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Data Processing 13 

 14 

The “multipliers” given in equation 16 between designed variables X and Y have been estimated over a moving time range. 15 

The estimated multiplier is then multiplied by the rate of change of cause-variable at the middle of the time-window so that 16 

the causal contribution can be estimated using equation 16. For the 1D tests, each time range spans 100 time-units, while for 17 

the 3D tests, each window consists of only 49 time-units. For example, this might be a common timeframe for studying 18 

interannual variability of monthly data (i.e. 49 months in total, representing a centered month ± 24 months).  19 

 20 
In Fig. 3a-d, i-p, a 21-time-unit lag between coupled feedback is introduced for time t >200. In other words, from t  = 201 21 

onwards, !X(Y)/!t at time t is set to be a function of Y from 21 time-units previously, and similarly !Y(X)/!t at time t 22 

becomes a function of X from 21 time-units prior. This time-lag corresponds to 21% of the 100 unit moving timeframe used 23 

in each analysis, in contrast to tests in Fig. 2 where the influence from cause- to effect- variables takes place at the 24 

immediately following time step (i.e. with only 1-unit (or 1% ) time lag). Similarly, in Fig. 3e-h, a 21-time-unit lag is set for 25 

the self-consistency terms, and in Fig. 3q-t, a reverse 31-time-unit gap (effects leading causes) between the interdependent 26 

terms is examined. For the reverse causality test, the designed functions remove the self-dependency terms since this has 27 

been shown to introduce errors to the estimates given by both IFa and various nIFas. The reversed time coupled feedbacks 28 

are calculated over 20 iterations with a 31-unit reverse time-gap based on preliminary calculated results from the standard 1-29 

unit-time-lag as iteration 0. However, such reversed time-gaps are even harder to capture than the ordinary time-lags. Note 30 

that the functions tested in Fig. 3 are almost the same with only minor changes to evaluate the corresponding effect.  31 

 32 

In Fig. 5, the results are estimated based on equations 18-24. In addition to splitting the higher order of causal dependency 33 

into two first-order equations (18-20), the key is to have a preliminary removal of independent noise and ∂Xlong(Y)/∂t 34 

(through equations 22-24) for better estimates of the ∂Xhys(Y)/∂t (Fig. S16, S18, S20 vs S15, S17, and S19). Within the 35 

running window of 100 time-units, the dXref/dt is assumed to be the running mean of dX/dt at ~25th time-unit (i.e. 25% from 36 

the beginning of the running window, equation 24). The key here is to remove the growing ∂Xlong(Y)/∂t so that the dXref/dt 37 

must be dynamically moved with the running window. There is no perfect choice for the position of dXref/dt in the running 38 

window. A position nearer to the beginning of the running window may leave more influence of growing ∂Xlong(Y)/∂t 39 

unfiltered in the dXadj/dt and hence the Xadj. However, a position nearer to the end or just the mid-point of the running time 40 

window may cause over-removal of ∂X(noise)/∂t and ∂Xlong(Y)/∂t, resulting in a potential wrong correlation sign between the 41 

Xadj and Y. The chosen 25% allows most (75%) datapoints of dXadj/dt to fall behind the dXref /dt to reflect the hysteresis 42 

causal effect on ∂Xhys(Y)/∂t, limiting the chance of wrong correlation sign, while possibly filtering most influence from 43 

∂X(noise)/∂t and ∂Xlong(Y)/∂t. Nevertheless, this 25-75% cut is not optimized, since the optimal cut is likely depending on the 44 

causal functions. For example, the same 25-75% cut for dYadj/dt and Yadj to run the causal analysis with the X, tends to 45 

significantly introduce wrong correlation sign and affect the estimates of ∂Y(X)/∂t (Fig. S20 vs S19). This leaves room of 46 

improvement for the suggested method. 47 
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Table S1. Designed functions assessed with results presented in the Figures  49 

Fig. # Interdependent function Noise function (inc. self-dependency) 
One-Dimensional: nt = 2 to 1000; (or split into 2-200, 201-1000)  

initial conditions (i.e. nt = 1) are zeros; 
|nt or |nt-1 refers to ntth or (nt-1)th term on time-axis 
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 52 

  53 

Figure S1. An 1D example with single-directional causality (YàX) and a constant noise causing systematic bias (positive 54 

bias for dX/dt and negative bias for dY/dt). Two left columns: the designed (1st row) and estimated causal contributions. Two 55 

right columns: the designed change rate (1st row) and various R2 or |multipliers| by different methods. It highlights the 56 

incapability of regressions to differentiate causal direction and to estimate negative contributions under positive bias. It also 57 

highlights the capability of IFa to estimate the causal sensitivity. Other than IFa, estimates by md3nIFa best fits to the 58 

designed trends. The sub-Figs a, b, ac, ad, are also the sub-Figs a-d in Fig. 2. 59 

 60 
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61 

Figure S2. An 1D example with single-directional causality (YàX) and highly fluctuating independent noise contributions 62 

to dX/dt and dY/dt. Estimates by regressions are severely affected, losing both the peak-to-peak and the 1:2:3 ratios. For 63 

estimates by IFa and various nIFas, these ratios are still reasonably kept, with estimates by md3nIFa best representing the 64 

designed trends (from the perspectives of the two ratios and the width and shape of peaks). The sub-Figs a, b, ac, ad, are also 65 

the sub-Figs e-h in Fig. 2. 66 
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 68 

Figure S3. An 1D example with single-directional causality (YàX) and strongly oscillating self-dependency term 69 

contributions. The oscillating self-dependency terms change the 1:2:3 ratios for estimates by IFa and md2nIFa. The peak-to-70 

peak ratios for estimates by various nIFa are also affected. Thus, it is difficult to differentiate which modification of nIF 71 

provides the better estimates. The sub-Figs a, b, ac, ad, are also the sub-Figs i-l in Fig. 2. 72 

 73 
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 74 

Figure S4. An 1D example with strong bidirectional causality but very weak self-dependency and independent 75 

contributions. The oscillating self-dependency terms change the 1:2:3 ratios for estimates by IFa and md2nIFa. It highlights 76 

the lost 1:2:3 ratio for estimates by IFa due to the bidirectional causality, and hence the peak-to-peak ratio too. The sub-Figs 77 

a, b, ac, ad, are also the sub-Figs m-p in Fig. 2. 78 

 79 
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 80 

Figure S5. An 1D example with bidirectional causality and highly fluctuating independent noise contributions, creating 81 

fluctuating systematic bias and false correlation signs. The false correlation signs result in the designed -1:-2:-3 ratio of 82 

negative peaks to be misinterpreted ratio of ~3:2:1 by regressions and 1:2:3 by normalized information flows. Estimates by 83 

md3nIFa tends to minimize errors from the false correlation signs. The sub-Figs a, b, ac, ad, are also the sub-Figs q-t in Fig. 84 

2. 85 

 86 

 87 
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 88 

Figure S6. An 1D example with moderate bidirectional causality, self-dependency, and independent contributions, together 89 

with 21 units (21%) of time-lags for the interdependency terms from t>200. The estimates by md1nIFa and md3nIFa tend to 90 

provide the best fit and capture the ~21 unit of time-gaps from causes to effects. The sub-Figs a, b, ac, ad, are also the sub-91 

Figs a-d in Fig. 3. 92 
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 94 
 95 

Figure S7. An 1D example with function modified from that for Fig. S6. It removes the time-lags for the interdependency 96 

terms. Estimates by regressions improve greatly due to the absence of time-lag and weak influence from noises. However, 97 

estimates by IF lose the 1:2:3 ratio as compared to Fig. S6, implying that the time-lag between interdependent causal 98 

contributions helps stabilize the denominator “overall |IF|” in equation 4. 99 

 100 
 101 

 102 
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 104 

 105 

Figure S8. An 1D example with function modified from that for Fig. S6. It keeps the 21-unit time-lags only for the self-106 

dependency terms. With the removal of time-lag for interdependency terms, estimates by regressions improve significantly. 107 

However, the time-lags for the self-dependency terms could significantly affect the estimates by (modified) nIFa and IFa, 108 

suggesting an increased difficulty in estimating the “overall |IF|” or the normalizing factor Z due to lagging contributions from 109 

self-dependency terms. The sub-Figs a, b, ac, ad, are also the sub-Figs e-h in Fig. 3. 110 
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 112 

Figure S9. An 1D example with function modified from that for Fig. S6. It applies the 21-unit time-lags for both 113 

interdependency and self-dependency terms. Estimates by all the methods are significantly affected, including those given by 114 

(modified) nIFa. However, while estimates by regressions and IFa suffer poorer consistency for the 1:2:3 ratio and lose the 115 

peak-to-peak ratio, the estimates by (modified) nIFa mainly suffer from the lost of accurate peak-to-peak ratios. The sub-Figs 116 

a, b, ac, ad, are also the sub-Figs i-l in Fig. 3. 117 

 118 
 119 
 120 
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 121 

Figure S10. An 1D example with function modified from that for Fig. S6. The only difference is a slight change to one of the 122 

independent noise frequency terms, but it results merge (most in 1st column) and split (most in 2nd column) of the estimated 123 

causal contributions. The sub-Figs a, b, ac, ad, are also the sub-Figs m-p in Fig. 3. 124 
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 126 

Figure S11. An 1D example with function modified from that for Fig. S6. It changes the 21-unit time-lags for the effects in the 127 

interdependency terms to become 31-unit time-lead. That is, effects leading causes by 31 time-units. The self-dependency 128 

terms are removed, and the independent noise term is slightly reduced to a lower magnitude and frequency. The estimated 129 

causal contributions, especially those by (modified) nIFa also tend to lag their designed peaks. This shows the estimated causal 130 

contributions do not only potentially reflect the effects lagging causes as in Fig. S6, but also extreme case with effects leading 131 

causes. This supports the hypothesis of normalized information flow to describe the normalized causal sensitivity at different 132 

times. The sub-Figs a, b, ac, ad, are also the sub-Figs q-t in Fig. 3. 133 

 134 
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 136 

Figure S12. 3D-to-1D estimated cause-maps (3rd row and below) without the N-S teleconnections, which are supposed to 137 

duplicate the image of designed effect maps (2nd row). The 1st row shows the designed rates of changes, including contributions 138 

from noises. Like Fig. 4, the pattern across the latitudes is still best captured by the method using md3nIFa. The mirroring 139 

teleconnection is best captured by md3nIFa. However, for the peak-to-peak ratio across the time-axis, regressions are better 140 

when the noise level is low (right column).    141 
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 142 

Figure S13. 1D-to-3D estimated effect-maps (3rd row and below) with the N-S teleconnections. Since the estimates are to show 143 

the 3D effects from just 1D time-series, the estimates are supposed to reflect the designed effect maps (2nd row). The benefit 144 

of using (modified) nIFa in Fig. 4 is hence lost, while the issues about peak-to-peak ratio remains. 145 
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 147 

Figure S14. 1D-to-3D estimated effect-maps (3rd row and below) without the N-S teleconnections. Like Fig. S13, the benefit 148 
of identifying spatial distributions of causal contributions by using (modified) nIFa is lost. However, with large independent 149 
noise-contributions (left column), estimates by (modified) nIFa may still be more accurate than that by regressions. 150 
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Figure S15. A single-directional 1D example with the same designed function as in Fig. S1, therefore the 2nd (and sub-Figs e,i) and 4th columns here are equivalent to the 1st and 2nd columns 

in Fig. S1, respectively). However, an assumed long-term ∂Xlong(Y)/∂t (3rd column) is considered (which is zero in designed trend, sub-Fig. c) and added with the ∂Xhys(Y)/∂t (as the ∂X(Y)/∂t 

in Fig. S1) to form the ∂X(Y)/∂t (1st column). Note that sub-Figs f, g, j, k are left empty because for regressions we do not consider the ∂Xlong(Y)/∂t based on X and Y time series. 155 
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Figure S16. A single-directional 1D example with the same designed function and figure layout as in Fig. S15, but the estimates (2nd row and below) are based on Xadj and Y (first three 

columns) and X and Yadj (last column). The dXref /dt is subtracted from dX/dt to obtain dXadj /dt and eventually Xadj, and similarly dYref /dt is subtracted from dY/dt to obtain dYadj /dt and 

eventually Yadj. The calibration factor α is also kept as in Fig.S15. Compared to Fig. S15, a smaller magnitude of Xadj than X results in a milder oscillation for the estimated ∂Xhys(Y)/∂t based 160 

on regressions (i, n); but for estimated ∂Xhys(Y)/∂t based on IF and (modified) nIFs, the removal of dXref /dt helps minimize the errors due to independent noise, and correct most wrong 

correlation sign (n, r, v, z, ad). Note that for sub-Figs f, g, j, k, we still try to show ∂Xhys(Y)/∂t based on regressions of Xadj and Y, and ∂Xlong(Y)/∂t based on regressions of dX/dt and Y. 
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Figure S17. A single-directional 1D example with a growing negative ∂Xlong(Y)/∂t added to the designed function in Fig. S15, with the estimates based on X and Y time series for ∂Xhys(Y)/∂t 165 

and ∂Y(X)/∂t, and based on dX/dt and Y time series with subsequent integration for the ∂Xlong(Y)/∂t. 
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Figure S18. A single-directional 1D example with a growing negative ∂Xlong(Y)/∂t as in Fig. S17, with ∂Xhys(Y)/∂t estimated based on Xadj and Y time series, ∂Y(X)/∂t estimated based on X 170 

and Yadj time series, and ∂Xlong(Y)/∂t estimated based on dX/dt and Y time series with subsequent integration for the ∂Xlong(Y)/∂t. The comparison between Fig.S17 and Fig.S18 is similar to 

that between Fig.S15 and Fig.S16: the use of Xadj instead of X helps improve the estimates of ∂Xhys(Y)/∂t given by IF and (modified) nIFs. On the other hands, although the ∂X(Y)/∂t given 

by regressions (e, i) may also reasonably reflect the designed trends, the oscillation of its estimated ∂Xhys(Y)/∂t component (f,j) is milder than the designed trends (b). 
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Figure S19. A single-directional 1D example with extended designed functions from Fig. S16-S17 by a coupled ∂Y(X)/∂t contribution, with the estimates based on X and Y time series for 

∂Xhys(Y)/∂t and ∂Y(X)/∂t, and based on dX/dt and Y time series with subsequent integration for the ∂Xlong(Y)/∂t. 
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Figure S20. A single-directional 1D example with designed functions as in Fig.S19, with ∂Xhys(Y)/∂t estimated based on Xadj and Y time series, ∂Y(X)/∂t estimated based on X and Yadj time 180 

series, and ∂Xlong(Y)/∂t estimated based on dX/dt and Y time series with subsequent integration for the ∂Xlong(Y)/∂t. The comparison between Fig.S19 and Fig.S20 is similar to that between 

Fig.S17 and Fig.S18: the use of Xadj instead of X helps improve the estimates of ∂Xhys(Y)/∂t given by IF and (modified) nIFs but not that given by regressions. Nevertheless, the use of Yadj 

instead of Y deteriorates the estimates of ∂Y(X)/∂t.  
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Figure S21. A single-directional 1D example with designed functions as in Fig.S19 and S20. However, the ∂Xlong(Y)/∂t is estimated based on X and integral of Y followed by multiplication 

to the Y (instead of estimates of multipliers based on dX/dt and Y, followed by multiplication of dY/dt and subsequent integration, i.e. equation 20, adopted for Figs.S17-S20). This alternate 

approach appears to improve the ∂X(Y)/∂t by regressions (e, i) but such improvement is not via improving the estimates of individual subcomponents (f, g, j, k). On the other hands, the 

∂Xlong(Y)/∂t estimated by IF and (modified) nIFs appear highly fluctuating (o, s, w, aa, ae, note that the calibration factors were kept as in Fig. S20). The correlation sign may also be 

influenced by the sign of ∂Xhys(Y)/∂t (e.g. at time < 300 the blue line in each subfigure becomes positive, and similarly, the red and orange lines are positive at time <100). 190 


