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Abstract. To understand the plethora of important processes that are characterized by their complexity, such as global climate 9 

change, it is important to quantify causal contributions between time series variables. Here, we examine the hypothesis that 10 

the normalized causal sensitivity (nCS) can be measured by the (modified) normalized information flow, nIF (or mdnIF). The 11 

instantaneous causal sensitivity is defined by absolute causal contributions to the effect variable over the change in cause 12 

variable. The nCS needs to be comparable among i) causes, ii) at different times and iii) from various locations. Therefore, if 13 

our hypothesis holds, the nIF must also fulfil these three requirements. We verify, empirically, that the causal contributions 14 

between variables can be reasonably estimated by the product of a constant “maximal causal sensitivity” and a modified nIF.  15 

Between opposite causal directions, causal sensitivity can be further normalized by the larger “maximal causal sensitivity”. 16 

Our method is useful when there are: i) strong but hard-to-quantify noise contributions to the effect variable, ii) significant 17 

causal time-lags with a need to estimate the lag, iii) many causes from various locations to an overall mean effect with a need 18 

to differentiate their causal contributions, or iv) causal contributions at higher order. 19 
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1 Introduction 22 

Causality is one of the foundations of scientific understanding and progress. It has continued to expand its application in 23 

various disciplines in recent years, including in biomedical science (Russo and Williamson, 2011; Rasmussen et al., 2016; Lin 24 

and Ikram, 2020; Friston et al., 2020), neuroscience (Seth et al., 2015; Chen et al., 2016; Stokes and Purdon, 2017; Hill et al., 25 

2017; Barnett et al., 2018), artificial intelligence (Pearl, 2019; Luo et al., 2020), and economics (Granger, 1969; Varian, 2016; 26 

Athey and Imbens, 2017; Andor and Fels, 2018). Within Earth sciences, causation is important, for example, for detecting 27 

causal signals and testing models against observed data (Sugihara et al., 2012; Stips et al., 2016; Runge et al., 2019a; Winkler 28 

et al., 2021), evaluating, constraining, and improving climate models (Cox et al., 2018; Bai et al., 2018; Hall et al., 2019; 29 

Verbitsky et al., 2019; Runge et al., 2019a; Vázquez-Patiño et al., 2020; Nowack et al., 2020; Docquier et al.), and estimating 30 

attribution of extreme or local events to climate or other global changes (Ornes, 2018; Pfrommer et al., 2019; Swain et al., 31 

2020). The application of various causal methods to Earth sciences has been reviewed by Runge et al. (2019b), where the 32 

challenges of such methods are discussed, especially those arising from the nonlinear and spatiotemporal variation of complex 33 

processes. Runge et al. (2019b) also suggested a way forward for Earth sciences, by combining observational causal inference 34 

and physical modelling. While process-based models attempt to quantify the complex interactions between, for example, 35 

anthropogenic activities and multiple natural processes, they could potentially overlook or misinterpret some important 36 

processes. On the other hand, statistical models extrapolate historical trends into the future through statistical tools, but may 37 

still lack insight into the physical underlying processes. Intuitively, methods that are capable of quantifying physical causal 38 

contributions between observational time series would plug the gap between process-based and statistical models, providing a 39 

key to unlocking and understanding causality in Earth systems science processes. 40 

 41 

The progress of causal research has been fuelled by the continued development and improvement of analytical tools for 42 

assessing causal influences, from the Nobel-prize winning Granger causality developed in 1960s (Granger, 1969) to the 43 

Shannon entropy-based information transfer (flow) (Schreiber, 2000) in the 21st century. Among various methods, information 44 

flow (IF) (Liang, 2014, 2016, 2018, 2021b, a), and its normalized form (nIF) (Liang, 2015, 2016, 2021a; Liang and Yang, 45 

2021) derived by Liang, is a relatively new, yet established, measure of causality between two dynamical events realized in 46 

time series. Currently, IF and nIF have principally been applied in Earth sciences, with examples of its application including 47 

confirmation of the contribution of anthropogenic greenhouse gases (GHGs) to global warming in the post-industrial period 48 

(Stips et al., 2016), forecasting tropical cyclone genesis (Bai et al., 2018), and the central-Pacific type of El Niño (Liang et al., 49 

2021). The method has proven capable in reconstructing causal graphs with single and bi-directional causality as well as with 50 

confounding processes (Liang, 2021a). In contrast, the most commonly applied causal analysis, Granger causality, faces 51 

challenges when dealing with contemporaneous effects and feedback cycles, which are unfortunately ubiquitous in Earth 52 

systems (Runge et al., 2019b). Nevertheless, although IF and nIF appear good quantitative measures of causality strength, they 53 

are often applied in concert with other statistical models. For example, such methods have been employed to improve 54 

regression-based correlation or/and neural network models containing multiple potential factors, by highlighting only those 55 

factors with significant causal influence (Bai et al., 2018; Liang et al., 2021). The effectiveness of information flow 56 

methodologies for directly quantifying causal contributions or for building semi-process-based causal models, by employing 57 

the magnitudes of IF or nIF (especially for coupled feedback processes) has not, however, been examined. Furthermore, the 58 

rather complicated theoretical derivation and underlying understanding of IF and nIF still limits the application of these 59 

methodologies by research communities unfamiliar with them. Here, we adopt an empirical approach to test the hypothesis 60 

that the normalized causal sensitivity between time-dependent variables can be described by normalized information flow, and 61 

explore the conditions under which such an approach is effective.  62 

 63 
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2. Concepts and Methods 64 

2.1 Testing Framework 65 

Before we examine whether any causal method, such as IF or nIF, can be used to directly quantify causal contribution, 66 

normalized causal sensitivity (nCS) must be defined in order to allow comparison of causal strengths from different causes at 67 

various times and locations. Ideally, such normalization should allow comparison among various systems and causal 68 

directions. Nevertheless, for simplicity’s sake, we will first explore the normalization of causal sensitivity from one variable 69 

(X) to the other (Y) across various times and locations in a system. 70 

 71 

The causal contribution of variable X to the rate of change of variable Y can be expressed as ∂Y(X) /∂t, while the total changes 72 

in X and Y are expressed as total derivatives dX/dt and dY/dt, respectively. Here, the causal contribution is expressed as a partial 73 

derivative, i.e. ∂Y(X)/∂t, since it describes the rate of change of Y as a function of variation in X under the conditions that other 74 

(non-X) variables do not contribute to dY/dt, equivalent to them being held constant. All non-X contributions to dY/dt can be 75 

considered as the “noise contribution”.  76 

 77 

The ratio of |∂Y(X)/∂t| to |dX/dt| reflects the instantaneous causal sensitivity of Y to changing X. The causal sensitivity can then 78 

be normalized to the maximal causal sensitivity of a system over various Xs during interested periods and from interested 79 

locations, thus nCS ranges between 0-1: 80 

𝑛𝐶𝑆("→$) = %
!"($)
!&
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 82 

Equation 1 defines nCS, the normalized sensitivity of a specific cause from various times and locations (e.g. nCS(X1àY) and 83 

nCS(X2àY)) on the effect variable.  Note that the maximal causal sensitivity does not necessarily occur when |∂Y(X)/∂t| 84 

approaches |dY/dt|. If there are persistently strong contributions from noise variables, |∂Y(X)/∂t| may always be smaller than 85 

|dY/dt|. Conversely, if the maximal causal sensitivity occurs when the noise contribution acts in opposition to ∂Y(X)/∂t and 86 

dY/dt (hence ∂Y(noise)/∂t has opposite sign to dY/dt), then |∂Y(X)/∂t| > |dY/dt|.  Hence, this normalization is from the perspective 87 

of the cause variable X rather than the effect variable Y, and direct comparison of different systems (e.g. between nCS(XàY) 88 

and nCS(AàB)) or of opposite causal directions (e.g. between nCS(XàY) and nCS(YàX)) is not allowed. 89 

 90 

A causal analysis capable of estimating comparable causal strengths should reflect nCS. In other words, nCS can be used as 91 

the testing framework to assess how good a causal method is in estimating a comparable causal strength. 92 

 93 

2.2 Key Hypothesis 94 

We wish to explore the hypothesis that the normalized causal sensitivity between time-dependent variables can be described 95 

by normalized information flow:       96 
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In information theory, the flows of the amount of information (IF) or degree of uncertainty, equivalent to flows of Shannon 101 

entropy, represent the causality, with unit in nat per time (Liang, 2014, 2015, 2016, 2018). Intuitively, we assume a stronger 102 

causal sensitivity corresponds to a proportionally stronger IF. Therefore, the normalized causal sensitivity may be estimated 103 

from the normalized uncertainty or normalized information flow. For normalization of information flow between only two 104 

time series, we can only categorize the information flow received by Y into three sources: from X, not from X (i.e. from non-105 

X), and from Y itself (equation 2). We term this as nIF and hypothesize it represents nCS, denoted by the approximate equal 106 

sign. As discussed in 2.1, nCS requires comparable causal sensitivity at different times and from various locations. In other 107 

words, for the hypothesis to be valid, the nIF must also be comparable over times, locations, and among different causes (at 108 

least comparable between X, non-X, and Y itself in equation 2). In fact, the normalization of nCS over maximal causal 109 

sensitivity that only occurs at a specific time and location, is hypothesized to be interchangeable with the normalization of nIF 110 

over causes at different times and locations. We will show later that the interchangeability of normalization over cause, time, 111 

and location is indeed the greatest strength of this method. It enables the identification of particular causes, and their locations 112 

and timing, associated with effects. Such an approach is common in Earth sciences; for example, methane-climate feedback 113 

sensitivity can be expressed as the dependence of the increase in naturally contributed atmospheric methane concentration 114 

with increasing global temperature. 115 

 116 

In addition, while the absolute magnitudes of IF and nIF represent the causality, the physical interpretation of their signs 117 

remains unclear. The sign, in this case, may reflect whether the cause-variable influences the effect-variable through an 118 

increasing (positive IF) or decreasing (negative IF) uncertainty (Liang, 2018). To remove the absolute operator and estimate 119 

the direction between ∂Y(X)/∂t and dX/dt, which is needed for nIF to represent nCS, the sign of correlation coefficient in the 120 

regression (i.e. RXY) is assigned to the IF and nIF which we then denote as IFa and nIFa (equations 3-4, subscript “a” stands 121 

for “adjusted”). This becomes useful to indicate either positive or negative feedback. 122 

 123 

For a given linear model of the effect of X on Y, the maximum likelihood estimator of IF(XàY) is given by (Liang, 2014): 124 

𝐼𝐹("→$) =
?""?"$?$,'"@?"$

, ?",'"
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,           (5) 125 

where CYX is the covariance between variables Y and X, and CX,dY is the covariance between X and 𝑌̇, given by the series 126 

approximation of dY/dt using Euler forward differencing (𝑌̇- = (𝑌-AB − 𝑌-)/𝛥𝑡). The same system of notation applies to CXX, 127 

CYY, and CY,dY. The normalized information flow (Liang, 2015) was proposed by dividing the |IF| by a normalizing factor, Z. 128 
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∗
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E  is the estimated increase in marginal entropy (extent of uncertainty) HY, which includes the 131 

contribution of HY due to Y itself (first term) and the contribution from noise (second term), as given by equations 8- 10. 132 
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Comparing equations 6 and 7 to equation 2, E;C"
*+./0

;/
E appears to equate to IF(non-XàY), D;C"

∗

;/
D equates to IF(YàY), and IF(X,non-X,Y 136 

àY) is assumed to be the sum of the three terms in equation 7, i.e. Z(XàY). However, these three terms, especially the IF(YàY) term 137 

should be dependent on the earlier trend of Y before the specific time of interest, so that it should be partly influenced by the 138 

IF(XàY) and IF(non-XàY) terms. The overall information flow IF(X,non-X,Y àY) is hence not necessarily equal to the sum of the three 139 

terms. We will therefore empirically examine three other normalizing factors that may represent IF(X,non-X,Y àY):  140 

𝑚𝑑B𝑍("→$) = |𝐼𝐹"→$| + E
;C"

*+./0

;/
E          (11) 141 

𝑚𝑑E𝑍("→$) = D;C"
∗

;/
D           (12) 142 

𝑚𝑑F𝑍("→$) = 𝑚𝑑B𝑍("→$) + ,𝑚𝑑E𝑍("→$) −	𝑚𝑑B𝑍("→$),       (13) 143 

Where the “md” denotes “modified” and the subscripts 1-3 refer to different modifications. By substituting Z in equation 6 by 144 

md1Z, md2Z or md3Z, we obtain |md1nIF|, |md2nIF|, or |md3nIF|. Basically, equation 11 assumes that IF(X,non-X,Y àY) is only from 145 

X and non-X cause variables, and the sum of the two should have already included the IF(YàY). Oppositely, equation 12 assumes 146 

that IF(YàY) should have already included the information flows from X and non-X cause variables. Equation 13 assumes the 147 

absolute difference between md1Z and md2Z to be additional information flow on top of those from X and non-X cause variables. 148 

 149 

2.3 Empirical Tests  150 

To facilitate empirical investigation, we re-formulate equations 1-4 in the manner shown in equation 14. We define the 151 

“maximal causal sensitivity of Y to changing X” as a constant α and the nIFa,(XàY) as the “multiplier”. Equation 14 focuses on 152 

causal contribution (i.e. ∂Y(X)/∂t) instead of causal sensitivity for practical reasons, since larger peaks of ∂Y(X)/∂t have a 153 

greater bearing on the sensitivity over long time scales (i.e. ΔY(X)/ΔX). In other words, relatively large percentage errors in 154 

instantaneous sensitivity during periods with small ∂Y(X)/∂t and dX/dt do not significantly affect the long-term ΔY(X)/ΔX.  155 

G$(")	
G/

= 𝛼 ×𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × ;"
;/

           (14) 156 

 157 

In addition to testing our hypothesis presented in equation 2, that nIF is a measure of normalized causal sensitivity, we explore 158 

the effect of using IFa rather than nIFa as the “multiplier” in equation 14. For IFa to be a valid multiplier in equation 14, it 159 

requires that the maximal causal sensitivity of Y to changing X and the overall flow of uncertainty to Y in equations 1-2 are 160 

time-independent constants. We have also compared the applicability of linear and second order regressions in the 161 

determination of the “multiplier” in equation 14. For linear regression, the “multiplier” is mR2 where m is given by Y = mX + 162 

c and R is the correlation coefficient. For second order regression, the “multiplier” is M2R2 with M2 = 2aX+b, the differential 163 

of Y = aX2 + bX +c (with subscript 2 in M2 denoting second order regression). The “multiplier” in such an approach also takes 164 

care of α, which is then 1. An approach to estimating α for nIF, as well as its modified forms and IF, is to visually match the 165 

estimated and the designed ∂Y(X)/∂t, in which case α effectively serves as a calibration factor.  166 

 167 

2.3.1 Assessing the Hypothesis  168 

To explore the hypothesis that normalized information represents normalized causal sensitivity (section 2.2) and to identify 169 

which normalizing factor performs best, we first perform a series of tests based on designed mock-up datasets with general 170 

expression as 171 
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dY/dt = ∂Y(X) /∂t + ∂Y(n)/∂t = f(dX/dt, t) + n(Y, t), and dX/dt = ∂X(Y)/∂t + ∂X(n)/∂t = g(dY/dt, t) + o(X, t)  (15) 172 

where f and g are the interdependent contributions, representing cyclic causal interferences or a feedback loop as in a format 173 

described by equation 14, such that the designed “α x multiplier” includes trigonometric terms with varying frequencies or/and 174 

a constant. The trigonometric terms mimic typical climate oscillations resulting from alternating positive and negative 175 

feedbacks, such as the famous El Niño–Southern Oscillation (ENSO) cycle (Im et al., 2015). Similarly, n and o are functions 176 

of other cause-variables and termed as noises. They include i) a self-dependent term which often tends to stabilize the 177 

fluctuations of effect-variables, mimicking negative Earth system feedbacks, e.g. the carbon-concentration feedback (Arora et 178 

al., 2020), as well as ii) other noise independent of X and Y, but potentially varying with time t.  179 

 180 

The first series of tests include: 181 

1) a 1- dimensional (1D) example with a constant independent noise-contribution and a single causal direction; 182 

2) a 1D example with fluctuating independent noise-contribution and a single causal direction; 183 

3) a 1D example with fluctuating self-dependency noise-contribution and a single causal direction; 184 

4) a 1D example with strong bidirectional causality but very weak self-dependency and independent contributions; 185 

5) a 1D example with bidirectional causality and highly fluctuating independent noise contributions; 186 

6) a 1D example with moderate contributions from all terms, together with 21-steps of time-lag (i.e. 21% of each 187 

analyzed time-window) for the interdependency term; 188 

7) additional 1D examples with time-gaps for different terms and directions; 189 

8) 3- dimensional (3D) examples with and without teleconnections. 190 

 191 

Tests 1 to 5 examine whether the respective “multiplier” is able to reflect the causal contributions under various types of noise 192 

contributions, and which normalizing factor Z (equations 7, 11-13) performs best. Tests 6-8 examine whether such 193 

normalization applies across causes over time and space, so that the method has the potential to estimate where and when a 194 

change in cause-variable contributes to a change in effect-variable. This is the core requirement for our hypothesis to be valid 195 

and applicable.  196 

 197 

Furthermore, for each 1D test, in order to examine if the “multiplier” measures nCS with a constant calibration factor α 198 

representing the maximal causal sensitivity, we have chosen a 1:2:3 ratio for 𝜕X1(Y1)/𝜕t	 :	𝜕X2(Y1)/𝜕t	 :	𝜕X3(Y1)/𝜕t	 and	199 

𝜕Y1(X1)/𝜕t : 𝜕Y2(X2)/𝜕t :	𝜕Y3(X1)/𝜕t for interdependent contributions between X1, X2, X3 and Y1, as well as between Y1, Y2, 200 

Y3, and X1. Note that the 1:2:3 ratio neither applies to dX1/dt : dX2/dt : dX3/dt nor to dY1/dt	:	dY2/dt	:	dY3/dt, since a common 201 

noise function ∂X(n)/∂t is applied to all dX1/dt, dX2/dt, dX3/dt and another common ∂Y(n)/∂t is applied to all dY1/dt, dY2/dt, 202 

dY3/dt. Comparing equation 14 to equations 1-2, the value of α for IFa and nIFa should then follow the same 1:2:3 ratio. 203 

Therefore, we have set the 1:2:3 ratio for α and examined if the estimated 𝜕X(Y1)/𝜕t and 𝜕Y(X1)/𝜕t given by equation 14 also 204 

reflect that ratio.  205 

 206 

In the 3D context we make an analogy to climate systems, which typically involve data expressed in terms of longitude (lon), 207 

latitude (lat), and time (t) coordinates across the globe’s surface (Fig. 1). In our empirical assessment, we have produced cause-208 
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maps of 3D-to-global-mean-1D variables (distribution and variability of contribution from causes, as illustrated in Fig. 1d), 209 

and effect-maps of global-mean-1D-to-3D variables (distribution and variability of contribution as effects illustrated in Fig. 210 

1e). We further consider the presence or absence of interdependent teleconnection, by assigning the interdependent function 211 

based on values from the opposite side of the hemisphere (e.g. interdependency between dX/dt at 60°N and dY/dt at 60°S, see 212 

Fig. 1c) or from the same grid (Fig. 1b), respectively. If normalized information represents normalized causal sensitivity, the 213 

results should reflect the teleconnection from the opposite hemisphere for the cause-maps.		214 

 215 

Figure 1. Illustrative causal graphs of designed 1D and multi-D causally interdependent variables X and Y, with/without 216 

teleconnection, and the basis of estimates for cause map and effect map. 217 

 218 

2.3.2 Higher Order Dependency  219 

The above testing framework via equation 14 and designed mock-up data via equation 15 corresponds to “rate-dependent” 220 

causal sensitivity described by equation 1, which sets a proportional relationship between changing cause and its changing 221 

contribution to the effect variables. Such “rate-dependent” causal sensitivity may best describe hysteresis of cause variable on 222 

effect variable. However, problems may arise when the causal dependency is “state-dependent”, or a combination of both 223 

“rate-dependency” and “state-dependency”. For example, the rate of natural carbon sink (dCCO2/dt) is temperature-dependent, 224 

but the long-term dependency may be mainly due to temperature (T) (Arora et al., 2020), i.e. state-dependency, while its 225 

interannual variability and hysteresis may be associated with the initial condition and the rate of changing temperature (dT/dt) 226 

that links to drought, flood, and/or rewetting (Obermeier	et	al.,	2017;	Barnard	et	al.,	2020), i.e. rate-dependency. In addition, 227 

the maximal likelihood of information flow in equation 5 applies to a linear model between X and Y (Liang, 2014) (hence 228 

between 𝜕X(Y)/𝜕t	 and	dY/dt). Therefore, to cater for such higher order dependencies, equation 14 needs to be split into 229 

equations 16-18. Two maximal causal sensitivities are needed: the αhys in equation 17 represents the maximal instantaneous 230 

sensitivity due to hysteresis, as in equation 14; and the αlong in equation 18 represents the maximal instantaneous sensitivity 231 

due to the long-term impact. With respect to the two maximal causal sensitivities, two different multipliers are also needed. 232 

By breaking down the second order causal dependency into two first-order equations, the IFa and nIFa are hence estimated 233 

based on time series X and Y (for the hysteresis in equation 17), and time series dX/dt and Y (for estimating the ∂2X(Y)/∂t2 234 

followed by integration into the long-term ∂Xlong(Y)/∂t in equation 18). With this testing framework, the designed equation for 235 

mock-up data assessment is modified accordingly (equation 19).  236 

 237 
G"($)	
G/

= G"12/($)	

G/
+	G"3+*4

($)	

G/
= 𝛼41)G𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟41)J Q

;$
;/
R + 𝛼*2-5G𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟*2-5J(𝑌)    (16) 238 

G"12/($)	

G/
= 𝛼41)G𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟41)J Q

;$
;/
R         (17) 239 

G,"3+*4($)	

G/,
= 𝛼*2-5G𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟*2-5J Q

;$
;/
R and  

G"3+*4($)	

G/
= 𝛼*2-5 ∫ G𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟*2-5J Q

;$
;/
R 𝑑𝑡/

/H    (18) 240 

dX/dt = ∂X(Y) /∂t + ∂X(n)/∂t = f(Y, dY/dt, t) + n(X, t)        (19) 241 
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 242 

The designed ∂Xlong(Y)/∂t tends to grow together with the Y, hence it could behave as a growing noise influencing the estimates 243 

of the “hysteresis” IFa and nIFa. It is hence important to preliminarily minimize the influence of independent noise and 244 

∂Xlong(Y)/∂t on the ∂Xhys(Y)/∂t estimation. The potentially improved IFa and nIFa are obtained between Y and an adjusted X, 245 

i.e. Xadj, and the Xadj is obtained via equations 20-22: where Xadj is obtained by adding an adjusted dXadj/dt time series to the 246 

initial X0 (equation 20); dXadj/dt is obtained by removing a reference dXref /dt from the dX/dt (equation 21); and the dXref /dt 247 

serves as a preliminary approximation of a rather constant or constantly growing ∂X(noise)/∂t and/or ∂Xlong(Y)/∂t, for example 248 

by assuming the value of dX/dt at 25-75% split of the time-window as the dXref /dt (equation 22), so that most (75%) of the 249 

dXadj/dt falls behind the dXref /dt to reflect the causal effect on ∂Xhys(Y)/∂t (see Data Processing in Supplementary Information).  250 

Xadj = X0 + dXadj /dt           (20) 251 

dXadj /dt = dX/dt - dXref /dt           (21) 252 

dXref /dt = dX/dt at 25-75% split of the time-window for calculating IF and nIF     (22) 253 

  254 

3. Results and Discussion 255 

3.1 Validating the Hypothesis and Method Advantages  256 

Among all the “multipliers” tested, we find that causal contributions estimated based on md3nIFa (i.e. replacing the Z in 257 

equations 6 by md3Z in equation 13) best represent the designed causal contributions. Hence, for the 1D tests, we only present 258 

the designed and the |md3nIF|-estimated causal contributions as a key comparison here (comparison with estimates based on 259 

other “multipliers” can be found in Supplementary Information). 260 

 261 

Figure 2 shows the designed and md3nIFa-estimated causal contributions for tests 1-5 (section 2.3.1). When the influence of 262 

independent and self-dependent noise is insignificant (Fig  2 m-p), the estimates reflect the designed trends well. When there 263 

is strong influence from the independent-noise (Fig. 2 a-h, q-t), the major issue is that the correlation sign, when incorrect, 264 

misinterprets the feedback direction and causal contribution (Fig. 2 c, g, s, t). Nevertheless, we would like to highlight that the 265 

1:2:3 ratio of the absolute contribution is approximately retained even when the correlation sign is wrong, suggesting the 266 

validity of our proposed hypothesis. Furthermore, a secondary issue is that even without a strong independent noise 267 

contribution, a strong influence on the effect variable via self-dependency terms may also affect the peak-to-peak ratio (Fig. 2 268 

k). 269 
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 270 

Figure 2. The basic 1D tests 1-5: two rows for each test. The odd and even rows are the designed and md3nIFa-estimated 271 

causal contributions, respectively. Highlight of each test: strong but constant independent noise (a-d), strong and fluctuating 272 

independent noise (e-h), strong self-dependency noise (i-l), coupled-feedback with insignificant noise (m-p), and coupled-273 

feedback with highly fluctuating independent noise (q-t). See Figs. S1-S5 for comparisons of estimates based on various 274 

“multipliers”.  275 

 276 

The estimates given by other “multipliers” for the same designed causal contributions in Fig. 2 are shown in Supplementary 277 

Information (Figs. S1-S5). For estimates given by regressions, the 1:2:3 ratio is strongly affected by the independent noise. 278 

For example, in a scenario with a misinterpreted correlation sign, a designed -1:-2:-3 ratio can be incorrectly reflected as ~3:2:1 279 

in the estimated causal contributions (Fig. S1). Even if the correlation sign is correct, this designed ratio of causal sensitivities 280 

may still be lost and be reflected as ~1:1:1 with complete failure of the estimated peak-to-peak ratio under strong influence by 281 

independent noise contribution (Fig. S2). This shows that md3nIFa works better than regressions in the presence of hard-to-282 

estimate noise contributions. The self-dependency contributions also affect the estimates given by regressions more than the 283 

estimates given by md3nIFa (Fig. S3). Estimates based on IFa may better reflect the single directional causality (Fig. S1), 284 

however, their results for the 1:2:3 ratio as well as the peak-to-peak ratio are badly affected by the self-dependency terms (Fig. 285 
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S3) and coupled feedback (Fig. S4-S5). This is because the 1:2:3 ratio is occasionally reflected in the absolute value of |IF| 286 

(sub-Figs o, p of Figs. S3-S5) rather than being solely reflected by the calibration constant α.  287 

 288 

Among the various (modified) nIFa, md3nIFa performs the best. It tends to minimize the error due to incorrect correlation sign, 289 

giving smaller estimated causal contributions when this occurs (Figs S1, S5). Firstly, the estimates given by md2nIFa show 290 

unreasonably sharp fluctuations (e.g. sub-Fig. y of Fig. S1). Such fluctuations are better reflected by the absolute values of 291 

|md2nIF|, with sudden change occurring between ~0 and ~1. This can be best explained by the arguments of Liang and Yang 292 

(2021) which highlight the impossibility of distinguishing cause and effect between two identical oscillating functions with a 293 

time-gap (e.g. sin(x) and sin(x-π)). Secondly, when the normalized causal sensitivity approaches its maximum, the |nIF| 294 

proposed by Liang (2015) (equations 6-7) tends to approach 0.5 rather than 1 (sub-Figs s, t of Figs. S1-S5), while our proposed 295 

|mdnIF| is close to 1. This highlights the dependence of the IF(YàY) (or ;C"
∗

;/
) term on the IF(XàY) and IF(nonXàY) (or ;C"

*+./0

;/
) terms. 296 

In other words, when the normalized causal sensitivity is at its largest, the information flow from the effect variable to itself 297 

(md2Z) may actually mean the information flow from cause-variable and noise (md1Z). Thirdly, our observation that md3nIFa 298 

gives better estimates of causal contributions than md1nIFa may imply that the difference between the IF from cause-variable 299 

and noise (md1Z) and that from the effect variable (md2Z) could be the actual “additional” IF that the effect-variable perceives 300 

(see equation 13 for md3Z). Compared to typical material or energy balance equations with no output, this “additional” IF is 301 

similar to a “generation” term (equation 23). Using this analogy, we assume that md2Z ~ md1Z and |md2Z - md1Z| is negligible 302 

when the causal sensitivity is strong, but when the causal sensitivity weakens, |md2Z - md1Z| increases as does the perceived 303 

information flow by the effect-variable (md3Z). This dilutes the normalized information flow, minimizing the error due to 304 

incorrect assignment of correlation sign. 305 

𝐼𝑛𝑝𝑢𝑡	(𝑚𝑑B𝑍"→$) + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	(|𝑚𝑑E𝑍"→$ −	𝑚𝑑B𝑍"→$|) = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛	(𝑜𝑟	𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑	𝑚𝑑F𝑍"→$)   (23) 306 

 307 

https://doi.org/10.5194/gmd-2022-106
Preprint. Discussion started: 25 April 2022
c© Author(s) 2022. CC BY 4.0 License.



 11 

  308 

Figure 3. The 1D tests examining the effect of various time-gaps introduced from t > 200. (a-d): 21-unit time-lead for the 309 

interdependent terms only; (e-h): 21-unit time-lead for the self-dependency terms only; (i-l): 21-unit time-lead for both 310 

interdependent and self-dependency terms; (m-p): slightly increased (compared to i-l) fluctuation for the independent noise-311 

contribution; and (q-t): 31-unit reverse time-lag (effect lead cause). See Figs. S6-S11 for the comparison between estimates 312 

based on various “multipliers” as well as a controlled test (S7) where all time-gaps are removed. 313 

 314 

We have examined whether causal sensitivity with different time-lag can be normalized, and whether our method has the 315 

potential to estimate a time-lag (or even reverse time-lag). Figure 3 shows the designed and md3nIFa-estimated causal 316 

contributions for different time gap configurations, with further comparison among different “multipliers” given in Figs. S6-317 

S11.  318 

 319 

The results show that the time-lag for the interdependency terms can indeed be (approximately) captured: the estimated 320 

causal contributions tend to occur at the time when the “cause” influences the designed “effect”. For example, the estimated 321 

causal contributions tend to lead the designed effect by ~21-unit shown in Fig. 3 a-d and i-p. Even the reverse 31-unit “time-322 

lag” in Fig. 3 q-t is partly captured, with the designed effect apparently leading the estimated causal contributions. While the 323 
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time-gap applies only to the self-dependency terms, such a gap is not reflected by the estimated interdependent causal 324 

contributions (Fig. 3 e-h). However, the time-gap is not always correctly captured. In particular, the presence of a causal 325 

time-lag could lead to misinterpretation of the correlation sign, which may also tend to split or merge the effect of causal 326 

contributions, resulting in incorrect estimates of a time-lag, especially for high-frequency noise-contribution fluctuation (Fig. 327 

3 m-p). We clearly need to be cautious when interpreting the time-gap between the estimated causal contributions and the 328 

designed (or observed) effects. For example, when the designed effects appear to precede the estimated causal contributions 329 

(supposedly around the time of cause), this should not simply be interpreted as “effect leading cause”. 330 

 331 

When using other “multipliers”, the estimates given by regressions are particularly badly affected by time-gaps between the 332 

interdependency terms (Figs. S6. S9-S11). For IFa and other (modified) nIFa, while the presence of time-gaps also affects the 333 

estimates, and the general issues discussed in Fig. 2 (and Figs. S1-S5) remain.  334 

 335 

We have also studied designed and estimated contributions between two 3D variables with teleconnection operating from the 336 

opposite hemispheres (e.g. X at 60 ̊N is interdependent with Y at 60 ̊S), projected onto two dimensions using the zonal means 337 

(Fig. 4). The first row in Fig. 4 gives the designed distributions of dX/dt and dY/dt, and the second row shows the designed 338 

values of interdependent 𝜕X(Y)/𝜕t and 𝜕Y(X)/𝜕t (effects). Thus, the second row corresponds to effects without any additional 339 

noise, while the first row represents the sum of contributions from effects and noise. Further rows give the estimated cause-340 

maps.  Two levels of designed noise-contribution have been applied. The obvious difference between Fig. 4a and 4c 341 

corresponds to stronger noise contributions compared to Fig. 4b and 4d. The noise alternates between positive and negative 342 

with a rather insignificant positive bias, hence the conditional advantage for nIFa (large noise contributions) is insignificant, 343 

at least for weak-noise case (right hand column). Furthermore, the time-lag is only one time-unit over the running window of 344 

the causal analysis time series data, with 49-time units in each window. Hence, this example focuses on the spatial causal 345 

contributions: in view of the mirrored teleconnection between north and south hemispheres, the best estimates of the cause-346 

map should also be a mirrored image of the second row. This mirror characteristic can be best seen in the estimates given by 347 

md3nIFa.  348 

 349 
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 350 
Figure 4. 3D-to-1D estimated cause-maps (3rd row and below) with the N-S teleconnections, which are supposed to generate 351 

N-S mirrored image of designed effect maps (2nd row). The 1st row shows the designed rates of changes, including 352 

contributions from noises. The mirroring teleconnection is best captured by md3nIFa. Also refer to Fig. S12 for cause-maps 353 

without the N-S teleconnections, as well as Fig. S13-S14 for the 1D-to-3D estimated effect-maps 354 

 355 

In contrast, estimates obtained by regressions do not provide any clear evidence of such mirroring, although the estimates by 356 

second-order regression may manage to reflect this slightly better than those provided by first-order regression. Note that for 357 

a fair comparison, in the 3D tests we allow a visual adjustment of a calibration factor α for estimates by regressions, while in 358 

1D tests α for regressions is set to unity for simplicity. The failure of regressions in reproducing the expected mirroring 359 

characteristics, even with a weak noise (right-hand column), could be simply due to the absence of a common calibration factor 360 

α (except 1) since regressions do not measure the causal sensitivity. Even in the absence of N-S teleconnection, the advantage 361 

of employing md3nIFa for estimates of the spatial distribution in 3D-to-1D cause-maps is still apparent, although to a lower 362 

extent (Fig. S12). This is because there are, altogether, 360 x 180 time series over all grids which contribute to a single global 363 

mean time series in the 3D-to-1D cause-maps, emphasizing the importance of locations of cause signals in this case. In contrast, 364 
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for 1D-to-3D effect-maps (where the location-data of the causes are already merged into a global mean value), regression tends 365 

to give better estimates, regardless of the absence or presence of teleconnection (Fig. S13-S14).  366 

 367 

3.2 Second Order Causal Sensitivity and Noise Minimization  368 

Figure 5, from left to right columns, shows the estimates of overall 𝜕X(Y)/𝜕t, 𝜕Xhys(Y)/𝜕t, ∂Xlong(Y)/∂t, and ∂Y(X)/∂t, given by 369 

md3nIFa in three 1D tests using the methods discussed in 2.3.2, including the removal of dXref /dt (as the preliminary estimate 370 

of the noise and ∂Xlong(Y)/∂t contributions) into Xadj for the estimates of 𝜕Xhys(Y)/𝜕t. Firstly, Fig. 5a-h extends the simple 371 

example of single directional causality shown in Fig. 2a-d and Fig. S1. Secondly, Fig. 5i-p includes a long-term influence term 372 

of ∂Xlong(Y)/∂t; and finally Fig. 5q-x further includes a bidirectional feedback influence of ∂Y(X)/∂t, with its estimate based on 373 

X (no adjustment) and Y time series. The complete comparison among various methods with and without the removal of 374 

∂Xlong(Y)/∂t is given in Figs. S15-S21.  375 

 376 

As compared to Fig. 2a and c, Fig. 5b and f show improved estimates of 𝜕Xhys(Y)/𝜕t after removing the dXref /dt and running 377 

the causal analysis based on Xadj and Y time series. Problems associated with incorrect correlation sign are minimized. Note 378 

that the 1:2:3 ratio of α is preserved, which confirms again that the (maximal) causal sensitivity is independent of the noise. 379 

With the incorporation of ∂Xlong(Y)/∂t (Fig. 5i-p) or even the interdependent 𝜕Y(X)/𝜕t (Fig. 5q-x), the method appears 380 

reasonably capable in separating the 𝜕Xhys(Y)/𝜕t and ∂Xlong(Y)/∂t estimates. This suggests the utility of splitting higher order of 381 

causal sensitivities into multiple first order causal sensitivities. Note that although the estimates based on Xadj and Y appear to 382 

improve the 𝜕Xhys(Y)/𝜕t (also in Fig. S16, S18, S20 vs S15, S17, and S19), the removal of running dXref /dt for each window 383 

unavoidably influences the causal signals too. For example, if we estimate 𝜕Y(X)/𝜕t based on X and Yadj, with a relatively small 384 

𝜕Y(noise)/𝜕t than the 𝜕Y(X)/𝜕t contributions, the estimates will differ more from the designed trends, as compared to estimated 385 

𝜕Y(X)/𝜕t based on X and Y (Fig. S19-S20). Hence, this simple method improvement is only suitable when there is a rather 386 

large constant or constantly growing noise and/or when there are significant long-term contributions to be determined (equation 387 

18). We have also tested another way (other than that of equation 18) for estimating ∂Xlong(Y)/∂t, by estimating the 𝜕Ylong(X)/𝜕t 388 

based on the X and time-integral of Y (so that the causal sensitivity will be ∂X(Y)/∂t/Y), instead of estimating the ∂2X(Y)/∂t2 389 

based on dX/dt and Y (so that the causal sensitivity will be [∂2X(Y)/∂t2]/[dY/dt]) with subsequent integration into the long-term 390 

∂Xlong(Y)/∂t. However, this alternate method results in a highly fluctuating ∂Xlong(Y)/∂t with correlation sign influenced by the 391 

∂Xhys(Y)/∂t (Fig. S21). This suggests that a second-order form of causal sensitivity, i.e. [∂2X(Y)/∂t2]/[dY/dt] is capable of 392 

distinguishing the influence of ∂Xlong(Y)/∂t from ∂Xhys(Y)/∂t, but the (relatively more) integral form of causal sensitivity, i.e. 393 

∂X(Y)/∂t/Y, is unable to separate out the causal contributions from different orders of dependency. 394 

 395 
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 396 

Figure 5. The 1D tests assessing the practicability of preliminary noise removal and breakdown of higher order causal 397 

contributions into multiple first order causal contributions: (a-h) with the same first order causal functions as in Fig.2a-d, (i-398 

p) incorporating a growing ∂Xlong(Y)/∂t term, (q-x) further incorporating a 𝜕Y(X)/𝜕t term. Odd row: designed contributions. 399 

Even rows: estimated contributions based on md3nIFa. Refer to section 2.3.2 for the 𝜕X(Y)/𝜕t,	𝜕Xhys(Y)/𝜕t and ∂Xlong(Y)/∂t in 400 

each column. 401 

 402 

3.3 Normalization of Causal Sensitivity between Opposite Causal Directions 403 

The nCS and nIF for the 2-variate system (X, Y) can also be described by combining equations 1, 2, 6 and 8 into equation 24: 404 

the sum of causal sensitivity of Y on changing X, non-X, and the Y’s self-generated change, i.e. md3Z/md3Z, equals 1. 405 

Although equation 24 is expressed in terms of Y as the effect variable, we can simply swap X and Y for analysis with X as the 406 

effect variable. Therefore, to compare the causal sensitivity of opposite causal directions, e.g. XàY and YàX, the key is to 407 

compare the different denominators in the respective normalization, i.e. the maximal causal sensitivity (maxCS) for XàY 408 

and for YàX. Further normalization of the nCS, and hypothetically the nIF, termed as nnIF (equation 25), is based on the 409 

larger maxCS between the two opposite causal directions, taking into account the ratio between the two maxCS values. This 410 

allows the causal sensitivity between two directions, different spaces and times, to be comparable. 411 

 412 

Table 1 lists the designed and estimated maxCS (i.e. the visually calibrated α of equation 14 based on md3nIFa) for above 413 

examples with bidirectional causal influences between X (or X1) and Y (or Y1), as well as the ratio of the maxCS between 414 

opposite directions.  415 

𝑛𝐶𝑆[("→$)∪(-2-"→$)∪($→$)] = 𝑛𝐶𝑆("→$) + 𝑛𝐶𝑆(-2-"→$) + ,𝑛𝐶𝑆("→$) + 𝑛𝐶𝑆(-2-"→$) − 𝑛𝐶𝑆($→$), 416 

≈ 𝑛𝐼𝐹("→$) + 𝑛𝐼𝐹(-2-"→$) + ,𝑛𝐼𝐹("→$) + 𝑛𝐼𝐹(-2-"→$) − 𝑛𝐼𝐹($→$), = 	1     (24) 417 
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 418 

If maxCS(YàX) > maxCS(XàY), nnIF(YàX) = nIF(YàX), but nnIF(XàY) = nIF(XàY) / (maxCS(YàX) / maxCS(XàY))  (25) 419 

 420 

From the columns listing the percentage errors (i.e. (estimated – designed)/designed), the method reasonably quantifies the 421 

maxCS in both directions as well as their ratio. This direct empirical evidence supports our hypothesis that the normalization 422 

of causal sensitivity can be represented by the normalization of information flow. However, imperfection remains:  423 

1) The md3nIFa-estimated maxCS tends to be slightly smaller than their designed values in most examples (this suggests that 424 

the estimated |md3nIF| may tend to slightly overestimate the actual nCS, and the normalizing factor md3Z may be slightly 425 

underestimated. The reason may be associated with the unstable estimate of md2nIF (and thus md3nIF) and/or the analogy for 426 

defining md3nIF (equation 23).  427 

2) The larger error in the maxCS tends to be larger than the error in the ratio between opposite directions. The systematic error 428 

suggested in point 1) may tend to be cancelled in the ratio.  429 

3) For the causal sensitivity in a 3D context (Figure 4, S12-S14), although earlier results in 3.1 suggests 3D-to-1D cause map 430 

could better reflect the causal contributions according to the spatial pattern of causes, Table 1 suggests the α calibrated in 1D-431 

to-3D effect map to better reflect the designed maxCS. In other words, for systems that described by the same set of linear 432 

causal functions with changing coefficient (due to the trigonometric term, thus changing causal strength) across space and 433 

time, the maximal causal sensitivity of such linear function could be better reflected by analysing the influence of weighted 434 

average of cause-variable on effect-variable.  435 

4) The error in a higher order causal model (as in Figure 5q-x) tends to be larger than the error in a linear model.  436 

 437 

Table 1. The designed and md3nIFa-estimated maximal causal sensitivity (maxCS) in the above examples with 438 
bidirectional feedbacks. 439 

Respective 
figure 

maxCS(YàX) maxCS(XàY) maxCS(YàX) / maxCS(XàY) 
Designed Estimated error Designed estimated error designed estimated error 

2m-p (S4) 1.80 1.7 6% 0.33 0.4 20% 5.4 4.3 21% 
2q-t (S5) 0.96 0.8 17% 0.74 0.5 32% 1.3 1.6 23% 
3a-d (S6) 1.16 0.9 23% 0.68 0.65 4% 1.7 1.4 19% 

S7 1.16 1.3 12% 0.68 0.65 4% 1.7 2 17% 
3e-h (S8) 1.16 1.3 12% 0.68 0.7 3% 1.7 1.9 8% 
3i-l (S9) 1.16 0.7 40% 0.68 0.55 19% 1.7 1.3 26% 

3m-p(S10) 1.16 0.7 40% 0.68 0.55 19% 1.7 1.3 26% 
3q-t(S11) 1.16 0.95 18% 0.68 0.5 26% 1.7 1.9 8% 

4 0.54 0.4 27% 1.30 1.05 19% 0.42 0.38 9% 
S13 0.54 0.55 1% 1.30 1.4 8% 0.42 0.39 6% 
S12 0.49 0.35 28% 1.35 0.85 37% 0.36 0.41 15% 
S14 0.49 0.5 3% 1.35 1.2 11% 0.36 0.42 16% 

5q-x(hys) 1.37 0.95 31% 1.15 0.6 48% 1.2 1.58 33% 
5q-x(long) 0.005 0.013 160% - - -    

 440 

 441 

4. Conclusions 442 

We have shown the applicability of (modified) normalized information flow (particularly the md3nIFa) to represent normalized 443 

causal sensitivity when estimating the causal contributions between two time series variables. The three requirements for such 444 

normalization (i.e. normalization for comparable causes, causes from different times, and different spaces) form the conditions 445 

for the method to outperform regression analysis: i) when there are strong noise contributions, especially hard-to-quantify 446 

independent noise with systematic bias; ii) when there are significant time-lags between causes and effects, especially when 447 

we would like to estimate when the causes have occurred; iii) when there are many sources of causal contributions from various 448 
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spaces, especially when we would like to estimate the location of these causes. We find that (modified) normalized information 449 

flow has the potential to serve as a useful tool for understanding complex Earth system processes with multiple interacting 450 

variables occurring over various temporal and spatial scales. The estimated causal contributions could be further classified 451 

according to their correlation sign, to potentially indicate either positive or negative feedback, thus identifying potential 452 

underlying processes. This is the essence for improving Earth System Models.  453 

 454 

Some modifications to the Liang’s original normalizing factor (Z) for the nIF are proposed: i) md1Z is the sum of 455 

information flow from cause variables and noises; ii) md2Z is the self-representing uncertainty flow; and iii) md3Z is the sum 456 

of md1Z and the absolute difference between md1Z and md2Z, while the original Z is the sum of md1Z and md2Z. Apparently, 457 

the use of md3Z helps minimize the error in estimated causal contributions when the estimated correlation sign falsely 458 

represents the direction between the two changing variables.  459 

 460 

We have demonstrated a potential improvement of the method by preliminarily removing a large and rather constant or 461 

constantly growing noise contributions, as well as distinguishing the rate-dependent hysteresis 𝜕Xhys(Y)/𝜕t and the state-462 

dependent long-term ∂Xlong(Y)/∂t contributions from a second order causal dependency through separated estimation into two 463 

sets of linear (rate-dependent) nIFs, expanding the potential application of this causal method for complex systems.  464 

 465 

Furthermore, we have also proposed the normalization of causal sensitivity between opposite causal directions based on the 466 

larger maximal causal sensitivity in two directions. This may serve as a foundation for future work on universally 467 

normalized causal sensitivity with multivariate systems. The respective estimations of the IF and nIF for multivariate time 468 

series were recently proposed (Liang, 2021a) but not yet tested in the form of causal sensitivities or causal contributions.  469 

 470 
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