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Abstract: Global climate models (GCMs) have advanced in many ways as computing power has 11 

allowed more complexity and finer resolution. As GCMs reach storm-resolving scale, they need 12 

to be able to produce realistic precipitation intensity, duration, and frequency at fine scales with 13 

consideration of scale-aware parameterization. This study uses a state-of-art storm-resolving GCM 14 

with a nonhydrostatic dynamical core - the Model for Prediction Across Scales (MPAS), 15 

incorporated in the atmospheric component (Community Atmosphere Model, CAM) of the open-16 

source Community Earth System Model (CESM), within the System for Integrated Modeling of 17 

the Atmosphere (SIMA) framework. At uniform coarse (here, at 120km) grid resolution, the 18 

SIMA-MPAS configuration is comparable to the standard hydrostatic CESM (with finite-volume 19 

(FV) dynamical core) with reasonable energy and mass conservation on climatological timescales. 20 

With the comparable energy and mass balance performance between CAM-FV (workhorse 21 

dycore) and SIMA-MPAS (newly developed dycore), it gives confidence in SIMA-MPAS’s 22 

applications at a finer resolution. To evaluate this, we focus on how the SIMA-MPAS model 23 

performs when reaching storm-resolving scale at 3km. To do this efficiently, we compose a case 24 

study using a SIMA-MPAS variable resolution configuration with a refined mesh of 3km covering 25 

the western US and 60 km over the rest of the globe. We evaluated the model performance using 26 

satellite and station-based gridded observations with comparison to a traditional regional climate 27 

model (WRF, the Weather Research and Forecasting model). Our results show realistic 28 

representations of precipitation over the refined complex terrains temporally and spatially.  Along 29 

with much improved near-surface temperature, realistic topography and land-air interactions, we 30 

also demonstrate significantly enhanced snowpack distributions. This work illustrates that a global 31 

SIMA-MPAS at storm-resolving resolution can produce much more realistic regional climate 32 

variability, fine-scale features, and extremes to advance both climate and weather studies. This 33 

next-generation storm-resolving model could ultimately bridge large-scale forcing constraints and 34 

better-informed climate impacts and weather predictions across scales. 35 
 36 
 37 
 38 
 39 
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 40 

1 Introduction 41 

 42 

Climate models have advanced in many ways in the last decade including their atmospheric 43 

dynamical core and parameterization components. Advances in computer power have now enabled 44 

climate models to be run with non-hydrostatic dynamical cores at “storm-resolving” scales, on the 45 

order of a few kilometers (Satoh et al., 2019). These GSRMs (Global Storm-Resolving Models) 46 

have been constructed at a number of modeling centers (Satoh et al., 2019; Stevens et al., 2019; 47 

Dueben et al., 2020, Stevens et al., 2020, Caldwell et al., 2021).  We expect an emerging trend in 48 

improving and applying the new modeling structures for a better and more accurate understanding 49 

of global and regional climate studies and weather-scale predictions. 50 

 51 

The Community Earth System Model (CESM) has been used in a wide range of climate studies. 52 

For high-resolution CESM applications (but hydrostatic only), variable-resolution (VR) CESM-53 

SE (spectral element core) for regional climate modeling has been used in many regional climate 54 

studies (such as Small et al., 2014; Zarzycki et al., 2014, 2015; Rhoades et al., 2016; Huang et al., 55 

2016, 2017; Bacmeister et al., 2018; Gettelman et al., 2018, 2019; Van et al., 2019). Specifically, 56 

Rhoades et al. (2016) found that the VR-CESM framework (with refinement at 0.25° and 0.125° 57 

resolutions) can provide much enhanced representation of snowpack properties relative to widely 58 

used GCMs (such as CESM-FV 1° and CESM-FV 0.25°) over the California region. Gettelman et 59 

al. (2018) found that the variable-resolution CESM-SE simulation (at 0.25°, ~25 km) can produce 60 

precipitation intensities similar to the high-resolution, and has higher extreme precipitation 61 

frequency than the low-resolution simulation over the Continental United States (CONUS) 62 

refinement region, close to observations.  63 

 64 

More recently for storm-resolving model development, there have been two efforts to bring the 65 

dynamical core from the Model for Prediction Across Scales (MPAS) into CESM. The first effort 66 

involved implementing the hydrostatic atmospheric dynamical core in MPAS Version 1 in the 67 

Community Atmosphere Model (CAM), which is the atmospheric component of CESM. This 68 

effort made available the horizontal variable-resolution mesh capability of the MPAS spherical 69 

centroidal Voronoi mesh (Ringler et al., 2010), and led to a number of studies (e.g., Rauscher et 70 

al., 2013; Rauscher & Ringler, 2014; Sakaguchi et al., 2016). For example, Rauscher et al. (2013) 71 

found that tropical precipitation increases with increasing resolution in the CAM-MPAS using 72 

aquaplanet simulations. 73 

 74 

Later, the static port of MPAS to CAM was updated with the nonhydrostatic MPAS atmospheric 75 

solver (Skamarock et al., 2012; Skamarock et al., 2014) to provide nonhydrostatic GSRM 76 

capabilities to CAM (Zhao et al., 2016). Neither of these ports was formally released, and the 77 

nonhydrostatic MPAS was not energetically consistent with CAM physics, or its energy fixer 78 



3 

given, among other things, the height vertical coordinate used by MPAS. Furthermore, the MPAS 79 

modeling system and its dynamical core, being separate from CESM, have evolved from these 80 

earlier ports. To address the issues in the earlier MPAS dynamical core ports to CAM/CESM, the 81 

MPAS nonhydrostatic dynamical core has been brought into CAM/CESM as an external 82 

component, i.e., it is pulled from the MPAS development repository when CAM is built, and all 83 

advances in MPAS are immediately available to CESM-based configurations using MPAS. This 84 

latest port was accomplished as part of the SIMA (System for Integrated Modeling of the 85 

Atmosphere) project. Importantly, this implementation also includes an energetically consistent 86 

configuration of MPAS, with its height vertical coordinate, the CAM hydrostatic-pressure 87 

coordinate physics and the CAM energy fixer. 88 

 89 

The MPAS dynamical core solves the fully compressible nonhydrostatic equations of motion and 90 

continues to be developed and used in many studies (Feng et al., 2021; Lin et al., 2022; also see 91 

https://mpas-dev.github.io/atmosphere/atmosphere.html). In this work, we test the storm-resolving 92 

capabilities in this new atmospheric simulation system. We use SIMA capabilities to configure a 93 

version of CESM with the MPAS nonhydrostatic dynamical core, called SIMA-MPAS instead of 94 

CESM-MPAS, since it is coupled only to a land model, with the other climate-system components 95 

being data components. In particular, we would like to answer the question: can a nonhydrostatic 96 

dycore coupled global climate model reproduce observed wet season precipitation over targeted 97 

refinement regions? In addition, will this new development and modeling framework perform 98 

better or worse than a mesoscale model at similar resolution? 99 

 100 

We aim to understand how this new SIMA-MPAS model configuration performs when configured 101 

for storm-resolving (convection-permitting) scale for precipitation prediction over the western 102 

United States (WUS). Leveraging the recent significant progress in SIMA-MPAS development, 103 

we have undertaken experiments to understand the performance of SIMA-MPAS in precipitation 104 

simulations involving heavy storm events and relevant hydroclimate features at fine scales. We 105 

also explore large-scale dynamics and moisture flux transport over the subtropical region across 106 

the North Pacific. We evaluate the model results compared to both observations and a regional 107 

climate model. Employing the recent modeling developments in CESM with the MPAS dycore, 108 

the ultimate goal of this study is to evaluate the potential improvements to our understanding of 109 

atmospheric processes and predictions made possible with GSRM capabilities. We begin in section 110 

2 with a description of the model configurations and experiments. Section 3 describes the main 111 

results, including mean climatology diagnostics, precipitation and snowpack statistics, and large-112 

scale moisture flux and dynamics. A summary and discussion follow in Section 4. 113 

2 Methods, experiments, and dataset 114 

2.1 Methods and experiments 115 

 116 
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As briefly mentioned in the introduction section, we configure CESM2 (Danabasoglu et al., 2020) 117 

with the MPAS nonhydrostatic dynamical core and CAM6 physics. We call this configuration 118 

SIMA-MPAS. SIMA is a flexible system for configuring atmospheric models inside of an Earth 119 

System Model for climate, weather, chemistry and geospace applications (https://sima.ucar.edu). 120 

The components of this particular configuration also include the coupled land model CLM5 (with 121 

MOSART river model) and prescribed observation-based SST (sea surface temperature) and ice. 122 

MPAS-Atmosphere employs a horizontal unstructured centroidal Voronoi tessellation (CVT) with 123 

a C-grid staggering (Ringler et al., 2010), and its numerics exactly conserve mass and scalar mass. 124 

Both horizontal uniform meshes and variable resolution meshes with smooth resolution transitions 125 

are available for MPAS-Atmosphere, and this study employs both mesh types. It uses a hybrid 126 

terrain-following height coordinate (Klemp 2011).  127 
 128 

We summarize here the key developments on the coupling of MPAS dynamical core to CAM 129 

physics and changes to CAM physics to accommodate MPAS. Most of all, we would like to point 130 

out that a consistent coupling of the MPAS dynamic core with the CAM physics package is not 131 

trivial for several reasons. 1) MPAS uses a height (z) based vertical coordinate whereas CAM 132 

physics uses pressure. 2) The CAM physics package enforces energy conservation by requiring 133 

each parameterization to have a closed energy budget under the constant pressure assumption 134 

(Lauritzen et al., 2022). For the physics-dynamics coupling to be energy consistent (i.e., not be a 135 

spurious source/sink of energy) requires the energy increments in physics to match the energy 136 

increments in the dynamical core when adding the physics tendencies to the dynamics state. When 137 

“mixing” two vertical coordinates, that becomes non-trivial. 3) The prognostic state in MPAS is 138 

based on a modified potential temperature, density, winds, and dry mixing ratios whereas CAM 139 

uses temperature, pressure, winds and moist mixing ratios for the water species. The conversion 140 

between (discrete) prognostic states should not be a spurious source/sink of energy either. 4) 141 

Lastly, the energy fixer in CAM that restores energy conservation due to updating pressure (based 142 

on water leaving/entering the column), as well as energy dissipation in the dynamical core and 143 

physics-dynamics coupling errors (see Lauritzen and Williamson, 2019), assumes a constant 144 

pressure upper boundary condition. MPAS assumes constant height at the model top, so the energy 145 

fixer needs to use an energy formula consistent with the constant volume assumption. The details 146 

of the energy consistent physics-dynamics coupling and extensive modifications to CAM physics 147 

to accommodate MPAS are beyond the scope of this paper and will be documented in a separate 148 

source. 149 

 150 

In terms of scale awareness, there are two aspects related to the model physics in the configuration 151 

that must be considered when employing regionally refined meshes.  First, features resolvable in 152 

the finer regions of the mesh may not be resolvable in the coarser regions of the mesh. These 153 

features, e.g. deep convection in this study, need to be parameterized in the coarse mesh regions 154 

and not parameterized in the fine mesh regions, typically with the parameterization reducing its 155 

adjustment gradually in the mesh transition regions. Second, the timestep used for the physics is 156 

the same over the entire mesh. i.e. in both coarse and fine regions, and the timestep in CESM-157 
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MPAS is chosen to be appropriate for the smallest grid, as indicated in Table 1. Within our 158 

simulations, the balance of deep convective (diagnostic) and stratiform (large-scale) precipitation 159 

changes with the mesh spacing. In addition, since the deep convective parameterization in CESM-160 

MPAS has a closure with a fixed timescale, the parameterized convection produces less 161 

condensation in the coarse mesh regions compared to simulations with a larger timestep 162 

appropriate for the coarser mesh (Gettelman et al 2019). But in the simulations herein, most of the 163 

precipitation is strongly forced by the large-scale flow, with the larger condensation hypothesized 164 

to lead to larger rain rates. This is particularly important over the WUS complex terrains. The large 165 

scale condensation scheme, part of the unified turbulence scheme (Golaz et al., 2002) has internal 166 

length scales that should adjust its distributions as the scale changes (less variance in the PDFs). 167 

Land surface related feedback is also resolution dependent with scale-aware surface heterogeneity 168 

and coupled land-atmosphere interactions to affect the phase and hydrological impacts resulting 169 

from the regional precipitation statistics. 170 

 171 

With the above significant progress in SIMA-MPAS development, we would like to diagnose the 172 

performance of this new generation model when applied at convection-permitting resolutions and 173 

when bridging both weather and climate scale simulations in a single global model. We have chosen 174 

the WUS (due to its hydroclimate vulnerability and complexity, heavily impacted by precipitation 175 

variability) as our study region to examine the precipitation features in SIMA-MPAS at fine scales 176 

during wet seasons. We aim to figure out when the model outperforms and underperforms when 177 

compared with a traditional regional climate model against best-available observations and 178 

observationally based gridded products at similar resolutions for mean and extreme precipitation. As 179 

mentioned in the introduction, we would like to figure out whether a nonhydrostatic dycore coupled 180 

global climate model can reproduce observed wet season precipitation over targeted refinement 181 

regions with heavy impacts. And will this new development and modeling framework perform better 182 

or worse than a mesoscale model at similar resolution? Those are important questions to answer 183 

given the long-standing biases in traditional hydrostatic GCMs for simulating heavy precipitation 184 

and extremes. 185 

 186 

To answer those questions, we have designed and conducted a set of experiments as shown in 187 

Table 1. In detail:  188 

 189 

● Set A: We have tested CESM2 at the same coarse resolution using both MPAS (at 120km) 190 

as the nonhydrostatic core and Finite Volume (Danabasoglu et al., 2020) (at ~1 degree) as 191 

the hydrostatic core for multiple years of climatology to get five-year mean F2000 192 

climatology (in which, the SST and ice condition are prescribed at the same yearly 193 

climatology with mean from the time period 1995-2005) at ~1˚ for both MPAS and FV 194 

(finite-volume) dycore. 195 

 196 
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● Set B: As the main focus for this work, a variable resolution mesh is configured with 3km 197 

refinement centered over WUS as shown in Figure 1, for five wet-season simulations with 198 

60-3km mesh (years 1999 to 2004; mid-November to mid-March; FHIST component set 199 

for historical forcings); atmosphere conditions initialized by Climate Forecast System 200 

Reanalysis (CFSR) data. 201 

 202 

● Set C: In addition, we have also configured uniform 60km simulations for two wet seasons 203 

in contrast to the 60-3km ones (years 2000 to 2002; November to March). 204 

 205 

● Set D: Lastly, to accommodate the recent changes to the MG microphysics scheme, we 206 

have also conducted simulations at 60-3km resolution for the three wet seasons (years 207 

1999-2002) using MG3 with graupel (Gettelman et al., 2019) instead of MG2 (Gettelman 208 

and Morrison 2015) as in the Set B simulations. Specifically, Gettelman et al 2019 (i.e., 209 

the MG3 paper) show that even at 14 km scale the inclusion of rimed ice changes the timing 210 

and location of precipitation in the Western United States due to the different fall speeds 211 

and lifetimes of graupel, which is formed when higher vertical velocities result. This effect 212 

is expected to be larger at 3km. 213 

 214 

All simulations have been conducted with 58 vertical levels up to 43 km. Set A also includes 215 

experiments using 32 vertical levels. We have used the default radiation time step (1 hour). The 216 

physics and dynamic timesteps are set to default at 1800s for ~1° degree CAM-FV simulation, and 217 

this is the default for CAM6 physics for the nominally 1 degree. For 120km the MPAS dynamic 218 

timestep is 900s and the physics timestep is 1800s. We also use 900s for the 60km grid-space 219 

experiments, scaling it with reduced mesh spacing. The dynamic time-step for MPAS dycore is 220 

20s for 60-3km experiments with physics time-step set to 120s. Instead of using a 20s timestep for 221 

the 60-3 km mesh as scaling would imply, we use a 120s physics timestep for the 60-3km 222 

experiments, in part to reduce computational cost and because other studies have shown acceptable 223 

results with this physics timestep at comparable mesh spacing (e.g., Zeman et al 2021). We also 224 

recognize that the WUS precipitation as the focus of our study is predominantly orographically 225 

forced, whereas the physics-timestep-critical processes are related to unstable deep convection, 226 

perhaps lending support for a longer physics timestep in this application. We acknowledge the 227 

possible sensitivity of our results to the physics timestep and we will be examining this more in 228 

future work. The average cost for 60-3km simulations including writes and restarts is ~4K to 6K 229 

core-hour for one-day simulation (i.e., ~120K to 180K for getting 30-day output) using the 230 

Cheyenne supercomputer with the scaling of the high-performance computing to be further 231 

improved. We would like to acknowledge that model tuning is not performed. Given the 232 

interannual variability of precipitation over the WUS study region, we also acknowledge that it is 233 

not our goal to reproduce the recent historical climatology but to evaluate the overall model 234 

performance. 235 

 236 
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Table 1: A list of experiments in this study and the key configuration information 237 
 238 

 239 
 240 
 241 

 242 
 243 

Figure 1: SIMA-MPAS mesh configuration for the 60-3km experiments. A) The global domain 244 

mesh configuration with total grid columns of 835586; B) The zoomed-in region (see the red box 245 

depicted in panel A)) for the mesh structure from 60km to 3km. 246 

2.2 Observations and observationally-based gridded products used to evaluate model 247 

performance 248 

 249 

In this work, we have employed observations from CERES EBAF products (Kato et al., 2018; 250 

Loeb et al., 2018) for cloud and radiation fluxes properties. We have used GHCN Gridded V2 data 251 

(Fan and Van, 2008) for the land 2m air temperature globally, which is provided by the 252 

NOAA/OAR/ESRL PSL. We have also used PRISM data for gridded observed precipitation and 253 

temperature features (Daly et al., 2017) and gridded 4 km observational data for snow water 254 
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equivalent (Zeng et al., 2018). We have also used the recently released Livneh precipitation data 255 

(Pierce et al., 2021) as another gridded observationally-based precipitation dataset to better 256 

account for extreme precipitation. Another important dataset used for comparison is the WRF 257 

(Weather Research and Forecasting) model 4km simulation data over CONUS from Rasmussen et 258 

al. (2021, https://rda.ucar.edu/datasets/ds612.5), which used the mean of the CMIP5 model as the 259 

boundary forcing. We extracted the same historical time data as the 60-3km simulations for direct 260 

evaluation (i.e., nonhydrostatic CESM vs. nonhydrostatic WRF as a widely used regional climate 261 

model).  262 

 263 

Detailed descriptions of the open-shared datasets used in this study are given below: 264 

 265 

● CERES EBAF data products: we use gridded data from the Energy Balance And Filled 266 

(EBAF) product from the NASA Clouds in the Earth’s Radiant Energy System (CERES), 267 

described by Loeb et al (2018). CERES provides high quality top of the atmosphere 268 

radiative fluxes and cloud radiative effects, as well as consistent ancillary products for 269 

Liquid Water Path (LWP) and cloud fraction. We start with monthly mean gridded 270 

products at 1˚ and make a 20 year climatology from 2000-2020. 271 

 272 

● GHCN_CAMS Gridded 2m air land temperature: global analysis monthly data from 273 

NOAA PSL comes with resolution at 0.5 x 0.5°. It combines two large networks of station 274 

observations including the GHCN (Global Historical Climatology Network version 2) and 275 

the CAMS (Climate Anomaly Monitoring System), together with some unique 276 

interpolation methods (https://psl.noaa.gov; Fan and Van, 2008). 277 

 278 

● PRISM observed data: the Parameter-elevation Regressions on Independent Slopes Model 279 

(PRISM) gridded observed data for daily precipitation and daily 2m air temperature is used 280 

at 4 km grid resolution (Daly et al., 2017; https://prism.oregonstate.edu/). Covering 281 

Continental U.S., PRISM takes the station observations from the Global Historical 282 

Climatology Network Daily (GHCND) data set (Menne et al., 2012) and applies a weighted 283 

regression scheme that accounts for multiple factors affecting the local climatology (Daly 284 

et al., 2017).  285 

 286 

● Livneh gridded observationally-based precipitation dataset: in addition to PRISM data, to 287 

better account for extreme precipitation, a recently released Livneh precipitation data 288 

(Pierce et al., 2021; http://cirrus.ucsd.edu/~pierce/nonsplit_precip/) is also used for model 289 

evaluation. The data (~6km grid resolution) is shown to perform significantly better in 290 

reproducing extreme precipitation metrics (Pierce et al., 2021).  291 

 292 

● Snow water equivalent (SWE) data over the CONUS: this is the observational data product 293 

we use for snowpack diagnostics. The data is available from National Snow and Ice Data 294 

Center (NSIDC) (at https://nsidc.org/data/nsidc-0719/versions/1). The product provides 295 
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daily 4km SWE from 1981 to 2021, developed at the University of Arizona. The data 296 

assimilated in-situ snow measurements from the SNOTEL network and the COOP network 297 

with modeled, gridded temperature and precipitation data from PRISM (Zeng et al., 2018; 298 

Broxton et al., 2019). 299 

 300 

● CONUS (Continental U.S.) II high resolution climate simulations: The WRF (Weather 301 

Research and Forecasting) nonhydrostatic model simulations we used for comparison are 302 

from Rasmussen et al. (2021) (accessible at https://rda.ucar.edu/datasets/ds612.5). Its 303 

horizontal grid resolution is 4 km with forcing from the mean of the CMIP5 model for both 304 

present (1996-2015) and future (2080-2099) mean climate, with hourly output. For the 305 

study region we focus on here (i.e., over the western US), the simulations provide a more 306 

realistic depiction of the mesoscale terrain features, critical to the successful simulation of 307 

mountainous precipitation (Rasmussen et al., 2021). 308 

 309 

The topography details are shown in Figure 2 over the western US study region, showing that the 310 

complex terrains over coastal and mountainous regions have been well-resolved in SIMA-MPAS 311 

at 3 km resolution (in contrast to 60 km). This is comparable to the topography details in the WRF 312 

mesoscale model at a similar resolution. We do notice the smoother topography in SIMA-MPAS 313 

over the 3km mesh bounds and transient domains (see Figure S1). For future regional refined 314 

applications, we would suggest having a reasonably larger domain area than the study region at 315 

the finest resolution to accommodate the noise and instability from mesh transition. When applied, 316 

we regridded the SIMA-MPAS model data to the same grid resolution as the PRISM observation 317 

and WRF reference data (i.e., 4 km). For the regridded method and procedure, first CAM-MPAS 318 

data is remapped from unstructured grids to regular rectilinear lat/lon grids at 0.03 degree, and 319 

then the rectilinear data is regridded to the same grid spacings as the PRISM using the bilinear 320 

interpolation. The orographic gravity wave drag scheme in SIMA-MPAS (used in CESM2-CAM6) 321 

uses a ‘sub-grid’ orography to force the scheme. Sub-grid orography is calculated for each grid 322 

cell from a standard high resolution (1km) Digital Elevation Model. Thus, the sub-grid orography 323 

forcing is small at 3km, and is larger at 60km, and varies with grid cell size. So, the overall drag 324 

should be somewhat similar to the scale, but partitioned differently between resolved and 325 

unresolved scales. 326 

 327 
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 328 

Figure 2: Topography over the western US region. A) SIMA-MPAS at 3km refinement, B) 329 

SIMA-MPAS uniform 60km grid mesh, and C) WRF simulations at 4km over CONUS. 330 

3 Results 331 

3.1 Mean climatology diagnostics for CESM with MPAS dycore 332 

 333 

As the nonhydrostatic dynamical core is coupled to the CESM model framework, we would like 334 

to understand the mean climate in SIMA-MPAS and how that compares to a standard hydrostatic 335 

core (here, using FV), with the experiments described in Table 1. We evaluate the global context 336 

of the new formulation of CESM with a nonhydrostatic dynamical core with both 32 and 58 337 

vertical levels.  The 58 layer has higher resolution in the Planetary Boundary Layer (PBL) and in 338 

the mid and upper troposphere (about 10 additional levels in the PBL and decreasing vertical grid 339 

spacing from 1000m to ~500m near the tropopause). Satellite observations are used for comparison 340 

as described in the above section 2.2. Simulation results are averaged over the five years output 341 

under the present-day climatology (with SST and ice forcings from the mean of the period 1996-342 

2005). That means that simulations are forced with the same climatological monthly mean 343 

boundary conditions for sea surface temperature and greenhouse gasses every year to reduce 344 

interannual variability. 345 
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 346 

Figure 3: Zonal mean climatology from 5-year simulations with CESM2 and CAM6 physics 347 

using different dynamical cores and vertical levels. A) Liquid Water Path (LWP), B) Ice Water 348 

Path (IWP), C) Cloud Fraction, D) Total precipitation rate, E) Land 2m air Temperature, F) 349 

Column drop number, G) Shortwave Cloud Radiative Effect (SW CRE), H) Longwave (LW) CRE. 350 

Simulations are the default Finite Volume (FV) dynamical core with 32 levels (FV L32: Blue 351 

Solid) and 58 levels (FV L58: Blue Dashed). Also, the MPAS dynamical core with 32 levels 352 

(MPAS L32: Red Solid) and 58 levels (MPAS L58). Observations are shown in green for CERES 353 

20-year climatology (from 2000-2020) for LWP, Cloud Fraction, SW CRE, and LW CRE, and 354 

GHCN_CAMS Gridded land 2m air temperature from 1990-2010 for E). Shaded values are one 355 

sigma annual standard deviations. 356 

 357 
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Figure 3 indicates that MPAS simulations have a very similar climate to FV simulations. There 358 

are some differences in tropical ice water path in the southern hemisphere tropics, and some 359 

significant differences in sub-tropical cloud fraction. The climate differences between 32 and 58 360 

levels are also similar between dynamical cores: decreases in liquid and ice water path at higher 361 

vertical resolution. SIMA-MPAS has slight increases in cloud fraction and precipitation at higher 362 

vertical resolution, while SIMA-FV has little change or slight decreases in cloud fraction. Land 363 

surface temperature is well reproduced when ocean temperatures are fixed with both dynamical 364 

cores. Column drop number with CAM-MPAS is lower than CAM-FV, but more stable with 365 

respect to resolution changes. Subtropical SW CRE and LW CRE have higher magnitudes with 366 

CAM-MPAS, consistent with higher LWP and cloud fraction in these regions, yielding better 367 

agreement with the meridional CRE structure. When examining the spatial differences (Figure S2 368 

and Figure S3), we further found that the differences in the wind over the oceans drive differences 369 

in aerosols (sea salt) which alter the aerosol optical depth and droplet concentration. The radiative 370 

effects come as a result of cloud fraction changes: high clouds and specifically ice water path for 371 

the longwave, low cloud and liquid Water Path for the shortwave. The signal in clouds is stronger 372 

at L32 (Figure 3, Figure S2), again, probably due to larger differences in the PBL, which is better 373 

resolved at L58 (Figure 3, Figure S3). The microphysics is not as directly related to the cloud 374 

fraction, which means interaction with the boundary layer turbulence is important. While these 375 

changes are easy to spot, they are not that large, and generally well within some of the tuning 376 

which is often done during the model development process. 377 

 378 

Analysis of the atmospheric wind and temperature structure (Figure S4 and Figure S5) indicates 379 

that SIMA-MPAS compares as well or better to reanalysis winds and thermal structure in the 380 

vertical as SIMA-FV, though biases are different and of a different sign in many regions of the 381 

middle atmosphere. There are differences in low level wind speed and the subtropical jets between 382 

MPAS and FV (Figure S4), driving differences in temperature between them (Figure S5), 383 

particularly in the stratosphere and near the south pole. The stratosphere and free troposphere 384 

winds differences are due to slightly different damping and deposition of gravity wave drag 385 

forcing. The temperature changes above the surface respond to those wind changes. The near-386 

surface temperature differences (e.g., around Antarctica) also relate to transport of air around 387 

topography which is different between MPAS and FV.  388 
 389 
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Overall, SIMA-MPAS produces a reasonable climate simulation, with biases relative to 390 

observations that are of similar magnitude as SIMA-FV simulations, despite limited adjustments 391 

being made to momentum forcing. SIMA-MPAS has a realistic zonal wind structure with sub-392 

tropical tropospheric and polar stratospheric jets. There are differences in magnitude from ERAI, 393 

but MPAS (which has not been fully tuned) produces a realistic wind distribution. Further tuning 394 

of momentum in the dynamical core and physics could reduce these biases. The key feature of this 395 

work is that biases in the Northern Hemisphere mid-latitude tropospheric winds are very small for 396 

both FV and MPAS. For the temperature profile, there are patterns of bias between the high and 397 

low latitudes indicating different stratospheric circulations between the model and the reanalysis. 398 

That could be adjusted with the drag and momentum forcing in the model. Note that no adjustment 399 

of the physics has been performed. 400 

3.2 Precipitation distribution and statistics  401 

3.2.1 Mean precipitation features 402 

 403 

In the western US during the wet seasons, most of the precipitation occurs over the mountainous 404 

regions, with significant impacts on both water resources and potential flood risk management 405 

(Hamlet and Lettenmaier, 2007; Dettinger et al., 2011; Huang et al., 2020a). In Figure 4, we show 406 

the wet season mean (mid-Nov to mid-Mar as investigated here) precipitation features over the 407 

targeted region with differences from observations. Although the observational differences 408 

between PRISM and Livneh on average is small, it provides a more robust evaluation for both 409 

mean and extreme precipitation by having those two observational products. The result 410 

demonstrates that SIMA-MPAS can well simulate the precipitation intensity and spatial 411 

distributions, as compared to PRISM and Livneh observations. The spatial features at 3km are well 412 

captured with the spatial correlation of about 0.93 with precipitation mainly distributed over the 413 

Cascade Range, Coastal Range, Sierra Nevada, and the Rocky Mountains. If looking at the 414 

precipitation at the coarser resolution (60km, Figure S6a) in SIMA-MPAS, the mean domain 415 

average of the precipitation (~2.43 mm, when averaged over years 2000-2002) is similar to the 416 

fine resolution results (~2.61 mm) but lacking important regional variability and spatial details.  417 

 418 

In terms of biases when compared to PRISM data, SIMA-MPAS 3km overall underestimates the 419 

precipitation by about 0.07 mm (bias averaged over the plotted domain), especially over the 420 

windward regions, which could relate to the bias in heavy precipitation frequency and/or the 421 

discrepancies in ARs landfalling locations and magnitude from what was observed over the five-422 

year (wet-season) simulation statistics. We acknowledge that the interannual variability and the 423 

sample size of the ARs could also affect the results of landfalling precipitation. WRF, on the other 424 

hand, tends to overestimate the precipitation in most regions (for about 0.53 mm, bias averaged 425 

over the plotted domain compared to PRISM) except for the northwest coast and some Rocky 426 

Mountains regions, which can be seen from the relative difference plot (Figure 4c). The relative 427 
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differences in precipitation are generally large over the dryer regions in SIMA-MPAS. Overall, 428 

compared to PRISM, the bias is negative (for about -0.81 mm on average) over windward regions, 429 

but positive over the lee side (for about 0.48 mm on average). We also notice that the spatial details 430 

of the precipitation are relatively smoothed over the Rocky Mountains resulting in a large 431 

underestimation bias, which could be partly due to the fact that the boundary for the 3km mesh 432 

grids is nearing those regions (see Figure 1, Figure 2, and Figure S1). 433 

 434 

Figure 4: Mean simulated precipitation and differences from observation: a) Wet-season 435 

(mid-Nov to mid-March) daily precipitation intensity over western US (1999-2004); b) Absolute 436 

differences from PRISM reference; c) Similar as b, but for relative differences from PRISM (grid 437 

box values less than 1mm/day have been masked)) with the SIMA-MPAS model data regridded 438 

to the same resolution as the PRISM grid spacings (i.e., 4 km). 439 

 440 

Over the western US, especially in the coastal States, heavy precipitation can be induced by 441 

extreme storm events mainly in the form of atmospheric rivers (Leung and Qian, 2009; Neiman et 442 

al., 2011; Rutz et al., 2014; Ralph et al., 2019; Huang et al., 2020b). The capability to capture and 443 

predict such extreme events is a significant part of the application of weather and climate models 444 

(Meehl et al., 2000; Sillmann et al., 2017; Bellprat et al., 2019). To figure out the performance of 445 

SIMA-MPAS in reproducing the precipitation frequency distribution, we combine all the daily 446 

data from all the grid points at each coastal State (California, Oregon, and Washington) to calculate 447 

the frequency of daily precipitation by intensity (Figure 5). SIMA-MPAS captures a reasonable 448 
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distribution of precipitation intensity with respect to PRISM and Livneh observations, with smaller 449 

biases than WRF over California and Oregon regions, particularly at more extreme values (such 450 

as when daily intensity exceeding 20 mm/day). We also notice that over the Washington region, 451 

the biases for SIMA-MPAS and WRF are at similar magnitudes compared to the observations, 452 

although the two observations also show some uncertainties at the upper tail distributions. 453 

 454 

Further, when examining the precipitation days with intensity less than 10 to 15 mm/day, SIMA-455 

MPAS shows a close match to observations, while WRF tends to slightly underestimate the 456 

probability. For more extreme precipitation days, models tend to diverge in terms of the behaviors 457 

with SIMA-MPAS showing some underestimation over California and Washington regions (for 458 

average of ~14%, ~7% and ~18% bias for days when intensity exceeds 20 mm/day and less than 459 

60 mm/day for California, Oregon, and Washington respectively). WRF generally overestimates 460 

the heavy precipitation frequency to a much larger extent (for an average bias of ~42%, ~51% and 461 

~18% for California, Oregon, and Washington respectively). The sign of the biases is consistent 462 

with the previously discussed mean precipitation biases. It is not known to us why the biases in 463 

SIMA-MPAS are smaller than WRF. One hypothesis that would limit precipitation intensity is that 464 

SIMA-MPAS has strict conservation limits for energy and mass throughout the model, which are 465 

not present in WRF. This is a subject for future work, but may also be dependent on the specific 466 

WRF physics options used. We acknowledge that the initialization without nudging conditions in 467 

SIMA-MPAS simulations does not necessarily reproduce monthly or higher time variability but is 468 

able to get the seasonal means and distributions. We also acknowledge that the interannual 469 

variability and the sample size of the ARs could also affect the results of landfalling precipitation. 470 

Still, those analyses further testify the capability of using SIMA-MPAS for precipitation studies, 471 

giving us good confidence in using SIMA-MPAS for storm events studies.  472 

 473 

 474 

Figure 5: Probability distribution of daily precipitation intensity. All the daily datasets from 475 

the five wet seasons for all grid points in each State are used to construct the distribution statistics. 476 

The blue lines refer to WRF reference data, the black lines are for the PRISM observation, the dark 477 

golden line refers to the Livneh observation, and the SIMA-MPAS results are in red-colored lines. 478 

The SIMA-MPAS model data is regridded to the same resolution as the PRISM grid spacings (i.e., 479 
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4 km). The x-axis starts from 1mm/day and the y-axis is transformed with a logarithmic scaling 480 

for better visualization of the upper tail distribution. 481 

 482 

3.2.2 MG2 vs. MG3 microphysics for simulated precipitation in SIMA-MPAS 483 
 484 

We would like to point out that we have used the default microphysics scheme-MG2 (Gettelman 485 

et al., 2015) when configuring those experiments from the CESM2 model. We acknowledge that 486 

MG3 (including rimed ice, graupel in this case) could be a better option with the rimed 487 

hydrometeors added (see Gettelman et al., 2019) especially when pushing to mesoscale 488 

simulations and for orographic precipitation. In detail, Gettelman et al 2019 found that the addition 489 

of rimed ice improved the simulation of precipitation in CESM at 14km resolution with wintertime 490 

orographic precipitation, due to altering the timing of precipitation by more correctly representing 491 

the pathways for precipitation formation with higher resolved scale vertical velocities. To fulfill 492 

this caveat but still make the best use of current simulation data, we have conducted another three 493 

experiments using the MG3 microphysics scheme for three wet seasons (1999-2002). Similar 494 

diagnostics have been performed as in the previous part but for the results from these three wet 495 

seasons (as shown in Figure 6).  496 
 497 

Overall, the precipitation statistics are well represented in SIMA-MAPS compared to observations 498 

both with MG2 and MG3 when evaluating from the same three wet seasons. Although still 499 

outperforming WRF output, we do recognize that MG2 tends to underestimate heavy precipitation 500 

frequency in certain regions compared to observations, while MG3 produces more intense 501 

precipitation with some overestimations over heavy-precipitated regions, mostly over the Cascade 502 

Range and Coastal Range (Figure 6a). From the frequency distributions (Figure 6b), it can be seen 503 

that MG2 and MG3 microphysics both perform well over the study region. Specifically, MG3 504 

produced stronger precipitation than the MG2 output over the Washington region showing a closer 505 

match to the observations than MG2 results. Due to interannual variability, we still need to 506 

investigate more different cases, and it is our next-step plan to further investigate the model 507 

performance with more testbeds. 508 
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 509 

Figure 6: MG2 vs. MG3 microphysics used in SIMA-MPAS for the wet-season precipitation 510 

over western US (1999-2002). a) mean precipitation intensity; b) Probability distribution of daily 511 

precipitation frequency, like Figure 5 but for three wet seasons with SIMA-MPAS (MG3) added 512 

in dashed red lines; Again, the SIMA-MPAS model data is regridded to the same resolution as the 513 

PRISM grid spacings (i.e. 4 km). 514 

3.3 Accumulated snowpack features 515 

 516 

Snowpack characteristics have remained poorly represented in global climate models, lacking 517 

high-resolution terrain realization, fine-scale land-atmosphere coupled processes and interactions 518 

with snow’s complicated thermal and hydrological properties (DeWalle & Rango 2008; Liu et al., 519 

2017; Kapnick et al., 2018). Facing this long-standing issue, we expect that with much improved 520 

precipitation features, temperature, and substantially better-resolved complex terrains, snowpack 521 

features can be much better represented in CESM. Here, we have compared the accumulated snow 522 

water equivalent (SWE) results, which refer to the total accumulated snow from mid-Nov to mid-523 

March (based on daily output), and then averaged over the five seasons (see Figure 7). By 524 

comparing with the gridded snow water equivalent observational data, it shows that SIMA-MPAS 525 

(MG2) can produce much improved estimation of the snowpack over the mountainous regions, 526 

with less overestimation than WRF simulations at similar resolution. However, the overestimation 527 

is notable for both SIMA-MPAS and WRF simulations, bringing the further need in investigating 528 

the land-air interactions in rain/snow processes and partitions from the precipitation contribution. 529 

In general, SIMA-MPAS can simulate reasonable spatial details for snowpack distribution over 530 

mountainous regions (mainly over the Cascade Range, Coastal Range, Sierra Nevada, and the 531 
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Rocky Mountains) with positive bias over the northern Cascade Range and certain Sierra Nevada 532 

mountainous regions. 533 
 534 
 535 

 536 

Figure 7: Wet-season snow water equivalent (SWE) over western US. First row: Seasonal 537 

mean SWE averaged over (1999-2004) from A) SIMA-MPAS, B) Gridded observation for SWE 538 

as described in the section 2.2, and C) WRF data; Second row (D, E, F): Absolute differences from 539 

observation with all data regridded to 4 km for SIMA-MPAS and WRF averaged over (1999-540 

2004), and SIMA-MPAS (MG3) averaged over (1999-2002). 541 
 542 

As the snowfall is dominated by the near-surface temperature and precipitation values, we have 543 

examined the 2m temperature (T2) here to see how well temperature is captured in SIMA-MAPS. 544 

In Figure 8, the mean T2 (T2mean) is shown averaged over all simulated wet seasons. In general, 545 

near-surface temperature results from SIMA-MPAS are overall matched with observations across 546 

varied climate zones including coastal areas, agriculture, desert regions, inland and mountainous. 547 

However, we also notice that SIMA-MPAS tends to be warmer over most places (with the 548 

averaged bias of about 0.65℃ over the plotted domain), except over very high mountain top ranges 549 

with cooler bias. On average, the difference for the regions with warmer biases is about 1.35°C 550 

and the difference for those areas with cooler biases is about -0.99°C when compared to PRISM 551 

data. On the contrary, WRF tends to be cooler in most regions except the southern part of Central 552 
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Valley and some desert regions in the southwest US (the average bias is about -1.84℃ over the 553 

plotted domain). We have also investigated the T2 bias in the 120km simulations to see if this is a 554 

consistent model bias. By comparing FV and MPAS together (Figure S7), it turns out that SIMA-555 

MPAS tends to be warmer with higher net surface shortwave and longwave fluxes over the wet-556 

season period discussed here (Figure S8). Still, overall, the land model coupled with the 557 

atmosphere also does a good job here under a realistic topography.  558 
 559 

 560 

Figure 8: Daily mean 2m air temperature (T2mean) averaged over (1999-2004, Nov-March).  561 

A) PRISM observation dataset; B) and C) The differences between SIMA-MPAS and WRF from 562 

PRISM respectively; (Note: for difference plot, all data are regridded to the same resolution as 563 

PRISM). 564 

3.4 Large-scale moisture flux and dynamics  565 

 566 

Further, we have investigated the wind profile that directly connects to the subtropical to middle 567 

latitudes moisture fluxes over the northeast Pacific and the hitting western US regions. First, we 568 

have examined the cross sections of zonal and meridional wind patterns (at 130˚W, near the western 569 

US coast) at both 60-3km and 60km to determine the dynamic changes with the refinement mesh 570 

(Figure 9). As we can see, the mean westerly zonal winds are about 10% stronger at the jet stream 571 

level near 200-250hPa in 60-3km simulations compared to the 60km results. The mean meridional 572 

wind (dominantly southward) however is weaker in 60-3km simulations than the 60km ones. The 573 

precipitation over the western US coast is largely associated with the concentrated water vapor 574 

transport over the North Pacific, known mainly in the form of atmospheric rivers (Rutz et al., 575 

2014). It is our further interest to investigate the wind dynamics transitioning from coarse-scale to 576 

mesoscale in future work. Another source of the precipitation uncertainty We would like to 577 

acknowledge the sensitivity from the physics timestep (see Figure S9) when comparing the 578 

precipitation in 60-3km simulations (a shorter physics time-step) to the 60km results at the regions 579 

with the same grid resolutions. 580 
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 581 

 582 

Figure 9: Composite wind profile along western US coast (cross-section at 130W, near the 583 

western US coast) (averaged over 2000-2002, Nov-March). a) Mean latitude-height cross-584 

section of zonal winds (m/s) for SIMA-MPAS 60-3km (panel A) and 60km (panel C); b) similar 585 

as a), except for meridional winds (panel B and D). 586 
 587 

In Figure 10, we further examine the large-scale moisture flux pattern from the integrated water 588 

vapor transport in the set of simulations with and without regional refinement. It can be seen that 589 

the spatial pattern of the moisture flux is generally similar between those two sets of experiments, 590 

dominated by the zonal winds (see Figure 9). If checking the IVT values along the longitude of 591 

130˚W, the differences (about 3% on average) are quite small along the WUS extent. With the 592 

large-scale dynamics and local fine-scale processes well integrated into this nonhydrostatic global 593 

climate model, it gives confidence in precipitation reproducing and predicting across the weather 594 

and climate scales. 595 
 596 
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 597 

Figure 10: Mean instantaneous vertically integrated water vapor flux transport over western 598 

US (2000-2002, Nov-March): a) SIMA-MPAS 60-3km and b) SIMA-MPAS 60km. Wind is 599 

overlaid for the averaged lower levels (height from ~500m to ~2000m). 600 

4 Summary and discussion 601 

 602 

In this study, we describe SIMA-MPAS, which is built upon the open-source Community Earth 603 

System Model (CESM) with a nonhydrostatic dynamical core, the Model for Prediction Across 604 

Scales (MPAS), We would like to try to answer several questions about the performance of this 605 

new generation model when applying at convection-permitting resolutions and when bridging both 606 

weather and climate scale simulations in a single global model. We have chosen the western US 607 

as our study region to examine the precipitation features in SIMA-MPAS at fine scales and how 608 

the model performs when compared to both observations and a regional climate model. 609 

 610 

To answer those questions, we have designed and conducted a set of experiments. First, we have 611 

tested CESM at the same coarse resolution using both MPAS as the nonhydrostatic core and finite-612 

volume as the hydrostatic core for multiple years of climatology. Secondly, and, as the focus of 613 

this work, a variable resolution mesh is configured with 3km refinement centered over the western 614 

US. We have done five separate wet-season simulations to get the precipitation statistics. In 615 

addition, we have also included uniform 60km simulations from the model for two seasons.  616 

 617 

We first evaluated the mean climate in SIMA-MPAS to see how that compares to the hydrostatic 618 

model counterpart (here, SIMA-FV). The diagnostics show that MPAS simulations have a very 619 



22 

similar climate to FV simulations. SIMA-MPAS has slight increases in cloud fraction and 620 

precipitation at the higher vertical resolution, while SIMA-FV has little change or slight decreases 621 

in cloud fraction. Overall, SIMA-MPAS produces a reasonable climate simulation, with biases 622 

relative to observations that are not that different from SIMA-FV simulations, despite limited 623 

adjustments being made to momentum forcing and no adjustment of the physics has been 624 

performed.  625 

 626 

When compared to both observations and a traditional regional climate model at similar fine 627 

resolutions for mean and heavy precipitation behaviors, SIMA-MPAS can capture the spatial 628 

pattern and mean intensity (with the spatial correlation of about 0.93 relative to PRISM), which is 629 

also comparable to WRF results. We do notice there are some underestimations mostly in SIMA-630 

MPAS and overestimations mostly in WRF. Further, SIMA-MPAS captures the distribution of 631 

precipitation intensity with respect to observations with smaller biases than WRF over California 632 

and Oregon regions, particularly at more extreme values. With additional experiments, SIMA-633 

MPAS with MG3 microphysics (graupel) produces stronger precipitation than the MG2 version 634 

(as used in other experiments in this study as the default microphysics scheme) and the MG3 results 635 

also well presented the precipitation statistics for both spatial mean and frequency distribution. 636 

The difference between MG3 and MG2 is the rimed hydrometeors added to the MG3 (see 637 

Gettelman et al., 2019 for detailed descriptions), which could matter more when pushing to 638 

mesoscale simulations and for orographic precipitation. We also acknowledge the interannual 639 

variability and it is our next-step plan to further investigate the model performance with more 640 

testbeds. 641 

 642 

We further show that SIMA-MPAS can produce much improved estimation of the snowpack over 643 

the mountainous regions compared to coarse resolutions, with less overestimation than WRF 644 

simulations at similar resolution. In general, SIMA-MPAS can simulate some reasonable spatial 645 

details for snowpack distribution over mountainous regions (mainly over the Cascade Range, 646 

Coastal Range, Sierra Nevada, and the Rocky Mountains) with positive bias over the northern 647 

Cascade Range and certain Sierra Nevada mountainous regions. The overestimation is notable for 648 

both SIMA-MPAS and WRF simulations, needing further investigations. We also notice that 649 

SIMA-MPAS tends to be warmer over most places, except over very high mountain top ranges 650 

with cooler bias. 651 

 652 

The results further testify the capability of using SIMA-MPAS for precipitation studies, giving us 653 

good confidence in using SIMA-MPAS for storm events studies. We focus on multiple-season 654 

statistics for model performance. Given the large-scale dynamics and local fine-scale processes 655 

well integrated into this nonhydrostatic global climate model, it shows promise in precipitation 656 

reproducing and predicting across the weather and climate scales. It is our further interest to 657 

investigate the wind dynamics transitioning from coarse-scale to mesoscale in future work and to 658 
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further investigate the model performance with more testbeds for convection-permitting weather 659 

and climate systems across scales. 660 

 661 
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