
Dear Editor, 

We want to express our appreciation of your time and effort handling the peer review of our 
manuscript.  

We thank both reviewers for their positive and constructive comments that help improve the clarity of 
our manuscript. Attached please find our detailed point-by-point response to all reviewers’ comments 
and the marked-up manuscript for the changes we made. 

We look forward to hearing from you. 

 

Sincerely, 

Yilin Fang and Co-authors 



Response to RC1 

We thank Professor Bohrer for the positive comments and suggestions.  

The development of FATES-HYDRO is important and represents an advance in modeling 
capability. 

The study is conducted well, the code is made available through Zenoto, and the analysis is 
clear. 

I have few minor comments that would help improve the comprehension of the results 

Please add explicit vertically resolved formulation of how the soil interacts with the root. As 
is, the description is rather confusing (I could not figure out lines 220-225, or what “The 
stack of vertical soil-root interaction layers” at L190 means). I do not expect all the 
formulation of FATES to be repeated here, but the soil-root water interaction is the key 
physical process studied here, so at least that component of the formulation should be 
detailed to completion. 

We apologize for the confusion. The following figure with explicit compartment numbers is 
used to illustrate how soil interacts with the roots and added in the Supplement. In this 
figure, the roots interact with a total of 10 soil layers. Compartment 1 represents leaf, 2 is 
stem, 3 is transporting root, 4, 10, …, 58 are absorbing roots in soil layer 1, 2, …, and 10, 
respectively. Each soil shell layer is divided into 5 compartments, with the innermost 
compartment (i.e., 5,11,…,59) directly interfacing with the absorbing root in each layer.  

The discretized mass balance equation for each compartment becomes: 

𝜌𝜌𝑤𝑤𝑉𝑉1
𝑑𝑑𝜃𝜃1
𝑑𝑑𝑑𝑑

= 𝑄𝑄1,2 − 𝐸𝐸 , for compartment 1, Q1,2 is positive when flux is towards the atmosphere 

𝜌𝜌𝑤𝑤𝑉𝑉2
𝑑𝑑𝜃𝜃2
𝑑𝑑𝑑𝑑

= 𝑄𝑄2,3 − 𝑄𝑄1,2 , for compartment 2 

𝜌𝜌𝑤𝑤𝑉𝑉3
𝑑𝑑𝜃𝜃3
𝑑𝑑𝑑𝑑

= 𝑄𝑄3,4 + 𝑄𝑄3,10 + 𝑄𝑄3,16 + 𝑄𝑄3,22 + 𝑄𝑄3,28 + 𝑄𝑄3,34 + 𝑄𝑄3,40 + 𝑄𝑄3,46 + 𝑄𝑄3,52 + 𝑄𝑄3,58 − 𝑄𝑄2,3 , for 
compartment 3 

𝜌𝜌𝑤𝑤𝑉𝑉4
𝑑𝑑𝜃𝜃4
𝑑𝑑𝑑𝑑

= 𝑄𝑄4,5 − 𝑄𝑄3,4 , for compartment 4 

𝜌𝜌𝑤𝑤𝑉𝑉5
𝑑𝑑𝜃𝜃5
𝑑𝑑𝑑𝑑

= 𝑄𝑄5,6 − 𝑄𝑄4,5 , for compartment 5 and similarly for compartments 6,7, and 8 

𝜌𝜌𝑤𝑤𝑉𝑉9
𝑑𝑑𝜃𝜃9
𝑑𝑑𝑑𝑑

= −𝑄𝑄8,9 , for compartment 9 

Equation formulations for compartments 10 to 63 in the rest of the soil layers are the same 
as those corresponding compartments of 4 to 9 in the top layer.  



When aggregated, the total number of compartments is reduced by (number of layers 
aggregated -1) x 6. For example, when the top two layers are aggregated, compartments 58 
to 63 disappear, and the sizes of the new compartments 4 to 9 are the combination of the 
old compartments 4 and 10, 5 and 11, and so on. 

 

 

Figure R1. Example discretization of FATES-hydro 

Also, list how betta (water stress factor) enters the transpiration/stomatal conductance 
calculation. 

The stress factor modifies the top of canopy leaf photosynthetic capacity and the Ball-Berry 
leaf stomatal conductance as shown in Eqs. R1 and R2 below: 

 𝑉𝑉𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 (R1) 

 𝑔𝑔𝑠𝑠 = 𝑚𝑚
𝐴𝐴𝑛𝑛

𝐶𝐶𝑠𝑠/𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
ℎ𝑠𝑠 + 𝛽𝛽𝛽𝛽 (R2) 

 

where Vc,max is the maximum rate of carboxylation (µmol CO2 m-2 s-1), gs is the leaf stomatal 
conductance (µmol m-2 s-1), m is a plant functional type dependent parameter, An is leaf net 
photosynthesis (µmol CO2 m-2 s-1), Cs is the leaf surface CO2 partial pressure (Pa), Patm is 
the atmospheric pressure (Pa), hs is the leaf surface humidity, and b is the minimum 



stomatal conductance (µmol m-2 s-1), β is the stress factor defined by Eq. 4 in the 
manuscript. We added the above description in the revision. 

You treated above ground biomass as the only tested indicator of model performance 
differences. I am very curious about other model related predictions, specifically, 
evapotranspiration and water use efficiency. Can you add some analysis of differences 
regarding these? 

Thanks for the suggestion. We compared the model predictions of ET and water use 
efficiency (WUE) for the global simulation (Fig. R2) and single point simulations (Figs R3 
and R4) due to layer aggregations. WUE is defined as the ratio of gross primary productivity 
(GPP) and ET. Compared to AGB, Layer aggregation has more impact on ET in the 
northern hemisphere (Fig. R2e), but the impact on WUE (Fig. R2f) is overall small globally. 

From the single point simulations, the impacts of grid aggregation on ET and WUE (Figs. 
R3 and R4) are small compared to that on AGB in general, and the largest impact is at site 
P3. These comparisons are included in the revision and Supplement. 

 



Figure R2. Model difference resulted from layer aggregations: percent change of AGB 
(Experiment – Reference) (a) and percent change of ET (b), and average soil water 
saturation between soil layer 1 and layer 5 in simulation year 100 (c) for the reference 
simulation, relative change of growth compared to the relative change of mortality (d), 
relative change of ET compare to the relative change of AGB (e), and relative change of 
WUE compared to the relative change of AGB (f).  The pixels in white on land have values 
beyond the limits of the legends, associated with AGB < 0.5 gC m-2. Pixels with symbol × 
have ΔAGB less than 5%.  

 

 

 

Figure R3. Evapotranspiration from single point simulations at selected locations (P1 – P4) 
at year 100 of the simulations. 



 

Figure R4. Annual water use efficiency (WUE) from single point simulations at selected 
locations (P1 – P4) during the last 10 years of the simulations. 

 



Response to RC2 

We thank the reviewer for the constructive comments and suggestions. 

The manuscript investigates how vertical resolution of soil-plant hydraulics and integration 
schemes influence a hydrodynamics-enabled biosphere model, FATES-HYDRO. The study 
conducted simulations by combining different numbers of top soil layers to create a gradient 
of different resolutions. They also use point-level simulations to explore the impacts of 
integration schemes. 

Overall, I think the topic can be useful to the plant hydraulics and ecohydrological modeling 
community although I feel the design, interpretation, and presentation of the study can be 
further improved. 

Thanks for the positive comments. 

First, I think the underlying pathways of AGB changes under different resolutions are still 
elusive to me. Mixing top soil layers will surely influence hydraulic properties (as suggested 
by Fig. 4) but can also change the plant water accessibility right?  

Mixing top soil layers will not change the total root biomass that can access water. 
However, it may change the solution of leaf water potential, thus the stress factor defined by 
Eq. 4 in the manuscript. It also triggers hydraulic failure mortality when a certain threshold of 
loss of conductivity is met. Hydraulic failure mortality begins when plant fractional loss of 
conductivity (ftc) reaches a threshold (ftc,t, default is 0.5): 

                    𝑀𝑀ℎ𝑓𝑓,𝑐𝑐𝑐𝑐ℎ = �
𝑓𝑓𝑡𝑡𝑡𝑡−𝑓𝑓𝑡𝑡𝑡𝑡,𝑡𝑡

1−𝑓𝑓𝑡𝑡𝑡𝑡,𝑡𝑡
𝑚𝑚𝑓𝑓𝑓𝑓    for 𝑓𝑓𝑡𝑡𝑡𝑡 ≥ 𝑓𝑓𝑡𝑡𝑡𝑡,𝑡𝑡

0.0                  for 𝑓𝑓𝑡𝑡𝑡𝑡 < 𝑓𝑓𝑡𝑡𝑡𝑡,𝑡𝑡

                                      (R1) 

where mft is the maximum mortality rate (yr-1), ftc is the maximum of (1 – kr,i) for i in plant 

compartments, kr,i is defined in Eq. 3 in the main text. 

The stress factor modifies the top of canopy leaf photosynthetic capacity and the Ball-Berry 
leaf stomatal conductance as shown in Eqs. R2 and R3 below: 

 𝑉𝑉𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚  (R2) 

 𝑔𝑔𝑠𝑠 = 𝑚𝑚
𝐴𝐴𝑛𝑛

𝐶𝐶𝑠𝑠/𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
ℎ𝑠𝑠 + 𝛽𝛽𝛽𝛽 (R3) 

 

where Vc,max is the maximum rate of carboxylation (µmol CO2 m-2 s-1), gs is the leaf stomatal 
conductance (µmol m-2 s-1), m is a plant functional type dependent parameter, An is leaf net 
photosynthesis (µmol CO2 m-2 s-1), Cs is the leaf surface CO2 partial pressure (Pa), Patm is 
the atmospheric pressure (Pa), hs is the leaf surface humidity, and b is the minimum 
stomatal conductance (µmol m-2 s-1), β is the stress factor defined by Eq. 4 in the 



manuscript. AGB changes due to the above modifications caused by different numerical 
solutions. We added these descriptions in the revision. 

I am not sure how FATES calculate the soil-to-root conductivity but I guess root 
biomass/area matters? How big an effect this can be, especially if the distribution of root 
biomass is exponential? 

Yes, root biomass/area matters for the soil-to-root conductivity. In FATES, soil-to-root 
conductivity is proportional to the root fraction in each layer, i.e., the longer the root in a 
layer, the larger the conductivity. 

Furthermore, does soil moisture influence AGB mainly by influencing growth or mortality, 
which ultimately drives equilibrium biomass? Would be helpful to plot the difference of 
(relative) growth/mortality if they are in the standard output 

Thanks for the suggestions. Using diameter growth increment (DDBH) to represent growth, 
we plotted the difference between the absolute percentage increase of growth and absolute 
percentage increase of mortality and found mixed influence of growth and mortality on AGB 
due to soil moisture (Fig. R1d). There are no specific patterns, but the influence on growth 
is greater than mortality in most pixels. 



 

Figure R1. Model difference resulted from layer aggregations: percent change of AGB 
(Experiment – Reference) (a) and percent change of ET (b), and average soil water 
saturation between soil layer 1 and layer 5 in simulation year 100 (c) for the reference 
simulation, relative change of growth compared to the relative change of mortality (d), 
relative change of ET compare to the relative change of AGB (e), and relative change of 
WUE compared to the relative change of AGB (f).  The pixels in white on land have values 
beyond the limits of the legends, associated with AGB < 0.5 gC m-2. Pixels with symbol × 
have ΔAGB less than 5%.  

 

Second, I am not sure how much I can trust the XGBoost analysis especially since the out-
of-sample accuracy is 67% (just a little different from random...). I guess including some 
variables on plants can help? (for example, average plant hydraulic traits within each grid 
cell?) In addition, using soil water potential rather than soil water might be better when 
looking at biomass differences... 



Thanks for the suggestions. We have 3 classes for this model. The theoretical baseline of 
random guessing for this problem is 38%. Our original model using soil water may not 
appear that satisfactory, but there is 30% improvement over the random guessing. The 
accuracy of the XGBoost model increased to 75% when we used soil water potential 
instead of soil water content to look at biomass differences. We didn’t include plant 
hydraulic traits as they are not standard model output. We replaced the XGBoost model in 
the original submission with the one using soil water potential and made changes in 
description in the revision.  

Third, the AGB responses to the number of soil layers seem to be nonlinear and not 
necessarily monotonic in most of the 4 point-simulation sites (Fig.6). Why would this 
happen? Maybe some analysis of this point-level simulations can shed light upon large 
scale patterns. 

Thanks for the comment. We don’t expect the response of AGB to the number of soil layers 
to be linear because of the nonlinearity of soil water retention curve and plant vulnerability 
curve and different layer soil properties, which will consequentially affect when growth or 
mortality will be more affected by changing soil water status. We added this statement in the 
revision. 

Finally, I find the integration scheme analysis is simplistic and weak. For example, does a 
longer time step with explicit integration is computationally more efficient with a reasonable 
loss of accuracy?  What would be the longest tolerable time step for plant hydraulics? How 
about other integration schemes such as Runge-Kutta?  Such tests do not need to be long, 
I guess a few weeks worth of simulation is good enough so global simulations with different 
integration schemes might be possible. 

Thanks for the suggestion. Because growth is a slow process, we did one-year experiments 
for the global simulation using 10-min and 30-min time steps and found even with the short 
10-min time step, the AGB difference relative to the Reference case with implicit solve can 
be greater than 10% for some pixels as shown in Fig. R2. Note that FATES is part of an 
earth system model, which is expected to predict plant-soil hydraulic fluxes in innumerable 
conditions and extremes, over potentially long periods of time. The hydraulic solvers were 
therefore chosen based on the need to prioritize stability, which de-emphasizes the use of 
explicit solvers.  We acknowledge there are other solvers that have been used effectively in 
hydraulic simulations (e.g., Crank-Nicholson, etc). There is often no best solver, but a 
decision on which solver to use has to be made.  Having different solvers described in this 
study is fairly advanced compared to modeling of hydraulics in other earth system models 
and land models (ED2, etc).  Testing more solver options would be nice, but would require 
incrementally more engineering and would exceed the scope of this manuscript. We added 
the above note in our revision. 



 

Figure R2. Percent increase of AGB using 10-min time step explicit solve  

A few minor comments: 

Line 165-200, this section is not easy to read with many parameters and poorly formatted 
equations, and some typos (e.g. in eq. 8, the higher order term should be o(delta^2) instead 
of 0). Please consider having a full editorial check and improve the readability. 

Thanks for catching the typo. We corrected the typo and carefully reviewed the equations to 
make sure they are correct. We also reformatted the equations to improve readability. 
 
Line 250, negative delta_AGB --> overestimate reads very unintuitive. Please use 
experiment - reference simulations when calculating delta values. 

Thanks for the suggestion. We added case names like “Reference case” and “Experiment 
case” and calculated delta values using Experiment – Reference and made changes 
throughout the manuscript in the revision. 

Line 255, what is soil water saturation? Is it relative soil water? 

Soil water saturation is the volume of water divided by the volume of voids in the soil. 

Figures: 

Fig1 and Fig2 can be combined together since they both talks about vertical soil columns 

Thanks for the suggestion. We leave them as separate figures for the ease of descriptions. 



Fig. 5, what are X axes in panels (a) and (b)? # of trees? 

X axes in panels (a) and (b) are number of iterations or epochs for training. We added the 
label in the revision. 
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Abstract. Numerous plant hydrodynamic models have started to be implemented in vegetation 

dynamics models, reflecting the central role of plant hydraulic traits in driving water, energy and 

carbon cyclecycles, as well as plant adaptation to climate change. Different numerical 10 

approximations of the governing equations of the hydrodynamic models have been documented, 

but the numerical accuracy of these models and its subsequent effects on the simulated 

vegetation function and dynamics have rarely been evaluated. Using different numerical solution 

methods (including implicit and explicit approaches) and vertical discrete grid resolutions, we 

evaluated the numerical performance of a plant hydrodynamic module in the Functionally 15 

Assembled Terrestrial Ecosystem Simulator (FATES-HYDRO version 0.1) based on single point 

and global simulations. Our simulation results showed that when near-surface vertical grid 

spacing is coarsened (grid size > 10 cm), the model significantly overestimates above ground 

biomass (AGB) in most of the temperate forest locations, and underestimates AGB in the boreal 

forest locations, as compared to a simulation with finer vertical grid spacing. Grid coarsening has 20 

a small effect on AGB in the tropical zones of Asia and South America. In particular, coarse 

surface grid resolution should not be used when there are large and prolonged water content 

differencedifferences among soil layers at depths due to long dry season duration and/or well-

drained soil, or when soil evaporation is a dominant fraction of evapotranspiration. Similarly, 

coarse surface grid resolution should not be used when there is lithologic discontinuity along the 25 

soil depth. This information is useful for uncertainty quantification, sensitivity analysis, or 

training surrogate models to design the simulations when computational cost limits the use of 

ensemble simulations. 

  



2 
 

1 Introduction 30 

Vegetation plays a central role in water, energy and carbon cyclecycles [Arora, 2002; Gerten 

et al., 2004; Levis et al., 2000] through the bidirectional interactions between climate and 

terrestrial biota. Stomatal conductance is one of plants’ physiological properties that form the 

basis of evapotranspiration parameterizations in physically based hydrological models [Arora, 

2002] and Earth system models (ESMs). Soil moisture plays a vital role in regulating stomatal 35 

conductance and plant water status [Anav et al., 2018; Buckley, 2019]. How ESMs represent soil 

moisture regulation on stomatal conductance thus has important implications for the partitioning 

of evapotranspiration into evaporation and transpiration, the soil moisture profiles that influence 

soil hydrological processes, and plant growth and vegetation dynamics as well as the accurate 

simulation of land-atmosphere energy and water fluxes. 40 

Most ESMs use non-mechanistic soil moisture stress parameterizations that relate a metric of 

soil moisture status to attenuation of stomatal conductance in response to declining soil water 

under drying conditions, ignoring vegetation water use strategies [Kennedy et al., 2019]. The 

ESM community has worked to replace such empirical water stress parameterizations with more 

realistic mechanistic plant hydrodynamic representations. Water transport in the soil-plant-45 

atmosphere continuum is often represented using a Richard’s type equation in the mixed-form or 

potential-based form, which has been commonly used to describe fluid flow in partially saturated 

porous media [Celia et al., 1990; Lehmann and Ackerer, 1998]. In the mixed-form the equation 

is written using both water potential and water content as the dependent variables, while the 

equation is written using water potential as the dependent variable in potential-based form. 50 

Hydrodynamic representations are nonlinear problems, because xylem hydraulic 

conductivity (Ks) and plant water storage vary nonlinearly with water potential in each organ in 

the model, so they are typically solved numerically. 

Different numerical approaches, with various degrees of simplifications, have been used in 

the literature to solve the equations in the plant hydrodynamic models. Hydraulic models that 55 

consider water storage in the simulated plant organs may use numerical techniques that feature 

non-iterative (e.g., explicit time integration) or iterative approaches (e.g., Newton’s method for 

nonlinear problems). Examples of models using non-iterative solution approach are the 

Soil Plant Atmosphere (SPA) model [Williams et al., 1996], a dynamic water flow and storage 
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model called HydGro [Steppe et al., 2006], the trait forest simulator (TFS) [Christoffersen et al., 60 

2016], ED2-hydro [Xu et al., 2016], and Noah-MP-PHS [Li et al., 2021]. Models that use 

iterative solutions include FETCH2 [Mirfenderesgi et al., 2016], the soil plant continuum model 

[Sperry et al., 1998; Sperry et al., 2016], and a porous media model for the hydraulic system 

[Chuang et al., 2006]. There has however been no systematic evaluation and comparison of their 

model performance and their consequential impact on evapotranspiration partitioning, soil 65 

moisture dynamics, and vegetation function and dynamics simulated by the ESMs.  

As key differences among different plant hydrodynamic models lie in the numerical 

approaches used to solve the plant hydrodynamic equations, we implement several numerical 

solution options for the hydrodynamic problems in the same model to facilitate comparison. The 

model used here is the plant hydrodynamic model in the Functionally Assembled Terrestrial 70 

Ecosystem Simulator (FATES-HYDRO version 0.1) for illustrations. We compare the model 

performance of the various options and their impacts on simulating evapotranspiration 

partitioning, soil moisture dynamics, and vegetation dynamics. Our focus is on two aspects of the 

numerical solutions: vertical grid aggregation of the soil column and use of explicit vs. implicit 

solvers of the hydrodynamics equations, as they have implications for the accuracy and 75 

computational efficiency of the numerical solvers.  

2 Model description 

2.1 Functionally Assembled Terrestrial Ecosystem Simulator (FATES) 

FATES is a vegetation demographic model, which uses the Ecosystem Demography (ED) 

[Moorcroft et al., 2001] and Perfect Plasticity Approximations (PPA) [Purves et al., 2008] to 80 

scale from cohorts of individual plants of different plant functional types growing within a 

mosaic of patches with different disturbance histories to the land surface [Fisher et al., 2018; 

Koven et al., 2020]. FATES has been coupled to the Energy Exascale Earth System Model 

(E3SM) Land Model (ELM) [CaldwellGolaz et al., 2019; Leung et al., 2020], which we use 

here.  Processes that are simulated in FATES include physiological processes on 30 min time 85 

steps, which include photosynthesis, respiration, and radiative transfer, as well as land-surface 

energy balance and all plant-soil hydrologic calculations coordinated with the land-surface 

model. At daily timescale, FATES handles plant growth, mortality, and disturbances. More 
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details of FATES can be found in Fisher et al. [2015] and Koven et al. [2020], as well as in the 

online documentation https://fates-docs.readthedocs.io/en/latest/fates_tech_note.html.  90 

The Energy Exascale Earth System Model (E3SM) is an Earth system model containing 

components for atmosphere, land, ocean, sea ice, and river [CaldwellGolaz et al., 2019; Leung et 

al., 2020]. The land model in E3SM, referred to as ELM, was based on the Community Land 

Model version 4.5 (CLM4.5) [Oleson et al., 2013]. The E3SM land model for this study is 

similar to the Community Land Model version 4.5 [Oleson et al., 2013] except for some 95 

biogeochemistry components [Ricciuto et al. 2018; Burrows et al., 2020] and a one-dimensional 

variably saturated subsurface flow model [Bisht et al., 2018], which were not turned on in this 

study. In ELM, the soil hydraulic properties are assumed to be a function of sand and clay 

contents based on the work by Clapp and Hornberger [1978] and Cosby et al. [1984], and soil 

organic properties [Lawrence and Slater 2008]. The bulk hydraulic properties are weighted 100 

averages of the properties of the soil mineral and organic contents, and details can be found in 

Oleson et al. [2013]. As described in Oleson et al. [2013], the mineral soil texture dataset for 

each soil layer was created from the International Geosphere-Biosphere Programme (IGBP) soil 

dataset (Global Soil Data Task 2000) of 4931 soil mapping units and their sand and clay content 

[Bonan et al. 2002]. The majority of the globe soil organic matter data is from ISRICWISE 105 

[Batjes, 2006], and those from the high latitudes come from the 0.25o version of the Northern 

Circumpolar Soil Carbon Database [Hugelius et al. 2012]. Both datasets report carbon down to 

1m depth and carbon is partitioned across the top seven soil layers as in Lawrence and Slater 

[2008]. 

2.2 FATES-HYDRO 110 

FATES-HYDRO is an extension of the plant hydrodynamic model described in 

Christoffersen et al. [2016]. It solves transient water flow from soil to roots, stem and leaf to 

meet the transpiration demand. Xylem transport in FATES-HYDRO follows Darcy’s law, which 

says that flow rate in the porous media is proportional to the hydraulic gradient and the hydraulic 

conductivity. FATES-HYDRO accounts for the plant internal water storage that can buffer the 115 

imbalance of root water uptake and transpiration demand. In discretized approximation, the 

transient water mass balance equation along the hydraulic path for each node i can be written as: 

                                  𝜌𝜌𝑤𝑤𝑉𝑉𝑖𝑖
𝑑𝑑𝜃𝜃𝑖𝑖
𝑑𝑑𝑑𝑑

= ∑ 𝑄𝑄𝑖𝑖,𝑗𝑗𝑘𝑘
𝑗𝑗=1                                                                    (1) 

https://fates-docs.readthedocs.io/en/latest/fates_tech_note.html
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𝜌𝜌𝑤𝑤𝑉𝑉𝑖𝑖

𝑑𝑑𝜃𝜃𝑖𝑖
𝑑𝑑𝑑𝑑

= � 𝑄𝑄𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗=1
 

(1) 

where i is the node number and i at the leaf node is equal to 1, with nodes ordered from top to 

bottom and horizontally from the root node to soil node (Fig.1 ). Discrete fluxes between the 120 

compartment of interest and a total of k other connected compartments are indexed by j. k is 1 

for the leaf node, and it is equal to 2 for compartment other than the transporting root 

compartment where k equals the number of soil layers plus 1. 𝜌𝜌𝑤𝑤 is the density of water (kg m-3), 

Vi is the volume of modeled compartment or node (m3), t is time (s), 𝜃𝜃𝑖𝑖 is water content 

(dimensionless), Qi,j, (kg s-1) is the water mass flux between compartments i and j (positive for 125 

movement towards the leaf).   

 

                                𝑄𝑄𝑖𝑖,𝑗𝑗 =  −𝐾𝐾𝑖𝑖�𝜌𝜌𝑤𝑤𝑔𝑔�𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗� + (𝜓𝜓𝑖𝑖 − 𝜓𝜓𝑗𝑗)�                                     (2) 

 𝑄𝑄𝑖𝑖,𝑗𝑗 =  −𝐾𝐾𝑖𝑖�𝜌𝜌𝑤𝑤𝑔𝑔�𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗� + (𝜓𝜓𝑖𝑖 − 𝜓𝜓𝑗𝑗)� (2) 

The flux over a connection is driven by potential differences between compartments, where g is 

acceleration due to gravity (9.81 m s-2) and 𝜓𝜓𝑖𝑖 is xylem or soil matric water potential (MPa), 130 

which is calculated based on pressure-volume curve, analogous to the soil water retention curve 

in ELM soil hydrology [Christoffersen et al., 2016]; zi is the elevation above (positive) or below 

(negative) the ground (m), and Ki is the conductance (kg Mpa-1 s-1) at the boundary between 

compartments i and j. Ki is calculated as the product of the relative hydraulic conductance kr,i 

(dimensionless) and the maximum conductance (kg mPa-1 s-1) at the boundary of nodes i. Note 135 

the maximum conductance is a product of the conduit cross-section and the material 

conductivity. Relative conductance or fraction of maximum conductance, kr,i, is calculated by the 

vulnerability curve using an inverse polynomial function [Manzoni et al., 2013] in plant 

compartment as follows: 

                                           𝑘𝑘𝑟𝑟,𝑖𝑖 = �1 + � 𝜓𝜓𝑖𝑖
𝑃𝑃50,𝑖𝑖

�
𝑎𝑎𝑖𝑖
�
−1

                                                          (3) 140 

 
𝑘𝑘𝑟𝑟,𝑖𝑖 = �1 + �

𝜓𝜓𝑖𝑖
𝑃𝑃50,𝑖𝑖

�
𝑎𝑎𝑖𝑖

�
−1

 
(3) 
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P50 is the water potential leading to 50% loss of hydraulic conductivity, ai is a shape index 

(dimensionless). The water stress function is usually empirically represented in land models as a 

function of soil water matric potential, but here is replaced by an empirical function of leaf water 

potential to include the hydraulic impacts on stomatal conductance [Christofferson et al. 2016]: 

                                             𝛽𝛽 = �1 + � 𝜓𝜓𝑙𝑙
𝑃𝑃50,𝑔𝑔𝑔𝑔

�
𝑎𝑎𝑔𝑔𝑔𝑔
�
−1

                                                      (4) 145 

 𝛽𝛽 = �1 + �
𝜓𝜓𝑙𝑙

𝑃𝑃50,𝑔𝑔𝑔𝑔
�
𝑎𝑎𝑔𝑔𝑔𝑔

�
−1

 (4) 

 

where 𝛽𝛽  is a water stress fraction, , 𝜓𝜓𝑙𝑙 is the leaf water potential (MPa), P50,gs is the leaf water 

potential 𝜓𝜓𝑙𝑙 (MPa) at 50% stomatal closure, and ags is the shape parameter (dimensionless). 

𝛽𝛽 modifies the top of canopy leaf photosynthetic capacity and the Ball-Berry leaf stomatal 

conductance as shown in Eqs. 5 and 6 below: 150 

 𝑉𝑉𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 (5) 

 𝑔𝑔𝑠𝑠 = 𝑚𝑚
𝐴𝐴𝑛𝑛

𝐶𝐶𝑠𝑠/𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
ℎ𝑠𝑠 + 𝛽𝛽𝛽𝛽 (6) 

 

where Vc,max is the maximum rate of carboxylation (µmol CO2 m-2 s-1), gs is the leaf stomal 

conductance (µmol m-2 s-1), m is a plant functional type dependent parameter, An is leaf net 

photosynthesis (µmol CO2 m-2 s-1), Cs is the leaf surface CO2 partial pressure (Pa), Patm is the 

atmospheric pressure (Pa), hs is the leaf surface humidity, and b is the minimum stomatal 155 

conductance (µmol m-2 s-1), β is the stress factor defined by Eq. 4. 

Hydraulic failure induced mortality will be triggered when the plant fractional loss of 

conductivity (ftc) reaches a threshold (ftc,t, default is 0.5): 
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 𝑀𝑀ℎ𝑓𝑓,𝑐𝑐𝑐𝑐ℎ = �
𝑓𝑓𝑡𝑡𝑡𝑡 − 𝑓𝑓𝑡𝑡𝑡𝑡,𝑡𝑡

1 − 𝑓𝑓𝑡𝑡𝑡𝑡,𝑡𝑡
𝑚𝑚𝑓𝑓𝑓𝑓    for 𝑓𝑓𝑡𝑡𝑡𝑡 ≥ 𝑓𝑓𝑡𝑡𝑡𝑡,𝑡𝑡

0.0                  for 𝑓𝑓𝑡𝑡𝑡𝑡 < 𝑓𝑓𝑡𝑡𝑡𝑡,𝑡𝑡

 (7) 

 

where mft is the maximum mortality rate (yr-1), ftc is the maximum of (1 – kr,i) for i in plant 160 

compartments, kr,i is defined in Eq. 3. 

FATES-HYDRO divides each individual tree into four compartments: leaf, stem, 

transporting root (troot), and absorbing root (aroot) as shown in Figure 1.  In this study, all 

compartments except for the absorbing root are represented by a single node for each in the 

discrete approximation of the equation. The absorbing root is discretized into the same number 165 

of nodes as the number of soil layers for soil hydrology in ELM.  The soil in each layer is 

radially discretized into cylindrical shells representing the rhizosphere around an absorbing root 

(Fig. 1). An example discretization with explicit compartment numbers is shown in Figure S1 in 

the Supplement and Eq. 1 for each compartment are listed in the Supplement as well to 

demonstrate how each compartment interacts with the others, including the soil-root interaction. 170 

2.3 Numerical solutions  

We provide the following options to solve Equation 1, including non-iterative and iterative 

approaches. For the non-iterative approach, as the time step in FATES for fast processes is 30 

min, we use a sub-stepping time integration, with a sub-time step of 10 min, following the 

timestep used in ED2 [Xu et al., 2016]. Nonlinear iterative methods, including the Newton and 175 

Picard schemes, are commonly used to solve Richards’ equation [Albuja and Avila, 2021; 

Brenner and Cances, 2017; Caviedes-Voullieme et al., 2013; Celia et al., 1990; Lehmann and 

Ackerer, 1998; List and Radu, 2016]. The Picard scheme is a globally convergent method with a 

low solution efficiency because of its first-order convergence rate. On the other hand, the 

Newton method is only locally convergent, but a converged solution is not always guaranteed. In 180 

this study, we use the Newton method.  

We use water content 𝜃𝜃 in each compartment as unknowns for the Newton iteration. Coupled 

with a backward Euler approximation in time, the residual form of Eq. 1 for each compartment is 

defined as 
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                        𝑅𝑅𝑅𝑅𝑖𝑖 = 𝜌𝜌𝑤𝑤𝑉𝑉𝑖𝑖
𝜃𝜃𝑖𝑖
𝑛𝑛+1,𝑚𝑚+1−𝜃𝜃𝑖𝑖

𝑛𝑛

∆𝑡𝑡
− ∑ 𝑄𝑄𝑖𝑖,𝑗𝑗

𝑛𝑛+1,𝑚𝑚+1𝑘𝑘
𝑗𝑗=1                                                 (5) 185 

 𝑅𝑅𝑅𝑅𝑖𝑖 = 𝜌𝜌𝑤𝑤𝑉𝑉𝑖𝑖
𝜃𝜃𝑖𝑖
𝑛𝑛+1,𝑚𝑚+1 − 𝜃𝜃𝑖𝑖𝑛𝑛

∆𝑡𝑡
−� 𝑄𝑄𝑖𝑖,𝑗𝑗

𝑛𝑛+1,𝑚𝑚+1
𝑘𝑘

𝑗𝑗=1
 (8) 

Superscripts n and m denote time level and iteration number., Rei is the residual for compartment 

i. The correction quantity 𝛿𝛿 of water content 𝜃𝜃 at each point from the last iteration is written as 

                                                𝛿𝛿𝑚𝑚 = 𝜃𝜃𝑛𝑛+1,𝑚𝑚+1 − 𝜃𝜃𝑛𝑛+1,𝑚𝑚                                                             (6) 

𝛿𝛿 

 𝛿𝛿𝑚𝑚 = 𝜃𝜃𝑛𝑛+1,𝑚𝑚+1 − 𝜃𝜃𝑛𝑛+1,𝑚𝑚 (9) 

𝛿𝛿𝑚𝑚 is the solution of the following matrix equation 190 

                                                                    [𝐴𝐴]{𝛿𝛿} = −[𝑅𝑅𝑅𝑅]                                                       (7) 

 [𝐴𝐴]{𝛿𝛿} = −[𝑅𝑅𝑅𝑅] (10) 

where A is the Jacobian matrix calculated from the derivative of the non-linear function in Eq. 58 

with respect to the unknown water content at each pointcompartment, and each row in Eq. 7 is 

(𝐴𝐴𝐴𝐴)𝑖𝑖 = ∑ 𝐶𝐶𝑗𝑗𝛿𝛿𝑗𝑗𝑘𝑘
𝑗𝑗=1 ; 𝐶𝐶𝑗𝑗 = 𝜕𝜕𝑅𝑅𝑅𝑅𝑖𝑖

𝜕𝜕𝜃𝜃𝑗𝑗
𝑛𝑛+1,𝑚𝑚 .  10 is 

 (𝐴𝐴𝐴𝐴)𝑖𝑖 = � 𝐶𝐶𝑗𝑗𝛿𝛿𝑗𝑗
𝑘𝑘

𝑗𝑗=1
 (11) 

 𝐶𝐶𝑗𝑗 =
𝜕𝜕𝑅𝑅𝑅𝑅𝑖𝑖

𝜕𝜕𝜃𝜃𝑗𝑗
𝑛𝑛+1,𝑚𝑚 (12) 

 195 

Taking compartment i connected to compartments i-1 and i+1 as an example, and expanding the 

water flux 𝑄𝑄𝑛𝑛+1,𝑚𝑚+1 in a truncated Taylor series with respect to water content 𝜃𝜃 at the expansion 

point 𝜃𝜃𝑛𝑛+1, . 𝑖𝑖. 𝑒𝑒. ,𝜃𝜃𝑛𝑛+1,𝑚𝑚,  we obtain 

          𝑄𝑄𝑛𝑛+1,𝑚𝑚+1 = 𝑄𝑄𝑛𝑛+1,𝑚𝑚 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑛𝑛+1,𝑚𝑚(𝜃𝜃𝑛𝑛+1,𝑚𝑚+1 − 𝜃𝜃𝑛𝑛+1,𝑚𝑚) + 0(𝛿𝛿2)                           (8) 

 𝑄𝑄𝑛𝑛+1,𝑚𝑚+1 = 𝑄𝑄𝑛𝑛+1,𝑚𝑚 +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑛𝑛+1,𝑚𝑚(𝜃𝜃𝑛𝑛+1,𝑚𝑚+1 − 𝜃𝜃𝑛𝑛+1,𝑚𝑚) + 𝑂𝑂(𝛿𝛿2) (13) 

 200 
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Neglecting the higher order terms, the ith row in Eq. 710 becomes 

 

                𝜕𝜕𝑄𝑄𝑖𝑖−1
𝑛𝑛+1,𝑚𝑚

𝜕𝜕𝜃𝜃𝑖𝑖−1
𝑛𝑛+1,𝑚𝑚 𝛿𝛿𝑖𝑖−1𝑚𝑚 + 𝜌𝜌𝑤𝑤𝑉𝑉𝑖𝑖

∆𝑡𝑡
𝛿𝛿𝑖𝑖𝑚𝑚 + 𝜕𝜕𝑄𝑄𝑖𝑖−1

𝑛𝑛+1,𝑚𝑚

𝜕𝜕𝜃𝜃𝑖𝑖
𝑛𝑛+1,𝑚𝑚 𝛿𝛿𝑖𝑖𝑚𝑚 −

𝜕𝜕𝑄𝑄𝑖𝑖
𝑛𝑛+1,𝑚𝑚

𝜕𝜕𝜃𝜃𝑖𝑖
𝑛𝑛+1,𝑚𝑚 𝛿𝛿𝑖𝑖𝑚𝑚 −

𝜕𝜕𝑄𝑄𝑖𝑖
𝑛𝑛+1,𝑚𝑚

𝜕𝜕𝜃𝜃𝑖𝑖+1
𝑛𝑛+1,𝑚𝑚 𝛿𝛿𝑖𝑖+1𝑚𝑚 = 𝑄𝑄𝑖𝑖

𝑛𝑛+1,𝑚𝑚  − 𝑄𝑄𝑖𝑖−1
𝑛𝑛+1,𝑚𝑚 −

𝜌𝜌𝑤𝑤𝑉𝑉𝑖𝑖
𝜃𝜃𝑖𝑖
𝑛𝑛+1,𝑚𝑚−𝜃𝜃𝑖𝑖

𝑛𝑛

∆𝑡𝑡
                 (9) 
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𝜕𝜕𝑄𝑄𝑖𝑖−1

𝑛𝑛+1,𝑚𝑚

𝜕𝜕𝜃𝜃𝑖𝑖−1
𝑛𝑛+1,𝑚𝑚 𝛿𝛿𝑖𝑖−1𝑚𝑚 +

𝜌𝜌𝑤𝑤𝑉𝑉𝑖𝑖
∆𝑡𝑡

𝛿𝛿𝑖𝑖𝑚𝑚 +
𝜕𝜕𝑄𝑄𝑖𝑖−1

𝑛𝑛+1,𝑚𝑚

𝜕𝜕𝜃𝜃𝑖𝑖
𝑛𝑛+1,𝑚𝑚 𝛿𝛿𝑖𝑖𝑚𝑚 −

𝜕𝜕𝑄𝑄𝑖𝑖
𝑛𝑛+1,𝑚𝑚

𝜕𝜕𝜃𝜃𝑖𝑖
𝑛𝑛+1,𝑚𝑚 𝛿𝛿𝑖𝑖𝑚𝑚 −

𝜕𝜕𝑄𝑄𝑖𝑖
𝑛𝑛+1,𝑚𝑚

𝜕𝜕𝜃𝜃𝑖𝑖+1
𝑛𝑛+1,𝑚𝑚 𝛿𝛿𝑖𝑖+1𝑚𝑚

= 𝑄𝑄𝑖𝑖
𝑛𝑛+1,𝑚𝑚  − 𝑄𝑄𝑖𝑖−1

𝑛𝑛+1,𝑚𝑚 − 𝜌𝜌𝑤𝑤𝑉𝑉𝑖𝑖
𝜃𝜃𝑖𝑖
𝑛𝑛+1,𝑚𝑚 − 𝜃𝜃𝑖𝑖𝑛𝑛

∆𝑡𝑡
 

(14) 

Equation 710 is solved during each iteration. Convergence of the Newton iteration is achieved 

when the maximum residual is less than 10-8 or when the following inequality is satisfied at all 

nodes i: 

                                                                     𝛿𝛿𝑖𝑖𝑚𝑚 < 𝜏𝜏                                                          (10) 

 𝛿𝛿𝑖𝑖𝑚𝑚 < 𝜏𝜏 (15) 

 210 

where 𝜏𝜏 is the specified tolerance/accuracy. If the scheme is not convergent within the specified 

maximum number of iterations during a time step, Eq. 1 is explicitly integrated using sub-time 

stepping within each time step such that the Courant-Friedrichs-Lewy condition [Courant et al., 

1928] is below 1.0. 

The stack of vertical soil-root interaction layers can be customized by the user to save 215 

computation time or carry out a grid convergence study, where a series of grids are generated 

and model computations are performed to analyze the differences among the results with each 

grid configuration. In our model configuration, the top soil layer thickness can be as thin as a few 

centimeters. 

Boundary conditions for the system include transpiration flux through leaves and zero-flux 220 

for the outermost rhizosphere element assuming the rhizosphere shells encompass the whole soil 

layer. The rate of water mass change in each soil layer during a time step of FATES-HYDRO is 

passed to the land model as a source/sink term to calculate the soil water state for the next time 

https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition
https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition
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step.  This rate differs from the transpiration sink as water can be stored or lost in the 

compartments. 225 

 

2.4 Grid aggregation 

In the default model setting, there are a total of 10 soil layers. Soil layers are the discrete 

vertical interval over which ELM resolves water content. ELM updates water content via 

processes of vertical percolation, infiltration, evaporation, and through runoff and drainage of 230 

uppermost and lowermost layers respectively.  The water content in each of these layers is 

presented as an initial condition to FATES-HYDRO. The grid thickness varies from 1.7 cm at 

the top layer to 1.5 m at the bottom layer. The thickness for layers 2, 3, 4, 5 is 2.76 cm, 4.55 cm, 

7.5 cm, and 12.3 cm, respectively. To reduce computation time and avoid potential numerical 

stability issues caused by the thin layers, the FATES-HYDRO model can be configured such that 235 

several soil layers are aggregated to solve for a fewer number of equations. We define a 

“rhizosphere layer” as a discrete vertical interval that may contain one or more discrete soil 

layers, over which the water contents and the fluxes in fine-root tissues are resolved.   For 

simplicity, the depth of the first rhizosphere layer for FATES-HYDRO aligns with the depth of 

the last soil layer that’s been aggregated, and the rest of the rhizosphere layer thickness is the 240 

same as those from ELM at the same depth. For example, as shown in Figure 2, if the first 4 soil 

layers (s1 to s4) in ELM are aggregated to form the first rhizosphere layer r1 in FATES-

HYDRO, the thickness of r1 is the sum of the thickness of s1 to s4, and the thickness of r2 is the 

same as s5, and so on. Total water mass in s1 to s4 are assigned to r1. After FATES-HYDRO is 

solved, the flux exchange between the root and the rhizosphere for r1 is proportionally assigned 245 

to s1, s2, s3, and s4 weighted by the product of soil layer thickness and hydraulic conductivity of 

s1 to s4. 

 

3 Simulation Experiments 

Global and point-scale simulations were performed to assess the impact of vertical soil layer 250 

aggregation.  A 4×5 degree resolution global simulation was run for 100 years with two 

rhizosphere grid configurations: 1) no soil layer aggregation, i.e., rhizosphere soil layers in 
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FATES-HYDRO are the same as ELM soil layers, referred to as Reference case; and 2) 

aggregating the top 5 ELM soil layers, referred to as Experiment case. A repeating cycle of a 

three-year (2000-2002) atmospheric forcing data from Qian et al. [2006] is used to drive the 255 

model. 

Four locations were selected after analyzing the global simulation to further evaluate model 

performances using different approaches.  For point-scale at selected locations, simulations with 

aggregation of 1, 3, 5 and 7 layers were first run using the implicit approach to check for model 

differences in AGB. If large differences were found between simulations, extra simulations of 260 

different layer aggregations for some points were run to determine which scheme starts to cause 

large difference and the relative computation costs. Each point was also simulated using the 

explicit approach for comparison with the implicit approach. 

  

3.1 Global simulation 265 

It takes longer time to solve more equations. The wall clock time for the simulation using no 

aggregation (Reference case) is 1.5 times of that for the simulation using 5-layer aggregation. 

(Experiment case). The difference in above ground biomass (AGB) using different layer 

aggregation strategies varies by regions, regardless of the total number of simulation years (Fig. 

3). It took about 20 days using 120 processor cores to complete 100-year simulation for the 270 

simulation without layer aggregation. Model differences with and without soil layer aggregations 

were evident during a much earlier simulation year, for example year 15.  

We found that when more rhizosphere soil layers near the surface are aggregated, the 

modelExperiment case simulates significantly overestimatesmore  AGB (negativepositive ΔAGB 

in Fig 3b3a) in most of the temperate forest locations and underestimatesless AGB in the boreal 275 

forest locations relative to theReference simulation in which soil layers are not aggregated. Layer 

aggregation has only small effects on AGB (< 5%) in tropical zones near Asia and South 

America. ΔAGB follows the same pattern as the differences in ET (ΔET) (Fig. 3c3b). In general, 

regions with large ΔAGB have small AGB. In the southern hemisphere where ΔAGB is high, the 

annual mean of soil water saturation in the soil layer at the ground surface is generally lower 280 

than that in the soil layer 17 cm (layer 5) below the surface (negative soil water saturation 
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differences between soil layer 1 and layer 5 (ΔSl15) in Fig. 3d3c) and the opposite (positive 

ΔSl15) is true in a large fraction of the northern hemisphere. That is, mixing of soil water from 

layers of contrasting water saturation when aggregating grids is the main cause of ΔAGB. Using 

diameter growth increment (DDBH) to represent growth, we compared the difference between 285 

the absolute percentage increase of growth and absolute percentage increase of mortality caused 

by model differences and found mixed influence of growth and mortality on AGB due to soil 

moisture (Fig. 3d), and there are no specific patterns. However, most of the land pixels show soil 

moisture has larger impact on growth than mortality. Compared to the percent change of AGB, 

the Experiment case has larger effect on ET (Fig. 3e) in the northern hemisphere, but overall 290 

small effect on water use efficiency (WUE) (Fig. 3f), which is defined as the ratio of gross 

primary productivity (GPP) and ET. 

Negative soil water saturation differences ΔSl15 between the shallow and deep soil layers can 

be caused by long dry season durations and/or when the soil is well-drained (rapid decrease of 

water content with matric potential in the capillary region); regions with large ΔAGB exhibit low 295 

clay content and/or long duration of dry seasons (Fig. 4). The dry season duration is calculated as 

the number of months when evapotranspiration is larger than precipitation. For example, ΔAGB 

is big in the temperate forest regions which exhibit large organic matter density compared to the 

deeper soil layers (Fig. 4f), but the soils in those regions mostly have low and relatively 

homogeneous clay content (Fig 4c,e). ΔAGB in Amazon is small because of the high clay 300 

content (> 30%) and short dry season durations.  

In the high latitudes, layer aggregation schemes can still cause large difference in AGB even 

in places with high clay content and short dry season duration because frozen soil can cause large 

water content differences in surface soil layers.  Ice in the soil can greatly decrease the hydraulic 

conductivity of the soil through a power law form of the ice-impedance factor, leading to nearly 305 

impermeable soil layers [Swenson et al., 2012]. A large fraction of the high latitudes has high 

ratios of soil evaporation to evapotranspiration ratio (E/ET) (Fig. 4b). E is determined by the 

near surface soil water states, and a large ratio of E/ET can cause significant water content 

difference in soil layers. Therefore, the simulated AGB will be significantly changed if the 

surface soil is aggregated with the deeper wetter soil. Note that this simulation is not calibrated, 310 

thus the high E/ET ratio at the high latitudes may be overestimated. 

  



13 
 

3.2 Interpretation of the model difference by machine learning 

To confirm the factors such as E/ET ratio and soil property discontinuity along depth are the 

driving factors for the model differences when aggregating grids in the global simulations, we 315 

calculated ΔAGB between the results from the simulation using no layer aggregation and the 5-

layer aggregation, averaged from the last five years of the simulation, and classified the grids 

with difference greater than 5% as “Positive Difference” (i.e., more AGB from no grid 

aggregationthe Experiment case), less than -5% as “Negative Difference”,” (i.e., more AGB 

from the Reference case), and the rest as “Comparable”. We then constructed a machine learning 320 

model to evaluate the classification skills using the XGBoost classifier from the scikit-learn 

package in Python and model explanation using SHapley Additive exPlanations (SHAP) by 

providing impact of features on individual predictions [Lundberg and Lee, 2017]. We developed 

a model using the following inputs including environmental variables: surface elevation, clay 

content in soil layers 1 to 5 (clay_l1, clay_l2, clay_l3, clay_l4, and clay_l5), clay content 325 

difference between the top 1 and the average of the top 5 layers (dc1c5), organic matter (OM) 

density in soil layers 1 to 5 (org_l1, org_l2, org_l3, org_l4, and org_l5) and the OM density 

difference between the top 1 and the average of the top 5 layers (do1o5), precipitation, and 

temperature, and model dependent variables: soil evaporation-to-evapotranspiration ratio (efrac), 

dry season duration (mon_dry), soil water saturationpotential from the top five soil layers near 330 

the ground surface (sw1, sw2, sw3, sw4, sw5). Clay content and organic matter density were 

selected as features because they determine hydraulic conductivity. Model dependent variables 

were selected to understand the physical process drivers of modeled AGB discrepancy. The 

machine learning classifier accuracy for the training and test data set are 8785% and 6775%, 

respectively (Figure 5). Though not so good according to a general rule There is 37% 335 

improvement over the theoretical baseline of thumb,random guessing, and both training and test 

data exhibit consistent feature importance.  

SHAP feature importance confirmed some of our previous hypothesis explaining the model 

differences. Dry season duration (feature mon_dry) has relatively small importance in explaining 

the negative model difference. The top 5 SHAP values for positive model differences in AGB 340 

include dc1c5, do1o5, mon_dry, and org_l2, while those responsible for negative model 

differences in AGB are dc1c5, do1o5, precp, sw5, and sw2, while those responsible for positive 

model differences are dc1c5, sw4, precp, temp, org_l3, org_l4, and org_l1l5. Temperature 
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becomes important because it affects the presence of soil ice in high latitudes, which affects soil 

hydraulic conductivity. Features efracsw3, sw4, dc1c5, precp, org_l1, and elev are important 345 

explaining small model differences in AGB.  Because of the dependencies of efrac and mon_dry 

on soil moisture and soil hydraulic conductivity (affected by soil texture and ice), it is not 

surprising that soil water saturation in deep soil layer is important explaining the model 

differences. The deep soil water status can affect soil wetness in the rhizosphere soil shell when 

there is large contrast between the soil water contentpotential simulated by ELM between the top 350 

and deep soil layers. 

 

3.3 Single point simulations 

To further understand the effect of soil layer aggregation, we selected a point in the tropical 

zone (P1, (10o N, 80o W)), temperate zone (P2, (46o N, 95o W)), polar zone (P3, (66o N, 15o E)), 355 

and equatorial zone (P4, (6o S, 135o E)), respectively from the global simulation and ran a one-

hundred year simulation subjecting to a repeating cycle of a three-year (2000-2002) atmospheric 

forcing from Qian et al. [2006] at each selected location (Fig. S1S2). Default FATES-HYDRO 

parameters are used without modification. Different rhizosphere grid configurations and 

numerical schemes were run and compared for each point. The clay content and organic matter 360 

density at each point are listed in Table S1. At P1 to P3 the clay content is around 30%, 36%, 

and 21%, respectively, and it varies from 35% to 26% from the top to the bottom of soil at P4. 

Organic matter density varies the most with depth at P3. 

 

3.3.1 Aggregation schemes 365 

At the end of the simulation, the fraction of wall clock time of simulations at each point using 

3, 5, and 7 layer aggregations are around 0.8, 0.7, and 0.5 times of the that from the simulation 

with no layer aggregation. 

AGB at point P1 starts to show significant difference (49.3% on average compared to no 

aggregation) when only two rhizosphere layers are simulated, i.e., aggregating the top 9 layers 370 

for the surface soil (Fig. 6). For P2, aggregating 5 layers and more can result in more than 12% 

of AGB difference compared to no aggregation. The same is true for points P3 and P4, with 

larger differences for more layer aggregation. This kind of AGB difference between different 
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layer aggregation schemes show up early in the simulation as shown in Figure 7 for the 10-year 

simulation comparison. This means one does not need to run the full simulation to test whether 375 

layer aggregation will cause large AGB errors if computation cost is a concern. We found at 

these four sites, ET (Fig. S3) and WUE (Fig. S4) are not as significantly affected by layer 

aggregations as AGB.  

 

At P1, the largest difference in water content is in February, the driest month, while the 380 

difference is trivial in the other months (Fig. 8). Because the dry season duration is short, and 

clay content is relatively homogeneous at P1, aggregating the surface layers at this point does not 

cause large difference in AGB. Layers 4 and deeper at P2 and P3 are affected by ice impedance, 

creating large difference from the top 3 layers. The water content at P3 is also affected by the 

large contrast in organic matter density between the surface layer and deeper soil from layer 4. 385 

At P4, lithologic discontinuity (clay content separation) between the top 3 layers and bottom 

layers can cause inaccuracy in soil water content, hence AGB. 

Note that the response of AGB to the number of soil layers aggregated is nonlinear because 

of the nonlinearity of soil water retention curve and plant vulnerability curve and different layer 

soil properties, which will consequentially affect when growth or mortality will be more affected 390 

by the changing soil water status. 

 

3.3.2 Integration Methods 

Implicit and explicit integrations of Eq. 1 for points P1 to P4 were run to evaluate model 

performance and computation costs. The simulations were performed without layer aggregation 395 

for comparison of the integration schemes. The time step for the explicit integration is 10 min. 

There are discrepancies between the two integration approaches at P1, but results show less than 

2% AGB difference at the end of the simulation year (Fig. 9). Results at P2 to P4 are almost 

identical. However, simulations took more time using the explicit integration approach, with wall 

clock times 1.85, 1.31, 1.93, and 1.72 times of that of the implicit integration for P1 to P4, 400 

respectively. 

Note that FATES is part of an earth system model, which is expected to predict plant-soil 

hydraulic fluxes in innumerable conditions and extremes, over potentially long periods of time. 
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The explicit approach is easier to implement than the implicit approach in terms of coding. 

However, the explicit approach tends to have stability issue and requires small time steps, while 405 

the implicit approach is stable using large time steps but may require many iterations to converge 

to a solution.  These numerical experiments with different integration schemes hereWe 

acknowledge there are other solvers that have been used effectively in hydraulic simulations 

(e.g., Crank-Nicholson, etc.), but there is often no best solver. The hydraulic solvers in this study 

were chosen based on the need to prioritize numerical stability for long simulations, which de-410 

emphasizes the use of explicit solvers.  The numerical experiments with different integration 

schemes in this study can serve as benchmark against each other. In the meantime, it shows that 

the 10-min time step in ED2 [Xu et al., 2016] is a reasonable time step for these single point 

tests, but it is always a good practice to do convergence and stability tests for a specific study.  

As a matter of fact, our one-year global simulation for the Reference case using the explicit 415 

integration and 10- min time step can result in more than 10% of AGB difference compared to 

the implicit approach. 

4 Conclusions 

We have implemented multiple numerical schemes in solving plant hydrodynamic equations, 

including explicit and implicit iterative integration of Eq. 1, as well as aggregating rhizosphere 420 

soil layers for the considerations of computation cost and numerical difficulties. While not 

exhaustive, our results showed that explicit integration using a 10-min time step results in 

comparable AGB with the implicit method, but takes longer simulation time. We also found that 

care should be taken when configuring soil layering as it can significantly affect AGB results. 

Large water content differences among soil layers at depth can occur due to lithologic 425 

discontinuity, long dry season duration, high E/ET ratio, or well-drained soil. Short time 

simulation tests can be sufficient to evaluate how model configurations or numerical approaches 

will affect the simulated AGB accuracy. The cost and accuracy using alternative grid aggregation 

methods (e.g., fewer number of cylindrical shells), and the approach to pass flux from aggregated 

layers back to ELM soil layers can be further investigated in the future. The results from our 430 

analysis are useful for uncertainty quantification, sensitivity analysis, or training surrogate 

models to design the simulations when computation cost is limiting the selection of ensemble 

simulations.  
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Figure 1. Schematic of FATES-hydro, with each box representing a compartment of plant tissue 
or soil rhizosphere. 
 
 590 
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Figure 2. Mapping of soil water mass (a) and flux exchange (b) between the soil column in ELM 
and the rhizosphere in FATES-HYDRO. s stands for ELM soil layer, r stands for rhizosphere 
layer, q is flux exchange. 595 
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Figure 3. Average AGB in simulation year 100 (a), modelModel difference resulted from layer 
aggregations: percent change of AGB (bExperiment – Reference) (a) and percent change of ET 600 
(c), andb), average soil water saturation between soil layer 1 and layer 5 in simulation year 100 
(d) without layer aggregation,c) for the Reference simulation, relative change of growth 
compared to the relative change of mortality (d), relative change of ET compared to the relative 
change of AGB (e), and relative change of WUE compared to the relative change of AGB (f).  
The pixels in white on land in (b,c,d) have values beyond the limits of the legends, associated 605 
with AGB < 0.5 gC m-2. Pixels with symbol × have ΔAGB less than 5%.  
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Figure 4. Model differences resulted from layer aggregations: percent change of AGB between 
no layer aggregation and aggregating 5 layers(Experiment – Reference) (a), and E/ET (b) for 610 
simulation year 100, average clay content in the soil column (c), and dry season durations 
(months) (d), clay content difference (e) and organic matter difference (f) between layer 1 and 
the average of the top 5 layers from the surface. The pixels in white on land have values beyond 
the limits of the legends, associated with AGB < 0.5 gC m-2. Pixels with symbol × have AGB 
differences less than 5%. 615 
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Figure 5. XGBoost model evaluation using selected conditions as predictors: learning curve, 620 
logarithmic loss (a), learning curve, classification error (b), feature importance for the training 
set (c), and feature importance for the test set (d) 
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Figure 6. AGB from single point simulations at selected locations (P1 – P4) at year 100 of the 
simulations. 625 
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Figure 7. AGB from single point simulations at each selected location (P1 – P4) at year 10 of the 
simulations. 
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 630 

Figure 8. Volumetric water content (VWC) at selected points for single point simulations at 100 
year of the simulation with no layer aggregation 
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Figure 9. Comparison of AGB in the last 10 simulation years at points P1 to P4 with implicit 
and explicit integration methods. 635 
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