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Abstract. Air pollution is a major sustainability challenge – and future anthropogenic precursor and greenhouse gas 

emissions will greatly affect human well-being. While mitigating climate change can reduce air pollution both directly 15 

and indirectly, distinct policy levers can affect these two interconnected sustainability issues across a wide range of 

scenarios. We help to assess such issues by presenting a public Tool for Air Pollution Scenarios (TAPS) that can 

flexibly assess pollutant emissions from a variety of climate and air quality actions, through the tool’s coupling with 

socioeconomic modeling of climate change mitigation. In this study, we develop and implement TAPS with three 

components: recent global and fuel-specific anthropogenic emissions inventories, scenarios of emitting activities to 20 

2100 from the MIT Economic Projection and Policy Analysis model (EPPA), and emissions intensity trends based on 

recent scenario data from the Greenhouse Gas – Air Pollution Interactions and Synergies (GAINS) model. An initial 

application shows that in scenarios with less climate and pollution policy ambition, near-term air quality improvements 

from existing policies are eclipsed by long-term emissions increases – particularly from industrial processes that 

combine sharp production growth with less stringent pollution controls in developing regions. Additional climate 25 

actions would substantially reduce fossil fuel related air pollutant emissions (such as sulfur and nitrogen oxides), while 

further pollution controls would lead to larger reductions for ammonia and organic carbon. Future TAPS applications 

could explore diverse regional and global policies that affect these emissions, using pollutant emissions results to drive 

global atmospheric chemical transport models to study the scenarios’ health impacts. 

  30 
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1 Introduction 

Air pollution is an urgent global health threat, with similar sources to the greenhouse gas (GHG) emissions that drive 

climate change (Murray and GBD 2019 Risk Factors Collaborators, 2020). Fine particulate matter (PM2.5) from fossil 

fuels and other human sources may have caused millions of premature deaths in recent years (McDuffie et al., 2021; 

Lelieveld et al., 2019) – while ground-level ozone can increase mortality risk, exacerbate crop loss, and worsen 35 

socioeconomic disparities (Saari et al., 2017; Turner et al., 2016; Sampedro et al., 2020a). Projecting these impacts 

requires future scenarios for those air pollutants’ precursor emissions – but more flexible and accessible tools are 

needed to elucidate the interdependent but distinct effects of economic, climate, and pollution policy on air quality 

and human health.  

 40 

Many research efforts focus on the health “co-benefits” of reduced air pollutant emissions from mitigating GHG 

emissions (Gallagher and Holloway, 2020; Karlsson et al., 2020; Nemet et al., 2010; Rao et al., 2016; Sampedro et 

al., 2020b). Studies have found that the near-term health benefits from GHG reductions can be on par with or even 

greater than their near-term climate benefits (Markandya et al., 2018; Shindell et al., 2021). Health benefits vary 

strongly by region and sector (Vandyck et al., 2020), highlighting the importance of granular analyses and actions that 45 

prioritize reductions in high-emitting areas (Polonik et al., 2021). As such, climate action must be complemented by 

pollution-specific policies to maximize air quality benefits (Reis et al., 2022; Tong et al., 2021) – prompting calls for 

combined policy assessments to address both issues together (Selin, 2021; Vandyck et al., 2021). 

 

For studies that do vary both climate and air quality policies, most use one of a few existing scenario sets. Current 50 

options include the shared socioeconomic pathways (SSPs), a set of global scenarios to 2100 that treat climate and air 

pollution separately but tie the latter to specific societal narratives (O’Neill et al., 2017; Riahi et al., 2017). Each SSP 

is associated with a specific pollution control ambition, with regional emissions intensity trends that depend on 

affluence levels (Rao et al., 2017). These trends were derived from two scenarios developed with the widely used 

Greenhouse Gas – Air Pollution Interactions and Synergies (GAINS) model: current legislation (CLE), which assumes 55 

compliance with existing source- and region-specific emission limits, and the maximum feasible reduction (MFR) 

case, which assumes gradually increasing application of the lowest-emitting currently available technologies (Amann 

et al., 2011; Klimont et al., 2017). The resulting air pollutant emission trajectories are included in the sixth Coupled 

Model Intercomparison Project (CMIP6) and presented online (IIASA SSP Database, 2020; Rogelj et al., 2018).  

 60 

Other approaches have a different scope of economic assumptions, timescales, or pollutant species. While several 

studies vary climate and air quality scenarios across pollutants, they often project emissions intensities based on 

income rather than policy (Radu et al., 2016; Scovronick et al., 2019). Others have begun to internalize climate-health-

economic linkages into optimal policy pathways (Reis et al., 2022), while still using SSP pollution assumptions as 

baselines. Studies in the Energy Modeling Forum (EMF)-30 use the GAINS scenarios more directly, focusing on 65 

black and organic carbon (Smith et al., 2020) or non-agricultural pollutants through 2050 (Vandyck et al., 2018). Since 

then, GAINS has been updated with more nuanced regions, sectors, and emissions trends (GAINS 4.01 release notes, 
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2021) – such as recent SO2 (Zheng et al., 2018) and black carbon (Kanaya et al., 2020) reductions in China, as well as 

revised data and SSP-consistent modeling for the waste management sector (Gomez Sanabria et al., 2021).  

 70 

Some recent studies have used this updated GAINS model to explore more near-term results or policy extremes. Rafaj 

et al. (2021) use several integrated assessment models (IAMs) to assess health impacts around current climate policies, 

proposed policies, or likely attainment of the Paris Agreement’s temperature targets (through 2050) – applying GAINS 

CLE and MFR to the 1.5°C case while maintaining CLE otherwise. Amann et al. (2020) develop a “Clean Air” 

scenario that includes additional climate, energy, agriculture, and food policies – finding that those additional policies 75 

(beyond GAINS’ traditional air pollution controls) would lead to nearly double the benefits of reduced PM2.5 exposure. 

Hamilton et al. (2021) use a related scenario of “health in all climate policies”, including air pollution reductions, diet 

change, and active travel benchmarks in nine selected countries. Both these latter papers focus on aggregate effects 

(comparing base cases to scenarios of those policy levers combined together), and are limited geographically 

(Hamilton et al., 2021) or temporally to 2040. 80 

 

We aim to present a more flexible model-based capacity for long-term global scenarios – allowing the user to specify 

diverse levels of climate actions and pollution controls to estimate their combined effect on air pollutant precursor 

emissions. The resulting Tool for Air Pollution Scenarios (TAPS) can efficiently assess a wide range of climate and 

air quality policy pathways – from broad to specific at the regional, sectoral, and fuel-based level. In addition, its 85 

emissions outputs can provide flexibility for different air quality and health analyses – whether using emulators for  

rapid scenario study, or driving global atmospheric chemical transport models (CTMs) that avoid emulators’ 

precalculated emissions-to-impact relationships. We demonstrate the tool with illustrative scenarios after coupling 

with the Economic Projection and Policy Analysis model version 7 (EPPA7). EPPA is a global multi-region multi-

sector recursive–dynamic computable global equilibrium (CGE) model that has been used to study a variety of climate 90 

and economic policy impacts (Chen et al., 2015, 2017; Paltsev et al., 2005). EPPA7 is a recent version that includes 

updated economic data as well as new representations of advanced energy technologies (Chen et al., 2022). While 

prior efforts have sought to endogenize EPPA’s air pollutant emissions trends based on the cost of pollution control 

options (Sarofim, 2007; Valpergue De Masin, 2003; Waugh, 2012), these internal estimates have been limited to select 

studies (Nam et al., 2013). In contrast, the TAPS framework combines EPPA’s energy and land use outputs with other 95 

data to produce its own pollutant emissions scenarios, allowing it to be exercised autonomously for flexible scenario 

development (Fig. 1).  
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Figure 1. Summary of the Tool for Air Pollution Scenarios (TAPS) framework and implementation here, based on climate 
policy scenarios in EPPA7 and pollution control scenarios from the Greenhouse Gas – Air Pollution Interactions and 100 
Synergies (GAINS) model. Emissions trends are specific to each fuel f, pollutant species i, sector j, region r and time point t 
in the inventories and EPPA7 scenarios used. 

First, we utilize emissions inventories that are well suited for atmospheric modeling work on health impacts – 

following the SSPs’ sources but with updated estimates. Next, we scale those emissions by fuel-specific activities in 

EPPA, using climate policy scenarios from the global CGE model with full-century time horizons that are longer than 105 

most comparable works. Finally, we use updated emissions intensity scenarios from GAINS to assess policies specific 

to air pollution – while designing pathways that allow for potential future innovation beyond today’s technology 

options. The following section will describe these steps in turn, before comparing results to SSP benchmarks and 

discussing next steps for tool refinement and health applications.  

2 Methodology 110 

Our estimates of air pollutant emissions involve three main inputs: a base-year emissions inventory (Sect. 2.1), a 

projected trend in energy use and other polluting activities (Sect. 2.2), and a projected trend in emissions intensity 

(Sect. 2.3). The following equation (based on Fig. 1) summarizes these components: 

 Ef,i,j,r,t = Ef,i,j,r,0 * Af,i,r,t * f(γf,i,j,rt)                 (1)  

In this way, the emissions Ef,i,j,r,t of inventory fuel f, inventory sector i, pollutant species j, EPPA region r, and time t 115 

are calculated as the product of base-year emissions Ef,i,j,r,0, fuel-specific activity Af,i,j,r,t, and the function f(γf,i,j,rt) in 

scenario-specific emissions intensity over time. The below sections discuss each of these components in more detail, 

as well as the specific scenarios shown in this analysis (Sect. 2.4).  

 

Public versions of the tool, outputs and underlying data are described in the code and data availability section 120 

(including processes for figure reproduction). To facilitate coupling with global atmospheric CTMs for health impact 

analysis, we also include the capability to produce gridded outputs for emissions scaling – following the inventory’s 

spatial distribution as done for the SSPs (Feng et al., 2020). Inputs and Python code can be downloaded and modified 

to explore the effects of different climate or air quality policies at the region, sector or fuel-based level. While it is 

simplest to construct scenarios that maintain the structure of current data sources (adjusting from Sect. 2.4), future 125 
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TAPS applications could theoretically be extended to other inventories or policy model outputs if the database 

integration steps were completed (adjusting from Sect. 2.1-2.3).  

2.1 Base-year emissions inventory 

This paper uses base-year emissions from the Community Emissions Data System’s Global Burden of Disease Major 

Air Pollution Sources project (CEDSGBD-MAPS; https://doi.org/10.5281/zenodo.3865670), an updated version of the 130 

anthropogenic air pollutant emissions inventory used in the SSPs as well as atmospheric modeling of health impacts 

(GEOS-Chem, 2021). CEDS is a global inventory that includes sulfur dioxide (SO2), carbon monoxide (CO), ammonia 

(NH3), black carbon (BC), organic carbon (OC), nitrogen oxides (NOx), and 23 separate non-methane volatile organic 

compounds (NMVOC). It offers monthly data globally on a 0.5°×0.5° grid for 1750-2014 (Hoesly et al., 2018), with 

updates for 1970-2017 (McDuffie et al., 2020) that divide each of 11 sectors into 4 fuel categories (Table A1). 135 

Compared to subsequent versions with fewer sectors and no fuel separation, we use the version in McDuffie et al. 

(2020) because it combines fuel-specific granularity with emissions totals that largely match the latest trends in 

https://github.com/JGCRI/CEDS (such as lower BC and OC totals). We use 2014 emissions to match the economic 

base-year of the GTAP10 database (Aguiar et al., 2019) used in EPPA7 (as described in Sect. 2.2).  

 140 

We also include emissions of agricultural waste burning, the only type of open burning represented in EPPA’s 

economic activities (Chepeliev, 2020). We follow the SSPs (van Marle et al., 2017) and GEOS-Chem (GEOS-Chem, 

2021) by using emissions from the Global Fire Emissions Database (GFED) version 4.1s at a 0.25°×0.25° grid (van 

der Werf et al., 2017). Although GFED gives emissions estimates in terms of dry matter rather than specific pollutants, 

we use emission factors based on Akagi et al. (2011) to convert these estimates to pollutant-specific emissions, as 145 

recommended by GFED and done for the SSPs (see van Marle et al. (2017), Table C1). We use 2014 values to match 

the base year of EPPA7; 2014 GFED emissions are generally consistent with emissions quantities from neighboring 

years. We do not include emissions from wildfires, non-anthropogenic sources, or other burning sources in GFED 

(given their lack of representation in EPPA and GAINS). Other fire emissions could be added from GFED or similar 

inventories after deciding on their future trajectories (which we leave to later work, given large uncertainties). In 150 

addition, we do not currently include aviation emissions, given their exclusion from both CEDSGBD-MAPS and GAINS. 

Air pollution from global aviation has been linked to 16,000 annual deaths (Eastham and Barrett, 2016), or less than 

1% of pollution’s estimated global mortalities (Murray et al., 2020). However, future efforts could consider sources 

such as the 2019 version of the Aviation Emissions Inventory Code (Simone et al., 2013), as used in GEOS-Chem 

(GEOS-Chem, 2021). 155 

2.2 Projecting emitting activities   

2.2.1 Choice of economic data source 

This paper uses full-century activity outputs from several of EPPA’s global climate policy scenarios. The latest version 

of the EPPA model (EPPA7) has 18 regions of the world and 14 economic sectors, as summarized in Appendix B 

(Paltsev et al., 2021). To scale the base-year emissions inventories by future trends in EPPA, we perform sectoral 160 
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mapping from each of the 12 inventory sectors (11 from CEDSGBD-MAPS plus agricultural waste burning from GFED) 

to one or more of the EPPA7 sectors (Table 1). The process is based on comparisons of CEDS sectors with GTAP10 

(Chepeliev, 2020) and its transferal to EPPA sectors, using standard Intergovernmental Panel on Climate Change 

(IPCC) definitions as a common reference point (Table D1). Since EPPA lacks direct matches for “Waste”, “Solvents”, 

or the “Residential” emissions that are often from solid biofuels in CEDS, we use population to scale these sectors. 165 

Despite its approximations, this sectoral mapping is useful to keep emissions projections in terms of CEDS and GFED 

sectors, facilitating SSP comparisons and future atmospheric modeling applications.  

2.2.2 Choice of activity parameters 

Next, we select fuel-specific parameters to scale each emitting activity based on the approach used in the similar U.S. 

Regional Energy Policy (USREP) model (Yuan et al., 2019). In USREP, emissions from fuel consumption are mostly 170 

scaled by future sectoral energy consumption, while non-combustion sources are scaled by that sector’s economic 

output (Dimanchev et al., 2019; Thompson et al., 2014). Here, we apply a similar method to EPPA as described in 

Table 1, using the four fuel categories (three for combustion, one for “process”) in CEDSGBD-MAPS. Each source’s 

scaling is based on the proportion of its base-year emissions (Table A1) as follows: 

 Af,i,j,r,t = 
ா,,ೕ,ೝ,బ

ா,ೕ,ೝ,బ
  *   ∑ 𝐴ா f,Ei,r,t  ,                (2)  175 

where the EPPA activities Af,Ei,r,t are aggregated via summation across the EPPA sectors Ei that are mapped to each 

inventory sector (see Table 1). For fuel combustion, coal fuels are scaled by EPPA coal energy use trends (in joules), 

“liquid-fuel-plus-natural-gas” activities are scaled by aggregate oil and gas use trends, and solid biofuel sources are 

scaled by total sectoral energy use trends. For process-related emissions, some sources like manure management are 

clearly outside of the energy realm, while others (such as natural gas flaring) may reflect energy activities as well 180 

(McDuffie et al., 2020). Accordingly, we scale agricultural waste burning by crop land use trends, and energy or 

industry “process” sources by their sectors’ total energy trends. For agriculture, we use a “per tonne” basis for 

consistency with GAINS’ emissions intensity units – multiplying EPPA’s sectoral land use trends (in hectares) by 

linearly extended production-per-area total crop trends (in tonnes per hectare) from the Food and Agriculture 

Organization (FAO, 2018). The overall scaling procedure is done for each scenario, pollutant, CEDS or GFED sector, 185 

and EPPA region, having linked each CEDS or GFED sector to EPPA sectoral drivers (Table 1) and mapped the 

CEDS and GFED grids to EPPA regions.  

2.3 Projecting emissions intensities  

Finally, we scale each activity’s emissions intensity with region- and sector-specific trends from the GAINS 4.01 

scenarios (GAINS 4.01 release notes, 2021; Klimont et al., 2017). Global data and projections from 2000-2050 are 190 

available for non-agricultural sectors and air pollutant species through the Energy Modeling Forum (EMF) study 

scenario data sets (Smith et al., 2020) that have been updated to GAINS 4.01. However, the EMF study does not 

include NH3, agriculture, or agricultural waste burning. GAINS estimates for these sectors have been provided 
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separately and only for G20 regions. We map both data sets to the CEDS sector-fuel combinations and EPPA regions 

analyzed here, as described in Table 1, Tables C1-C4, and our online repository.  195 

Table 1. Sectoral mapping and choice of scaling method for each inventory sector. 

CEDS/GFED sector 
 

EPPA sector(s) CEDS fuel EPPA activity GAINS EMF sector classes 

Agriculture CROP, FORS, LIVE Process Land production See Table C2-C3 

Agricultural waste  CROP Process Land use See Table C2-C3 

Energy COAL, ELEC, GAS, 

ROIL 

Biofuel Total energy  Power_Gen_Bio 

  Coal Coal energy Power_Gen_Coal 

  Oil & gas Oil & gas energy Power_Gen_(HLF, LLF, NatGas) 

  Process Total energy Losses, Transformations 

Industry EINT, FOOD, OTHR Biofuel Total energy  End_Use_Industry_Bio 

  Coal Coal energy End_Use_Industry_Coal 

  Oil & gas Oil & gas energy End_use_Industry_(HLF, LLF, NatGas) 

  Process Total energy AACID, CEMENT, CHEMBULK, 

CHEM, CUSM, NACID, PAPER, STEEL 

Commercial SERV Biofuel Total energy  End_Use_Services_Bio 

  Coal Coal energy End_Use_Services_Coal 

Residential Population Biofuel Population End_Use_Residential_Bio 

  Coal Population “_Coal 

  Oil & gas Population “_(HLF, LLF, NatGas) 

Other (combustion) CROP, FORS, LIVE Oil & gas Oil & gas energy End_Use_Transport_(AGR, OFF)_(LLF, 

HLF) 

Shipping TRAN Oil & gas Oil & gas energy “_OFF_(LLF, HLF) 

Solvents Population Process Population CHEM, CHEMBULK 

Transport TRAN Oil & gas Oil & gas energy End_Use_Transport_(NatGas, 

HDT_HLF, HDT_LLF, LDT_HLF, 

LDT_LLF, MC_LLF) 

Non-road transport TRAN Coal Coal energy End_Use_Transport_Coal 
  

Oil & gas Oil & gas energy “_(NatGas, OFF_LLF, OFF_HLF) 

Waste Population Process Population Waste 

See online repository for full GAINS sector and fuel linkages. CEDS fuel definitions are given in Table S1 of McDuffie et 
al. (2020) – with bioenergy separated between solid (“Biofuel”) and liquid fuels (“Oil & gas”). CEDS-GAINS fuel type 
discrepancies were recalibrated based on the percent of CEDS fuel emissions covered by GAINS. Residential, Solvents, and 
Waste sectors were scaled by EPPA population projections, given the lack of sufficient corollary sectors in EPPA. Land 200 
production combines land use from EPPA (in area units) with production per area trends from corollary FAO (2018) 
scenarios. GAINS EMF sectors are given in Table S3 of Rafaj et al. (2021) and https://gains.iiasa.ac.at/models/index.html.  

First, we calculate emissions intensity trends for each GAINS sector by dividing the emissions time series by activity 

time series. Historical data are available for 2000, 2005, 2010, and 2015 – with projections for the CLE (2020, 2030, 

2050) and MFR scenarios (2030, 2050). For missing activity data points, we conduct annual linear interpolation 205 

(and/or extension) for sectors with at least two values, or leave emissions intensities constant for sectors with one or 
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no values. For trend extensions that reach zero before 2050, we assume values of zero thereafter. For the GAINS waste 

sectors – where only emissions (not activities) were given – we assume constant emissions intensities for CLE, and 

follow a recent GAINS paper on MFR’s elimination of open burning (Gomez Sanabria et al., 2021) to apply region-

specific trends to zero by 2050 for MFR (based on MFR/CLE emissions ratios).. NH3 waste trends are matched to 210 

NOx due to large data gaps.  

For other NH3 sectors, we employ a conservative approach towards estimating intensity reductions outside of the 

GAINS G20 regions. For MFR, we assume that the non-G20 regions follow the MFR intensity trend of their corollary 

G20 regions (Table C4) – but with constant intensities in CLE (only following the corollary if its intensity is constant 

or increasing). For agriculture sectors (where intensity could rise or fall due to shifting land use or dietary patterns), 215 

we also incorporate more granular sector trends from the Food and Agriculture Organization’s 2050 scenarios of 

“Business as Usual” (CLE-like) and “Toward Sustainability” (MFR-like), which directly inform the GAINS database 

as well (FAO, 2018). The resulting intensity trend I combines the GAINS trend (GI) with FAO’s trend for sector i 

relative to total production (Fr,t): 

 If,i,j,r,t = GIf,i,j,r,t * 
ி,ೝ,

ிೝ,
                           (3)  220 

This adjustment allows for the potential of a region’s overall agricultural intensity to change based on shifts in the 

relative share of the emitting sectors within agriculture (such as livestock categories, milk production, or fertilizer 

tonnage). Associated FAO sectoral and regional mappings are provided in Tables C3-C4.  

Next, we prepare the GAINS sectors’ emissions intensity trends for integration with EPPA activity trends. First, we 

scale the trends to a relative value of 1 in EPPA’s base-year of 2014, using linear interpolation for the five-year GAINS 225 

values. To determine emissions intensity trends by CEDS sector-fuel combination (e.g., Industrial emissions from the 

“total-coal” fuel), we aggregate the more granular GAINS trends based on the proportion of the sector-fuel’s emissions 

from that GAINS sector – adjusting to the proportion of emissions covered by GAINS in cases where not all the CEDS 

sector-fuel combinations had a GAINS equivalent. We repeat the process to aggregate from GAINS to EPPA regions.  

2.4 Implemented scenarios   230 

To illustrate an application of TAPS, we first select three scenarios from EPPA7 to represent variations in climate 

policy ambition (Table 2), based on Paltsev et al. (2021). The “Paris Forever” scenario assumes the completion of 

nationally determined contributions (NDCs) from the Paris Agreement (as of March 2021 with more recent 

adjustments for COVID-19), but no future climate policies beyond those near-term targets. The other two scenarios 

extend this NDC baseline to the Paris Agreement’s long-term temperature goals, using a global emissions cap and 235 

price starting in 2030 to provide a 50% chance of limiting warming to 2°C or 1.5°C above pre-industrial levels. 

(Temperature estimates come from ensemble linkages of the MIT Earth System Model (Sokolov et al., 2018), or 

MESM, to EPPA’s economic results). The 1.5°C scenario features an almost 50% reduction in global greenhouse gas 

emissions from 2025 to 2030, a highly ambitious projection. As such, these scenarios span a range from current 

pledges to a much more stringent set of future climate policies.  240 
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Table 2. EPPA7 scenarios analyzed, with selected SSP comparisons. 

EPPA7 Scenario Description 

Paris Forever Paris Nationally Determined Contribution (NDC) targets (as of March 2021) are met by all countries by 2030 

and retained thereafter (Paltsev et al., 2021). 

Paris 2°C Same to 2030, with a post-2030 emissions cap, implemented with a global emissions price, to ensure that the 

2100 global surface mean temperature does not exceed 2°C above pre-industrial levels with a 50% probability 

(Paltsev et al., 2021). 

Paris 1.5°C Same to 2030, with a post-2030 emissions cap, implemented with a global emissions price, to ensure that the 

2100 global surface mean temperature does not exceed 1.5°C above pre-industrial levels with a 50% 

probability (Morris et al., 2021a). 
 

EPPA7 Scenario RF (W m-2) SSP IAMs compared RF (W m-2)  ΔTemp (°C) CMIP6 analog 

Paris Forever 5.95 RF6.0, Baseline a (19) 5.48-6.43 3.23-3.76 SSP4_60 

Paris 2°C 3.82 RF3.4 (25) 3.33-3.57 2.13-2.28 SSP4_34 

Paris 1.5°C 2.87 RF2.6 (19) 2.53-2.72 1.72-1.82 SSP1_26 

Radiative forcing (RF) and IAM-based temperature change are global mean values for 2100, relative to pre-industrial levels 
of 1861-1880 in EPPA (Morris, Sokolov, et al., 2021) and 1850-1900 for the SSPs (IIASA, 2018). CMIP6 analog shows the 
SSP and RF combination that is most similar to each EPPA scenario. a IAM scenarios were not included if the radiative 245 
forcing (RF) difference from EPPA was greater than 0.5 W m-2. 

This range is reflected in the corresponding FAO (2018) scenarios used for agricultural production scaling: “Business 

As Usual” for “Paris Forever” and “Towards Sustainability” for the 2°C and 1.5°C scenarios. In Table 2, we also 

compare results from each EPPA scenario to CMIP6 scenarios and additional IAM runs from SSPs that have similar 

radiative forcing and other assumptions (Feng et al., 2020). While the “SSP5-3.4-Overshoot” scenario does fall in the 250 

EPPA forcing ranges, it assumes business-as-usual emissions in the near-term and plentiful negative emissions 

technologies in the long-term, in contrast to the EPPA scenarios’ near-term NDCs and lack of negative emissions.  

Turning to pollution control, we use this initial implementation to show the range of outcomes between GAINS CLE 

and MFR scenarios, based on version 6b of project ECLIPSE (Evaluating the Climate and Air Quality Impacts of 

Short-Lived Pollutants) as presented by Stohl (2015) and online (IIASA ECLIPSE V6, 2021). After aggregating the 255 

GAINS emissions intensity trends to inventory sectors and EPPA regions (Sect. 2.3), we perform exponential fits for 

all non-constant intensity pathways to enable simpler scenario tuning and harmonization with EPPA’s trends out to 

2100. Our approach helps assess the potential of future innovation over the next eight decades beyond today’s best 

available technologies, in the case of MFR. We also incorporate the possibility of no such innovation, showing an 

“MFR Midcentury” scenario that limits pollution control to the 2050 levels in GAINS (Other studies could explore 260 

other scenarios based on the research question; we describe examples in the discussion and Table 3). Exponentials are 

designed to pass through base-year values of 1 and MFR waste values of zero for 2050 onward (using uncertainty 

weightings of 0.01 via Python’s scipy curve fitting’s sigma parameter). Given the MFR scenario’s definition as the 

maximum feasible pollution reduction, anomalous cases with higher intensities than the corresponding CLE pathway 

are fixed to CLE levels.  265 

The resulting trends in emissions intensity are reported in the Supplementary Data (before and after exponential fits), 

with ~5500 trajectories from the 2 GAINS scenarios, 7 pollutants, 18 EPPA regions, and ~20 CEDS sector-fuel 
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combinations. The fit data includes reported r2 values that range from strong (particularly for areas with full data sets 

such as Western Europe) to weaker in cases with incomplete or abrupt changes in emissions intensities. The trends 

are highly sector- and region-specific, ranging from sharp decreases (such as 10-100x drops in some transportation 270 

cases) to occasional increases (sometimes due to projected fuel switching within the GAINS activities that had been 

aggregated to the 56 EMF sectors). Increased intensities include CO emissions from steel in Brazil, Africa, and Eastern 

Europe, as well as SO2 coal emissions from residential (Eastern Europe) and end use industry (Western Europe). 

Finally, we combine the intensity trends with the linked base-year inventories and revised activity scaling (Eq. 1). 

Results are presented below and in the online repository, including outputs of all individual emissions trends as well 275 

as summary sheets of inventory value, activity scaling, and intensity scaling at notable timepoints (2030, 2050, 2100) 

for quicker comparisons.   

Table 3: Example emissions intensity trends, based on GAINS scenarios of current legislation (CLE) and maximum feasible 
reduction (MFR). Results from italicized scenarios are shown in Fig. 2-6. 

Scenario Description 

CLE Trend Continues Fit an exponential function to CLE 2000-2050, and extend that trend to 2100. 

CLE Midcentury Follow the above CLE trend in emission factors until 2050; hold them constant afterwards. 

Granular Policy Choices Adjust CLE trends with regional, sectoral, or fuel-specific policy scenarios. 

SSP-like Improvements  SSP-specific improvements that fall between CLE and MFR, depending on regional 
income level and reduction stringency of SSP. 

MFR Trend Continues Fit an exponential function to the historical GAINS data (2000-2015) + MFR scenario 
(2030-2050), and extend that trend to 2100. 

MFR Midcentury Follow the above MFR trend in emission factors until 2050; hold them constant afterwards. 
 280 

For more detailed information on SSP scenarios, see Table 1-2 of the Supporting Information in Rao et al. (2017). 

3 Results  

3.1 Example scenario and SSP comparison 

We illustrate an application of TAPS by providing the results for total air pollutant emission trends (Fig. 2), sectoral 

breakdowns (Fig. 3-4) and regional breakdowns (Fig. 5-6). We also compare this implementation to corresponding 285 

SSP IAM and CMIP6 scenarios (summarized in Table 4), which serve a different research purpose than TAPS (and 

thus are not expected to match) but can act as a useful reference point. For Fig. 2, we show the full range of SSP-IAM 

combinations that have a similar radiative forcing to each of the three EPPA-MESM climate scenarios in Table 2. 

Though the SSPs and EPPA-MESM have slightly different temperature change estimates for a given forcing level, 

this process represents the closest comparison available between the two data sets. We facilitate this comparison by 290 

removing the SSP sectors that are not part of our scaling (aviation and open burning beyond agricultural waste), based 

on their emissions proportion in the best-fitting CMIP6 scenario (since sectoral non-CMIP6 IAM emissions are not 

available). This estimate may lead to slight visual differences in SSP data between Fig. 2 (IAM) and Fig. 3-6  (CMIP6), 

but acts as a reasonable first-order comparison with the TAPS scaling.  

 295 
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Figure 2. Global air pollutant emissions trends within the range of GAINS-based scenarios of current legislation (CLE 
Trend Continues) and maximum feasible reduction (MFR Midcentury; MFR Trend Continues) in Table 3 (top to bottom 
in purple), as compared to the range of SSP IAM corollaries in Table 2 (blue). IAM estimates are subtracted by sectors not 
scaled by TAPS (aviation and open burning beyond agricultural waste), based on their emissions proportion in the best-300 
fitting CMIP6 scenario (since sectoral IAM emissions are not available). Quantities of NOx are in Tg NO2; quantities of BC, 
OC, and NMVOC are in Tg C.  

 

 

Figure 3. Sectoral emissions of air pollutants in 2050 under the GAINS-based scenarios of current legislation (CLE) and 305 
maximum feasible reduction (MFR) continued – along with the 2014 emissions inventories and corresponding CMIP6 
scenarios of SSP1-2.6, SSP4-3.4, and SSP4-6.0 (respectively) for EPPA’s 1.5°C, 2°C and Paris Forever scenarios (see Table 
2). The 11 CEDSGBD-MAPS sectors (McDuffie et al., 2020) are condensed to the eight in the earlier version used by the SSPs 
(Hoesly et al., 2018), including the aggregation of residential, commercial, and other combustion (“Res|Com|Other”), plus 
agricultural waste burning (“Ag Waste”) from GFED. Quantities of NOx are in Tg NO2; BC, OC, and NMVOC are in Tg 310 
C.  
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Figure 4. Same as Figure 3 but for 2100, and including the MFR Midcentury scenario in Table 3.  

 

 315 

 

Figure 5. Regional emissions of air pollutants in 2050 under the GAINS-based scenarios of current legislation (CLE) and 
maximum feasible reduction (MFR) continued – as compared to the 2014 emissions inventories and corresponding CMIP6 
scenarios of SSP1-2.6, SSP4-3.4, and SSP4-6.0 (respectively) for EPPA’s 1.5°C, 2°C and Paris Forever scenarios (as in Table 
2). See Table B1 for EPPA region abbreviations. SSP values are shown as global totals due to regional definition 320 
discrepancies. Quantities of NOx are in Tg NO2; BC, OC, and NMVOC are in Tg C.  
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Figure 6. Same as Figure 5 but for 2100, and including the MFR Midcentury scenario in Table 3.  

 325 

Table 4: Summary of pathways presented. 

Pathway Base-Year Emissions Emitting Activity Scaling Emissions Intensity Scaling 

CLE 

Continued 

2014; GEOS-Chem 13.0.0 defaults (CEDS, 

GFED) for anthropogenic emissions  

EPPA7 Paris Forever, Paris 

2°C, Paris 1.5°C scenarios 

Fitted exponential trends from 

GAINS 4.01 2000-2050 CLE  

MFR 

Continued 

2014; GEOS-Chem 13.0.0 defaults (CEDS, 

GFED) for anthropogenic emissions  

EPPA7 Paris Forever, Paris 

2°C, Paris 1.5°C scenarios 

Fitted exponential trends from 

GAINS 4.01 2000-2050 MFR 

MFR 

Midcentury 

2014; GEOS-Chem 13.0.0 defaults (CEDS, 

GFED) for anthropogenic emissions  

EPPA7 Paris Forever, Paris 

2°C, Paris 1.5°C scenarios 

MFR Continued with constant 

post-2050 emissions intensities 

SSP IAMs 2005; IAM-specific (Rao et al., 2017)  IAM-specific (Rao et al., 

2017) 

SSP-based trends via GAINS 3 

(Rao et al., 2017) 

SSP 

CMIP6  

2015; past CEDS (Hoesly et al., 2018) and 

GFED (van Marle et al., 2017) 

IAM-specific (Rao et al., 

2017) 

SSP-based trends via GAINS 3 

(Rao et al., 2017) 

SSP corollaries from the full range of IAMs are shown in Fig. 2, while sectoral data (Fig. 3-4) are only available from the 
CMIP6 subset. For more detailed information on IAM model inputs, see Section 2.2 of the Supporting Information in Rao 
et al. (2017).  

When comparing initial emissions, IAM inventories differ both in base year (2005 vs. EPPA7’s 2014) and emissions 330 

values (Fig. 2) – given their variety of sources from the Emissions Database for Global Atmospheric Research 

(EDGAR) to GAINS to the RCP or even older IPCC inventories (Rao et al., 2017). Even after the inventories have 

been harmonized in the CMIP6 scenarios (Gidden et al., 2019), their use of an earlier CEDS version (Hoesly et al., 

2018) leads to differences such as a base-year OC value that is 30% higher than the updated CEDS value (McDuffie 
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et al., 2020). NMVOC inventories of emissions inside the scope of CEDS are also much lower in the IAMs, especially 335 

from the IMAGE and REMIND-MAgPIE models (IIASA SSP Database, 2020).  

In the TAPS example policy scenarios, emissions often trend much higher if activity and intensity reductions are 

limited to current legislation. This result differs from the SSPs, which include actions beyond current legislation to 

answer different research questions (Rao et al., 2017). While recent studies support cases of increased emissions under 

current legislation (Rafaj et al., 2021), they focus on trends to mid-century. Here, many of the increases are strongest 340 

in the late century – implying that any continued improvements in the GAINS-based intensity trends are offset by 

further increases in activity. This contrast is strongest in industrial “process” emissions sources, where EPPA’s sharp 

increases in activity overpower the slight decreases in emissions intensity. While the modeled trends to 2100 are 

shown for context, the sectoral and regional plots also focus on 2050 as the last year with official GAINS scenario 

data. We next summarize projections for each pollutant category in turn. 345 

3.2 Example scenario results by pollutant  

In the case of increasing SO2 under EPPA’s “Paris Forever” and GAINS’ CLE scenarios, continued coal use without 

desulfurization and/or carbon capture is the primary factor – especially in regions with fewer current pollution controls 

such as Africa, South Asia, and Eastern Europe. These regions also generally have NDCs (as of March 2021) that fail 

to phase down coal, according to Table 3 of Paltsev et al. (2021). By 2100, the doubling of industrial and residential 350 

sector emissions outpaces the decreases in energy and transport sectors. Industrial increases are driven by increased 

activities (4- to 10-fold by 2100 in those regions) with few intensity improvements, while residential increases are 

driven by a sharp increase in GAINS-based emissions intensity from Eastern Europe coal use. The GAINS MFR 

intensities are much lower given the additional pollution controls, halving the industrial emissions compared to CLE 

and leading to a 3-fold drop in energy sector emissions by 2100. Still, the increased coal activities of “Paris Forever” 355 

(especially in developing areas’ non-energy sectors) prevent emissions from decreasing globally, as in Rafaj et al. 

(2021). More ambitious climate policy scenarios include rapid declines in coal energy use – leading to declining SO2 

emissions even if the intensities of the few remaining emissions sources (mostly industrial and residential) are nonzero.  

CO and NMVOC emissions show similar trends. In the case of CO under CLE and “Paris Forever”, industrial 

processes increase in activity (up to 10-fold in India by 2100) as well as intensity for certain regions (4-fold in Africa 360 

and 5-fold in Eastern Europe). Pollution controls in MFR reduce these increases, while causing major declines in most 

other sectors (including residential, unlike with SO2). NMVOC emissions follow these general patterns, with greater 

influence from energy process sources that have fewer control options in GAINS and more temporal variation from 

EPPA trends. CLE emissions intensities are relatively flat for energy, industrial, and solvent process sources (with 

some increases in Brazil and much of Asia), leading to greater emissions under the “Paris Forever” scenario. Further 365 

climate policy leads to further declines in energy, transport, and industrial coal, while further pollution policy (in 

MFR) is more impactful for solvents, residential, and industrial process sources.  

Long-term NOx emissions also increase under less ambitious policies, given the limits of projected intensity 

improvements in GAINS CLE. In this pathway, increased activities in EPPA lead to increased agriculture and a 
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doubling of industry emissions by 2100 (including a 10-fold increase in India’s oil and gas fuel), offsetting initial 370 

declines from GAINS intensities and overall reductions in other sectors like energy and transport. The GAINS MFR 

case gives further intensity reductions, flattening industrial emissions and transitioning energy and transport to near-

zero. The result is a near-halving of overall emissions by midcentury, though rising activities cause rising emissions 

after 2050 if intensities are held at 2050 levels under the MFR Midcentury scenario (as with SO2 and CO). With further 

climate policy in the 2°C and 1.5°C scenarios, oil and gas use in EPPA is projected to reach near-zero by late-century 375 

as well, leading to lower emissions than most of the IAMs (which may assume less steep energy declines due to their 

greater reliance on negative emissions).  

BC and OC are driven more by residential emissions, which have limited intensity improvements in CLE but much 

stronger pollution controls in MFR. BC emissions are generally higher than their SSP counterparts, as increased 

activities overpower intensity improvements for residential, commercial, industrial, and waste sectors. Moving to 380 

MFR leads to decreases in all sectors except for commercial, while moving to a 2°C climate scenario reduces energy 

and industry but not the others. Pollution control actions have an even greater effect for OC. In “MFR Continued” 

under “Paris Forever”, OC residential and industrial emissions drop 8-fold and 7-fold (respectively) from 2014 to 

2100, compared to 2-fold drops in MFR Midcentury and visible increases in both sectors under CLE. Across the OC 

scenarios, adding pollution control ambition leads to more emissions reductions than increasing the climate policy 385 

ambition.   

NH3 also shows the pronounced effect of pollution control outside of climate policy. In CLE cases, increased 

agricultural production globally combines with a near-doubled intensity in Africa (by 2100) to offset slight efficiencies 

elsewhere. When the FAO scenario is changed from “Business as Usual” (CLE-like) to “Toward Sustainability” 

(MFR-like), the spread of activities is much less emissions-intensive (near-constant in Africa, Eastern Europe, and the 390 

Middle East; substantially decreasing elsewhere), and relatively flat land use trends allow for declines in overall 

emissions. Non-agricultural NH3 emissions play a smaller role but follow similar patterns, with increased emissions 

under the limited existing policies and further reductions (such as in waste) under more ambitious policies.  

4. Discussion  

Several factors can help explain the different projection scenarios of TAPS and the SSPs. Most importantly, the two 395 

scenario sets serve different research goals – as the SSPs specify future pollution controls in line with each 

socioeconomic pathway (versus our broader range of outcomes). In practice, this leads to SSP emission factors that 

may trend much lower than CLE, according to Table 1-2 and Fig. 1-1 of the Supporting Information in Rao et al. 

(2017). The resulting scenarios often have lower emissions than our “CLE Continued Trend”, as well as other studies 

of GAINS CLE with the CMIP6 IAMs (Rafaj et al., 2021). The relevance of each scenario set will depend on the 400 

question at hand – and whether the underlying research question users seek to address can be answered by applying a 

specific socioeconomic pathway, or would benefit from a framework such as TAPS in which assumptions about air 

pollution are decoupled. 
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Other discrepancies may result from updated model data. Sectoral scaling choices differ between IAMs, as described 

in Section 2.2 of the Supporting Information in Rao et al. (2017). One example is the much higher value for OC waste 405 

emissions in SSP1-2.6 vs. this study (Fig. 3), which comes from a constant-emissions extension of the higher inventory 

value from the associated IMAGE model (IIASA SSP Database, 2020). Another difference is the climate policy 

landscape that has changed between the SSP modeling process (mid-2010s) and the 2021 EPPA scenarios. While the 

latter may incorporate newer NDC pledges, the SSP IAMs sometimes assumed greater clean energy access and 

therefore lower biofuel-related BC emissions, for example (IIASA SSP Database, 2020).  410 

There are also differences between emissions intensity projections in GAINS 3 / ECLIPSE v5a (used by SSPs) and 

GAINS 4 / ECLIPSE v6b (used here), as the latter includes newer regulatory or technological levers. This is certainly 

the case for the waste sector, with intensity trends changing from near-constant in GAINS 3 to a net-zero MFR 

endpoint (elimination of open burning of municipal waste) in GAINS 4 (Gomez Sanabria et al., 2021). More granular 

regions and sectors, such as the refinement of residential cooking and heating (GAINS 4.01 release notes, 2021), could 415 

also affect the pathways where those sectors play major roles (like for black and organic carbon). In addition, the 

updates reflect the effects of some recent policies, such as the sharp declines of SO2 in China (Zheng et al., 2018).  

It is also worth noting the differing structures of each integrated data set in TAPS, particularly with respect to the 

sectors and regions of CEDS, GFED, EPPA, GAINS, and FAO. The lack of direct EPPA matches for the CEDS 

sectors of “Residential”, “Solvents”, and “Waste” necessitates a scaling by population that limits the sectors’ range of 420 

outcomes. We also make approximations for CEDS’ solid biofuel categories, scaling by EPPA’s total sectoral energy 

given the lack of a closer fit. Finally, the regional estimates of NH3 trends beyond the available G20 data (chosen as 

constant or G20-like intensity paths for each GAINS sector) could be low or high depending on the realities in those 

areas. Future work could refine these assumptions as improvements become available. 

Further application of TAPS could explore other emissions intensity scenarios to inform different research questions 425 

(Table 3). This example application demonstrates the range of outcomes between the bounds of a “continued CLE 

trend” and “continued MFR trend” (as well as the more conservative “MFR Midcentury” variation), embodied by the 

fitted exponentials described above. For other applications, a “CLE Midcentury” case (with emission factors held at 

the final GAINS data point in 2050) could parallel the “Paris Forever” focus on short-term greenhouse gas policy, 

while the SSP-like scenarios could be used for more direct comparisons with their income-based pathways. Finally, 430 

additional scenario elements such as land use, diet, and active mobility could be incorporated as in recent works – 

particularly since improving such elements may lead to comparable or even greater health benefits than the pollution-

specific policy levers explored here (Amann et al., 2020; Hamilton et al., 2021).  

Such scenarios need not be limited to emissions intensity. With the regional, sectoral, and fuel-based EPPA outputs 

given in the data and code availability, users can readily explore the effects of more granular climate policies applied 435 

at those levels. Activity trends could be adjusted to study the effects of sector-specific policies on agricultural land 

use, fuel-specific policies on coal combustion levels, or region-specific policies that capture individual NDC updates 

(for example). Given the tool’s relatively quick runtime, uncertainty analyses could explore larger ensembles of policy 
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or other inputs to efficiently explore first-order outcome ranges, following the approach of recent EPPA studies on 

socioeconomic (Morris et al., 2021b) and climate forcing trends (Morris et al., 2021a). 440 

5. Conclusions  

TAPS provides a flexible and comprehensive model for assessing climate and pollution pathways, integrating recent 

standard emissions inventories, long-term activity scaling, and scenario-specific emissions intensities. Results from 

its application to selected scenarios show lower near-term emissions than the SSPs in many cases, both from NDCs’ 

greater climate policy ambition as well as recent pollution reduction actions now captured in GAINS. Less ambitious 445 

pathways show increased emissions in the long-term – particularly for the industrial and agricultural processes that 

have fewer existing controls. These increases are especially pronounced in developing regions where sharply growing 

activities are combined with fewer planned pollution policies. However, more ambitious climate and pollution policies 

can curb those increases substantially – from the SO2 and NOx reductions driven by fuel switching to the NH3 

reductions from land use decisions and OC reductions from pollution controls.  450 

Future applications could explore other scenarios by adjusting a range of climate or pollution policy inputs. Assessing 

other climate or activity scenarios could compare the health impacts of near-term fuel switching versus long-term 

negative emissions. Additional emissions intensity trends could add the aforementioned elements of land use, diet, or 

specific innovations beyond today’s technological control options. All these scenarios can be applied to specific 

regions, sectors, or fuels in the framework to explore more granular policies or target short-term actions with high-455 

impact benefits.  

Future tool development and linkages could consider other emissions sources – such as aviation, open burning, or 

wildfires – to explore the futures of additional activities that may be underestimated (Pan et al., 2020) or not fully 

covered by the default inventories used here. Integration with other modeling tools could examine key inter-pollutant 

or pollutant-climate feedbacks, such as the increased NH3 emissions rates in a warming world (Yang et al., 2021). 460 

External coupling to other ensemble results could address important but out-of-scope elements such as meteorological 

uncertainty, given its importance in past studies that compared natural variability with other sources of uncertainty in 

health impacts analysis of air pollution (Pienkosz et al., 2019; Saari et al., 2019). 

Finally, additional research with air quality and impact models can assess the health, economic, and ecological effects 

of TAPS emissions scenarios as well as their implications for decision-making. Quantified impacts could include a 465 

range of mortality and morbidity endpoints to reflect recent epidemiological research (Danesh Yazdi et al., 2019), as 

well as other vulnerabilities (such as crops, biodiversity, and forestry) or analyses of equity, uncertainty, and sensitivity 

for key parameters (Hess et al., 2020). Using a combined assessment of climate and pollution policies could help 

reduce the siloes that have traditionally hindered the consideration of climate-health linkages in decision-making 

(Workman et al., 2018). Integrated impact metrics (whether through the weighting of multi-criteria decision analysis 470 

or the monetization of benefit-cost analysis) could also inform policy conversations. Ultimately, the TAPS framework 

could enable more flexible, efficient, and extensive scenario study of policies that affect climate change and health 

futures. 
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Appendix A: CEDS reference data  

 475 
Table A1. Percentage of base-year (2014) CEDS emissions from different fuel consumption vs. process sources (broken 
down by sector, aggregated globally).  

     Sector Fuel SO2 CO NH3 BC OC NOa C2H4
b  

Agriculture total-coal 0 0 0 0 0 0 0  
 

solid-biofuel 0 0 0 0 0 0 0  
 

  liquid-fuel-plus-natural-gas 0 0 0 0 0 0 0  
 

process 0 100 100 0 0 0 0  

Commercial total-coal 72 0 25 44 49 52 24  
 

solid-biofuel 1 0 27 49 25 11 27  
 

liquid-fuel-plus-natural-gas 27 100 48 7 26 38 50  
 

process 0 0 0 0 0 0 0  

Energy total-coal 64 51 5 7 3 10 0  
 

solid-biofuel 0 3 2 37 9 1 0  
 

liquid-fuel-plus-natural-gas 19 32 7 1 2 8 0  
 

process 17 14 87 55 86 81 100  

Industry total-coal 45 55 5 21 54 43 28  
 

solid-biofuel 0 9 38 74 20 8 26  
 

liquid-fuel-plus-natural-gas 20 32 10 6 26 5 8  
 

process 35 5 47 0 0 44 38  

Non-road transport total-coal 0 0 0 0 0 0 0  
 

solid-biofuel 0 0 0 0 0 0 0  
 

liquid-fuel-plus-natural-gas 100 100 100 100 100 100 100  
 

process 0 0 0 0 0 0 0  

Other total-coal 38 1 12 23 13 10 6  
 

solid-biofuel 0 2 9 43 8 20 16  
 

liquid-fuel-plus-natural-gas 62 97 79 34 79 70 78  
 

process 0 0 0 0 0 0 0  

Residential total-coal 70 8 0 8 13 13 3  
 

solid-biofuel 20 58 97 92 70 87 96  
 

liquid-fuel-plus-natural-gas 10 33 3 0 17 1 1  
 

process 0 0 0 0 0 0 0  

Shipping total-coal 0 0 0 0 0 0 0  
 

solid-biofuel 0 0 0 0 0 0 0  
 

liquid-fuel-plus-natural-gas 100 100 100 100 100 100 100  
 

process 0 0 0 0 0 0 0  

Solvents total-coal 0 0 0 0 0 0 0  
 

solid-biofuel 0 0 0 0 0 0 0  
 

liquid-fuel-plus-natural-gas 0 0 0 0 0 0 0  
 

process 0 0 100 0 0 0 0  
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Transport total-coal 0 0 0 0 0 0 0  
 

solid-biofuel 0 0 0 0 0 0 0  
 

liquid-fuel-plus-natural-gas 100 100 100 100 100 100 100  
 

process 0 0 0 0 0 0 0  

Waste total-coal 0 0 0 0 0 0 0  
 

solid-biofuel 0 0 0 0 0 0 0  
 

liquid-fuel-plus-natural-gas 0 0 0 0 0 0 0  
 

process 100 100 100 100 100 100 100  

a CEDS reports NOx as NO and NMVOC as speciated compounds; b C2H4 is shown as an example NMVOC species. Other 
NMVOC species may show differences, such as more “process” emissions from solvents. Global aggregate proportions are 
shown here for context; full regional and speciated values are available at our online repository. CEDS fuel definitions are 480 
given in Table S1 of McDuffie et al. (2020), with bioenergy separated between solid and liquid fuels. 

Appendix B: EPPA7 reference definitions 

Table B1. EPPA7 regions and sectors, as described in Paltsev (2021). 

Region code Region name Sector code Sector name 

AFR Africa COAL Coal 

ANZ Australia, New Zealand & Oceania CROP Agriculture - Crops 

ASI East Asia DWE Ownership of Dwellings 

BRA Brazil EINT Energy-Intensive Industries 

CAN Canada ELEC Electricity 

CHN China FOOD Food 

EUR European Union+ FORS Agriculture - Forestry 

IDZ Indonesia GAS Gas 

IND India LIVE Agriculture - Livestock 

JPN Japan OIL Crude Oil 

KOR South Korea OTHR Other 

LAM Latin America ROIL Refined Oil 

MES Middle East SERV Services 

MEX Mexico TRAN Transport 

REA Rest of Asia 
  

ROE Eastern Europe and Central Asia 

RUS Russia 

USA USA 
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Figure B1. Map of EPPA7 regions of the world, from Paltsev et al. (2021) and online documentation of its Integrated Global 485 
System Modeling (IGSM) framework (https://globalchange.mit.edu/research/research-tools/eppa) with reproduction rights 
granted. 

Appendix C: Mapping from GAINS model 

Table C1. Mapping from GAINS EMF (based on IMAGE) to EPPA7 regions. 

EPPA7 GAINS EMF EPPA7 GAINS EMF EPPA7 GAINS EMF 

CAN 1 Canada AFR 10 South Africa IND 18 India 

USA 2 USA EUR 11 Western Europe KOR 19 Korea 

MEX 3 Mexico EUR 12 Central Europe CHN 20 China+ 

LAM 4 Rest Central America ROE 13 Turkey ASI 21 Southeastern Asia 

BRA 5 Brazil ROE 14 Ukraine+ IDZ 22 Indonesia+ 

LAM 6 Rest South America ROE 15 Asia-Stan JPN 23 Japan 

AFR 7 Northern Africa RUS 16 Russia+ ANZ 24 Oceania 

AFR 8 Western Africa MES 17 Middle East REA 25 Rest South Asia 

      

IMAGE regions are given in Fig. S7.1 of Klimont et al. (2017) and compared to Fig. 2. Regions in italic differ slightly from 490 
EPPA definitions.
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Table C2. Mapping from GAINS NH3 to CEDS/GFED inventory sectors and fuels. 

Inventory sector CEDS fuel  GAINS NH3 sector classes GAINS NH3 sector class names 

Ag. waste burning Process WASTE_AGR Agricultural waste burning 

Agriculture Process AGR, COWS, FCON, FERTPRO Livestock and fertilizer (Table C3) 

Energy Coal PP - BC1, BC2, DC, HC1, HC2, HC3 Power plants (brown, derived, and 

hard coal)  
 

Biofuel PP - OS1, OS2 “ (biomass and waste fuels) 
 

Oil & gas PP - GAS, GSL, HF, LPG, MD “ (natural gas, gasoline, heavy fuel oil, 

liquified petrol gas, diesel) 
 

Process CON, PROD_AGAS, WASTE_FLR Conversion, flaring and venting 

Industry Coal IN_OC - BC1, BC2, DC, HC1, HC2, HC3 Industrial (brown, derived, hard coal) 
 

Biofuel IN_OC - OS1, OS2 “ (biomass and waste fuels) 
 

Oil & gas IN_OC - GAS, GSL, HF, LPG, MD “ (natural gas, gasoline, heavy fuel oil, 

liquified petrol gas, diesel) 
 

Process IN_BO, IO_NH3_EMISS Boiler and other emissions 

Residential, 

Commercial 

Coal (DOM) - BC1, BC2, DC, HC1, HC2, HC3 Residential-commercial 

(brown/derived/hard coal) 
 

Biofuel (DOM) - OS1 “ (biomass) 

 Oil & gas (DOM) - GAS, GSL, HF, LPG, MD “ (natural gas, gasoline, heavy fuel oil, 

liquified petrol gas, diesel) 

Other (combustion) Oil & gas TRA_OT_(AGR, CNS, LB, LD2) Off-road engines, mopeds, 

construction & agriculture vehicles 

Shipping Oil & gas TRA_OTS Maritime 

Solvents Process IO_NH3_EMISS Other industrial NH3 emissions 

Transport Oil & gas TRA_RD All road transportation 

Non-road transport Oil & gas TRA_OT_INW, TRA_OT_RAI Inland waterways, railways 

Waste Process WT_NH3_EMISSa Trash burning 

See full table (with a row for each of the 198 GAINS NH3 sectors) in Supplementary Data. CEDS fuel definitions are given 
in Table S1 of McDuffie et al. (2020) – with bioenergy separated between solid (“Biofuel”) and liquid fuels (“Oil & gas”). 
Comparisons are based on Table S3 in Rafaj et al. (2021), with sectoral abbreviations described further in GAINS Online. 
aSince NH3 “Waste” data were only available for two countries, emissions intensity trends follow NOx “Waste” trends based 
on Gomez Sanabria et al. (2021). 

 

 

 

 

 

 

 

 



22 
 

Table C3. Mapping from GAINS agricultural sectors to FAO activities. 

GAINS FAO 

AGR_BEEF Beef and veal 

AGR_COWS Raising of cattle 

AGR_OTANI-BS Raising of buffaloes 

AGR_OTANI-CM, -FU, -HO Raising of livestock (total) 

AGR_OTANI-SH Raising of sheep 

AGR_PIG Raising of pigs 

AGR_POULT Raising of poultry 

COWS_3000_MILK Raw milk 

FCON, FERTPRO NPK_consumption 

Based on GAINS sector abbreviations at https://gains.iiasa.ac.at/models/index.html and FAO sectors in regional aggregate 
data. 

 

Table C4. Mapping from NH3 data sources to EPPA7 regions. 

 
EPPA7 G20 Corollary FAO Corollary 

CAN USA High-income 

USA USA High-income 

MEX Mexico Latin America/Caribbean 

LAMb Argentina Latin America/Caribbean 

BRA Brazil Latin America/Caribbean 

AFRb South Africa Sub-Saharan Africa 

EUR United Kingdom; 

France; Germany 

High-income 

 

ROEb Turkey Europe/Central Asia 

RUS Russiaa Europe/Central Asia 

MESb Turkey Near East/North Africa 

IND Indiaa South Asia 

KOR South Koreaa EAP excluding China 

CHN Chinaa China 

ASIb Chinaa EAP excluding China 

IDZb Chinaa EAP excluding China 

JPN Japana EAP excluding China 

ANZ Australia High-income 

REAb Indiaa South Asia 

Full GAINS data were only provided for G20 countries. Countries that approximate other regions are shown in bold, while 
corollaries that represent a part of their EPPA regions (or vice versa) are in italic. FAO regions are shown in Fig. 1.2 of 
FAO (2018). a Countries with subnational regions in GAINS were aggregated based on their proportional emissions. b 
Scaling for EPPA regions not well-captured by the GAINS G20 coverage is described in Sect. 2.3.
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Appendix D: IPCC sectoral references  

Table D1. IPCC sectoral definitions for EPPA scaling of sectors from the chosen emissions inventories. 

IPCC code Activity CEDS sector EPPA sectoral scaling 

3 Agriculture process emissions Agriculture CROP, FORS, LIVE 

4F Agricultural waste burning N/A; from GFED CROP 

1A1 Electricity/fuel production Energy COAL, ELEC, GAS, ROIL 

1B Fugitive fuel emissions Energy COAL, ELEC, GAS, ROIL 

7A Fossil fuel fires Energy COAL, ELEC, GAS, ROIL 

1A2 Industrial combustion Industry EINT, FOOD, OTHR 

1A5 Other industrial (combustion) Industry EINT, FOOD, OTHR 

2A-2C, H, L Industrial process emissions Industry EINT, FOOD, OTHR 

6A Other industrial (process) Industry EINT, FOOD, OTHR 

1A4a Commercial/institutional Commercial SERV 

1A4b Residential Residential Population 

1A4c Other combustion Other (combustion) CROP, FORS, LIVE 

1A3d(i) International shipping, oil tankers Shipping TRAN 

2D Solvents Solvents Population 

1A3,1C Aviation N/A   

1A3b Road transportation Transport TRAN 

1A3c Rail transportation Non-road transport TRAN 

1A3d(ii)-e(ii) Domestic navigation, other transport Non-road transport TRAN 

5 Waste/wastewater emissions Waste Population 

 

Inventory versions include CEDSGBD-MAPS (McDuffie et al., 2020) for most anthropogenic emissions, as well as GFED4.1s 
(van der Werf et al., 2017) for biomass burning. Since only agricultural waste burning is included in EPPA through 
GTAP/EDGAR, other sources of burning emissions are not scaled by EPPA outputs. Aviation was not scaled in this work 
due to its exclusion from both CEDSGBD-MAPS and GAINS. “Other combustion” includes sources from agriculture, forestry, 
and fishing. Sectoral scaling from EPPA largely reflects the distribution of activities in GTAP10 / EDGAR5.0 sectors 
(Chepeliev, 2020), which are then mapped to representative EPPA7 sectors.  
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Code and data availability  

A (frozen) version of the tool code, processing scripts, data outputs, figure production, and any inputs not described below can 

be found on Zenodo at https://doi.org/10.5281/zenodo.7020746 (Atkinson et al., 2022). The current version can be found on 

Github at https://github.com/watkin-mit/TAPS, including the full user manual (https://github.com/watkin-mit/TAPS/wiki) and 5 

open-source MIT license. Input data are available as follows: 

 CEDSGBD-MAPS (anthropogenic emissions inventory): accessed through GEOS-Chem at 

http://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/CEDS/v2020-08/, DOI:10.5281/zenodo.3754964 (McDuffie 

et al., 2020) 

 GFED4.1s (agricultural waste burning inventory): accessed through GEOS-Chem at 10 

http://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/GFED4/v2015-10/, DOI:10.22033/ESGF/input4MIPs.10455, 

with dry matter emission factors from http://www.globalfiredata.org/ar6historic.html (van Marle et al., 2017) 

 EPPA7 scenario data (last accessed 7 May 2021): see the above DOI, with further information at 

https://globalchange.mit.edu/research/research-tools/human-system-model (Paltsev et al., 2021) 

 GAINS 4.01 scenario data (last accessed 12 October 2021): https://gains.iiasa.ac.at/models/ (IAM resolution, 15 

ECLIPSE v6b CLE and MFR, EMF30 resolution with G20 GAINS sectors for NH3) available with a free account 

(Amann et al., 2011; GAINS 4.01 release notes, 2021; Klimont et al., 2017; Smith et al., 2020)   

 FAO scenario data (last accessed 21 January 2022): https://www.fao.org/global-perspectives-studies/food-

agriculture-projections-to-2050/en/ (FAO, 2018) 

 SSP IAM comparisons (last accessed 30 April 2021): Version 2.0, DOI:110.1016/j.gloenvcha.2016.05.009 (Riahi et 20 

al., 2017) via the SSP database: https://tntcat.iiasa.ac.at/SspDb/  

 SSP CMIP6 comparisons (last accessed 30 April 2021): Version 2.0, DOI:10.5194/gmd-12-1443-2019 (Gidden et 

al., 2019) via the SSP database: https://tntcat.iiasa.ac.at/SspDb/  

 Global population distribution (last accessed 28 October 2020): Gridded Population of the World, Version 4.11, 

Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, https://doi.org/10.7927/H4PN93PB 25 

(CIESIN, 2018) 
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