km 

Scale 

>200km 

Multiscale 

covariance 

1 8 km 

Localization coefficient 0.5 1 1  

Localized Covariance 0.5C1 C2 C3 0.5C1+C2+C3 

2 80 km 

Localization coefficient 0.01 0.5 1  

Localized Covariance 0.01C1 C2 C3 
0.01C1+0.5C2+

C3 

3 300 km 

Localization coefficient 0.0 0.05 0.5  

Localized Covariance 0 0.05C2 0.5C3 0.05C2+0.5C3 

C1, C2, and C3 represent the covariance of the small scale (0 km -20 km), middle scale (20 km -200 km), and large scale 

(>200 km), respectively.  
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Table 3 DA experimental configurations. 

Experiment names DA scheme 
Static 

covariance 

Dynamic 

covariance 

Localization 

space 

Multiscale 

localization 

Ens_noFLTR Local DA No Yes M No 

Static_BE Local DA Yes No M No 

Hybrid_noFLTR Local DA Yes Yes M No 

Ens_2band Local DA No Yes M Yes 

Ens_3band Local DA No Yes M Yes 

Ens_5band Local DA No Yes M Yes 

Hybrid_2band Local DA Yes Yes M Yes 

Hybrid_3band Local DA Yes Yes M Yes 

Hybrid_5band Local DA Yes Yes M Yes 

Ens_noFLTR_OL Local DA No Yes O Yes 

Ens_LETKF LETKF No Yes O Yes 

Ens_noFLTR_DSL Local DA No Yes M+O Yes 

Hybrid_5band_DSL Local DA Yes Yes M+O Yes 

Ens_5band_DSL Local DA No Yes M+O Yes 
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Figures 

 

 

Figure 1 The spatial distribution of different kinds of variables in Local DA 
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Figure 2 An example of scale decomposition for scales of (a,d) 0 km - 20 km, (b,e) 50 km – 100 km, and (c,f) greater than 200 km. 

The upper panels show the decomposed v perturbation (m s-1), while the lower panels show the contribution of each scale to the 

ensemble spread in terms of percentage.   
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Figure 3 The distribution of simulated observations, where the black rings denote the maximum observation ranges of radars. 
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Figure 424 A(a) The flow chart of the time-lagged ensemble generation, where the colored thick blue arrows represent the sample 

forecasts used by the 36-member ensemble. The 15-member ensemble excludes the forecasts shown with orange arrows. . The 

sample forecasts initialized by using the GFS forecast data are highlighted with orange tick marks. The ensembles Sample 

forecasts used to form a member are available at 00 UTC, 06 UTC, 12 UTC, and 18 UTC on 26 July 2021. 1290 
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Figure 3 The ensemble spread profiles for the 15-member ensemble (orange lines) and the 36-member ensemble (dashed blue 

lines), where the model levelsdenoted by colored thin arrows. (b) The flow chart of some plots are truncated to highlight the 1295 
differences. “BAK” (black lines) denotes the RMSEcycling DA. Each member assimilates the observations containing a different 

set of the initial condition without DAperturbations. 
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 1300 

Figure 545 The spatial distributions of (a) the number of iterations and (b) the ratio of the final value of the cost function to the 

initial value. 
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Figure 656 The boxplotsBoxplots of (a) ε2 and (b) the ratio of the final J to the initial J in the dahseddashed rectangle area shown 1305 
in Figure 3Figure 13, where “ALL” denotes the DA using all observations and “RADAR” corresponds to the DA using radar data 

only. The upper and lower bounds of the boxes are the 75th and 25th percentiles, respectively. The middle line indicates the 

median. 
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Figure 767 The RMSE analysis profiles for experiments LDA_HBC_MSL (red lines), LDA_ctrl (blue lines), LDA_HBC (thin 

yellow lines), LDA_DS (dashed green lines), LDA_OS (dot brown lines), and LETKF_OS (cyan lines), where the model levels of 

some plots are truncated to highlight the main differences among the experiments. “BAK” (black lines) denotes the initial 1320 
condition without DA. 
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 1325 

 The RMSEs in observation space for all single deterministic analyses, where BAK represents the background error, SND denotes 

the sounding observation, and PRO corresponds to profile observation. The values of 1 and 15 in the legend represent the smallest 

and the largest error among all experiments, respectively.  
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Figure 878 As in Figure 7, but for the RMSEs in model space. 
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Figure 9 The analysis error decomposed into scales of 0 km - 50 km, 50 km – 200 km, and greater than 200 km (shown on the x-

axis), where BAK represents the initial condition before DA. 1340 
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Figure 10 As in Figure 9, but for Ens_2band, Ens_3band, Ens_5band, Hybrid_2band, Hybrid_3band, and Hybrid_5band, where 

BAK and Ens_noFLTR are duplicated for comparison.  1345 
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Figure 11 As in Figure 9, but for Ens_noFLTR_DSL, Hybrid_5band_DSL, and Ens_5band_DSL, where BAK and Ens_noFLTR 

are duplicated for comparison. 
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Figure 12 The DTE at 850 hPa (left column), 500 hPa (middle column), and 200 hPa (right column) for (a-c) BAK, (d-f) 

LDA_ctrlEns_noFLTR, (g-i) LDA_HBC_MSLHybrid_5band, and (j-l) LDA_DS.Hybrid_5band_DSL.  1355 
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Figure 13813 The same asAs in Figure 7Figure 9, but for (a-c) LDA_OSEns_noFLTR_OL and (d-f) Ens_LETKF_OS, where BAK 

and Ens_noFLTR are duplicated for comparison. 1360 
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Figure 14914 The difference in the dry-air mass in column (mu) between the truth (contours) and analysis (shading) for (a) BAK, 

(b) LDA_ctrl, (c) LDA_HBC_MSL, (d) LDA_DS, (e) LDA_OS, and (f) Ens_noFLTR_OL, and (c) Ens_LETKF_OS., where 

rectangles highlight the areas where Ens_noFLTR_OL and Ens_LETKF analyses are similar 

 

 1380 

 

 



 

62 

 

  
  1385 



 

63 

 

 

Figure 151015 The evolutions of the forecast RMSEs in terms of the (a) radial velocity, (b) reflectivity, (c) u component (wind 

profiler), (d) v component (wind profiler), (e) PWV, and (f) ps for BAK (gray lines), LDA_HBC_MSL (thin magenta lines), 

LDA_ctrl (dashed green lines), LDA_HBC (dot red lines), LDA_DS (thick orange lines), LDA_OS (cyan lines), and LETKF_OS 

(dashed black lines). 1390 
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 (a) The ratio of ensemble spread to RMSE at 00 UTC on 26 July 2021 and (b) the spatial correlation coefficient between ensemble 

spread and RMSE for scales of 0 km - 50 km, 50 km – 200 km, and greater than 200 km. 

 1395 

  



 

65 

 

 

 

Figure 161116 The same as in Figure 6 but for LDA_HBC_MSL_36m (blue lines), LDA_OS_36m (orange lines), and 

LETKF_OS_36m (dot green lines). The results of BAK, LDA_HBC_MSL, LDA_OS, and LETKF_OS are plotted for comparison. 1400 
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 The RMSE (shaded) and ensemble spread (contours) of ps decomposed into scales of (a) 0 km-50 km and (b) greater than 200 km  1405 
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Figure 17 The tendency of surface pressure (Pa h-1) for Truth (black), BAK (green), Ens_noFLTR (blue), Hybrid_5band_DSL_6h 

(orange), and Hybrid_5band_DSL_3h (light blue) 
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Figure 181218 The same as in Figure 10 butevolution of RMSE for LDA_HBC_MSL_36m (thick BAK (black), Ens_noFLTR 1420 
(blue), Hybrid_5band_DSL_6h (orange lines), LDA_OS_36m (dashed red lines), and LETKF_OS_36m (thin green 

lines).Hybrid_5band_DSL_3h (light blue), where the solid markers denote the forecast error while the hollow markers represent 

the analysis error 
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Figure 19 The results of BAK, LDA_HBC_MSL, LDA_OS,difference in (a, b) meridional wind and LETKF_OS are plotted(c, d) 

the dry-air mass in column (mu) between the truth (contours) and forecast (shading) at 18 UTC 26 July 2021 (the last analysis 1435 
cycle) for reference(a, c) Ens_noFLTR_6h and (b, d) Hybrid_5band_DSL_6h. 
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Figure 201320 The same as in Figure 10 but to compare LDA_DS_noENS (red lines) and LDA_DS (blue lines). The result of BAK 

is plotted for reference. 
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Figure 14 The evolutions of the forecast RMSE in terms of the (a) radial velocity, (b) reflectivity, (c) u component (wind profiler), 

(d) v component (wind profiler), (e) PWV, and (f) ps for LDA_ctrl_cyc (blue), LDA_HBC_MSL_cyc (magenta), and LDA_DS_cyc 

(green). The forecasts of LDA_ctrl, LDA_HBC_MSL, and LDA_DS are plotted for reference. 
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Figure 15  The ensemble spread (solid lines), RMSE (dotted lines), and correlation coefficient between spread and RMSE (dotted 

dash lines) in three scales for Ens_noFLTR (rectangle markers) and Hybrid_5band_DSL_6h (circle markers), where scales of 0 

km-50 km, 50 km -200 km, and > 200 km are denoted by blue, orange, and light blue, respectively. 
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Figure 21 The wall clock time as a function of the number of cores used in the parallel test. 1465 
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Figure A1 A schematic of the observation searching approach used in Local DA, where stars represent the selected observations 

near the grid point (dark solid dot) to be analyzed. 
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