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Abstract. Numerous plant hydrodynamic models have started to be implemented in vegetation
dynamics models, reflecting the central role of plant hydraulic traits in driving water, energy and
carbon eyelecycles, as well as plant adaptation to climate change. Different numerical
approximations of the governing equations of the hydrodynamic models have been documented,
but the numerical accuracy of these models and its subsequent effects on the simulated
vegetation function and dynamics have rarely been evaluated. Using different numerical solution
methods (including implicit and explicit approaches) and vertical discrete grid resolutions, we
evaluated the numerical performance of a plant hydrodynamic module in the Functionally
Assembled Terrestrial Ecosystem Simulator (FATES-HYDRO version 0.1) based on single point
and global simulations. Our simulation results showed that when near-surface vertical grid
spacing is coarsened (grid size > 10 cm), the model significantly overestimates above ground
biomass (AGB) in most of the temperate forest locations, and underestimates AGB in the boreal
forest locations, as compared to a simulation with finer vertical grid spacing. Grid coarsening has
a small effect on AGB in the tropical zones of Asia and South America. In particular, coarse
surface grid resolution should not be used when there are large and prolonged water content
differeneedifferences among soil layers at depths due to long dry season duration and/or well-
drained soil, or when soil evaporation is a dominant fraction of evapotranspiration. Similarly,
coarse surface grid resolution should not be used when there is lithologic discontinuity along the
soil depth. This information is useful for uncertainty quantification, sensitivity analysis, or
training surrogate models to design the simulations when computational cost limits the use of

ensemble simulations.
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1 Introduction

Vegetation plays a central role in water, energy and carbon eyelecycles [4Arora, 2002; Gerten
et al., 2004; Levis et al., 2000] through the bidirectional interactions between climate and
terrestrial biota. Stomatal conductance is one of plants’ physiological properties that form the
basis of evapotranspiration parameterizations in physically based hydrological models [4rora,
2002] and Earth system models (ESMs). Soil moisture plays a vital role in regulating stomatal
conductance and plant water status [4nav et al., 2018; Buckley, 2019]. How ESMs represent soil
moisture regulation on stomatal conductance thus has important implications for the partitioning
of evapotranspiration into evaporation and transpiration, the soil moisture profiles that influence
soil hydrological processes, and plant growth and vegetation dynamics as well as the accurate

simulation of land-atmosphere energy and water fluxes.

Most ESMs use non-mechanistic soil moisture stress parameterizations that relate a metric of
soil moisture status to attenuation of stomatal conductance in response to declining soil water
under drying conditions, ignoring vegetation water use strategies [Kennedy et al., 2019]. The
ESM community has worked to replace such empirical water stress parameterizations with more
realistic mechanistic plant hydrodynamic representations. Water transport in the soil-plant-
atmosphere continuum is often represented using a Richard’s type equation in the mixed-form or
potential-based form, which has been commonly used to describe fluid flow in partially saturated
porous media [Celia et al., 1990; Lehmann and Ackerer, 1998]. In the mixed-form the equation
is written using both water potential and water content as the dependent variables, while the
equation is written using water potential as the dependent variable in potential-based form.
Hydrodynamic representations are nonlinear problems, because xylem hydraulic
conductivity (Ks) and plant water storage vary nonlinearly with water potential in each organ in

the model, so they are typically solved numerically.

Different numerical approaches, with various degrees of simplifications, have been used in
the literature to solve the equations in the plant hydrodynamic models. Hydraulic models that
consider water storage in the simulated plant organs may use numerical techniques that feature
non-iterative (e.g., explicit time integration) or iterative approaches (e.g., Newton’s method for
nonlinear problems). Examples of models using non-iterative solution approach are the

Soil Plant Atmosphere (SPA) model [Williams et al., 1996], a dynamic water flow and storage
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model called HydGro [Steppe et al., 2006], the trait forest simulator (TFS) [Christoffersen et al.,
2016], ED2-hydro [Xu et al., 2016], and Noah-MP-PHS [Li et al., 2021]. Models that use
iterative solutions include FETCH2 [Mirfenderesgi et al., 2016], the soil plant continuum model
[Sperry et al., 1998; Sperry et al., 2016], and a porous media model for the hydraulic system
[Chuang et al., 2006]. There has however been no systematic evaluation and comparison of their
model performance and their consequential impact on evapotranspiration partitioning, soil

moisture dynamics, and vegetation function and dynamics simulated by the ESMs.

As key differences among different plant hydrodynamic models lie in the numerical
approaches used to solve the plant hydrodynamic equations, we implement several numerical
solution options for the hydrodynamic problems in the same model to facilitate comparison. The
model used here is the plant hydrodynamic model in the Functionally Assembled Terrestrial
Ecosystem Simulator (FATES-HYDRO version 0.1) for illustrations. We compare the model
performance of the various options and their impacts on simulating evapotranspiration
partitioning, soil moisture dynamics, and vegetation dynamics. Our focus is on two aspects of the
numerical solutions: vertical grid aggregation of the soil column and use of explicit vs. implicit
solvers of the hydrodynamics equations, as they have implications for the accuracy and

computational efficiency of the numerical solvers.
2  Model description
2.1 Functionally Assembled Terrestrial Ecosystem Simulator (FATES)

FATES is a vegetation demographic model, which uses the Ecosystem Demography (ED)
[Moorcroft et al., 2001] and Perfect Plasticity Approximations (PPA) [Purves et al., 2008] to
scale from cohorts of individual plants of different plant functional types growing within a
mosaic of patches with different disturbance histories to the land surface [Fisher et al., 2018;
Koven et al., 2020]. FATES has been coupled to the Energy Exascale Earth System Model
(E3SM) Land Model (ELM) [EaichvellGolaz et al., 2019; Leung et al., 2020], which we use
here. Processes that are simulated in FATES include physiological processes on 30 min time
steps, which include photosynthesis, respiration, and radiative transfer, as well as land-surface
energy balance and all plant-soil hydrologic calculations coordinated with the land-surface

model. At daily timescale, FATES handles plant growth, mortality, and disturbances. More
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details of FATES can be found in Fisher et al. [2015] and Koven et al. [2020], as well as in the

online documentation https://fates-docs.readthedocs.io/en/latest/fates_tech_note.html.

The Energy Exascale Earth System Model (E3SM) is an Earth system model containing
components for atmosphere, land, ocean, sea ice, and river [EatcdhvellGolaz et al., 2019; Leung et
al., 2020]. The land model in E3SM, referred to as ELM, was based on the Community Land
Model version 4.5 (CLM4.5) [Oleson et al., 2013]. The E3SM land model for this study is
similar to the Community Land Model version 4.5 [Oleson et al., 2013] except for some
biogeochemistry components [Ricciuto et al. 2018; Burrows et al., 2020] and a one-dimensional
variably saturated subsurface flow model [Bisht et al., 2018], which were not turned on in this
study. In ELM, the soil hydraulic properties are assumed to be a function of sand and clay
contents based on the work by Clapp and Hornberger [1978] and Cosby et al. [1984], and soil
organic properties [Lawrence and Slater 2008]. The bulk hydraulic properties are weighted
averages of the properties of the soil mineral and organic contents, and details can be found in
Oleson et al. [2013]. As described in Oleson et al. [2013], the mineral soil texture dataset for
each soil layer was created from the International Geosphere-Biosphere Programme (IGBP) soil
dataset (Global Soil Data Task 2000) of 4931 soil mapping units and their sand and clay content
[Bonan et al. 2002]. The majority of the globe soil organic matter data is from ISRICWISE
[Batjes, 2006], and those from the high latitudes come from the 0.25° version of the Northern
Circumpolar Soil Carbon Database [Hugelius et al. 2012]. Both datasets report carbon down to
Im depth and carbon is partitioned across the top seven soil layers as in Lawrence and Slater

[2008].
2.2 FATES-HYDRO

FATES-HYDRO is an extension of the plant hydrodynamic model described in
Christoffersen et al. [2016]. It solves transient water flow from soil to roots, stem and leaf to
meet the transpiration demand. Xylem transport in FATES-HYDRO follows Darcy’s law, which
says that flow rate in the porous media is proportional to the hydraulic gradient and the hydraulic
conductivity. FATES-HYDRO accounts for the plant internal water storage that can buffer the
imbalance of root water uptake and transpiration demand. In discretized approximation, the

transient water mass balance equation along the hydraulic path for each node i can be written as:

A% _vk (1)
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where i is the node number and i at the leaf node is equal to 1, with nodes ordered from top to
bottom and horizontally from the root node to soil node (Fig.1-). Discrete fluxes between the
compartment of interest and a total of k other connected compartments are indexed by j. k is 1
for the leaf node, and it is equal to 2 for compartment other than the transporting root
compartment where k equals the number of soil layers plus 1. p,, is the density of water (kg m?),
Vi is the volume of modeled compartment or node (m?), ¢ is time (s), 8; is water content
(dimensionless), Qi) (kg s™!) is the water mass flux between compartments i and j (positive for

movement towards the leaf).
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The flux over a connection is driven by potential differences between compartments, where g is
acceleration due to gravity (9.81 m s2) and 1; is xylem or soil matric water potential (MPa),
which is calculated based on pressure-volume curve, analogous to the soil water retention curve
in ELM soil hydrology [Christoffersen et al., 2016]; zi is the elevation above (positive) or below
(negative) the ground (m), and K is the conductance (kg Mpa™! s™!) at the boundary between
compartments i and j. K; is calculated as the product of the relative hydraulic conductance i
(dimensionless) and the maximum conductance (kg mPa™!' s!) at the boundary of nodes i. Note
the maximum conductance is a product of the conduit cross-section and the material

conductivity. Relative conductance or fraction of maximum conductance, 4, is calculated by the

vulnerability curve using an inverse polynomial function [Manzoni et al., 2013] in plant

compartment as follows:

P PR i 2
EINN RIA vy iy =)
-1
Py \™ ()
k.. =11
" | +<P50,i> l



Pso is the water potential leading to 50% loss of hydraulic conductivity, ai is a shape index
(dimensionless). The water stress function is usually empirically represented in land models as a
function of soil water matric potential, but here is replaced by an empirical function of leaf water

potential to include the hydraulic impacts on stomatal conductance [ Christofferson et al. 2016]:
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where B is a water stress fractions-, 1; is the leaf water potential (MPa), Psogs is the leaf water
potential Y; (MPa) at 50% stomatal closure, and ags 1s the shape parameter (dimensionless).

B _modifies the top of canopy leaf photosynthetic capacity and the Ball-Berry leaf stomatal

150  conductance as shown in Egs. 5 and 6 below:
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where Ve,max is the maximum rate of carboxylation (umol CO; m™ s™!), g5 is the leaf stomal

conductance (umol m? s!), m is a plant functional type dependent parameter, 4, is leaf net

photosynthesis (umol CO2; m2 s™"), Cy is the leaf surface CO» partial pressure (Pa), Pam is the

155  atmospheric pressure (Pa), A; is the leaf surface humidity, and b is the minimum stomatal

conductance (umol m~ s'!), A is the stress factor defined by Eq. 4.

Hydraulic failure induced mortality will be triggered when the plant fractional loss of

conductivity (fi) reaches a threshold (fi,:, default is 0.5):
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where my is the maximum mortality rate (yr'!), fi is the maximum of (/ — k».;) for i in plant

compartments, k- is defined in Eqg. 3.

FATES-HYDRO divides each individual tree into four compartments: leaf, stem,
transporting root (troot), and absorbing root (aroot) as shown in Figure 1. In this study, all
compartments except for the absorbing root are represented by a single node for each in the
discrete approximation of the equation. The absorbing root is discretized into the same number
of nodes as the number of soil layers for soil hydrology in ELM. The soil in each layer is
radially discretized into cylindrical shells representing the rhizosphere around an absorbing root

(Fig. 1)._An example discretization with explicit compartment numbers is shown in Figure S1 in

the Supplement and Eq. 1 for each compartment are listed in the Supplement as well to

demonstrate how each compartment interacts with the others, including the soil-root interaction.

2.3 Numerical solutions

We provide the following options to solve Equation 1, including non-iterative and iterative
approaches. For the non-iterative approach, as the time step in FATES for fast processes is 30
min, we use a sub-stepping time integration, with a sub-time step of 10 min, following the
timestep used in ED2 [Xu et al., 2016]. Nonlinear iterative methods, including the Newton and
Picard schemes, are commonly used to solve Richards’ equation [Albuja and Avila, 2021,
Brenner and Cances, 2017; Caviedes-Voullieme et al., 2013; Celia et al., 1990; Lehmann and
Ackerer, 1998; List and Radu, 2016]. The Picard scheme is a globally convergent method with a
low solution efficiency because of its first-order convergence rate. On the other hand, the
Newton method is only locally convergent, but a converged solution is not always guaranteed. In

this study, we use the Newton method.

We use water content 8 in each compartment as unknowns for the Newton iteration. Coupled
with a backward Euler approximation in time, the residual form of Eq. 1 for each compartment is

defined as
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Superscripts n and m denote time level and iteration number-, Re; is the residual for compartment

1. The correction quantity & of water content 8 at each point from the last iteration is written as

&
6m — 6n+1,m+1 o 9n+1,m _(2)
6™ is the solution of the following matrix equation
AKSY = —TRe] (7)
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where A4 is the Jacobian matrix calculated from the derivative of the non-linear function in Eq. 58

with respect to the unknown water content at each peitcompartment, and each row in Eq. 7s
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Taking compartment i connected to compartments i-/ and i+/ as an example, and expanding the

water flux Q™1™+ in a truncated Taylor series with respect to water content 8 at the expansion

point 82+ _i_a 9" LM we obtain
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do



205

210

215

220

Neglecting the higher order terms, the i row in Eq. 710 becomes
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Equation 710 is solved during each iteration. Convergence of the Newton iteration is achieved
when the maximum residual is less than 10 or when the following inequality is satisfied at all

nodes i:

S T (10)
U{: 12 \1\]/
"<t (15)

where 7 is the specified tolerance/accuracy. If the scheme is not convergent within the specified
maximum number of iterations during a time step, Eq. 1 is explicitly integrated using sub-time

stepping within each time step such that the Courant-Friedrichs-Lewy condition [ Courant et al.,

1928] is below 1.0.

The stack of vertical soil-root interaction layers can be customized by the user to save
computation time or carry out a grid convergence study, where a series of grids are generated
and model computations are performed to analyze the differences among the results with each
grid configuration. In our model configuration, the top soil layer thickness can be as thin as a few

centimeters.

Boundary conditions for the system include transpiration flux through leaves and zero-flux
for the outermost rhizosphere element assuming the rhizosphere shells encompass the whole soil
layer. The rate of water mass change in each soil layer during a time step of FATES-HYDRO is

passed to the land model as a source/sink term to calculate the soil water state for the next time
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step. This rate differs from the transpiration sink as water can be stored or lost in the

compartments.

2.4 Grid aggregation

In the default model setting, there are a total of 10 soil layers. Soil layers are the discrete
vertical interval over which ELM resolves water content. ELM updates water content via
processes of vertical percolation, infiltration, evaporation, and through runoff and drainage of
uppermost and lowermost layers respectively. The water content in each of these layers is
presented as an initial condition to FATES-HYDRO. The grid thickness varies from 1.7 cm at
the top layer to 1.5 m at the bottom layer. The thickness for layers 2, 3, 4, 5 is 2.76 cm, 4.55 cm,
7.5 cm, and 12.3 cm, respectively. To reduce computation time and avoid potential numerical
stability issues caused by the thin layers, the FATES-HYDRO model can be configured such that
several soil layers are aggregated to solve for a fewer number of equations. We define a
“rhizosphere layer” as a discrete vertical interval that may contain one or more discrete soil
layers, over which the water contents and the fluxes in fine-root tissues are resolved. For
simplicity, the depth of the first rhizosphere layer for FATES-HYDRO aligns with the depth of
the last soil layer that’s been aggregated, and the rest of the rhizosphere layer thickness is the
same as those from ELM at the same depth. For example, as shown in Figure 2, if the first 4 soil
layers (s1 to s4) in ELM are aggregated to form the first rhizosphere layer r1 in FATES-
HYDRO, the thickness of r1 is the sum of the thickness of s1 to s4, and the thickness of 2 is the
same as s5, and so on. Total water mass in sl to s4 are assigned to r1. After FATES-HYDRO is
solved, the flux exchange between the root and the rhizosphere for r1 is proportionally assigned
to s1, s2, s3, and s4 weighted by the product of soil layer thickness and hydraulic conductivity of
sl to s4.

3 Simulation Experiments

Global and point-scale simulations were performed to assess the impact of vertical soil layer
aggregation. A 4x5 degree resolution global simulation was run for 100 years with two

rhizosphere grid configurations: 1) no soil layer aggregation, i.e., rhizosphere soil layers in

10
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FATES-HYDRO are the same as ELM soil layers, referred to as Reference case; and 2)

aggregating the top 5 ELM soil layers, referred to as Experiment case. A repeating cycle of a
three-year (2000-2002) atmospheric forcing data from Qian et al. [2006] is used to drive the

model.

Four locations were selected after analyzing the global simulation to further evaluate model
performances using different approaches. For point-scale at selected locations, simulations with
aggregation of 1, 3, 5 and 7 layers were first run using the implicit approach to check for model
differences in AGB. If large differences were found between simulations, extra simulations of
different layer aggregations for some points were run to determine which scheme starts to cause
large difference and the relative computation costs. Each point was also simulated using the

explicit approach for comparison with the implicit approach.

3.1 Global simulation

It takes longer time to solve more equations. The wall clock time for the simulation using no

aggregation (Reference case) is 1.5 times of that for the simulation using 5-layer aggregation-

(Experiment case). The difference in above ground biomass (AGB) using different layer

aggregation strategies varies by regions, regardless of the total number of simulation years (Fig.
3). It took about 20 days using 120 processor cores to complete 100-year simulation for the
simulation without layer aggregation. Model differences with and without soil layer aggregations

were evident during a much earlier simulation year, for example year 15.

We found that when more rhizosphere soil layers near the surface are aggregated, the
medelExperiment case simulates significantly everestimatesmore AGB (negatrvepositive AAGB
in Fig 3b32a) in most of the temperate forest locations and underestimatesless AGB in the boreal
forest locations relative to theReference simulation-which-seiH-ayers-are not-ageregated. Layer
aggregation has only small effects on AGB (< 5%) in tropical zones near Asia and South
America. AAGB follows the same pattern as the differences in ET (AET) (Fig. 3e3b). In general,
regions with large AAGB have small AGB. In the southern hemisphere where AAGB is high, the

annual mean of soil water saturation in the soil layer at the ground surface is generally lower

than that in the soil layer 17 cm (layer 5) below the surface (negative soil water saturation

11
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differences between soil layer 1 and layer 5 (ASlis) in Fig. 3d3c) and the opposite (positive
ASlis) is true in a large fraction of the northern hemisphere. That is, mixing of soil water from
layers of contrasting water saturation when aggregating grids is the main cause of AAGB. Using

diameter growth increment (DDBH) to represent growth, we compared the difference between

the absolute percentage increase of growth and absolute percentage increase of mortality caused

by model differences and found mixed influence of growth and mortality on AGB due to soil

moisture (Fig. 3d), and there are no specific patterns. However, most of the land pixels show soil

moisture has larger impact on growth than mortality. Compared to the percent change of AGB,

the Experiment case has larger effect on ET (Fig. 3e) in the northern hemisphere, but overall

small effect on water use efficiency (WUE) (Fig. 31), which is defined as the ratio of gross

primary productivity (GPP) and ET.

Negative soil water saturation differences ASlis between the shallow and deep soil layers can
be caused by long dry season durations and/or when the soil is well-drained (rapid decrease of
water content with matric potential in the capillary region); regions with large AAGB exhibit low
clay content and/or long duration of dry seasons (Fig. 4). The dry season duration is calculated as
the number of months when evapotranspiration is larger than precipitation. For example, AAGB
is big in the temperate forest regions which exhibit large organic matter density compared to the
deeper soil layers (Fig. 4f), but the soils in those regions mostly have low and relatively
homogeneous clay content (Fig 4c,e). AAGB in Amazon is small because of the high clay

content (> 30%) and short dry season durations.

In the high latitudes, layer aggregation schemes can still cause large difference in AGB even
in places with high clay content and short dry season duration because frozen soil can cause large
water content differences in surface soil layers. Ice in the soil can greatly decrease the hydraulic
conductivity of the soil through a power law form of the ice-impedance factor, leading to nearly
impermeable soil layers [Swenson et al., 2012]. A large fraction of the high latitudes has high
ratios of soil evaporation to evapotranspiration ratio (E/ET) (Fig. 4b). E is determined by the
near surface soil water states, and a large ratio of E/ET can cause significant water content
difference in soil layers. Therefore, the simulated AGB will be significantly changed if the
surface soil is aggregated with the deeper wetter soil. Note that this simulation is not calibrated,

thus the high E/ET ratio at the high latitudes may be overestimated.

12
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3.2 Interpretation of the model difference by machine learning

To confirm the factors such as E/ET ratio and soil property discontinuity along depth are the
driving factors for the model differences when aggregating grids in the global simulations, we
calculated AAGB between the results from the simulation using no layer aggregation and the 5-
layer aggregation, averaged from the last five years of the simulation, and classified the grids
with difference greater than 5% as “Positive Difference” (i.e., more AGB from ne-grid
ageregationthe Experiment case), less than -5% as “Negative Difference™” (i.c., more AGB

from the Reference case), and the rest as “Comparable”. We then constructed a machine learning

model to evaluate the classification skills using the XGBoost classifier from the scikit-learn
package in Python and model explanation using SHapley Additive exPlanations (SHAP) by
providing impact of features on individual predictions [Lundberg and Lee, 2017]. We developed
a model using the following inputs including environmental variables: surface elevation, clay
content in soil layers 1 to 5 (clay 11, clay 12, clay 13, clay 14, and clay 15), clay content
difference between the top 1 and the average of the top 5 layers (dc1c5), organic matter (OM)
density in soil layers 1 to 5 (org 11, org_12, org 13, org_14, and org_15) and the OM density
difference between the top 1 and the average of the top 5 layers (dol10o5), precipitation, and
temperature, and model dependent variables: soil evaporation-to-evapotranspiration ratio (efrac),
dry season duration (mon_dry), soil water sataratienpotential from the top five soil layers near
the ground surface (swl, sw2, sw3, sw4, sw5). Clay content and organic matter density were
selected as features because they determine hydraulic conductivity. Model dependent variables
were selected to understand the physical process drivers of modeled AGB discrepancy. The
machine learning classifier accuracy for the training and test data set are 8785% and 6775%,

respectively (Figure 5). Theughnetso-good-acecordingtoageneralrale There is 37%

improvement over the theoretical baseline of thamb;random guessing, and both training and test

data exhibit consistent feature importance.

SHAP feature importance confirmed some of our previous hypothesis explaining the model
differences. Dry

i } —The top 5-SHAP values for positive model differences in AGB

include dclc5, dolo5, mon_dry, and org_12, while those responsible for negative model

differences 1+ AGB-are dclc5, deteSpreep,swS,andsw2while-theseresponsible for positive
model-differences-are-deleS;swdpreepstemp, org_13. org 14, and org H15. Temperature
13
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becomes important because it affects the presence of soil ice in high latitudes, which affects soil

hydraulic conductivity. Features efraesw3, sw4, dclc5, preepsorg—Hs and elev are important

explaining small model differences in AGB. Because of the dependencies of efrac and mon_dry
on soil moisture and soil hydraulic conductivity (affected by soil texture and ice), it is not
surprising that soil water saturation-in deep soil layer is important explaining the model
differences. The deep soil water status can affect soil wetness in the rhizosphere soil shell when
there is large contrast between the soil water eententpotential simulated by ELM between the top

and deep soil layers.

3.3 Single point simulations

To further understand the effect of soil layer aggregation, we selected a point in the tropical
zone (P1, (10° N, 80° W)), temperate zone (P2, (46° N, 95° W)), polar zone (P3, (66° N, 15° E)),
and equatorial zone (P4, (6° S, 135° E)), respectively from the global simulation and ran a one-
hundred year simulation subjecting to a repeating cycle of a three-year (2000-2002) atmospheric
forcing from Qian et al. [2006] at each selected location (Fig. S+52). Default FATES-HYDRO
parameters are used without modification. Different rhizosphere grid configurations and
numerical schemes were run and compared for each point. The clay content and organic matter
density at each point are listed in Table S1. At P1 to P3 the clay content is around 30%, 36%,
and 21%, respectively, and it varies from 35% to 26% from the top to the bottom of soil at P4.

Organic matter density varies the most with depth at P3.

3.3.1 Aggregation schemes

At the end of the simulation, the fraction of wall clock time of simulations at each point using
3, 5, and 7 layer aggregations are around 0.8, 0.7, and 0.5 times of the that from the simulation

with no layer aggregation.

AGB at point P1 starts to show significant difference (49.3% on average compared to no
aggregation) when only two rhizosphere layers are simulated, i.e., aggregating the top 9 layers
for the surface soil (Fig. 6). For P2, aggregating 5 layers and more can result in more than 12%
of AGB difference compared to no aggregation. The same is true for points P3 and P4, with

larger differences for more layer aggregation. This kind of AGB difference between different
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layer aggregation schemes show up early in the simulation as shown in Figure 7 for the 10-year
simulation comparison. This means one does not need to run the full simulation to test whether
layer aggregation will cause large AGB errors if computation cost is a concern. We found at

these four sites, ET (Fig. S3) and WUE (Fig. S4) are not as significantly affected by layer

agoregations as AGB.

At P1, the largest difference in water content is in February, the driest month, while the
difference is trivial in the other months (Fig. 8). Because the dry season duration is short, and
clay content is relatively homogeneous at P1, aggregating the surface layers at this point does not
cause large difference in AGB. Layers 4 and deeper at P2 and P3 are affected by ice impedance,
creating large difference from the top 3 layers. The water content at P3 is also affected by the
large contrast in organic matter density between the surface layer and deeper soil from layer 4.
At P4, lithologic discontinuity (clay content separation) between the top 3 layers and bottom

layers can cause inaccuracy in soil water content, hence AGB.

Note that the response of AGB to the number of soil layers aggregated is nonlinear because

of the nonlinearity of soil water retention curve and plant vulnerability curve and different layer

soil properties, which will consequentially affect when growth or mortality will be more affected

by the changing soil water status.

3.3.2 Integration Methods

Implicit and explicit integrations of Eq. 1 for points P1 to P4 were run to evaluate model
performance and computation costs. The simulations were performed without layer aggregation
for comparison of the integration schemes. The time step for the explicit integration is 10 min.
There are discrepancies between the two integration approaches at P1, but results show less than
2% AGB difference at the end of the simulation year (Fig. 9). Results at P2 to P4 are almost
identical. However, simulations took more time using the explicit integration approach, with wall
clock times 1.85, 1.31, 1.93, and 1.72 times of that of the implicit integration for P1 to P4,

respectively.

Note that FATES is part of an earth system model, which is expected to predict plant-soil

hydraulic fluxes in innumerable conditions and extremes, over potentially long periods of time.
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The explicit approach is easier to implement than the implicit approach in terms of coding.
However, the explicit approach tends to have stability issue and requires small time steps, while
the implicit approach is stable using large time steps but may require many iterations to converge

to a solution. Fhese-numerical-experiments-with-differentintegrationsechemes-hereWe

acknowledge there are other solvers that have been used effectively in hydraulic simulations

(e.g.. Crank-Nicholson, etc.), but there is often no best solver. The hydraulic solvers in this study

were chosen based on the need to prioritize numerical stability for long simulations, which de-

emphasizes the use of explicit solvers. The numerical experiments with different integration

schemes in this study can serve as benchmark against each other. In the meantime, it shows that

the 10-min time step in ED2 [Xu et al., 2016] is a reasonable time step for these single point
tests, but it is always a good practice to do convergence and stability tests for a specific study.

As a matter of fact, our one-year global simulation for the Reference case using the explicit

integration and 10- min time step can result in more than 10% of AGB difference compared to

the implicit approach.

4 Conclusions

We have implemented multiple numerical schemes in solving plant hydrodynamic equations,
including explicit and implicit iterative integration of Eq. 1, as well as aggregating rhizosphere
soil layers for the considerations of computation cost and numerical difficulties. While not
exhaustive, our results showed that explicit integration using a 10-min time step results in
comparable AGB with the implicit method, but takes longer simulation time. We also found that
care should be taken when configuring soil layering as it can significantly affect AGB results.
Large water content differences among soil layers at depth can occur due to lithologic
discontinuity, long dry season duration, high E/ET ratio, or well-drained soil. Short time
simulation tests can be sufficient to evaluate how model configurations or numerical approaches
will affect the simulated AGB accuracy. The cost and accuracy using alternative grid aggregation
methods (e.g., fewer number of cylindrical shells), and the approach to pass flux from aggregated
layers back to ELM soil layers can be further investigated in the future. The results from our
analysis are useful for uncertainty quantification, sensitivity analysis, or training surrogate
models to design the simulations when computation cost is limiting the selection of ensemble

simulations.
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Code Availability. The FATES-HYDRO code is available at
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Figure 1. Schematic of FATES-hydro, with each box representing a compartment of plant tissue
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Figure 2. Mapping of soil water mass (a) and flux exchange (b) between the soil column in ELM

and the rhizosphere in FATES-HYDRO. s stands for ELM soil layer, r stands for rhizosphere
595 layer, q is flux exchange.
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Figure 3. Average AGB-in-simulation-year H00-{a);medelModel difference resulted from layer

aggregations: percent change of AGB (bExperiment — Reference) (a) and percent change of ET
(e)yandb), average soil water saturation between soil layer 1 and layer 5 in simulation year 100
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with AGB < 0.5 gC m-2. Pixels with symbol % have AAGB less than 5%.

23



Latitude

Latitude

Latitude

(a) AAGB (%)

200
100
50
10
s B
o 2
e L~
-10 5
-50
-100
T T T T T T T —-200 T T T T T T T 0.0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Longitude Longitude
(c) Clay Content (%) . (d) Dry Season Duration "
75 4 <D 9
* 50 8
7
40
g 251 &
3 2 o 5
"’ 4
w0 8- o
o -50 2
=754 -75 4 1
. : : . T : : 1 : : : . : - : 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Longitude Longitude
(e) AClay Content (%) o (f) AOM Density (kg m~—3) 6
75 1 <2 : 6.0 -l 50
50 - 40 40
2.0
i 30
25 w 9 -
0118 01 2 2
00 @
-25 4 o 9 15
-50 10 10
—75 4 -2.0 5
. - - - : - - -4.0 : - . - : - - 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Longitude Longitude

24



(=

(@) AAGB (%) 200
100
50
10
() ()]
k] 5 kel
2 o 2
- -5 -~
g g
-10
=50
-100
T T T T T T T —-200 T T T T T T T
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Longitude Longitude
(c) Clay Content (%) - (d) Dry Season Duration 5
75 9
% 50 8
40 7
() U 254
o he] 6
2 30 2 o 5
q 20 8- ;‘
10 =50 2
-75 3 |
0 5o 100 1% 200 2% %0 3} 0 s 100 1% 200 2% %0 3o
Longitude Longitude
(e) AClay Content (%) o (fl AOM Density (kg m~—3)
{1 6.0 75 b,
4.0 50
2.0
3 10 5 25
2 01 2 0f
S 00 T i
9 o K -25
-1.0 =50 1
-2.0 —-75 4 5
-4.0 0

150 200 250 300 350

Longitude

0 50 100

150 200 250 300 350

Longitude

0 50 100

Figure 4. Model differences resulted from layer aggregations: percent change of AGB between

610 nelayerageregation-andageregating Sayers(Experiment — Reference) (a), and E/ET (b) for
simulation year 100, average clay content in the soil column (¢), and dry season durations
(months) (d), clay content difference (e) and organic matter difference (f) between layer 1 and
the average of the top 5 layers from the surface. The pixels in white on land have values beyond
the limits of the legends, associated with AGB < 0.5 gC m™. Pixels with symbol x have AGB

differences less than 5%.

615

25



(@)

1.0 4

0.9 4

Log Loss

0.7 1
0.6 4

0.5 |

(c)

clay_I1
clay_I2
clay I3
clay_l4
clay_I5
dclc5
dolo5
org_|1
org_I2
org_I3
org_l4
org_I5
precp
temp
elev
efrac
mon_dry
swl
sw2
sw3
swi
SwW5

0.0

XGBoost Log Loss

—— Train
—— Test

20 30 40 50 60

Training Set

EEE Negative Difference
B Comparable
Il Positive Difference

mon_dry

02 03 04 05 06 07

mean(|SHAP values|)

(b) XGBoost Classification Error

—— Train
~—— Test

0.35 1

0.30 4

0.25 4

Classification Error

0.20 1

0.15 A

(d) Test Set

clay_I1
clay_|2
clay I3
clay_l4
clay 15
dclc5
dolo5
org_I1
org_|2
org_|3
org_la
org_I5
precp
temp
elev
efrac

B Negative Difference
B Comparable
I Positive Difference

swl
sw2
sw3
swé
sw5

r T

00 01 02 03 04 05 06 07
mean(|SHAP values|)



620

(a) XGBoost Log Loss (b) XGBoost Classification Error

—— Train —— Train
——— Test — Test
1.0 4
0.35
0.9 [
o
£ 030
" i}
& 08 .5
- ©
o 0.25
S =
0.7 (]
L
(@)
0.20
0.6
0.15 -
0.5
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Iterations Iterations
(c) Training Set (d) Test Set
clay_I1 BEm Negative Difference clay_I1 EEE Negative Difference
C:ay_:g B Comparable c:ay_g mmm Comparable
ggg:m I Positive Difference Elggjm Il Positive Difference
clay 15 clay_I5
dclc5 dclch
dolo5 dolo5
org_I1 org_|1
org |2 org_|2
org_I3 org_|I3
org_l4 org_l4
org_|5 org_|5
precp precp
temp temp |
elev elev
efrac efrac
non_dry mon_dry
swl swl
sw2 sw2
sw3 sw3
swd swé
sw5 sw5
00 01 02 03 04 0.5 0.6 0.0 01 02 0.3 0.4 05 06
mean(|SHAP values|) mean(|SHAP values|)
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logarithmic loss (a), learning curve, classification error (b), feature importance for the training
set (¢), and feature importance for the test set (d)
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Figure 9. Comparison of AGB in the last 10 simulation years at points P1 to P4 with implicit

and explicit integration methods.
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