
We thank the reviewers for their careful review of our paper and the helpful comments that 

improved the manuscript. We give the response in blue and cite the revised text in orange. The 

original comments are reproduced. 

We try to address every issue that reviewers concern with as properly as possible, but we believe 

there must be some issues that haven‟t been correctly revised. For any incorrectly processed 

issues, we appreciate further suggestions to fix them. 

We make many modifications throughout the manuscript according to the comments. The 

experiments are redesigned, and most discussions on results are rewritten. We add the DA 

experiments using different combinations of scales, discuss errors decomposed into three scales 

(0 km-50 km, 50 km-200km, and >200km), and show cycling DA experiments that update 

ensemble perturbations. More details for the Local DA procedure are added, including the 

examples of multiscale localization and the dimensions of matrices used in Local DA. 

 

Reviewer 1 

 

Review of “A local data assimilation method (Local DA v1.0) and its application in a simulated 

typhoon case” by Wang and Qiao 

  

This work introduces a local DA method to perform hybrid and simultaneous multiscale DA for each 

grid or column group individually. Both model- and observation-space localizations are implemented 

in this method. The OSSE with a simulated typhoon case is used to assess the method. This study 

examines the impacts of hybrid covariances vs. pure dynamic covariances, fixed localization vs. 

multiscale localization, and compares the relative effects on the reduction of analysis errors between 

hybrid covariances and localization. Finally, they explore the discontinuity issue by the CG method 

and the computational cost issue. Generally, this is an interesting work, and the Local DA method is 

attractive. However, I don‟t feel the authors presented convincing results that their new developments 

are actually useful, undercutting their efforts. I suggest a major revision before accepting for 

publication. 

  



Major comments: 

1. Section 2.2: can the authors provide on details on the realization of the multiscale localization 

analysis from a formula perspective? For example, what does the control variable Vo look 

like in the multiscale localization approach? Does it need to be extended to realize the 

multiscale localization approach compared to the fixed localization approach? How is the 

Cmo is changed? How is the increment defined in this approach? Without these details, it is 

hard for the readers to follow the realization of this approach. 

Thanks for your comments. 

Details on the realization of the multiscale localization analysis are added. 

(1)  Equations (15) and (16) are added to section 2.2, containing a column of components in the 

examples of Coo and Cmo. The related text is as follows. 

Line 239-244 

Substituting equations (13) and (14) into equation (6), an example of Coo in equation (6) is written as: 
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where i and j in equation (13) are replaced by subscripts in equation (6). For brevity, only the first 

column of Coo is listed. Obviously, applying the multiscale localization does not change the size of Coo. 

Correspondingly, an example of Cmo in equation (8) can be written as: 
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According to the above equations, the multiscale localization only adjusts the computation of Coo 

and Cmo components and does not change the size of both matrices. Therefore, there is no change 



to the form of vo, no matter using the multiscale localization or not. We added the related text as 

follows. 

Line 245-247 

Because the sizes of Coo and Cmo do not change, there is no modification for vo, x
i
, x

f
, and x

a
. The only 

modification to realize the multiscale localization in model space is to store the error sample of each 

scale and compute the corresponding correlation coefficient. Therefore, realizing the multiscale 

analysis within the Local DA framework is easy. 

(2) A table (Table 2) is added to demonstrate how the multiscale localization works. The related 

text is also added. 

Table 1 The examples of applying the model-space multiscale localization 

Case 

Distance 

between two 

variables 

Variable name 
Scale 

 0 km -20 km 

Scale 

20 km -200 

km 

Scale 

>200km 

Multiscale 

covariance 

1 8km 

Localization coefficient 0.5 1 1  

Localized Covariance 0.5C1 C2 C3 0.5C1+C2+C3 

2 80km 

Localization coefficient 0.01 0.5 1  

Localized Covariance 0.01C1 C2 C3 
0.01C1+0.5C2

+C3 

3 300km 

Localization coefficient 0.0 0.05 0.5  

Localized Covariance 0 0.05C2 0.5C3 0.05C2+0.5C3 

C1, C2, and C3 represent the covariance of the small scale (0 km -20 km), middle scale (20 km -200 km), 

and large scale (>200km), respectively.  



Line 249-254 

The multiscale localization proposed in this subsection gradually diminishes the contribution of 

small-scale covariance as the distance between two variables increases while retaining that of large-

scale covariance until the distance is very large. Table 1 shows an example of multiscale localization. 

In this example, there are two arbitrary variables of which the error samples are decomposed into 

three scales. The values of covariance between the two variables are C1, C2, and C3 at three scales, 

respectively. When the two variables are close (8 km), the localization coefficients of C2 and C3 are 

1.0, according to the first formula in equation (14). As the distance increases to 300 km, the 

localization coefficients of C1 and C2 become nearly zero, and the total covariance is mainly 

attributable to C3. 

 

 

2. L235: is the static correlation always identical to all variables? I do not think it is realistic. 

For example, convective-scale variables usually have a smaller spatial correlation length than 

horizontal winds and temperature. The authors need to give some explanations on how they 

solve this issue in the static correlation. 

Thanks for your comments. 

The influence radii of the static correlation are independently set for each analysis variable, 

although the radii for wind component, temperature, and water vapor are identical (200 km) 

in this study. The radii for ps and hydrometeor variables are 1000 km and 20 km, respectively. 

These values are given empirically. In our early tests, 200 km is sufficient for most variables. 

For hydrometeor variables, a small radius should be given, as your comment. Assigning a 

large radius for ps prevents the analysis from severe imbalance because a large part of the 

typhoon on the ocean is not updated if a small influence radius of ps is used. The related text 

is given in section 3.3.2, the DA configurations, as follows. 

Line 404-409 

The model variables to be analyzed are the three wind components (u, v, w), potential 

temperature (θ), water vapor mixing ratio (qv), dry-air mass in column (mu), and hydrometeor 

mixing ratios (qc, qr, qi, qs, and qg). A fixed localization radius of 200 km is used for most 

variables. For ps and hydrometeor variables (qc, qr, qi, qs, and qg), the fixed influence radii are 

1000 km and 20 km, respectively. These values are tuned for the case in which Typhoon In-Fa 



made landfall in this study and are only used for static correlation and experiments without 

multiscale localization (e.g., Ens_noFLTR). 

Authors acknowledge that the above configurations are not optimal and plan to improve it in 

future work. 

 

3. L240: what is the purpose to force the second term on the RHS of Eq. (14) to zero? If it is 

desired to force cross-variable covariances to zero, could the authors comment that how to 

realize the update of unobserved variables in this Local DA method? 

Thanks for your comments. 

Equation (14) is equation (17) in the revised manuscript. The second term on the RHS of this 

equation is forced to zero only in the case of computing cross-variable correlation. This term 

is not zero for the univariate correlation because the correlation is modeled by a distance 

correlation function. For the cross-variable correlation, that term is zero because we don‟t 

have functions to model the relationship. We are working on the cross-variable correlation 

for Local DA. Authors acknowledge that some cross-variable correlations are modeled in 

previous studies, but implementing these correlations in the form of Local DA is not simple. 

The current Local DA updates the unobserved model variables via the cross-variable 

correlation computed using the ensemble covariance. 

The related text is as follows. 

Line 273-278 

Note that the static part of equation (17) represents merely a distant correlation. It is valid for the 

univariate correlation rather than the cross-variable scenario. Therefore, the static part of 

equation (17) is forced to zero if the ith and jth variables are different types of variables. In other 

words, the cross-variable correlation is contributed only by the ensemble part. Authors 

acknowledge that the cross-variable correlation is important for DA, but the static cross-variable 

correlation must be carefully modeled, such as the correlation between wind components and 

geopotential height, or between the stream function and potential temperature. The modeling 

work is in progress. 

 



4. Section 3.1: what is the performance of the simulated typhoon against the observation? It is 

better for the nature run in OSSE to agree with the real atmosphere within predefined limits, 

according to Hoffman and Atlas (2016, BAMS). 

Thanks for your comments. 

We compared the typhoon central-pressure (ps) at sea level of the Truth simulation and the 

observations published by the China Meteorological Administration (CMA). The result 

shows a consistency between the ps tendencies of the observation and the Truth simulation.     

The following figure shows the ps tendency from 00 UTC on 25 July to 18 UTC on 26 July 

for the observation (OBS) and the Truth simulation. The location of typhoon centers in the 

observation and the Truth simulation are also close (not shown). 

 

Considering that the revised manuscript is long, the above figure is not shown in the revision. 

The related text is added in section 3.1 and is as follows. 

Line 340-245 

According to Hoffman and Atlas (2016), a criterion for reasonable OSSEs is the truth simulation 

agrees with the real atmosphere. The typhoon central pressure in the Truth simulation gradually 

increases from 968 hPa to 980 hPa by 18 UTC on 26 July 2021 (not shown), which is consistent 

with the real observation obtained from China Meteorological Administration (CMA), except that 

the observed pressure increases more rapidly, reaching 985 hPa by 18 UTC on 26 July 2021. The 

simulated typhoon’s central location also agrees with the CMA observation. Therefore, the Truth 

simulation is eligible for OSSEs. 

 

5. L365: Please elaborate on how these localization lengths and wavebands are selected. Given 

the deficient ensemble used in this study, a broad localization may significantly degrade the 



analysis. For example, I could imagine that LDA_ctrl will obtain worse results as a fixed 

localization of 200 km is used to assimilate radar observations. You may add a subsection in 

the results part to discuss the selection of these parameters or the sensitivity to these 

parameters. 

Thanks for your comments. The authors acknowledge that it is necessary to discuss the 

sensitivity of Local DA to multiscale localization parameters. Therefore, we add new 

experiments to test multiscale localization parameters. In addition, we rename all 

experiments to make them clearer. 

The previous Table 1 is Table 3 in the revised manuscript. 

Table 2 DA experiment configurations. 

Experiment names 
DA 

scheme 

Static 

covariance 

Dynamic 

covariance 

Localizat

ion space 

Multiscale 

localization 

Ens_noFLTR Local DA No Yes M No 

Static_BE Local DA Yes No M No 

Hybrid_noFLTR Local DA Yes Yes M No 

Ens_2band Local DA No Yes M Yes 

Ens_3band Local DA No Yes M Yes 

Ens_5band Local DA No Yes M Yes 

Hybrid_2band Local DA Yes Yes M Yes 

Hybrid_3band Local DA Yes Yes M Yes 

Hybrid_5band Local DA Yes Yes M Yes 

Ens_noFLTR_OL Local DA No Yes O Yes 

Ens_LETKF LETKF No Yes O Yes 

Ens_noFLTR_DSL Local DA No Yes M+O Yes 

Hybrid_5band_DSL Local DA Yes Yes M+O Yes 

Ens_5band_DSL Local DA No Yes M+O Yes 

 



The prefix “Ens” represents using the ensemble covariance only, while “Hybrid” denotes the 

experiments using the hybrid covariance. Static_BE uses the distance correlation function. 

“noFLTR” means no bandpass filter is used. “2band”, ”3band”, and “5band” indicate that the 

ensemble perturbations are decomposed into 2, 3, and 5 scales, respectively. “DSL” means 

double-space localization. “OL” means doing observation-space localization. In this study, 

the radius of a Gaussian filter is used to represent the scale. 

The scales of 2 bands: 0 km -200 km, and >200 km. 

The scales of 3 bands: 0 km -50 km, 50 km -200 km, and >200 km. 

The scales of 5 bands: 0 km -20 km, 20 km -50 km, 50 km -100 km, 100 km -200 km, 

and >200 km. 

The relationship between the original experiment name and the revised names 

LDA_ctrl    ->   Ens_noFLTR 

LDA_HBC_MSL   ->  Hybrid_5band 

LDA_HBC   ->  Hybrid_noFLTR 

LDA_DS   ->  Hybrid_5band_DSL 

LDA_OS   ->  Ens_noFLTR_OL 

LETKF_OS   ->  Ens_LETKF 

Due to the new experimental design, LDA_DS_noENS and experiments with 36 members 

are removed. LDA_DS_noENS is replaced by Static_BE. Static_BE is used to compare with 

Ens_noFLTR and Hybrid_noFLTR. The results of experiments with 36 members are 

mentioned as “Authors have tested a larger size ensemble with 36 members and obtained lower 

analysis errors than the 15-member counterpart. For brevity, the results with the 36-member 

ensemble are not shown.” (Line 393-395) 

 

The experimental design in section 3.3.2 is as follows, where the text related to the multiscale 

localization parameters is underlined.  

Line 402-430 



A total of 14 experiments for deterministic analyses at 00 UTC on 26 July 2021 are examined. The first 

three experiments investigate the influence of using the pure ensemble covariance (Ens_noFLTR), the 

distant correlation covariance (Static_BE), and the hybrid covariance (Hybrid_noFLTR) on the Local DA 

analysis. The model variables to be analyzed are the three wind components (u, v, w), potential 

temperature (θ), water vapor mixing ratio (qv), dry-air mass in column (mu), and hydrometeor mixing 

ratios (qc, qr, qi, qs, and qg). A fixed localization radius of 200 km is used for most variables. For ps and 

hydrometeor variables (qc, qr, qi, qs, and qg), the fixed influence radii are 1000 km and 20 km, respectively. 

These values are tuned for the case in which Typhoon In-Fa made landfall in this study and are only used 

for static correlation and experiments without multiscale localization (e.g., Ens_noFLTR). The background 

error covariance is empirically inflated by 50%. For Hybrid_noFLTR, the weight between the dynamic and 

static covariances is 0.5.  

Then, the impact of model-space multiscale localization is evaluated through 6 experiments with/without 

the hybrid covariance. Ens_2band, Ens_3band, and Ens_5band use the pure ensemble covariance, but the 

ensemble is decomposed into 2, 3, and 5 scales, respectively. The 2-band experiment uses samples with a 

scale of 0 km - 200 km and a scale greater than 200 km. In this experiment, the contribution of the scale 

greater than 200 km is amplified because the localization coefficient is 1.0 until the distance between two 

grid points is greater than 200 km. For Ens_3band, three scales are 0 km - 50 km, 50 km - 200 km, and 

>200 km, respectively. The corresponding values for Ens_5band are 0 km - 20 km, 20 km - 50 km, 50 km - 

100 km, 100 km - 200 km, and >200 km, respectively. Through the above three experiments, we can 

examine the sensitivity of Local DA to the configuration of multiscale analysis. Hybrid_2band, 

Hybrid_3band, and Hybrid_5band use the same ensemble covariance as Ens_3band, and Ens_5band, 

respectively; the ensemble covariance and static covariance weight equally in the hybrid covariance.   

The last five experiments are designed to discuss the impact of the localization space. Ens_noFLTR_OL 

performs localization in observation space. The horizontal radii are 360 km, 150 km, 120 km, and 15 km 

for sounding, wind profiler, PWV, and radar data, respectively. Notably, Ens_noFLTR_OL performs 

vertical localization in model space, identical to Ens_noFLTR. Ens_LETKF uses the LETKF algorithm and 

the same horizontal localization radii as Ens_noFLTR_OL. The vertical radius for all observations is 5 

km, where the PWV observations are supposed to be available at 4000 m for LETKF localization. 

Ens_noFLTR_DSL performs localization in both model and observation space. In the model space, a fixed 

localization radius is used, as in Ens_noFLTR, while the localization parameters of Ens_noFLTR_OL are 

adopted for observation-space localization. By using 5-band samples, Ens_noFLTR_DSL becomes 

Ens_5band_DSL. Adding hybrid covariance to Ens_5band _DSL yields Hybrid_5band_DSL. For 

convenience, all single deterministic analysis experiments are listed in Table 2, where “M” and “O” 

denote the model and observation spaces, respectively. 

 



In section 4, we discuss the results related to the multiscale localization experiments as 

follows. In general, the multiscale localization reduces the analysis error at a small scale. 

Decomposing error samples into three or five scales produces similar results. Combining the 

multiscale localization and hybrid covariance has a small positive impact on the analysis. 

Line 508-519 

4.2.2 Multiscale analysis 

After decomposing the ensemble samples into two parts (Ens_2band) and independently applying 

localization radius for each scale, the small-scale analysis error becomes lower than that of 

Ens_noFLTR for all examined variables (Figure 10). Compared with Ens_2band, further 

decomposing the ensemble samples into more scales (Ens_3band and Ens_5band) and using 

smaller radii for small scales slightly reduces the analysis error for wind components and surface 

pressure but increases the error for qv. This result confirms the speculation that restricting the 

impact of small-scale correlation in a small region is beneficial. The difference between 

Ens_3band and Ens_5band is small, indicating that three or five scales should be sufficient for 

the model-space multiscale localization in Local DA. 

Experiments combining the multiscale localization with the hybrid covariance (Hybrid_2band, 

Hybrid_3band, and Hybrid_5band) produce lower analysis errors for most variables, compared 

with Ens_2band, Ens_3band, and Ens_5band. However, the improvement is not substantial. The 

small difference implies that we need more approaches to make further improvements. Employing 

double-space localization is one of the approaches, according to the result shown in Figure 8. 

 

In the above text, the errors are decomposed into three scales, representing errors of the small 

scale (0 km - 50 km), middle-scale (50 km – 200 km), and large scale (>200 km).  This 

discussion gives more details on the Local DA analysis. Before introducing the scale 

decomposition, we briefly describe the impact of multiscale localization. The related text is 

as follows. 

Line 474-478 

The model-space multiscale localization (Ens_2band, Ens_3band, and Ens_5band) is conducive to error 

reduction. Even with 2-scale samples, Ens_2band dramatically reduces the errors of wind-related 

variables, compared with Ens_noFLTR. Involving more scales further improves the analysis, but the 

benefit is not as great as the case of comparing Ens_noFLTR with Ens_2band. Combining the hybrid 



covariance and model-space multiscale localization does not further narrow the gap between analysis and 

observation. 

 

For your comments “For example, I could imagine that LDA_ctrl will obtain worse results as 

a fixed localization of 200 km is used to assimilate radar observations”, we did carefully 

analysis. 

We found that the high analysis error of Ens_noFLTR (was LDA_ctrl) is attributable to the 

analysis at a small scale. The small-scale information is primarily observed by radar. 

Therefore, your comments can be partly explained by the analysis at a small scale. 

Our results indicate that the small-scale ensemble covariance is irreliable; constraining the 

impact of the small-scale ensemble covariance reduces the analysis error, no matter the 

approach. Figures 7,  9, 10, and 11 in the revised manuscript show that the hybrid covariance, 

static correlation, and multiscale localization mainly reduce the small-scale error for wind 

components. The difference in the analysis error at the large scale between Ens_noFLTR and 

other experiments is relatively small. 

 

Minor comments: 

1. L160: If only observation “u1” is available, Eq. (7) seems to be incorrect. Is this a typo? 

Should it be “where observations “u1”, “u2”, and “ps” are available”? 

Thanks for your comments. 

Our original example is somehow confusing and we did some modifications to that example. 

The model variable „u1‟ is replaced by „v1‟ so that the model variables to be updated are

“v1”, “θ1”, and “q1”. 

Line 161-166 

To obtain the model state increment x
i
, it is necessary to form Cmo and the corresponding Sm. If the model 

variables to be updated are the zonal wind (v1), potential temperature (θ1), and water vapor mixing ratio 

(q1), the Cmo is written as 
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where subscripts “u1”, “u2”, and “ps1” are the same as those in Eqs. (6) and (7), while subscripts “v1”, 

“θ1”, and “q1” denote the model variables to be updated. Cmo comprises the error correlation coefficients 

between X and Xo. 

 

2. L180: remove “s” after elements 

Fixed 

 

3. Section 2.4: the author may need to provide some results of the bandpass filter. What do the 

perturbations at each decomposed scale look like? 

Thanks for your comments. 

We added a new figure (Figure 2) and the related text for a decomposed member. 

The related text is as follows. Line 297-304 

“In step 1), there are many ways to realize the bandpass filter. In this study, the difference between two 

low-pass analyses defines the bandpass field (Maddox, 1980), where the low-pass filter is the Gaussian 

filter. An example of a bandpass field is shown in Figure 2. For convenience, the radius of the Gaussian 

filter is used to represent the scale in this study. For the scale of 0 km - 20 km (Figure 2a), the small-scale 

feature prevails and corresponds to the convection in the simulated typhoon. As the radius increases 

(Figure 2b), larger-scale information is extracted. A large-scale anticyclonic shear is observed when the 

radius is greater than 200 km (Figure 2c). The results (Figure 2d-f) also show that the contribution of the 

small-scale ensemble spread is often less than 10% out of the convective area, while in the most area of the 

forecast domain, the contribution of the large-scale (> 200km) spread is greater than 20%.  ”

 

4. L390-395: The inefficient minimization may be caused by the assimilation of radar 

reflectivity due to the use of the mixing ratios as state variables. Too small hydrometeor 



mixing ratio values can lead to overestimated cost function gradient. See Sun et al. (2005), 

Wang and Wang (2017), and Liu et al. (2021). 

Thanks for your comments. 

We revised the related text as follows. Line 458-463 

“In the case of setting the maximum number of iterations to 500 for Hybrid_5band, all minimizations 

converge within 300 iteration steps. The results also show that assimilating only radar data produces a 

smaller ratio of Jfinal to Jinitial than the case using all observations (Figure 6b). According to previous 

studies (e.g., Wang and Wang, 2017), the inefficient minimization may be caused by the assimilation of 

radar reflectivity due to the use of the mixing ratios as state variables. Too small hydrometeor mixing 

ratio values can lead to overestimated cost function gradient. Nevertheless, despite the slow convergence, 

Local DA reduces the cost function by more than 70% within 100 iteration steps in most cases (Figure 6b).” 

 

5. L425: Please elaborate on the comparison between LDA_OS and LETKF_OS. The current 

statement is difficult to follow. 

Thanks for your comments. 

The comparison is discussed in detail. The purpose of the comparison is to show how similar 

Local DA analysis with observation-space localization is to the LETKF. The analysis errors 

of both experiments are similar at nearly all scales. Compared with Ens_noFLTR which 

performs localization in model space, the spatial distribution of the analysis mu pattern of 

Ens_noFLTR_OL is more similar to that of Ens_LETKF (Figure 14).  

The related text is as follows. Line 538-549 

“4.2.4 The similarity between Local DA with observation space localization and the LETKF 

Considering that Local DA can perform observation space localization only as in the LETKF, it is 

interesting to see if their analyses are similar. Note that Ens_noFLTR_OL and Ens_LETKF merely share 

the same horizontal localization configuration; they differ in vertical localization. Figure 13 shows that the 

difference in analysis error between Ens_noFLTR_OL and Ens_LETKF is small for all variables and at all 

scales. Figure 14 gives an intuitive comparison between Ens_noFLTR_OL and Ens_LETKF analyses. The 

overlarge negative-increment in both experiments is constrained in a much smaller area than Ens_noFLTR 

(marked by red rectangles in Figure 14). They also suppress the small-scale noise in the Ens_noFLTR 

analysis, corresponding to the lower error in Figure 13e. Overall, in the case of using observation-space 

localization, Local DA can produce an analysis similar to the LETKF. 



In addition, the small-scale error of qv yielded by Ens_noFLTR_OL is lower than that of Ens_noFLTR 

(Figure 13d). The result is similar to the difference between Ens_noFLTR_DSL and Ens_noFLTR, 

indicating that the improvement of Ens_noFLTR_DSL on qv analysis compared with Ens_noFLTR is 

mainly attributable to the observation-space localization.” 

 

6. L429, L434, L475: As said in the above major comment, I am wondering if a tight 

localization length can reduce this noisy analysis as the ensemble is deficient. 

Yes, a tight localization length can improve the noisy analysis. The noisy analysis is mainly 

due to the noisy small-scale covariance; shortening the influence length of small-scale 

covariance, or weakening the impact of small-scale covariance reduces the analysis error. 

 

7. L505: Does the number of wavebands affect memory usage? if so, how is the memory is 

affected when increasing the number of wavebands? Can you discuss this as well? 

 

Yes, the number of wavebands affects memory usage. Memory usage increases linearly as 

the number of wavebands increases. For example, using 5 wavebands requires 5 times as 

large memory as 1 waveband (or no decomposition). 

We added the related text in section 4.4 as follows. Line 641-643 

In addition to Coo, the model-space multiscale localization requires large memory. Memory consumption is 

proportional to the number of scales. For example, Ens_3band requires three times as much memory as 

Ens_noFLTR to store the decomposed perturbations. 

 

 

  



General comments  

The article introduces an interesting hybrid data assimilation scheme called Local DA that utilizes model 

space, observation space and multi-scale localization. It is believed that great efforts have been made to 

develop and implement this algorithm. However, the article is not well written and it is difficult to follow 

the algorithm of Local DA, and its advantage over the other existing methods are not convincing. I have 

concerns as follows:  

 

1. Overall, the language is not concise and not professional. For instance, in Line 70-71, ”observation-

associated grids (for scalar observations) and/or columns (for observations that measure an integrated 

quantity of the atmosphere, such as precipitable water vapor (PWV))”, the phrase ”observation-associated 

grids or columns” is strange, can it be simply ”observation space”? in Line 99-100 ”To avoid issues 

associated with the quality control of observations when evaluating the performance of Local DA, we 

adopt observing system simulation experiments (OSSEs)”, ”when evaluating the performance of Local 

DA” can be removed. In Line 86-87, ”To simplify this study, we leave this issue to be addressed in future 

work”, it is not common to bring up the future work in the introduction. In my opinion, the language of 

article needs to be greatly improved.  

 

All “observation-associated grids or columns” are replaced by “observed grids/columns”. Using 

“observation space” is not exact. PWV, for example, is a kind of 2-D observation, but it observes an air 

column. The cost function of Local DA is written for model variables in the air column observed by PWV, 

not in the space of the PWV itself. Therefore, we use “observed grids/columns” in the revision. 

 

”when evaluating the performance of Local DA” is removed 

 

”To simplify this study, we leave this issue to be addressed in future work” is removed. 

 

We do a lot of modifications throughout the manuscript and try to improve the expression. 

 

2. It seems that Local DA utilizes model space, observation space and multiscale localization. Is the 

model space localization different from the multi-scale localization? As I understand, the multi-scale 



localization is done in spectrum space (which wavelengths?), does it work independently from the other 

localizations? 

 

Thanks for your comments. 

Our original description may be confusing. Multiscale localization employs different localization radii 

and works in either model or observation space. We decompose the ensemble samples into several scales 

for the model-space multiscale localization and independently assign the influence radii for each scale. In 

observation space, multiscale localization independently assigns the influence radius for each kind of 

observation. For example, we use a large radius for the sounding observations but a small radius for radar 

observations. Because the model space and observation localizations influence different matrices (Coo and 

R, respectively), it is possible for Local DA to perform the double-space localization which has not yet 

been examined. 

 

We have revised the related text as follows. 

In section 1, introduction, Line 73-86 

Another feature of Local DA is the ability to perform the multiscale analysis in model space, observation space, or 

both spaces (double-space localization). In the model space, Local DA adopts a scale-aware localization approach 

for the multiscale analysis that applies a bandpass filter to decompose samples and individually performs 

localization at each scale; no cross-scale covariance is considered in current Local DA. A similar idea (i.e., lacking 

cross-scale covariance) is the scale-dependent localization technique proposed by Buehner (2012). Although cross-

scale covariance is likely to improve the multiscale analysis, the relative performance depends on ensemble size 

(Caron et al., 2019).  

Local DA can perform the observation-space localization like the LETKF, which magnifies the observation error as 

the distance between observation and model variables increases. For the multiscale analysis in the observation 

space, the localization radius increases as the scale of observation increases. Compared with radar data, the scale 

of sounding data is larger so that a larger radius is assigned.   

Because model space localization and observation space localization are conducted for covariances in different 

spaces, it is possible to perform both localizations synchronously. Although double-space localization may result in 

a double penalty, it would be interesting to note the localization performance. Note that the LETKF of Wang et al. 

(2021) can also realize double-space localization, but this application has not yet been investigated. 

 



In section 2.2, Equations (15) and (16) are added, containing a column of components in the examples 

of Coo and Cmo. A table (Table 2) is added to demonstrate how the multiscale localization works. 

Line 217-263 

To realize multiscale localization in model space, Local DA first performs scale decomposition with a bandpass 

filter. The decomposed perturbation, 
b
X , is 

b

b b

1

N

l

l

 X X ,                                                                                                                (11) 

where the superscript “l” represents the lth scale and Nb is the number of scales. As a localization approach lacking 

cross-scale covariance, Local DA computes the STD of the perturbation, s, according to 

b
2

b

1 1

1
( ) ( , )

N N

l

l m

s i i m
N 

     X ,                                                                                    (12) 

where i and m denote the ith model variable and the mth sample, respectively, and N is the sample size. Compared 

with the raw STD, 
b

2

b

1 1

1
( , )

NN

l

m l

i m
N  

 
  

 X , the cross influence among different scales of 
b
X  is ignored in Eq. 

(12). Nevertheless, we acknowledge the importance of the cross influence of these perturbations and plan to 

investigate this issue with regard to Local DA in our future work. 

The multiscale correlation coefficient c(i,j) is calculated according to 

b

b b

1

cov ( ), ( )
( , )

( ) ( )

l lN

l

i j
c i j

s i s j


  


X X

,                                                                                  (13) 

where i and j denote the ith and jth variables, respectively. For the case of i=j, Eq. (13) ensures c(i,j)=1.0.  

We perform localization for each scale independently to construct the multiscale correlation matrix. In principle, 

our multiscale localization method trusts the correlation coefficient of each scale when the distance between two 

variables is smaller than the lower bound of the scale. For instance, for the scale of 50 km – 100 km, Local DA 

starts the localization when the distance d is greater than 50 km. The decorrelation coefficient r(l,i,j) for the lth 

scale and c(i,j) is calculated according to 
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8
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
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 ,                                                                           (14) 



where dmin(l) and dmax(l) are the lower and upper bounds of the lth scale, respectively, and dr(l) is the localization 

radius for the lth scale. Note that how to optimally localize the background error covariance is still an open 

question; rather, Eq. (14) is simply a preliminary implementation of multiscale localization for Local DA. 

Substituting equations (13) and (14) into equation (6), an example of Coo in equation (6) is written as: 

b

b

b

b b

1
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,                                                        (15) 

where i and j in equation (13) are replaced by subscripts in equation (6). For brevity, only the first column of Coo is 

listed. Obviously, applying the multiscale localization does not change the size of Coo. Correspondingly, an example 

of Cmo in equation (8) can be written as: 
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.                                                         (16) 

Because the sizes of Coo and Cmo do not change, there is no modification for vo, x
i
, x

f
, and x

a
. The only modification 

to realize the multiscale localization in model space is to store the error sample of each scale and compute the 

corresponding correlation coefficient. Therefore, realizing the multiscale analysis within the Local DA framework is 

easy. 

The multiscale localization proposed in this subsection gradually diminishes the contribution of small-scale 

covariance as the distance between two variables increases while retaining that of large-scale covariance until the 

distance is very large. Table 1 shows an example of multiscale localization. In this example, there are two arbitrary 

variables of which the error samples are decomposed into three scales. The values of covariance between the two 

variables are C1, C2, and C3 at three scales, respectively. When the two variables are close (8 km), the localization 

coefficients of C2 and C3 are 1.0, according to the first formula in equation (14). As the distance increases to 300 km, 

the localization coefficients of C1 and C2 become nearly zero, and the total covariance is mainly attributable to C3. 

In addition to multiscale localization in the model space, Local DA can perform the localization in the observation 

space, similar to the LETKF. Observation space localization is conducted by enlarging the observation error as the 

distance between variables increases. The localization coefficient in the observation space is calculated according 

to the second formula of Eq. (14), but d-dmin(l) and dmin(l) are replaced by d and do, respectively, where do is the 

localization radius that varies among different observation types.  



Because Coo and R are independently localized, Local DA can perform both localizations synchronously. Although 

performing localization in both spaces may result in a double penalty, it would be interesting to note the 

performance of the double-space localization approach, which has not yet been investigated. The related 

experiments and results are given in the following sections. 

 

In section 2.4, we added a new figure (Figure 2) and the related text for a decomposed member. 

Line 297-304 

In step 1), there are many ways to realize the bandpass filter. In this study, the difference between two low-pass 

analyses defines the bandpass field (Maddox, 1980), where the low-pass filter is the Gaussian filter. An example of a 

bandpass field is shown in Figure 2. For convenience, the radius of the Gaussian filter is used to represent the scale 

in this study. For the scale of 0 km - 20 km (Figure 2a), the small-scale feature prevails and corresponds to the 

convection in the simulated typhoon. As the radius increases (Figure 2b), larger-scale information is extracted. A 

large-scale anticyclonic shear is observed when the radius is greater than 200 km (Figure 2c). The results (Figure 

2d-f) also show that the contribution of the small-scale ensemble spread is often less than 10% out of the convective 

area, while in the most area of the forecast domain, the contribution of the large-scale (> 200km) spread is greater 

   than 20%.

 

 3. Can authors provide the dimensions for each components of Local DA (e.g., Coo, So and etc.)? In 

addition, as in Hunt (2007), an analytical solution for Eq(1) can be derived. It is argued that the analytical 

solution is not feasible if the size of Coo is large? Considering that 100 iterations are required to converge, 

the iterative method is computationally expensive. Can authors provide theoretical computational expense 

in case of the analytical solution?  

Thanks for your comments. 

According to your comments, we do a lot of modifications. First, a table is added (new Table 1). All 

variables involved in Local DA are listed in that table. 

Table 3 The dimensions of variables in Local DA 

 Variable space Variable type dimension 

x
f
 Model space Model variable Nm×1 

X Model space Model variable Nm×M 

xo =Hix
f
 Observed grids/columns Model variable K×1 

Xo =HiX Observed grids/columns Model variable K×M 

Coo Observed grids/columns Model variable K×K 



 

 

 

 

 

 

 

 

M denotes the ensemble size 

 

An example for Coo is given. The related text is as follows. 

Line 145-152 

Coo is a K×K matrix, where K is the number of model variables associated with the observations to be assimilated. 

K is computed according to 

1

[ )]( ) (
tN

o op

i

K N Ni i


 ,                                                                                                (5) 

where Nt is the number of observation types, such as the zonal wind from soundings and the radial velocity from 

radars, No(i) is the number of observations of the ith type, and Nop(i) is the number of model variables used by the 

observation operator of the ith type. For instance, if radar reflectivity is the only available observation type and 

there are 100 observations, K is equal to 300 (100×3) in the case of using the observation operator of Gao and 

Stensrud (2012) because the operator requires three hydrometeors (qr, qs, and qg). 

 

For So, the related text is as follows. Line 158-159 

So is a K×K matrix, but a K×1 array is sufficient to store So. 

 

For Cmo and Sm, the related text is as follows. Line 166-170 

Cmo comprises the error correlation coefficients between X and Xo. The size of Cmo is NmK which depends on the 

number (Nm) of model variables to be updated. However, there is no need to store full Cmo in practice because one 

row of Cmo is needed to update the corresponding model variable. Sm is the STD matrix of model variables, 

containing 
1vs , 

1s , and 1qs  in this example. For convenience, a summary of the dimensions of variables involved in 

Local DA is listed in Table 3. 

 

vo Observed grids/columns Model variable K×1 

So Observed grids/columns Model variable K×1 

Cmo Cross space Model variable Nm×K 

Sm Model grid space Model variable Nm×1 

d Observation space Observation variable No×1 



The computational cost for each local analysis depends on the number of observations and the number of 

model variables used to compute the observation priors. We try to show more details on computational 

cost, including the cost in CG. 

The related text in section 2.4 is as follows. Line 305-308 

Steps 5) to 9) contribute the most of the computational cost of Local DA. Computing Coo requires MK
2
 operations, 

which is not less than No
2
, where M represents the size of the ensemble, and No denotes the number of observations 

to be assimilated. Step 7) needs 2K
2
 operations. To calculate step 8), NoK

2
 operations are required. For each 

iteration step of CG method, the number of operations is slightly larger than 2NoK. Ni iteration steps require 2Ni 

NoK operations.  

 

For your comment “theoretical computational expense in case of the analytical solution”, it is difficult to 

show the theoretical computational cost of Local DA. But we give a comparison between Local DA and 

the LETKF in terms of computational cost.  

In general, both Local DA and the LETKF need to solve the gradient in the form of (I+Y
T
Y)v=Y

T
d. 

Therefore, the computational cost depends on the number of columns of Y. For LETKF, the number 

equals the ensemble size. For Local DA, the number is proportional to the number of observations. In the 

case of assimilating hundreds of or thousands of observations in a local analysis, Local DA is more 

expensive. For such a large matrix, the CG method is more suitable. Our early tests show that Eigenvalue 

decomposition or SVD takes many times as long as the CG method for a large matrix. 

We state this situation in the text as follows. Line 309-313 

As aforementioned, Step 9) can also be solved through Eigenvalue decomposition as the LETKF does. However, Y 

in Local DA has more columns than the LETKF. In the LETKF, Y has M columns, while the corresponding value is 

K in Local DA. Therefore, Local DA has to deal with a K by K matrix, while the LETKF only needs to solve an M 

by M matrix. M is often smaller than 10
2
, thus, I+Y

T
Y can be handled efficiently by Eigenvalue decomposition. In 

contrast, K could be 10
3
 or higher, thus, the CG method is more suitable of Local DA. 

 

The total computational cost of Local DA for the entire domain is also expensive, but we can dramatically 

reduce the cost by introducing an N-column analysis. 

Line 314-326 

Despite the large amount mentioned above, we do not have to do that many operations in practice. For example, 

step 8) requires just No
2 
operations if only scalar observations are available. Notably, for a 3-D domain containing 



Ng grid points and Nv variables, the total number of operations will be as NgNv times as one local analysis. However, 

it is possible to reduce the cost.  

Considering that Sm, Cmo, and xm can be applied to all variables influenced by 
o

ŷ , it is not necessary to compute 

Coo for each model variable. Moreover, Sm, Cmo, and xm may contain variables in more than one vertical column (N-

column analysis). The total number of operations in an N-column analysis is reduced to Ng/(NNz) times as one local 

analysis, where Nz is the number of levels in one column. Due to using the same Coo for neighboring columns, the N-

column analysis is slightly rasterized (not shown), leading to slightly higher errors than the 1-column analysis. 

However, the extent of this degeneration is acceptable as long as N is not too large (<9). The wall clock time of the 

N-column analysis is close to 1/N of the 1-column analysis. All Local DA results are generated using a 5-column 

analysis in this study. A similar N-column analysis approach is the weighted interpolation technique in the LETKF 

(Yang et al., 2009), which performs the LETKF analysis every 3 grid points in both the zonal and the meridional 

directions. 

 

4. It seems that the deterministic run is updated. How is it initialized and how is the Kalman gain of the 

deterministic run calculated? How are ensemble members updated (equations for this)? 

Thanks for your comments. 

 

In the case of using the CG method, Local DA solves the equation (I+Y
T
Y)v=Y

T
d, where Y=R

-0.5
HoCoo, 

rather than explicitly computes the Kalman gain. In the current version of Local DA, the ensemble 

members are updated by running Local DA M times, where M is the ensemble size. This procedure is 

similar to Li et al. (2012). 

 

We add the related text in section 2.1 as follows. Line 121-127 

To update ensemble perturbations, the current version of Local DA adopts the stochastic method 

(Houtekamer and Mitchell, 1998) that treats observations as random variables. This method adds random 

perturbations with zero mean to d in Eq. (1). For an M-member ensemble, equations (1) and (2) are 

conducted M times to update members with perturbed observations, similar to the procedure of Li et al. 

(2012). These analyses share the same background error covariance but use different observations. The 

stochastic approach was reported to be less accurate than the deterministic approach (e.g., Whitaker and 

Hamill, 2002) because it introduces additional sampling error. At this stage, Local DA mainly concerns 

the deterministic analysis; further improvement of the analysis ensemble is left in future work. 

 



We also add a figure (new figure 4b). Line 396-400 

For the cycling analysis, the first analysis uses the time-lagged 15-member ensemble. In the rest cycles, 

the ensemble forecast initialized from the previous analysis ensemble provides the ensemble 

perturbations. The analysis ensemble is created by performing Local DA 15 times with perturbed 

observations. The perturbations are added to Ctrl so that the ensemble center on Ctrl. The Ctrl in the first 

cycle is obtained using GFS analysis at 00 UTC on 26 July 2021. Figure 4b shows the flowchart of the 

cycling DA. 

 

For the first cycle or the single deterministic analysis experiments, the time-lagged ensemble is employed. 

New figure 4a gives more details on the time-lagged ensemble than the original figure 2. 

 

 5. I do not fully understand why the main discussion focuses on results of the single-cycle data 

assimilation. It is well-known that some cycles are usually required to spin up the system. It is argued that 

the Local DA suffers from imbalance problem. However, most of data assimilation algorithms have more 

or less the same problem. Is it possible to shift the focus of the discussion to the cycling data assimilation?  

Thanks for your comments. 

Because the manuscript is the first work on Local DA, a detailed discussion on the single deterministic 

analyses is necessary. We also agree with you that cycling DA is important. According to the comments 

from you and the other reviewer, we make many modifications to the experimental design and the result 

discussion. The discussion on the forecast after single deterministic DA is removed to shorten the 

manuscript, while the cycling DA experiments are discussed in detail. 

In the original manuscript, we did not update the ensemble throughout the cycling to see how Local DA 

works with a poor ensemble. In this revision, we update the ensemble members and examine the DA 

configurations of Ens_noFLTR and Hybrid_5band_DSL in the cycling DA.  

The related text is as follows 

 

In section 3.3.1  

Line 396-400 

For the cycling analysis, the first analysis uses the time-lagged 15-member ensemble. In the rest cycles, the 

ensemble forecast initialized from the previous analysis ensemble provides the ensemble perturbations. The analysis 



ensemble is created by performing Local DA 15 times with perturbed observations. The perturbations are added to 

Ctrl so that the ensemble center on Ctrl. The Ctrl in the first cycle is obtained using GFS analysis at 00 UTC on 26 

July 2021. Figure 4b shows the flowchart of the cycling DA.  

 

In section 3.3.2 

Line 431-440 

For experiments with the cycling analysis, we examine Local DA in the cases of i) using the ensemble covariance 

without the multiscale localization and ii) using the hybrid covariance and the multiscale localization. The DA 

configuration of Ens_noFLTR is employed for the first scenario, while that of Hybrid_5band_DSL is adopted for the 

second scenario. Cycling intervals of 3-h and 6-h are examined, where we mainly focus on the experiments with the 

6-h interval. The experiment with a 3-h cycle interval is used to show the impact of imbalance analysis to forecast. A 

total of three experiments are examined, namely, Ens_noFLTR_6h, Hybrid_5band_DSL_6h, and 

Hybrid_5band_DSL_3h, where the suffixes represent the cycling intervals. During the cycling, the sounding 

observations are available at 00 UTC and 12 UTC, while other observation types are available hourly. Fifteen sets 

of perturbed observations are created to update 15 members in cycling DA. The standard deviations of observation 

perturbations are identical to the observation errors mentioned in sect. 3.2. The covariance inflation factor is also 

1.5 for cycling analysis.  

 

In section 4.3 

Line 568-618 

4.3 The cycling DA 

Because ensemble DA approaches often take several cycles to obtain a reasonable analysis, it is worth seeing if 

Ens_noFLTR produces a better analysis after some cycles and if Hybrid_5band_DSL maintains the advantage in 

cycling DA. Before looking at the RMSE evolution during cycling, the ps tendency is examined as it is a metric of 

dynamic imbalance (Zeng et al., 2021). If the unphysical ps tendency is large, the analysis may be degenerated, and 

the forecast could be unstable. Although it is better to analyze the ps tendency at each time step, in this study, the 

hourly ps tendency is sufficient to demonstrate the impact of imbalance analysis. The forecast from GFS analysis is 

referred to as BAK in this subsection. 

4.3.1 The tendency of ps 

The ps tendency in the truth simulation is selected as a criterion as it is supposed in balance status after 24 h 

forecast. The balanced tendency is approximately 20 Pa h
-1

 (Figure 17), which is reached by BAK in 3 h. After the 

first DA cycle, the ps tendency becomes much larger than that of BAK, no matter the DA configuration. The large ps 



tendency after the first DA cycle is not surprising because the landing typhoon is not fully observed by the simulated 

observation network, especially for the wind field, causing an imbalance between the corrected part and the rest 

part of the analyzed typhoon. A similar phenomenon was discussed by Wang et al. (2012) in a simulated supercell 

case. They concluded that such an imbalance shocks the model forecast and increase the forecast error. 

After a 6-h forecast, the ps tendencies in Hybrid_5band_DSL_6h and Ens_noFLTR_6h is close to the balance status. 

As expected, the ps tendency increases again after the second DA cycle. However, Hybrid_5band_DSL_6h produces 

a much smaller ps tendency than Ens_noFLTR_6h, indicating that Hybrid_5band_DSL_6h has a more balanced 

analysis. The peaks of ps tendency in Hybrid_5band_DSL_6h and Ens_noFLTR_6h gradually decline as the number 

of cycles increases. By 18 UTC, Hybrid_5band_DSL_6h reaches the balance status while Ens_noFLTR_6h does not. 

The above result indicates that using the hybrid covariance and multiscale localization is beneficial for cycling DA.  

Note that the advantage of Hybrid_5band_DSL_6h has a precondition that the cycling interval is sufficiently long 

for the model to spin up. When the cycling interval becomes shorter (Hybrid_5band_DSL_3h), the ps tendency 

cannot be effectively suppressed as Hybrid_5band_DSL_6h does. 

4.3.2 The performance of cycling DA 

We only discuss the result of u, v, qv, and ps in this subsection for brevity. For u and v, all experiments reduce the 

forecast error compared with BAK (Figures 18a and b). However, the error evolutions of these experiments 

substantially differ. Ens_noFLTR_6h fails to decrease the forecast error after the second cycle, while 

Hybrid_5band_DSL_6h successively reduces the forecast and analysis error as the number of cycling increases. For 

Hybrid_5band_DSL_3h, an oscillation in error evolution is observed, which is likely associated with the imbalance 

analysis and the insufficient cycle interval for spinup. Despite the oscillation, the forecast and analysis errors of 

Hybrid_5band_DSL_3h are comparable to Hybrid_5band_DSL_6h for wind components. 

However, when it comes to water vapor and surface pressure (Figures 18c and d), Hybrid_5band_DSL_6h becomes 

better than Hybrid_5band_DSL_3h. Hybrid_5band_DSL_6h also outperforms Ens_noFLTR_6h; the latter fails to 

suppress the forecast error of qv and produces a higher ps error after analysis. Figure 19 shows the spatial 

distribution of forecast error at 18 UTC for Hybrid_5band_DSL_6h and Ens_noFLTR_6h. The area of the large 

error in Hybrid_5band_DSL_6h is much smaller than that of Ens_noFLTR_6h for both v and ps. The large error in 

Ens_noFLTR_6h corresponds to a weak cyclonic rotation and weak low pressure. The above result confirms the 

benefit of using the hybrid covariance and multiscale localization.   

4.3.3 The evolution of the relationship between ensemble spread and RMSE 

For Hybrid_5band_DSL_6h, the initial ensemble spread is smaller than the RMSE at all scales (Figure 20a) for 

both u and ps. As the number of cycles increases, the ratio of ensemble spread to RMSE increases. By 18 UTC, the 

ensemble spread is comparable to or greater than the corresponding RMSE at all scales for u. The underestimate of 

RMSE by the ensemble spread is alleviated for ps (Figure 20b). For the spatial distribution, the relationship 

between ensemble spread and RMSE does not vary much for u at all scales (Figure 20c). In contrast, the 



relationship becomes better for ps at a small scale (Figure 20d). Overall, the ensemble is improved in 

Hybrid_5band_DSL_6h. 

For Ens_noFLTR_6h, the ensemble spread of u and ps at the small-scale keeps smaller than the corresponding 

RMSE during the cycling. In contrast, the ensemble spread at the large scale dramatically increases after the second 

cycle. The amplitude of the large-scale ensemble spread is even higher than that of the small scale one, leading to a 

severe overestimation of the large-scale error. Meanwhile, the correlation between ensemble spread and RMSE at 

the small scale does not become better during cycling. In general, the ensemble in Ens_noFLTR_6h does not 

become better after four cycles, which explains why Ens_noFLTR_6h produces a large analysis error. 

 

New figures (Figures 17-20) are added for the related text. 

 

 6.  Evaluation of results: 1) I understand DTE as a metric for the error growth rate in forecasts, is it 

appropriate to use it to validate the analysis error?  

Thanks for your comments. 

DTE has been applied to validate the DA analysis and forecast. Wang et al., (2012) used the square root 

of mean DTE to evaluate the DA error. The purpose of using DTE is to simplify the presentation because 

there are 11 analysis variables. They also created a hydro DTE to evaluate the hydrometeor variables. 

We revised the related text is as follows. Line 530-532 

To qualitatively assess the analysis error, we compute the difference in total energy (DTE, Meng and Zhang, 2007). 

Wang et al. (2012) used the square root of mean DTE to evaluate the error of DA to simplify the presentation. The 

DTE is computed in the form of the difference between the analysis and truth. 

 

2) In Figure 3, is the analysis or background spread/rmse shown here? Why are the RMSEs of two data 

assimilation experiments ignored?  

Thanks for your comments. 

The original Figure 3 showed the background RMSE and the corresponding ensemble spread used in the 

single deterministic analysis; all single analysis experiments use the same ensemble. This figure has been 

removed. New figures for comparing the RMSE and ensemble spread are Figures 15, 16, and 20, where 

Figures 15 and 16 are plotted for the background RMSE and the corresponding ensemble spread, while 

figure 20 is plotted for the cycling DA. The new figures provide detailed information on the RMSE and 



ensemble spread. Not only the amplitude but also the spatial distributions in terms of spatial correlation 

are discussed. 

 

The related text for Figures 15 and 16 is as follows. Line 550-567 

4.2.5 Error and ensemble spread 

For a well-sampled ensemble, a criterion is the spatial distribution of ensemble spread similar to that of RMSE. In 

addition, the amplitudes of ensemble spread must be close to RMSE. The relationship is shown in Figure 15 for the 

time-lagged ensemble at 00 UTC on 26 July 2021. For u, v, and ps, the ratio of ensemble spread to RMSE ascends 

as the error scale increases, indicating that the quality of the time-lagged ensemble is rational at a large scale. This 

relationship is also valid for the spatial distribution (Figure 15b), but the correlation coefficient does not vary from 

small scale to large scale too much for most variables, except for ps. The correlation coefficient for ps is nearly 1.0 

at a large scale, while it is approximately 0.6 at a small scale. This large difference explains why the hybrid 

covariance and multiscale localization can substantially reduce the error at a small scale for ps. For qv, the small-

scale spread is greater than the large-scale spread; the correlation coefficients at all scales are close. This result 

implies that suppressing the small-scale error covariance does not necessarily improve the analysis quality of qv. 

Therefore, it is not irrational for Ens_5band and Hybrid_5band to produce a higher analysis error for qv than 

Ens_2band. 

An example related to the ensemble spread and RMSE of ps is shown in Figure 16. The RMSE is smooth at a small 

scale, and there is a maximum near the typhoon center. Although the ensemble spread also has a maximum near the 

typhoon center, there is a large bias concerning the location. Moreover, the ensemble spread is much noisier than 

the RMSE, which is a cause of the noisy analysis shown in Figure 14b. In contrast, the large-scale ensemble spread 

well matches the error, which is conducive to error reduction. Therefore, even with a large localization radius, the 

surface pressure analysis of Ens_noFLTR at a large scale is not much worse than other experiments.. 

 

The related text for figure 20 is as follows. Line 606-612 

4.3.3 The evolution of the relationship between ensemble spread and RMSE 

For Hybrid_5band_DSL_6h, the initial ensemble spread is smaller than the RMSE at all scales (Figure 20a) for 

both u and ps. As the number of cycles increases, the ratio of ensemble spread to RMSE increases. By 18 UTC, the 

ensemble spread is comparable to or greater than the corresponding RMSE at all scales for u. The underestimate of 

RMSE by the ensemble spread is alleviated for ps (Figure 20b). For the spatial distribution, the relationship 

between ensemble spread and RMSE does not vary much for u at all scales (Figure 20c). In contrast, the 

relationship becomes better for ps at a small scale (Figure 20d). Overall, the ensemble is improved in 

Hybrid_5band_DSL_6h. 



For Ens_noFLTR_6h, the ensemble spread of u and ps at the small-scale keeps smaller than the corresponding 

RMSE during the cycling DA. In contrast, he ensemble spread at the large scale dramatically increases after the 

second cycle. The amplitude of the large-scale ensemble spread is even higher than that of the small scale one, 

leading to a severe overestimation of the large-scale error. Meanwhile, the correlation between ensemble spread 

and RMSE at the small scale does not become better during cycling. In general, the ensemble in Ens_noFLTR_6h 

does not become better after four cycles, which explains why Ens_noFLTR_6h produces a large analysis error. 

 

3) It would be also interesting to see the verification only for the typhoon region (e.g., accounting for grid 

points ≥ 10 dBZ).  

Thanks for your comments. 

The region for grid points > 10 dBZ mainly represents the convective area of a typhoon and contains 

small-scale information. Usually, the RMSE in this region is larger than that for the whole domain. The 

following figure shows (a) the RMSE in the convective area and (b) the RMSE for the whole domain. 

Except for T, most examined variables have larger errors in the convective area. This difference between 

the convective area and the whole domain is also valid for the difference between the small-scale error 

and the large-scale error shown in Figures 9-11, and 13. No matter the area, Hybrid_5band_DSL produces 

the lowest analysis error; the hybrid covariance and multiscale localization are conducive to lowering the 

analysis error for wind components and hydrometeors. Therefore, we just mentioned the error in the 

convective area in section 4.2 as follows. 

Line 491-494 

In addition, the convective-scale DA usually computes the errors for grid points with reflectivity larger 

than a threshold, which is another way to investigate small-scale errors. The difference between errors in 

the convective area (reflectivity >10 dBZ) and the rest area is similar to that between small-scale and 

large-scale errors (not shown). Therefore, the errors in the convective area are not discussed in the 

subsequent sections. 



 

 

 

4) The shock is often mentioned in the article, can authors provide a metric for imbalance? Combining it 

with the RMSEs may show more insights of the results.  

Thanks for your comments. 

Authors acknowledge that it is necessary to tell readers what the shock is. We add the related text and a 

figure (Figure 17) in section 4.3.1. 

 

The related text is as follows. Line  575-591 



4.3.1 The tendency of ps 

The ps tendency in the truth simulation is selected as a criterion as it is supposed in balance status after 24 h 

forecast. The balanced tendency is approximately 20 Pa h
-1

 (Figure 17), which is reached by BAK in 3 h. After the 

first DA cycle, the ps tendency becomes much larger than that of BAK, no matter the DA configuration. The large ps 

tendency after the first DA cycle is not surprising because the landing typhoon is not fully observed by the simulated 

observation network, especially for the wind field, causing an imbalance between the corrected part and the rest 

part of the analyzed typhoon. A similar phenomenon was discussed by Wang et al. (2012) in a simulated supercell 

case. They concluded that such an imbalance shocks the model forecast and increase the forecast error. 

After a 6-h forecast, the ps tendencies in Hybrid_5band_DSL_6h and Ens_noFLTR_6h is close to the balance status. 

As expected, the ps tendency increases again after the second DA cycle. However, Hybrid_5band_DSL_6h produces 

a much smaller ps tendency than Ens_noFLTR_6h, indicating that Hybrid_5band_DSL_6h has a more balanced 

analysis. The peaks of ps tendency in Hybrid_5band_DSL_6h and Ens_noFLTR_6h gradually decline as the number 

of cycles increases. By 18 UTC, Hybrid_5band_DSL_6h reaches the balance status while Ens_noFLTR_6h does not. 

The above result indicates that using the hybrid covariance and multiscale localization is beneficial for cycling DA.  

Note that the advantage of Hybrid_5band_DSL_6h has a precondition that the cycling interval is sufficiently long 

for the model to spin up. When the cycling interval becomes shorter (Hybrid_5band_DSL_3h), the ps tendency 

cannot be effectively suppressed as Hybrid_5band_DSL_6h does. 

 

5) I suggest that a metric with scale skills (e.g., Fractions Skill Score) can be used especially for the 

reflectivity forecast verification. 

Thanks for your comments. 

Authors acknowledge that FSS is a good metric to evaluate the forecast of reflectivity. However, since we 

no longer discuss the forecasts initialized from a single deterministic analysis in the revised manuscript, 

there is no need to discuss the FSS of reflectivity forecast either. 

 


