
Implementation and sensitivity analysis of a Dam-Reservoir
OPeration model (DROP v1.0) over Spain
Malak Sadki1, Simon Munier1, Aaron Boone1, and Sophie Ricci2

1CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
2CECI, CERFACS/UMR5318 CNRS, Toulouse, France

Correspondence: M. Sadki (malak.sadki@meteo.fr)

Abstract. The prediction of water resource evolution is considered to be a major challenge for the coming century, particularly

in the context of climate change and increasing demographic pressure. Water resources are directly linked to the continental

water cycle and the main processes modulating changes can be represented by global hydrological models. However, anthro-

pogenic impacts on water resources, and in particular the effects of dams-reservoirs on river flows, are still poorly known and

generally neglected in coupled land surface - river routing models. This paper presents a parameterized reservoir model, DROP5

(Dam-Reservoir OPeration model), based on Hanasaki’s scheme to compute monthly releases given inflows, water demands

and the management purpose. With its significantly anthropized river basins, Spain has been chosen as a study case for which

simulated outflows and water storage variations are evaluated against in situ observations over the period 1979-2014. Using a

default configuration of the reservoir model, results reveal its positive contribution in representing the seasonal cycle of dis-

charge and storage variation, specifically for large-storage capacity irrigation reservoirs. Based on a bounded version of the10

Nash-Sutcliffe Efficiency (NSE) index, called C2M , the overall outflow representation is improved by 43% in the median. For

irrigation reservoirs, the improvement rate reaches 80%. A comprehensive sensitivity analysis of DROP model parameters was

conducted based on the performance of C2M on outflows and volumes using the Sobol method. The results show that the most

influential parameter is the threshold coefficient describing the demand-controlled release level. The analysis also reveals the

parameters that need to be focused on in order to improve river flow or reservoir water storage modeling by highlighting the15

difference in the individual effects of the parameters and their interactions depending on whether one focuses on outflows or

volume mean seasonal patterns. The results of this generic reservoir scheme show promise for modeling present and future

reservoir impacts on the continental hydrology within global land surface - river routing models.

Keywords : reservoir modeling, large-scale hydrological modeling, sensitivity analysis, Sobol method.

1 Introduction20

Dams are used to provide essential services to mankind in terms of economic, environmental, and social impacts. They provide

water supply for domestic, industrial and irrigation needs, enable hydroelectric power generation and river navigation and

prevent extreme hydrological events. There are currently more than 58,700 large dams (heights > 15 m) worldwide, with an

estimated cumulative storage capacity between 7,700 km3 and 8,300 km3 (Vörösmarty et al., 2003; Downing et al., 2006;
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Lehner et al., 2011; ICOLD, 2020). When including millions of smaller dams (∼ 16.7 M larger than 0.01 ha (Lehner et al.,25

2011)), the total global impounded water may even exceed 10,000 km3 (Chao et al., 2008). This means that reservoirs hold more

than four times the amount of water stored in rivers (the average annual river water storage ranges from approximately 1,200

to 2,120 km3), and they account for approximately 20% of average annual river flow to the oceans (40,000 - 45,500 km3/year)

(Baumgartner and Reichel, 1975; Oki and Kanae, 2006; Syed et al., 2010; Lehner et al., 2011). More than 60% of the world’s

largest rivers are fragmented by the construction of dams, which account for 90% of the flow from these river basins (Dynesius30

and Nilsson, 1994; Revenga et al., 2005; Grill et al., 2015, 2019).

Several studies have demonstrated the significant impact of reservoirs on river flow regimes at not only local scales, but also

at larger regional and global scales: reservoirs impact the magnitude of downstream river flows and alter the temporal pattern

of river discharge over the continental surface (Haddeland et al., 2006; Hanasaki et al., 2006; Döll et al., 2009; Biemans et al.,

2011; Shin et al., 2019; Gutenson et al., 2020). Through surface evaporation and water exchanges with groundwater, lakes and35

floodplains, reservoirs not only affect the water budget over land but also throughout the earth’s horological cycle by interacting

with the atmosphere and oceans (Pokhrel et al., 2012; Zhao et al., 2012; Wada et al., 2016; Frederikse et al., 2020). There is

therefore an increasingly pressing need to integrate reservoir operations in large-scale land surface and global hydrological

models (LSMs-GHMs) to overcome the existing biases in continental water cycle and river flow modeling given the number

of highly regulated basins.40

Models developed to date which represent reservoir releases at a large scale can be categorized into data-driven and process-

based approaches. The first category of models are built on the basis of observed release data, water levels and volumes. These

methods range from simplified representations of reservoir operation using linear or multilinear regression (e.g., Young Jr,

1967; Raman and Chandramouli, 1996), to very sophisticated models based on machine learning and artificial intelligence

techniques, such as neural-network-based methods (e.g., Maier and Dandy, 2000; Razavi and Karamouz, 2007; Ehsani et al.,45

2016; Coerver et al., 2018). However, this approach requires specific knowledge of the studied reservoirs and requires access

to a large amount of observed data. This approach also remains limited in its applicability for future predictions since the

generated operational rules are based on historical data and thus do not take into account future potential social economic

and predicted climatic changes in the operation of these reservoirs. Process-based approaches, on the other hand, are based

on conceptualizing reservoir responses according to its operational purpose by linking release control to physical processes,50

such as crop growth and the associated water requirements, or to water and energy demands that can be estimated at the

global scale. The representation of dam operations is thus achieved without having to explicitly observe the actual release

operations performed on each reservoir (Gutenson et al., 2020). The best known schemes in this category are those developed

by Hanasaki et al. (2006) and Haddeland et al. (2006), which are inflow-and-demand-based models as presented by Yassin et al.

(2019). These two generic models have been implemented in several global hydrological and water management models (e.g.,55

WaterGAP (Döll et al., 2009)), VIC (Haddeland et al., 2006), H08 (Hanasaki et al., 2008), and PCR-GLOBWB (Van Beek

et al., 2011)).

Of all the studies which have been carried out with these models, very few have been focused on Iberian Peninsula basins

where the prevailing semi-arid climate leads to a greater necessity to store water in large-capacity reservoirs which lead to
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larger reservoir effects on rivers (Batalla et al., 2004; López-Moreno et al., 2009; Lorenzo-Lacruz et al., 2010). Spain is, in60

fact, among the top ten dam-building countries with more than 1,064 dams (ICOLD, 2020). The study of Grill et al. (2019),

which assessed global river connectivity, revealed that the regulation effect of dams is the dominant pressure source in Spain’s

rivers, where very high degrees of regulation cause an alteration of the natural river flow regime for its five main rivers.

This study proposes a global and parameterized reservoir model, DROP, built on the basis of the generic scheme by Hanasaki

et al. (2006) and the first aim of the study is to implement it in Spain as a case study to represent reservoir releases. The second65

aim is to provide a comprehensive understanding of how uncertainties in each of the model parameters are affecting the overall

accuracy of its predictions. In fact, apart from sensitivity and parameter tuning tests in Hanasaki et al. (2006) and Shin et al.

(2019), the authors are unaware of an exhaustive sensitivity analysis conducted on this model to date.
:
In

::::
this

::::::
regard,

:::
the

:::::
study

::::
aims

::
to

:::::::
quantify

:::
the

::::::::
influence

::
of

:::::
each

::::::::
parameter

::::
and

::
to

:::::
reveal

:::
the

:::::
types

::
of

::::::::
influence

::::
that

::::
each

::
of

:::::
them

:::::
holds

:::
by

::::::::::
dissociating

::::::::
individual

::::::
effects

:::::
from

:::::::
possible

:::::::::::
interactions. Further work will focus on implementing this scheme in global hydrological70

models in order to provide a physical representation of reservoirs on large scales.

This paper is organized as follows: Section 2 provides a description of the DROP model and a theoretical outline of the

sensitivity analysis method. The study area in Spain, the available observational data, the model setup and the sensitivity

analysis implementation are described in section 3. Sections 4-5 illustrate and discuss the model’s overall performance and the

parameter sensitivity results. Conclusions and perspectives of the study are presented in the last section.75

2 Methodology

2.1 DROP: a global Dam-Reservoir OPeration model

The parameterized DROP model has been developed based on Hanasaki et al. (2006) scheme. The model works at the level of

each reservoir individually and is based on the mass balance (as shown below in Equation 1) of each reservoir to calculate the

release at its outlet.80

dV

dt
=Qin −Qout (1)

Qin and Qout stand respectively for the net inflow to the reservoir and its outflow at the outlet. In fact, the net inflow, Qin,

combines different physical processes, as shown in Equation 2: it includes water inputs from precipitation P , direct runoff Rd

and tributary inflows
:::::::::
representing

::::::
water

::::
flows

:::::::
running

:::
off

:::
the

:::::::::::
surrounding

::::::
ground

::::::
surface

::::
that

::::
also

:::::
feeds

:::
the

::::::::
reservoir,

::::
and

:::::::
tributary

::::::::::
streamflows

:
Qtrib , but also accounts for evaporation losses

::::::
flowing

::::
into

:::
the

::::::::
reservoir.

:::::::::::
Evaporation E and ground85

water exchanges
::::::::::
groundwater

::::::::
exchange Qgw ::

are
::::
also

:::::::
included

::
in

::::
Qin.

Qin = (P −E)×Areservoir +Qtrib +Rd ±Qgw (2)

where Areservoir is the reservoir surface area.

In order to simulate dam releases, Qout, the reservoir model categorizes reservoirs into irrigation and non-irrigation reser-

voirs, computes the mass balance for each reservoir individually and calculates releases based on inflow and water demands.90
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A schematic of the DROP model is shown in Figure 1 with its 6 parameters (in blue). To give an overview of its overall func-

tioning, the model takes as input inflow and water demands and calculates at a monthly time step dam releases according to

the reservoir management purpose and its relative capacity compared to inflow, noted c. Operating rules are set following an

‘operational year’. This type of year has been introduced by Hanasaki et al. (2006) and it differs from hydrological and calen-

dar years. It starts the first month of the water release period and is therefore specific to each reservoir. This specific month,95

representing the 1rst parameter of the model, will be noted as mstart in the remaining sections of this article. At the beginning

of each operational year, defined by mstart, reservoir storage volume Sinit is compared to the ideal filling value Sideal, defined

defined as a ratio, α, of storage capacity C. Reservoir simulated releases are impacted by this step as they are retrospectively

revised upwards or downwards depending on whether the reservoir has more or less water storage than the ideal rate. Dam

monthly releases are then computed following two steps: first, a provisional release is calculated based on water demands and100

the annual mean inflow. In irrigation reservoirs, two parameters are involved: dmax, setting the control area of the reservoir

and thus the water needs to be supplied, and M , defining the minimum release to be provided for environmental requirements.

The calculation scheme remains simplistic for other management purposes where releases are set to mean annual inflow. The

provisional release is then corrected by incorporating a "demand-controlled release" ratio R, controlled by two parameters

cthreshold and b, which accounts for inflow pattern influence in reservoirs with low storage capacities compared to inflow. The105

DROP model therefore counts 6 parameters, as shown in Figure 1.

Figure 1. Schematic representation of the DROP model showing its 6 parameters (in blue): mstart defines the start of reservoir operational

year. α sets the ideal filling rate of the reservoir to be reached at each starting month of the year. The remaining 4 parameters are used in dam

release computation: dmax and M , operating only in irrigation reservoirs, set respectively the control area of the reservoir (and therefore

irrigation water demands) and minimum release to be provided. cthreshold and b, on the other hand, account for inflow pattern influence in

reservoirs with low relative storage capacity to inflow (i.e. run-of-river reservoirs).
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The operating rules are detailed below. First, at the beginning of each operational year, an annual release coefficient Ky is

computed to determine the filling rate of the reservoir. Ky is a ratio between the reservoir storage at the beginning of the year

Sfirst,y and the long-term target storage Sideal :

Ky = Sfirst,y/Sideal (αC) (3)110

where Sideal = α×C, α being a non-dimensional constant, and C is the total storage capacity of the reservoir. Sideal represents

the ideal filling level at the beginning of each year; α was set semi-empirically to 0.85 of the maximum capacity for all

reservoirs based on sensitivity tests conducted in Hanasaki et al. (2006). This annual release coefficient is the one used to

weight the provisional releases calculated afterwards depending on whether the reservoir has more (Ky>1) or less (Ky<1)

water storage than the ideal rate. The underlying aim is to reduce interannual variation in streamflow.115

The following steps describe how reservoir releases are computed. The provisional monthly releases, r′m, are set depending

on the reservoir’s main purpose. The scheme is simplified for a non-irrigation reservoir since it constantly releases the mean

annual inflow imean calculated over the whole simulation period (noted "long-term" in the remaining sections of this article):

r′m = imean (4)

For an irrigation reservoir, monthly releases are proportional to water demands. They are here parameterized following Shin120

et al. (2019) as:

r′m =


imean

[
(M +(1−M)

dm
dmean,y

]
if DPI > 1−M

imean + dm − dmean,y if DPI ⩽ 1−M

(5)

where dm and dmean,y are, respectively, monthly and annual mean water demands. DPI (Demand Per Inflow) is, as introduced

by Shin et al. (2019), the ratio between dmean,y and imean, and M represents the minimum monthly release as a percentage

of imean. It is set to 0.5 by Hanasaki et al. (2006) and Döll et al. (2009), and to 0.1 by Biemans et al. (2011) and Shin et al.125

(2019).

When the DPI is above the set threshold (1−M ), water needs are considered to be very high and can only be partially

fulfilled by the water stored throughout the coming year. The priority is to first ensure a minimum release, M × (imean), in

order to meet the environmental flow requirements. The remaining part of the annual inflow is released throughout the year

on a monthly basis following the sub-annual water demand fluctuation curve. Otherwise, when the DPI is below (1−M ), the130

reservoir releases all the monthly water demand that is needed.

In this scheme, only irrigation demand is considered. Since dams provide water for the downstream demand within a certain

distance, a maximum distance, dmax, is a parameter to define for each reservoir, the irrigated grid cells within the river basin

to be supplied and thus delimits a "command area" to each reservoir. In contrast to Hanasaki et al. (2006) (where a crop growth

model is considered to calculate the irrigation demand), here the distribution of irrigated areas is based on ECOCLIMAP SG135

(Calvet and Champeaux, 2020; Druel et al., 2021) which is used by the irrigation module in the ISBA LSM (Druel et al.,

2021) to compute irrigation demands for 5×5 km resolution grid cells (see section 3). The irrigation water demands are
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aggregated within the command area for each reservoir. Unlike Hanasaki et al. (2006) scheme, the DROP model entirely

separates irrigation from non-irrigation reservoirs and only accounts for irrigation water demands for this category of reservoirs.

Moreover, industrial and domestic demands are highly uncertain and hardly accessible. In fact, these consumptions are strongly140

linked to each country’s specific political and economical policies and extensive records are generally not made public. Some

global databases, such as the Food and Agriculture Organization of the United Nations (FAO) global information system

"AQUASTAT" AQUASTAT (1994), provide estimates of average annual water withdrawals by activity sector and by water

resource publicly accessed at the country level. However, such estimates are still limited in terms of temporal and spatial

resolution and would consequently add a non-negligible source of error to the model. They are therefore neglected in this145

study.

In all possible cases, regardless of the reservoir purpose, the water released over the operational year is equivalent to the

long-term mean annual inflow.

The release computed so far is provisional. The real monthly release is calculated as follows :

rm =

 Ky × r′m if c⩾ cthreshold

(1−R)× im +R×Ky × r′m if 0⩽ c < cthreshold
(6)150

where c is the relative capacity of a reservoir and is defined as the ratio between storage capacity C and the long-term mean

annual inflow water volume (c= C/Imean). The parameter R, as introduced by Shin et al. (2019) (and also parameterized as

β by Horan et al. (2021)), is a so-called “demand-controlled release ratio”. It is parameterized in the current study as :

R=

(
c

cthreshold

)b

(7)

where R describes the influence of the inflow regime on release for small storage capacity reservoirs. It varies between 0 and 1155

and includes two parameters: cthreshold and b coefficient. In fact, the smaller the reservoir capacity is compared to inflow, the

closer it gets to run-of-the-river dams where release is close to the natural river flow and thus the influence of the inflow annual

pattern. Otherwise, when c is above the threshold (large capacity dams), then R= 1 and the release is fully controlled by water

demand. cthreshold and b are set, respectively, as 0.5 and 2 in both Hanasaki et al. (2006) and Biemans et al. (2011). Shin et al.

(2019), on the other hand, proposed an analytical formula to compute R, which is reproduced in this study, and set cthreshold160

and b respectively to 1/α and 1. The monthly releases are also weighted by the annual coefficient, Ky from Equation
:
3, which

is calculated at the beginning of the operational year and describes how full the reservoir is relative to the ideal rate. Reservoir

releases can therefore be revised upwards or downwards depending on whether the reservoir had more or less water storage

than the ideal rate.

:::
The

::::::::::::
modifications

:::::::
brought

::
to

::::
the

:::::
model

:::::
from

:::
the

::::::::
previous

:::::::
version

::
of

:::::::::::::::::::
Hanasaki et al. (2006)

:::
and

:::
the

::::::::::::::::
Shin et al. (2019)165

:::::::::::::
parameterization

::::
can

::
be

::::::::::
summarized

::
in
:::
the

:::::::::
following

:::
list:

:

–
:::
The

:::::::
starting

:::::
month

::
of

:::
the

::::::::::
operational

::::
year,

:::::
which

::::
was

::::::::
calculated

::
in
::::::::
previous

:::::::
versions

::
at

:::
the

::::
level

::
of

::::
each

::::::::
reservoir

:::::
based

::
on

::::::::
observed

::::::
inflows

:::
and

::::
dam

::::::::
releases,

:
is
::::::::::
considered

::
in

:::
this

:::::
model

:::::::
version

::
as

:
a
:::::::::
parameter,

:::::
noted

:::::::
mstart. ::::

This
:::::::::
overcomes
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::
the

:::::::::
challenge

::::
faced

:::
by

:::
the

:::
old

:::::::
versions

:::::
when

:::::::
applying

:::
the

:::::
model

:::
in

::::::::
ungauged

::::::
basins.

::::::
Within

:::
our

:::::::
version,

::::::
mstart :

is
::
to
:::
be

::
set

:::::::::
separately

:::
for

::::::::
irrigation

:::
and

::::::::::::
non-irrigation

::::::::
reservoirs.

:
170

–
:::
The

:::::
same

::::::
applies

::
to

:::::
dmax :

,
::::::
initially

:::
set

::
to

:
a
::::::::
constant

::::
value

:::::::::
depending

:::
on

:::
the

:::::
spatial

:::::::::
resolution

::
of

:::
the

::::
river

::::::
routing

::::::
model

::
in

:::::
which

:::
the

:::::::
scheme

::
is

:::::
being

:::::::::::
implemented

::
in

::::
each

::::::
study.

:::::
Here,

:::::
dmax ::

is
::::::
defined

::
as

::
a
:::::::::
parameter

::
to

::
be

:::
set

:::
for

::::::::
reservoir

::::::::
command

::::
area

::::::::::
delimitation.

:

–
:::
dm :::

and
:::::::
dmean,y:::

in
:::::::
equation

:::
(5)

:::
are

::::::::
monthly

:::
and

::::::
annual

:::::
mean

:::::::::
irrigation

:::::
water

::::::::
demands,

:::::::::::
respectively.

::::::::
Industrial

::::
and

:::::::
domestic

:::::
water

::::::::
demands

:::
are

:::
not

:::::
taken

:::
into

:::::::
account,

::::::
unlike

::
in

:::::::::::::::::::
Hanasaki et al. (2006)175

–
:::
M ,

::
set

::
as
:::
0.1

::
in
:::::::::::::::::::
Biemans et al. (2011)

:::
and

::::::::::::::
Shin et al. (2019)

::::::::
schemes,

:::
and

::
as

:::
0.5

::
in

::::::::::::::::::
Hanasaki et al. (2006)

:
,
::
is

:::::::::
considered

::
as

:
a
:::::::::
parameter

::
in

:::
this

:::::::
version,

:::::::
keeping

:::
the

::::
same

:::::::
notation

::::
used

::
in
:::::::::::::::
Shin et al. (2019).

:

–
:
A
:::::
more

::::::
explicit

::::::::::::::
parameterization

::
of

:::
the

::::::::::::::::
demand-controlled

::::::
release

::::
ratio

::
R

:
is
::::::::
provided

::::
here

::::::::
compared

::
to

::::
what

::
is

::::::::
proposed

::
in

::::::::::::::
Shin et al. (2019)

:
.
:::
The

::::::::::
generalized

::::::::::
formulation

:::
of

::
R

::
in

::::::::
Equation

:
7
:::::::::

highlights
:::
the

::::
last

:::
two

::::::::::
parameters

::
of

:::
the

::::::
model

::::::
present

:::::::
version.

::::
This

::::::
enables

::::
one

::
to

:::::::::
distinguish

:::
the

::::
dual

::::
role

::
of

:::::::::
cthreshold::

in
::::::::
Equation

:
6
:::::

from
::::
that

::
of

:::
the

:::::::::
coefficient

::
b,180

:::::
which

::::
only

::::::::
describes

::
the

::::::::
transition

:::::
made

:::::::
between

:
a
::::::::::::::::
demand-controlled

:::
and

::
an

::::::::::::::
input-controlled

::::::::
reservoir.

::::::::::::::::::
Hanasaki et al. (2006)

:::
and

:::::::::::::::
Shin et al. (2019)

:::
have

:::
set

::::::::::
(cthreshold,

::
b)

::
to

::::::
(0.5,2)

:::
and

::::::
(1/α,1)

:::::::::::
respectively.

A description of the reservoir model parameters is summarized in Table 1.

Table 1. Description of DROP model parameters
:
.

Parameter Description

α Set
::::
Refer

::
to
:
ideal filling rate of reservoir

dmax (km) Set
:::::
Define

:
control area of reservoir

mstart Refer to first month of operational year

M Define minimum release to be provided for environmental requirements

cthreshold Threshold of relative capacity ; Influence of inflow pattern in reservoir release

b Influence of inflow pattern in reservoir release

The reservoir volume is derived at each time step from the water balance. Boundary conditions are defined considering two

possible scenarios: i) if the reservoir is full, the excess water is spilled. ii) When reservoir storage falls below 10% of the185

capacity, the reservoir reaches the dead storage zone and water release is prevented.

In order to run the model, reservoir characteristics, such as the storage capacity and main purpose, are needed. The model

also requires continuous time series of inflow and water demands to compute releases. In the current study, all of the modeled
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reservoirs are located in Spain where both the physical characteristics, in-situ observations of natural and anthropized flows,

and storage volumes are publicly available. Section 3 describes the global and local data sets used herein.190

2.2 Sensitivity Analysis : Sobol’s method

The Sobol sensitivity analysis method (Sobol, 1993) has been widely used in hydrological models in order to identify the

parameters that contribute the most to the model output uncertainty. It is a global variance-based approach where, for a cho-

sen variable of interest Y , the total variance is decomposed into fractions attributed to each individual input as well as the

interactions between them. If Y = f(X) is a goodness-of-fit metric of the model with X representing the set of parameters195

X1,X2, ...Xp of size p, the total variance of Y , D(Y ), is decomposed as follows (Zhang et al. (2013)):

D(Y ) =
∑
i

Di +
∑
i<j

Dij +
∑

i<j<k

Dijk + ...+D12..p (8)

where Di is the amount of variance due to a parameter Xi alone, Dij is the amount of variance arising from the interaction

between the parameters Xi,Xj etc. Equation 8 is known as Hoeffding decomposition (Hoeffding, 1948).

The sensitivity indices, called Sobol′s indices, are computed as ratios between the component variances and total variance200

in order to measure the contribution of each single parameter and each parameter interaction. The first-order Sobol index,

S1, captures the sensitivity of Y to each input parameter Xi taken alone. The second, S2, and higher order indices describe

the contribution of the multiple interactions between parameters. A model with p parameters requires 2p − 1 indices to be

evaluated, which rapidly becomes computationally challenging for high values of p. The total order index, ST , measures the

full influence of a parameter by including all of the variance caused by its interactions with the rest of parameters, all orders205

included. The first , second and total order Sobol′s sensitivity measure formulas are:

S1i =
Di

D
(9)

S2ij =
Dij

D
(10)

STi =1− D∼i

D
(11)

where D∼i is the amount of variance due to all of the parameters except for Xi.210

Model parameter sampling and Sobol index estimation are here performed using the open-source Python library SALib

(Herman, 2017). The parameter samples are generated following Quasi-Random sequences (Saltelli, 2002) in order to scatter

the sample points as uniformly as possible over the parameter space. Following the theorem, the different orders of Sobol

indices are estimated from a total number of model runs of N × (2× d+2), where N and d are respectively the sample size

and the number of parameters. The package also provides confidence intervals of the index estimates at the 95% confidence215

level.
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3 Study area and Data

3.1 Spain river basins description

Spain has an estimated area of 505,983 km2 (INE, 2022), representing more than 85% of the Iberian Peninsula (estimated area

583,254 km2, Lorenzo-Lacruz et al., 2012). It has river basins with sizes ranging from a few km2 to more than 80,000 km2 (i.e.220

the Ebro basin). The five largest river basins are the Ebro, flowing into the Mediterranean Sea, and the Duero, Tajo, Guardiana

and Guadalquivir, flowing into the Atlantic Ocean. They also represent the river basins where the natural river flow pattern is

the most significantly altered in the country, with high degrees of regulation resulting from extensive reservoir construction.

These different rivers have a Mediterranean hydrological pattern, which is characterized by high flows during the wet season

(i.e. autumn and winter) and low flows during its dry season (i.e. late spring, summer). This seasonality explains the strong225

anthropization of the Spanish hydrographic basins, and, in particular, the construction of more than 1,200 dams mainly in the

second half of the 20th century. They are essential for retaining enough water to meet irrigation and domestic water demands,

as well as for hydropower production that represents ∼13% of the Spanish electricity generation (IEA, 2022, in 2020,).

3.2 Data set

The data series required as inputs to the model and the ones used to validate the outputs are taken from Spain database.230

Reservoirs characteristics are taken from the global GRanD database. Irrigation demands are simulated by the ISBA irrigation

module. The needed input data are detailed below :

– Local (Spain) Database: In situ observations of natural and anthropized flow and volume data are made publicly avail-

able by the Center for Hydrographic Studies of Spain (CEDEX, Ministry of Public Works and Ministry for Ecological

Transition, Spain). The national database includes the location and daily time series of discharge for 1,119 gauge stations235

and outflows from 347 reservoirs over the period 1900-2014.

– Global Reservoir and Dam (GRanD) database: from which the general characteristics of dams are taken (Lehner et al.,

2011). Version 1.3 published in 2019 includes 7,320 reservoirs and provides the geographical location of dams as well

as attribute information such as the construction year, maximum storage capacity, surface area and the set of purposes

of reservoirs. 263 of the reservoirs listed in GRanD are located in Spain. Most of them were built from 1955 to 2000,240

reaching a total storage capacity of 56,480 hm3 in 2016, which exceeds the mean annual streamflow of the 8 major

rivers of the Iberian Peninsula (55,850 hm3/year) (Lorenzo-Lacruz et al., 2012). Irrigation and hydroelectricity are the

most identified purposes of more than half the reservoirs, and water supply comes third. In this paper, all management

purposes different from irrigation are grouped in the ’other purposes’ category.

– Simulated irrigation demands : The irrigation water demands are simulated by the new irrigation scheme implemented in245

the ISBA LSM (Druel et al., 2021). It uses the ECOCLIMAP-SG land cover classification to identify the areas within the

grid cell that can be irrigated. Three main parameters are set in the model to control respectively the irrigation triggering
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(when the plant reaches the wilting point), the period of crop growth where irrigation is possible (between emergence and

harvest) and the amount of water used for irrigation. In the default configuration, a predefined amount of water of 30 mm

is set for each irrigation and a 7-day minimum return period is fixed between two irrigation operations. These parameters250

can be user-defined for each vegetation type and in each grid cell. To generate irrigation demands over Spain, we used the

5 km resolution SAFRAN-based meteorological datasets for that country (Quintana-Seguí et al., 2017) that was available

over the period 1979-2014 to force the ISBA land surface model. Set to the default configuration, the irrigation module

within the LSM computed daily irrigation demands for each grid cell over that time period. At the input of the reservoir

model, dmax is set beforehand and delimits for each reservoir a command area made of a selection of grid cells within255

the same basin at a lower altitude. The equivalent amount of irrigation water requested from a reservoir in a given month

corresponds to the aggregated daily irrigation demands of all crop types within the retained grid cells.

3.3 Model Setup : Pre-processing steps

3.3.1 Cross-referencing Global and Local data sets

Out of the 263 reservoirs listed in GRanD, only 216 were kept after cross-referencing the two databases and for which both260

the characteristics and time series of release and volume could be identified. In fact, two reservoirs were doubly identified in

GRanD v1.3 (which IDs were 2882, 2844) because they were rebuilt and/or renamed; their most recent characteristics are those

retained. The 45 remaining reservoirs, located mainly in the northwest and south of Spain, were not identified in the Spanish

database since they were built after 2014.

The maximum storage capacity of the chosen reservoirs goes from 9.5 (the San Lorenzo Mongay dam, located on the Segre265

river in Ebro basin) to 3,200 hm3 (the La Serena dam on the Zujar river in Gardiana basin) with a mean of 236 hm3 and

standard deviation of 441 hm3. Using the latitude and longitude information, the chosen reservoirs were located on the new

1/12° resolution river network derived from CTRIP river routing model (Munier and Decharme, 2021). Dam locations were

adjusted so as to have comparable drainage surfaces between those given by the GRanD database and those estimated by

CTRIP.270

An initial analysis conducted on observed river flows upstream and downstream of the reservoirs has identified a common

seasonal behavior among those with irrigation which is that the peak dam release is shifted in time from the natural inflow. This

is due to the typical operating mode of these reservoirs, which are designed to retain water arriving upstream during winter

(wet season) and release it during summer (dry season) to meet irrigation needs.

3.3.2 Reconstructing Inflow275

Based on the water budget equation, the net inflow Qin, used as input to the reservoir model, was reconstructed at the level of

each reservoir from observed time series of dam releases and volumes provided by the Spanish database. In this way, all the

components of the water balance that are not accounted for in the reservoir model are indirectly represented, namely: direct
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runoff and precipitation water inputs, evaporation and infiltration water losses, groundwater exchanges (gains or losses) and

water diversions through channels (Equation 2).280

In fact, the DROP model is aimed to be coupled to a series of models that can represent these different processes. In the

ISBA-CTRIP land surface - river routing model for example (Decharme et al., 2019), evaporation is computed by FLake, a

module representing energy balance in lakes (Le Moigne et al., 2016), direct runoff is derived from ISBA land surface model,

and inflows from tributaries as well as groundwater exchanges are computed by CTRIP river routing model (Munier and

Decharme, 2021).285

For each of the selected reservoirs, the longest continuous common period of daily observed outflows and volumes were first

determined. At this stage, only reservoirs with more than three-year time series were retained, which leaves 215 reservoirs to be

simulated. The net inflows were then derived from outflows and volume variations at daily scale (Equation 1). The computed

net inflows were then corrected by removing outliers in two steps : first, all peak flows were selected when their maximum

value exceeded five times the long-term mean. Among the peak values, outliers are then identified when relative difference of290

slopes before and after peak flow is less than 10%. Both thresholds were set empirically. This step differentiates the outliers

from the hydraulic behaviour of a river in flood recession periods. The outlier is replaced by a linearly interpolated value. The

length of the corrected time series goes from 3.5 to 34 years with a median of 23 years. The main purposes, simulation period

lengths and the relative capacities of the 215 reservoirs simulated are show in Fig. 2.

We note a good distribution of management purposes and relative inflow capacities in the final selected reservoirs. Overall,295

half the reservoirs are primarily used for irrigation, which is mainly due to the semi-arid climate of the Iberian Peninsula and

the high needs of irrigation in the country. The rest of the reservoirs are allocated to hydropower generation, water supply

and different other purposes with respective percentages of 29%, 16% and 5%, and are grouped in the non-irrigation reservoir

category.

3.4 Sensitivity Analysis Implementation300

A sensitivity analysis with respect to the 6 parameters was conducted on the performance of a Nash-Sutcliffe Efficiency (Nash

and Sutcliffe, 1970, NSE,) bounded version, called C2M (Mathevet et al., 2006), on outflows using the Sobol method. In fact,

the NSE values in some reservoirs were highly negative for some simulations, thus this metric wasn’t suitable for a variance-

based sensitivity analysis method like Sobol’s. C2M is used instead as it is a normalized version of NSE that varies between

-1 and 1 and where all negative values are bounded between 0 and -1. Parameter default values, bounds and distributions are305

listed in Table 2. The parameter distributions were all considered uniform except for relative capacity for which the distribution

is logarithmic to align with the observed pattern on the modelled reservoirs (Fig. 2).

Default values for α, M , cthreshold and b are those considered in Hanasaki et al. (2006). α selected bounds cover a realistic

range of ideal reservoir filling rates. The distribution and bounds values of cthreshold parameter are drawn from the relative

capacity distribution of the 215 modeled reservoirs (Fig. 2). b lower limit is 0.5, below which the shift to the demand-controlled310

state of a reservoir becomes too abrupt once c exceeds cthreshold. The upper limit considered for b is 5, beyond which the

transition curve between the behavior of a low relative capacity reservoir and a high relative capacity one becomes unchanged,
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Figure 2. Main characteristics of the chosen reservoirs : (a) Classification of their main purpose, (b) distribution of simulation period lengths,

and (c) Histogram showing decimal log values of their relative capacity.
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Table 2. Summary of the DROP model parameter default values and feasible ranges for the sensitivity analysis

Parameter Default value Min value Max value Distribution

α 0.85 0.6 0.95 Uniform

dmax (km) 100 1 250 Uniform

mstart (irrigation;other) 4;5 1 12 Discrete Uniform

M 0.5 0 1 Uniform

cthreshold 0.5 0.001 20 Logarithmic

b 2 0.5 5 Uniform

following sensitivity tests run conducted on this parameter. For dmax, both the default value and the lower and upper limits

were set to be consistent with the size of Spain river basins. The operational year starting month, mstart, is set to April for

irrigation reservoirs in order to match the beginning of crop irrigation season considered in the irrigation model. For other315

reservoirs, mstart is chosen empirically to be May as default value based on the observed filling curves of the reservoirs, which

tend to be at the maximum filling level near May.

The sensitivity analysis was performed on each of the 215 reservoirs separately, distinguishing between irrigation and non-

irrigation reservoirs since the number of parameters involved depends on the main purpose of the reservoir (6 and 4, respec-

tively, as dmax and M are only considered in irrigation reservoirs).320

Using Saltelli’s quasi-random sampling method (Saltelli et al., 2010), a sample size of 4,096 was used for this analysis in

each category, resulting in 4,096×(2×6+2)=57,344 and 4,096×(2×4+2)=40,960 model runs for each of the 107 irrigation

and 108 non-irrigation reservoirs, respectively. By comparing with smaller sample sizes, the confidence intervals estimated by

SALib show that the Sobol indices converged and that the chosen sample size is sufficient to reliably represent the results.

4 Results325

This section presents the main results of this study. First, simulation results of the reservoir releases using the default configu-

ration of the model are displayed. Then, a sensitivity analysis of the model parameters is presented.

4.1 Reproducing the flow seasonal shift in irrigation reservoirs

Using the default parameterization with the parameters listed in Table 2, an operating rule is determined for each of the 215

reservoirs, and both outflows and water storage variations are simulated through complete operational years within the overall330

period 1979-2014. Fig. 3 shows the C2M values at reservoir outlets by evaluating the simulated monthly outflow time series
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against in situ observations. The left panel shows the results obtained using a reference simulation where rivers are considered

in their natural state (Qout = Qin). The right panel shows the C2M improvement rate when considering the DROP model.

Figure 3. Results of the DROP model contribution (default configuration) in river flow modeling at reservoir outlets : (a) C2M performance

metrics of non-reservoir simulation (reference simulation where Qout = Qin) and (b) C2M improvement rates by integrating the reservoir

model. Symbols represent the different reservoir management purposes. They come in two different sizes: larger if c ⩾ 0.5 and smaller if

c<0.5.

Overall, with DROP, the river flow representation is clearly improved at nearly all reservoirs’ locations. The median C2M

index for flows is 0.52, which corresponds to a 43% improved flow representation when compared to natural river representa-335

tion. For storage volumes representation, the mean correlation is 0.53 with a standard deviation of 0.3. Half of the reservoirs

have a correlation greater than 0.63 between observed and simulated storage volumes.

The results reveal the model’s positive contribution in representing the seasonal cycle of river flow, specifically for irrigation

large-storage capacity reservoirs, as the model reproduces the seasonal shift between inflows and outflows caused by irrigation

management rules with reasonable accuracy. For these reservoirs, the correlation between simulated and observed discharge340

increases from 0.49 (reference simulation) to 0.75 in the median. Regarding storage volumes, correlation reaches 0.74 in

the median. As an example, the "Gonzalez Lacasa" reservoir located in the Ebro basin shows typical results in Fig. 4. In

fact, this irrigation reservoir stores incoming water during winter / early spring, which explains a lower outflow than inflow

(respectively in blue and orange for observed discharges, panels (a),(b) in Fig. 4) between October and March, and releases

the water in summer when there is insufficient water to supply all crops’ irrigation needs. The period of release, from April345

to September in this case (shown in the annual cycle, panel (b) in Fig. 4), corresponds to crops growing period and therefore

to high irrigation water needs. As a result, the discharge seasonal curve is shifted and the maximum monthly discharge, in

this example, is reached in July instead of April. This management scheme is well reproduced by the DROP model, as the

simulated outflows (shown in red) align well with the observations (in blue), and consequently so do the volume variations.

The improvement of the C2M distribution for each category of dams, in terms of main purpose and relative capacity, is350

shown in Fig. 5. Note that for irrigation reservoirs, the improvement rate reaches 80% in terms of the median, and 123%
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Figure 4. Simulation results for the ’Gonzalez Lacasa’ irrigation reservoir within the Ebro river basin over the period [1979-1994]. The

monthly time series of dam releases and storage volumes are shown in panels (a) and (c), respectively (observations are indicated in blue and

simulations in red). Their corresponding mean annual cycles are shown in panels (b) and (d), respectively.

for those considered of high relative capacity (here c >= 0.5) and which are fully demand-controlled. The flow improvement

rates for the rest of the high relative capacity reservoirs are dispersed but remain positive at the median despite the simplistic

approach of DROP. For low relative capacity reservoirs (here c < 0.5) and independent of the management purpose, the model’s

contribution is almost null since the reservoirs are considered "run-of-river" and the influence of inflow regime is predominant.355

4.2 Results of the sensitivity analysis

The distribution of first-order Sobol indices for each parameter calculated at each of the 107 irrigation and the 108 non-

irrigation reservoirs are shown in Fig. 6 with a box-plot. Overall, it emerges from Fig. 6 that the most influential parameter is

cthreshold. In fact, based on the definition of S1, ∼ 48% of the total variance in C2M is attributed to cthreshold alone within

irrigation reservoirs. In non-irrigation reservoirs, this parameter accounts for ∼ 74% of C2M variance. The M parameter is360

ranked second in irrigation reservoirs and accounts for 15% alone in median of all of the variance, followed by dmax with a S1

index of 0.03. The parameter controlling the month for which the operational year starts, mstart, alone has very little influence

on the overall outflow C2M variance, although the effect is slightly more noticeable in the non-irrigation reservoirs. α and b

are considered the least influential parameters for most reservoirs.

To better illustrate how each parameter individually affects the model outputs, the reservoir ‘Gonzalez Lacasa’ (GRanD ID365

2699 ; c=0.65) is set as an example. Given the sensitivity analysis results, a screening step is added on cthreshold, M and α

separately and the rest of the parameters are set to their default values. The means of monthly outflows over the simulation

period [1979-1994] are shown in Fig. 7.
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Figure 5. Distribution of river flow, C2M , improvement rates with the DROP model based on their main purpose (columns) and relative

capacity (rows). The x-axis labels show the number of reservoirs in each category, y-axis shows C2M improvement rates.

Regarding the first parameter, and for values of cthreshold below the relative capacity of the reservoir (lower than 0.65 for

‘Gonzalez Lacasa’ case), the reservoir is considered with high storage capacity and so monthly releases are completely driven370

by the demand, resulting in a seasonal shift between inflow and outflow and a peak of discharge in July in order to meet the

irrigation needs. Conversely, when the cthreshold is higher, the dam is considered to have low storage capacity which reduces

the buffering effect and increasingly aligning the simulated release curve (in red) with the seasonal trend cycle of inflow (in

orange), as shown in Fig. 7 (a). The buffer role of the reservoir is therefore conditioned by the value of the cthreshold.

The influence of M on the the minimum release is shown in Fig. 7(b). The higher the value of M , the greater is the part375

of mean inflow set as minimum release and the lower is the remaining part of water dedicated to meet irrigation needs during

peak demand. Since the ‘Gonzalez Lacasa’ reservoir is considered to have a relatively large storage capacity (with cthreshold =

0.5 as default value) among the considered reservoirs, the outflow will still follow the seasonal curve of water demand, but M

will influence release peak by extending or flattening the outflow curve to maintain a minimum release level required through

the year. For run-of-river dams, M is irrelevant since the release follows the monthly inflow. dmax also controls the variation380
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Figure 6. Distribution of first (S1) order Sobol indices on the modelled reservoirs for each parameter : (a) in irrigation and (b) in non-

irrigation reservoirs.

Figure 7. Example of seasonal pattern sensitivity of ’Gonzalez Lacasa’ reservoir outflow to three of the DROP model parameters : (a)

cthreshold, (b) M and (c) α. The remaining parameters were to their default values (see Table 2).

of outflows over the year in the same way, but only when the DPI ratio is low. Its impact remains limited beyond the (1-M )

threshold, as the release curve is fixed to maintain the required minimum outflow.

The parameter α, on the other hand, does not affect the long-term mean pattern of release. In fact, α only operates on outflows

on an inter-annual basis, through Ky , to offset the excess or shortage of stored water from one year to the other, especially
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when the critical filling zones are reached (reservoir in dead storage zone or overflowing) in order to bring the reservoir water385

state to the ideal filling curve over the long term (Fig. 7 (c)). The same behavior is noted for mstart, which is not shown in

Fig. 7.

The cthreshold, α and mstart parameters have the same effect on non-irrigation reservoirs. The influence of each of the

three parameters on [1979-2013] monthly mean outflows from the ‘Alcantara II’ reservoir (GRanD ID 2800) in the Tagus river

basin, which has a relative capacity of 0.6 and is mainly used for electricity generation, is shown in Fig. 8. For this specific390

reservoir, the simulated period includes several wet years and there were periods when water flowed over the spillways during

winter, which explains the alignment of the outflow with the inflow during this season.

Figure 8. An example of the seasonal pattern sensitivity of the ’Alcantara II’ hydroelectricity reservoir outflow to three of the DROP model

parameters : (a) cthreshold, (b) α and (c) mstart. The remaining parameters were set at default values (see Table 2).

The distribution of total sensitivity indexes ST (in grey), alongside with S1 (in white), of each parameter are shown in Fig. 9.

A significant gap is observed between the first and total order index distributions. This confirms the non-negligible effect of the

parameters’ interactions on the output variance, involving mainly cthreshold. In the median, based on the ST definition, ∼62%395

of C2M variance in irrigation reservoirs, and ∼87% in non-irrigation reservoirs, are attributed exclusively to cthreshold and its

interactions with other parameters: it is indeed the most important parameter of the DROP model. α and b, on the other hand,

were in the median low values, which makes them the least important parameters.

The distribution of second-order Sobol indices for each parameter couple for the irrigation and non-irrigation reservoirs

considered separately, are shown in Fig. 10. The results reveal that the parameter with the most interactions overall with other400

parameters is the cthreshold. This is mainly due to its position at the end of the model chain where provisional releases are

corrected. For the rest of the parameters, the interaction between mstart and α is more marked in non-irrigation reservoirs

since the scheme is simplistic and the outflow depends mainly on the Ky annual coefficient that is driven by both mstart and

α. In irrigation reservoirs, the coefficients dmax and M interact because they control irrigation water demand and the reservoir

water storage allocated to it. As they are both involved in the reservoir water balance, they jointly control the outflow. The b405

18



Figure 9. Distribution of first (S1) and total (ST) order Sobol indices on the modelled reservoirs for each parameter : (a) in irrigation and (b)

in non-irrigation reservoirs

coefficient meanwhile interacts only with cthreshold when computing the demand-controlled release ratio R calculation. The

total influence of b, mostly resulting from the interaction with cthreshold, is only seen in reservoirs with low relative capacities.

Since c is a defining characteristic of each reservoir and is involved in the outflow computation, the first and total order

Sobol indices were rearranged according to their reservoir corresponding c values, here grouped into 6 ranges to simplify the

presentation of the results to better identify the impact on parameter ordering and interactions (Fig. 11).410

For low values of c (less than 0.01), the cthreshold is the only relevant parameter. The total influence of b, on the other had,

is mostly related to its interaction with cthreshold. The remaining parameters are negligible since their first order Sobol indices

are almost zero and the total order is very low. For reservoirs with a medium storage capacity (0.01⩽c⩽ 1), a significant

part of total variance is due to parameter interactions, apart from b, as all Sobol indexes increase significantly from first to

total order. This is even more noticeable when 0.1≤ c≤ 0.3. Above a relative capacity of 0.3, the M parameter in irrigation415

reservoirs gains in importance and increases interactions with the cthreshold as c is bigger. For non-irrigation reservoirs of the

same category, cthreshold takes on more importance as the storage capacity increases (less spreading and very high S1). The

remaining parameters lose relative importance. For the very high relative capacity values, α and mstart are almost irrelevant,

regardless of the operating objective. Finally, for nearly all reservoirs combined (except those with very small values of c), the

b coefficient has almost no influence and can therefore be set to a nominal value.420
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When using Sobol indices, the representation of model output uncertainty is limited to the variance only
:::::
which

::::
isn’t

:::::
fully

:::::::::::
representative

::
of

:::
all

:::
the

::::::::
statistical

::::::::::::
characteristics

::
(or

:::::::::
moments)

::
of

:::
the

::::
C2M::::::::::

distribution. Using the distribution function instead

provides a complete description of uncertainty in the model output.
::::
Here,

:::
we

:::::::
evaluate

:::
the

::::::::
sensitivity

::
of

:::::::::
parameters

:::
by

::::::::
assessing

::::
their

:::::::
influence

:::
on

::::
C2M:::::

entire
::::::::::
distribution

::::::
without

::::::::
reference

::
to

:
a
:::::::
specific

:::::::
moment

::
of

::
the

::::::
output

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chun et al., 2000; Borgonovo, 2007, moment-independent methods)

:
.
::::
This

::::::
method

::
is
:::::
used

::
as

:
a
:::::::::

validation
::::
step

:::
for

:::
the

::::::
overall

::::::::::
conclusions

:::::
found

:::::
with

:::
the

::::::::::::
variance-based

::::::
Sobol

:::::::
method. The de-425

viation of the C2M distribution function caused by two different parameters cthreshold and α over the irrigation reservoirs is

shown in Fig. 12. Here, the same samples generated for Sobol’s index calculation were used. First, the unconditional PDF of

the model output C2M (shown in black) is obtained when all input parameters are randomly sampled from their distributions.

Then, for each input parameter, conditional PDFs of C2M are computed following different value ranges from the total param-

eter distribution: here, five ranges are considered. The importance of each parameter is proportional to the magnitude of the430

conditional PDF deviation from the unconditional one.

The large dispersion of the unconditional
:::::::::
conditional PDFs (colored) shows the strong impact of cthreshold in the model out-

let in Fig. 12 (a). All PDFs are nearly aligned for α, and thus the value of this parameter has very little significance on C2M dis-

tribution. PDF-based
:::::::::::::::::
Moment-independent

:
sensitivity indicators like “Kolmogorov”, “Kuiper”, “Delta”

:::::::::::::::::::::::::::
(Borgonovo and Plischke, 2016)

were used to measure the deviation from the unconditional PDF, and the results were consistent with the conclusions made435

with the Sobol index.
::
It

::
is

:::
also

::::::
noted

:::
that

:
DROP tends to have very poor performance scores for high values of cthreshold

(above 2.76) where all the reservoirs are considered as " run-of-river " and the release would be close to the lines up with

inflow as shown in Fig. 12. This figure indirectly demonstrates the reservoir model contribution in terms of improving river

flow representation in anthropized basins where the magnitude and seasonal flow dynamics are significantly altered by large

storage capacity reservoirs, especially those for irrigation purposes.440

5 Discussion

5.1 Limits of the DROP model scheme

The DROP model outputs are affected by several uncertainties linked to the model inputs and the algorithm. The parameterized

model is based on a generic scheme of reservoir operation, which inevitably implies a simplification in terms of water release.

Concerning the representation of operational purposes, the algorithm fails to differentiate between other purposes than irriga-445

tion and considers that a constant release is expected by the rest of the reservoirs. In addition, only the main objective of the

reservoir is represented, and the releases of the multi-purpose reservoirs are not entirely represented since their management

rules are more complex to describe. This explains the poor performance of the model at the level of reservoirs that are used

for irrigation though it is not their main objective : DROP is very simplistic for the rest of its possible purposes so that the

seasonal shift in water discharge is not always well reproduced. This is the case of the reservoir "Los Bermejales" for example,450

a multi-purpose reservoir located in the basin of the Guadalquivir river, south of Spain, which is mainly used for water supply

but it is also used to provide irrigation water demands(Fig. 13).
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In addition, the model computes releases independently on each reservoir. The cascade of reservoir operations, which can

be coordinated with each other, are thus not captured. More specific studies on multi-objective reservoirs Wu and Chen (2012);

Wang et al. (2019) and multi-reservoir systems have been conducted Chang et al. (2014); Tan et al. (2017); Rougé et al.455

(2021), but they all remain complex and are reservoir-specific. These methods were evaluated only at the local scale and are

very difficult to extend to a global scale because they need a significant amount of observed input data and require detailed

operating rule knowledge.

Regarding the representation of releases from non-irrigation reservoirs more generally, the scheme remains very simplistic

since release policy is not driven by physical processes. In fact, operation rules of these types of reservoirs involve complex460

socio-economic and political factors that are different in each country. Simulating other management purposes are mainly

based on optimization algorithms, as it is the case for hydro-power dam releases for instance, where the objective functions

are economically-oriented (i.e. to maximize energy production) Moeini et al. (2011); Feng et al. (2017); Chong et al. (2021).

These methods remain very reservoir-specific and are currently deemed to be too complex to be applicable at a large scale.

The model provides a relatively good performance in representing irrigation reservoir operations because of its physical ap-465

proach that links water releases to crop water demands. However, some simplifications are to be noted which could be improved

in the future. The irrigation water demand estimation is based on the irrigation scheme in ISBA LSM, which has its own limi-

tations (Druel et al., 2021). Also, in this version of the reservoir scheme, water demands for each irrigation reservoir is reduced

to considering pixels that are downstream of the reservoir at a given maximum distance dmax. This creates inconsistencies be-

cause water demand is not linked to the reservoir water storage capacity, which leads for some reservoirs to much higher water470

demands compared to water supply. Moreover, here there are no proportionality rules between reservoirs for irrigation grids

that are located in shared command areas
:
is
:::
no

::::::::::::
proportionality

::::
rule

:::
set

:::::::
between

:::::::::
reservoirs

::::
with

:::::::
common

::::::::
irrigation

::::
grid

:::::
cells.

::::
They

:::
are

:::::::
recorded

:::
on

:::::::
multiple

::::::::
reservoirs

:::::
when

::::
their

:::::::::
command

::::
areas

:::
are

::::::::::
overlapping

:
because the model runs on each reservoir

independently. We end up repeatedly counting shared pixels and this leads to over-estimating water demands
::
at

::
the

:::::
level

::
of

::::
each

:::::::
reservoir. According to results from the sensitivity analysis, parameter dmax alone (ranged from 1 to 250 km) does not have475

much influence on outflow variance, and this is even more true when irrigation demands are considered excessive compared to

inflow (DPI>=1-M ) because in that case the amount of irrigation demand is not more significant in outflow computing, only

the seasonal variation defines the reservoir release curve. Zhou et al. (2021) suggested an efficient way to overcome this issue

by defining a least-cost adduction network, based on Portoghese et al. (2013) and Neverre et al. (2016), to connect demand

pixels to abstraction points, either from reservoirs or rivers
::::
each

::::::::
irrigation

::::
grid

:::
cell

::
to

::
a

::::::
unique

:::::::::
abstraction

:::::
point,

:::::
either

:
a
:::::

river480

::
or

:
a
::::::::
reservoir, by using topographic information, distance and upstream areas of the river abstraction points.

::::
This

::::::::
approach

:::
has

:::
the

::::::::
advantage

::
of

::::::::::
considering

:::
not

::::
only

:::
the

::::::::::
downstream

::::
grid

:::::
cells,

:::
but

::
all

:::
the

::::::::::
surrounding

:::::
ones.

::::
Most

:::::::::::
importantly,

:
it
:::::::
ensures

:::
that

::::::::
reservoir

::::::::
command

:::::
areas

::
do

:::
not

::::::
overlap

::::::::
anymore

:::
and

::::
that

::::
each

::::
pixel

::::::::
irrigation

:::::::
demand

::
is

::::
only

:::::::
counted

:::::
once. The method

is implemented in the routing model of ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms; Nguyen-

Quang et al., 2018) and can be easily implemented in other routing models. It is also interesting at this stage to account for all485

possible sources of water withdrawals, including underground water, canals, but also the abstractions made directly from the

reservoirs’ storage, in order to have a more realistic representation of reservoir releases.
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Another aspect which is not explicitly simulated in the model is water abstraction. In this study, abstractions are taken into

account indirectly since the inflow is reconstructed from observations at the inlet of each reservoir. But once the DROP model

is implemented in a hydrological model, the tributaries inflows will correspond to river flows simulated by the routing model,490

therefore there should be a deterioration of the performance index on discharge with an error spreading along the anthropized

rivers. However, by coupling the above with a model that takes irrigation into account, such as the new version of the ISBA

land surface model for example (Druel et al., 2021), the water releases from the reservoir model can be linked to crop irrigation

needs and thus river water withdrawals can be represented as well as those taken directly from the reservoirs.

5.2 Contributions of the sensitivity analysis to a clearer understanding of the DROP model495

The sensitivity analysis has revealed the most influential parameters and those that can be set using pre-defined values without

impacting the model output uncertainty distribution. It emerged that cthreshold is the most influential parameter in representing

reservoir releases, and this result is consistent with the analysis of Shin et al. (2019) on the role of the release ratio R where

cthreshold is involved. Indeed, the aforementioned study showed the positive contribution of this formulation on the R ratio

(R= αc , i.e., cthreshold = 1/α) and its optimization in improving the representation of release and stabilizing water storage500

in the simulated reservoirs, especially those with 0.21≤ c≤ 1.18 (the values of c for which 4c2 = αc and c= 1/α , α being

set at 0.85).

Hanasaki et al. (2006) conducted a sensitivity test on the α parameter for a case study of a large relative capacity hydroelectric

reservoir (c= 2.28). The model was tested with 4 different values of α (0.65, 0.75, 0.85, and 0.95) and found that this parameter

had low impact on the simulated release but high impact on the simulated storage, except when the reservoir is full. α showed505

high sensitivity to releases when events with water passing over spillways were more frequent. Their conclusions concerning

the sensitivity to outflows are also in line with the results found here.

Actually, the sensitivity analysis undertaken in this study focused on the model sensitivity on the average representation of

releases rather than in the filling levels of reservoirs since the focus of the study is on flow representation and the effect of

anthropogenic factors in altering the flow dynamics along the rivers. If we were to focus on water resource availability and510

water management issues, the sensitivity analysis should also focus on the uncertainty in representing water storage levels in

the reservoirs, considering the C2M over volumes as the variable of interest. In this configuration, as shown on Fig. 14, the

parameters α and mstart, alongside cthreshold, will emerge as the most influential parameters with significantly high sensitivity

indices of both first and total orders.

Both α and mstart directly affect the bias in the filling curve representation. In the ideal case where the reservoir state is not515

on the boundary conditions, the filling curve is vertically shifted following the value of α and the chosen month, in order to

bring the reservoir volume at the beginning of each operating year in line with the ideal filling rate αC, as shown in Fig. 15,

without changing the seasonal release pattern. The larger the seasonality of reservoir water levels, the greater is the effect of

both parameters, which is very noticeable in large-storage capacity reservoirs used for water supply, and hence explains the

two parameters’ interaction with cthreshold.520
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6 Conclusions

In this paper, a global parameterized model, DROP, was reconstructed based on the Hanasaki et al. (2006) generic scheme

to represent reservoir releases in Spain. Results reveal the positive contribution of the model in representing the seasonal

cycle of discharge and storage variation, specifically for irrigation large-storage capacity reservoirs as the model succeeds in

reproducing the seasonal shift between inflows and outflows, improving river flow representation (C2M improvement rate) by525

123% in the median. Spain
:::
The

::::::
results

:::
also

:::::::
provide

:
a
::::::
further

::::::::
validation

:::
of

::::::::::::::::::
Hanasaki et al. (2006)

::::::::::
formulation

::
on

:::
215

:::::::::
reservoirs

::
in

:::::
Spain

:::::
where

:::::::
reliable

:::::::
observed

::::
data

:::
are

:::::::
readily

:::::::::
accessible.

:::::
While

:::::
Spain

:
represented an idealized case study in terms of the

data availability, but the context (in terms of water needs) is applicable to certain other regions. While in-situ observations

are currently available to characterize Spain’s reservoir dynamics, different remote sensing data will allow the extension of

the model to any other river basin over the globe, more specifically to those which are ungauged, since the reservoir model530

relies only on GRanD reservoir database (which is global). This work is in preparation for the upcoming SWOT wide-swath

altimetry mission (Biancamaria et al., 2016), which will provide the data necessary to make improved global scale river and

reservoir storage and flow estimates. Furthermore, the results highlight the importance of incorporating reservoir operations

into large-scale hydrological models for a more realistic representation of river flows and thus the water mass exchange with

oceans and the atmosphere. The physical approach of DROP is consistent with that of ISBA-CTRIP LSM-RRM (Land Surface535

- River Routing model): irrigation demands used as input to the reservoir model can be simulated by the irrigation module

recently integrated into ISBA (Druel et al., 2021) and CTRIP already includes a lake model “MLake” (Guinaldo et al., 2021)

that a priori models inland water bodies at a global scale, calculates mass balance and lake outflow at the global scale, and

provides the foundation for integrating man-made reservoirs operations. The next step is to implement the DROP model in

MLake and create a link between the two anthropization models by coupling the new versions of ISBA (irrigation) and CTRIP540

(reservoirs).

The sensitivity analysis, based on Sobol’s method, was conducted on the C2M representation of the mean seasonal outflow

patterns. The results show that the most important parameter overall is cthreshold. M and dmax are ranked second, in the

median, in terms of irrigation reservoir release representation and their importance is linked to the reservoir relative capacity.

α and mstart have less influence on both types of reservoir outflow seasonal dynamics but are important if the focus is on545

reservoir water storage values.
:
It
::::
has

:::
also

:::::
been

::::::
proven

:::
that

:::
the

::::::::::
significance

:::
of

:::
the

:::::::
model’s

:::::::::
parameters

:::::
varies

:::::::::
according

::
to

:::
the

::::
range

:::
of

:::::::
reservoir

:::::::
relative

::::::::
capacities

:::::
being

:::::::
studied.

:
The results represent an essential step to further improve either river flow

modeling or reservoir water storage, through calibration schemes and assimilation of new remote sensing products, by targeting

the most influential reservoir model parameters.
:::
This

:::::
work

:::::::
provides

:::::
future

::::::
studies

::::
with

::
a
::::
fully

::::::::::
generalised

::::::::::::::
parameterization

::
of

::
the

::::::::
reservoir

::::::
scheme

:::::
along

::::
with

::
a

:::::
deeper

::::::
insight

::::
into

:::
the

::::
way

::::
each

::
of

:::
the

:::::::::
parameters

::::::::
influence

:::
the

:::::
model

::::::
outputs

::::
and

::::
how

::::
their550

:::::::::
importance

:::::::
changes

:::::::::
depending

::
on

:::
the

::::::::
reservoir

::::::::::::
characteristics

:::
and

:::
the

::::::
output

:::::::
variable

::
of

:::::::
interest.

Overall, integrating this reservoir model into LSM-RRMs, which are in turn coupled to climate and earth-system models

(such as the CNRM-CM and CNRM-ESM; Voldoire et al., 2019; Séférian et al., 2019), will provide a major advance in

understanding past climate reanalysis and will enable a more realistic representation of future scenarios under climate change.
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Figure 10. Distribution of second order Sobol indices (S2) on the modelled reservoirs for each pair of parameters : (a) in irrigation and (b)

in non-irrigation reservoirs
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Figure 11. Distribution of first (’S1’) and total order (’ST’) Sobol indices of parameters according to relative capacity : (a),(c) in irrigation

and (b),(d) in non-irrigation reservoirs.

30



Figure 12. Shifts in C2M ’ Probability Distribution Function (PDF) depending on cthreshold (a) and α (b) range values, within irrigation

reservoirs. The unconditional PDFs of the DROP model output C2M , obtained when all input parameters are randomly sampled, are displayed

in black. The conditional PDFs are shown in color depending on the parameter value range.

Figure 13. Example of time series (a) and monthly means (b) of simulated releases from the ’Los Bermejales’ reservoir, a multi-purpose

reservoir primarily used for water supply and which also operates to provide irrigation water demands. The reservoir model failed to reproduce

observed irrigation releases as it does not consider secondary objectives.
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Figure 14. Distribution of first (’S1’) and total order (’ST’) Sobol indices of parameters based on C2M variance over volumes : (a),(c) in

irrigation and (b),(d) in non-irrigation reservoirs.
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Figure 15. Example of seasonal pattern sensitivity of "Gonzalez Lacasa" (a,b) and "Alcantara II" (c,d) reservoir volumes to two of the DROP

model parameters : (a,c) α and (b,d) mstart. The remaining parameters were set at default values (see Table 2).
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