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Abstract. In this paper we introduce a new software framework for the offline calculation of tracer transport in the ocean. The

Fast Equilibration of Ocean Tracers Software (FEOTS) is an end-to-end set of tools to efficiently calculate tracer distributions

on a global or regional sub-domain using transport operators diagnosed from a comprehensive ocean model. To the best of

our knowledge, this is the first application of a Transport Matrix Model to an eddying ocean state. While a Newton-Krylov-

based equilibration capability is still under development and not presented here, we demonstrate in this paper the transient5

modeling capabilities of FEOTS in an application focused on the Argentine Basin, where intense eddy activity and the Zapiola

Anticyclone lead to strong mixing of water masses. The demonstration illustrates progress in developing offline passive tracer

simulation capabilities, while highlighting the challenges of the Impulse Response Functions approach in capturing tracer

transports by a non-linear advection scheme. Our future work will focus on improving the computational efficiency of the code

to reduce time-to-solution, using different basis functions to better represent non-linear advection operators, applying FEOTS10

to a parent model with unstructured grids (MPAS-Ocean), and to fully implement a Newton-Krylov steady state solver.

1 Introduction

Many oceanographic research problems involve the transport and distribution of tracers that do not feed back on the ocean

dynamics. Examples of such problems are the diagnostic tracking of water masses using passive tracers (e.g., Dukhovskoy

et al., 2016; Zhang et al., 2021); validating the use of isotopes or grain size distributions in marine sedimentary records15

to infer past ocean circulation changes (e.g., Jahn et al., 2015; Zhang et al., 2017; Gu et al., 2019; Missiaen et al., 2020);

assessing anthropogenic carbon uptake by the ocean (e.g., Sarmiento et al., 1992; Khatiwala et al., 2009; Wang et al., 2012);

studying the evolution of marine biogeochemical systems (e.g., Séférian et al., 2020); or tracking the fate of microplastics in the

ocean (e.g., Mountford and Morales Maqueda, 2019). In many cases, the transport of these tracers is dominated by mesoscale

processes like eddies. Typical ocean climate models use grids that are too coarse to explicitly resolve these processes and rely20

on parameterizations to simulate their impact on tracer fields; but it has become clear that these eddy-parameterized models

fail to reproduce some critical aspects of the real ocean (e.g., Lozier, 2010). What is more, the ocean also contains dynamical

features that rely on mesoscale eddies, and which cannot be reproduced by low-resolution models.
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A case in point is the Argentine Basin. It is among the most turbulent regions in the World Ocean (Fu and Smith, 1996),

mostly on account of the confluence of two western boundary currents, the Brazil and Malvinas Currents (e.g., Garzoli, 1993).25

A seamount in the center of the basin is associated with a local minimum in eddy kinetic energy (Fu and Smith, 1996), but is

surrounded by a very strong barotropic vortex, the Zapiola Anticyclone (ZA; Saunders and King, 1995; de Miranda et al., 1999).

This anticyclone is understood to be driven by the intense eddy field (Dewar, 1998), and has been shown to inhibit exchanges

between the interior of the ZA and its surroundings (Weijer et al., 2015, 2020). Strikingly, the Argentine Basin is also a main

conduit of water mass exchange between the Atlantic and Southern Oceans (e.g., Jullion et al., 2010), so eddy-driven mixing30

of water masses in the Argentine Basin may have implications for the global thermohaline circulation.

It is clear that studying tracer transport and mixing in the Argentine Basin requires an ocean model that resolves the ocean’s

mesoscale; not just to accurately represent the transports by narrow boundary currents and the turbulent eddy field, but also

to generate the ZA in the first place. Second, the equilibration of tracers at deeper levels may take many decades or centuries,

requiring a model capability that can be run for such long times, or can determine equilibria directly using iterative solvers.35

Third, this problem is ideally addressed using a representation of the global ocean circulation; not only so that the ocean

circulation in the region of interest is fully consistent with large-scale oceanographic drivers, but also for the practical reason

that not every regional problem would require a unique model configuration.

The cost and technical challenges of running global and fully-dynamic ocean models make it expensive and difficult at best,

but often impossible, to address problems like these. It is obvious that there is a need for simple and efficient tools that solve40

tracer transport and distribution problems, without the need to explicitly simulate ocean dynamics. In the past decade or so,

several Transport Matrix Models (TMMs) have been developed that allow for the simulation of passive tracers in a stand-

alone (offline) code, using transport operators that have been diagnosed from comprehensive ocean models (Primeau, 2005;

Khatiwala et al., 2005; Khatiwala, 2007; Bardin et al., 2014; Kvale et al., 2017; Zanna et al., 2019; Chamberlain et al., 2019).

In particular, Khatiwala et al. (2005) pioneered the approach of empirically estimating an ocean model’s transport processes45

by diagnosing the action of the transport (advection and diffusion) operators on simple basis functions like impulse fields. The

resulting Impulse Response Functions (IRFs) can straightforwardly be converted to the desired transport matrices. This process

requires minimal intervention in the parent model.

Despite the success of these techniques, TMM models have generally been applied to low-resolution, non-eddying ocean

states only. This makes them unsuitable to study problems where eddies play a zeroth-order role in tracer transport and ocean50

dynamics, like the Argentine Basin. To the best of our knowledge, the capability introduced in this paper is the first TMM

model developed for and applied to eddying ocean states, with transport operators diagnosed from a global ocean model with

nominal resolution of 0.3◦ and 100 vertical levels (∼ 108 degrees of freedom).

Our computational framework is embodied in the Fast Equilibration of Ocean Tracers Software (FEOTS; https://github.

com/LANL/FEOTS). FEOTS is based on the methodology of Bardin et al. (2014) but is specifically designed to tackle the55

large computational problems associated with tracer transport in a global eddying ocean. In particular, FEOTS is written in

Object-Oriented Fortran instead of Matlab, which makes it straightforward to port the code to supercomputers, to parallelize

the workflow, and to expose the code to a plethora of existing solver libraries. Also, FEOTS provides an end-to-end set of tools
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that streamlines the process of building and running an offline tracer model. It i) uses an advanced optimization algorithm to

generate an optimal set of impulse functions, given the grid layout and operator stencils for the parent model; ii) transforms the60

resulting IRFs obtained from the parent model to transport operators; iii) sets up regional or global tracer problems, with differ-

ent types of tracers; iv) runs forward simulations of the offline tracer model; and v) uses a Newton-Krylov solver to determine

steady tracer distributions. To date, the authors have implemented the first four of these features, and their implementation,

validation, and verification are presented in this paper. We plan to fully implement a Newton-Krylov steady state solver in fu-

ture releases. The framework is applied here to the Parallel Ocean Program (POP; Smith et al., 2010); but the design is flexible65

enough to be generally applicable –in particular to the new generation of ocean models with unstructured grids, like the Ocean

Model for Prediction Across Scales (MPAS-Ocean, Ringler et al., 2013). Other future work aims to improve time-to-solution

by exposing data parallelism in forward simulation components of FEOTS.

In this paper we present validation and verification results for the FEOTS offline tracer solver in a regional forward simulation

configuration focused on the Argentine Basin. Specifically, we will show that uniform tracer fields are preserved within 0.01%70

after five years of offline model integration and we will present a comparison of the offline regional tracer simulation using

five-day averaged transport operators with an online tracer simulation using the parent model. Finally, we comment on the

compute costs for running offline simulations with FEOTS

2 Methodology

Our work builds on the methodologies of Bardin et al. (2014) to create FEOTS. FEOTS comes with tools to generate impulse75

fields, translate impulse response fields to sparse matrices corresponding to advection and lateral diffusion, create vertical dif-

fusion operators from eddy diffusivities reported by the parent model, and execute offline regional transient tracer simulations.

In section 2.1 we discuss the parent model POP, which is used for this study. In section 2.2 we present the governing equations

for a non-interacting passive-tracer system and outline the methodology for capturing transport operators from a comprehen-

sive ocean model in 2.3. The challenge of using a flux-limited advection scheme is discussed in section 2.4. The offline forward80

stepping algorithm and treatment of vertical mixing is presented in section 2.5. Last, the constant preservation test problem is

defined in section 2.6 and the Argentine Basin test problem is defined in 2.7.

2.1 Parent Model

FEOTS is used for offline tracer simulations using transport operators diagnosed from a comprehensive ocean model, the

“parent model”. Here we apply FEOTS to the Parallel Ocean Program, in the framework of the E3SMv0-HiLAT climate model85

(Hecht et al., 2019). Our specific configuration is described in Zhang et al. (2019) and is referred to as E3SMv0-HiLAT03.

E3SMv0-HiLAT03 has a tripole grid with nominal 0.3◦ spatial resolution. The grid has 1200x800 grid cells, and 100 levels

in the vertical. The grid has a ‘seam’ in the Arctic that connects the poles in Siberia and in Canada. Although technically not

eddy-resolving in most of the World Ocean (Hallberg, 2013), this configuration has a vigorous eddy field (Zhang et al., 2019),

and a realistic representation of the eddy-driven Zapiola Anticyclone in the Argentine Basin (Weijer et al., 2020).90
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With O(108) degrees of freedom, and an eddying field that requires transport operators at high temporal frequency (e.g.,

5-daily averages), the data volume of the diagnosed IRFs can become unmanageable quickly. It is therefore critical to keep the

number of IRFs to an absolute minimum. This means that we need to choose advection and diffusion treatments that have the

most compact stencils. Typically high-resolution ocean models use a bi-harmonic mixing scheme to dampen out the dispersive

errors caused by the advection operator (e.g., Hecht et al., 2008). Bi-harmonic mixing is clearly undesirable for our application,95

given its huge stencil. Of the three advection schemes currently implemented in POP (Smith et al., 2010), the centered and

3rd-order upwind schemes require explicit diffusion to manage the dispersion error. The flux-limited Lax-Wendroff scheme

does not, making this the only reasonable choice for our application; even though its stencil is quite large (27 grid points,

3× 3× 3) compared with the other two (7 grid points for centered, 13 for the 3rd-order upwind scheme). This choice requires

53 impulse functions to capture the advection operator (compared to 34 impulse functions for the 3rd-order upwind scheme),100

but eliminates the need for explicit diffusion.

The model is forced by the normal-year CORE-II climatology (Coordinated Ocean-Ice Reference Experiments version 2;

Griffies et al., 2012), which has been a widely used framework to force ocean and/or sea ice models for hindcast simulations.

With a time step of 7 minutes, the model typically yields maximum CFL values of O(10−1) or smaller. Although the model

was run for 186 years, we diagnosed the transport operators for the 5-year period starting at simulation year 64. Even though105

63 years of spin-up is not sufficient to fully equilibrate the stratification in the deep ocean, the main circulation features (e.g.,

boundary currents, the eddy field, the Zapiola Anticyclone) are well established by then, making this an appropriate data set to

demonstrate the capability of FEOTS. We refer to Weijer et al. (2020) for evaluation of the hydrography and circulation in the

Argentine Basin in a companion simulation.

2.2 Governing Equations110

We model a passive dye tracer as a concentration field that is subjected to advection and diffusion,

∂

∂t
[(1 + v)c] +∇ · (uc−K∇c) = 0 (1)

where v is the fluid volume anomaly, c is the tracer concentration, t is time, u is the ocean velocity field, and K is the diffusivity

tensor that models unresolved eddy activity. The fluid volume anomaly is a unitless quantity that is a measure of the relative

change of the fluid volume due to movement of the free-surface. This formulation is chosen so that total tracer is conserved115

and so that the offline model is consistent with the parent model (Smith et al., 2010).

In practice, the fluid volume anomaly is defined as the ratio of the free surface height to the upper most grid cell, only in the

upper most grid cell,

v =
η

dz1
δk,1 (2)

where η is the free surface height, dz1 is the grid cell thickness in the upper most grid cell, and δk,1 is the Kronecker delta120

function.
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The initial and boundary conditions are set to be

c(t= 0) = c0(z,θ,φ) (3)

and

c= cb(z,θ,φ, t), (4)125

where z is depth (measured positive downward), θ is longitude, and φ is latitude. The semi-discrete form of (1) can be written

as:

∂

∂t
[(1 + v)c] + (A+Dh +Dv)c = 0 (5)

where c is a vector of the discrete values of the tracer, A is the advection matrix, Dh is the horizontal diffusion matrix, and Dv

is the vertical diffusion matrix. In the examples presented in this paper, the advection matrix corresponds to the Flux-Limited130

Lax-Wendroff advection scheme on an Arakawa B-Grid; this scheme is chosen in the parent model configuration. Since we

do not enable explicit lateral tracer diffusion in the parent model in this study, all elements of Dh are zero. To create the

vertical diffusion matrix, we diagnose diffusivity coefficients, which are generated from the KPP parameterization, and create

a vertical mixing operator offline using centered differencing with no-flux conditions applied at the ocean free surface and at

the sea-floor.135

2.3 Graph Coloring approach to Operator Diagnosis

The purpose of capturing the impulse response functions is to diagnose sparse matrices that are consistent with the advection

discretization in the parent model. To illustrate this procedure, suppose that the parent model has N grid cells and that N

impulse fields are set as the Kronecker delta functions:

[c(i)]Ni=1 = [δj,i]
N
i=1 (6)140

In this setup, impulse function i is zero at all grid cells except for grid cell i where the impulse function has a value of one.

Application of the transport matrix to each of the c(i) returns column i of A,

Ac(i) =

N∑
j=1

Am,jδj,i =Am,i for m= 1,2,3, ...,N (7)

While using a set of Kronecker delta functions will completely diagnose all of the elements of the transport matrix, this strategy

is computationally expensive. For each time step, this strategy requires computing the advective tendency for N tracer fields,145

where N is the number of grid cells. For example, coarse resolution model at O(1◦) resolution have roughly 106 grid cells.

Storing 106 impulse and impulse response functions would require approximately 3 TB of memory at double precision.

To reduce the number of required impulse functions to fully diagnose the transport matrices, we can take advantage of the

fact that the advection scheme results in a sparse matrix. Equivalently, the domain of influence of the advection operator is
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limited to nearby grid cells. The parent model employed in Bardin et al. (2014) used a third order upwind scheme, where the150

impulse response is guaranteed to extend no further than two grid-cells in each spatial dimension, giving a 5x5x5 brick for the

domain of influence. Because of this, the authors used a set of 125 tracer fields,

c(i, j,k; i0, j0,k0) = δi0,i(mod5)δj0,j(mod5)δk0,k(mod5) for i0 = 1, ...,5;j0 = 1, ...,5;k0 = 1, ...,5 (8)

FEOTS offers a unique capability to generate a minimal set of impulse functions by posing the problem as a graph coloring

problem. A graph G(V,E) is defined by a set of vertices V and edges E that connect the vertices. Two vertices connected155

by an edge are said to be adjacent. A valid graph coloring of G(V,E) assigns colors to each vertex so that no two adjacent

vertices have the same color. To calculate impulse functions that can be used to diagnose transport operators, FEOTS offers

functionality to express a POP mesh and an advection stencil into an equivalent graph that is colored with a Greedy algorithm.

This formulation has the benefit that it can be generalized to parent models based on unstructured grids and it takes into account

irregular boundaries from variable bathymetry.160

In FEOTS, graph vertices V correspond to each ocean grid cell, centered on tracer points, in the POP mesh. Two vertices

are adjacent if their impulse response functions overlap. Because a valid coloring results in adjacent vertices having distinct

colors, vertices with the same color can safely be assigned to the same impulse function. Consequently, the chromatic number

of the graph corresponds to the number of impulse functions used for model diagnosis. For this work, the parent model uses a

0.3◦ periodic tripole mesh and the 3rd order flux-limited Lax-Wendroff advection scheme. This approach results in 53 impulse165

functions required to uniquely diagnose the transport operators.

The transport operators in equation (5) are diagnosed empirically from the parent model, using the methodology used by

Bardin et al. (2014) and pioneered by Khatiwala et al. (2005). This process involves diagnosing and time averaging the impulse

response functions corresponding to each of the 53 impulse fields in the passive tracer equations in POP. Modifications are

made in POP to initialize the passive tracers to the impulse functions at the beginning of each time step. The impulse response170

function is set equal to the advective tendency as diagnosed in POP. After diagnosing the IRF in each time step, the tracer

field is reset to the impulse field so that the IRF at the next time step is saved. The IRFs are time-averaged over a configurable

averaging period and written out to file.

For each time averaged IRF, we create a sparse matrix representation of the advection operator in POP. Modeling the

advection operator as a matrix-vector multiplication, equation (7) shows that passing an impulse at grid point i through the175

advection operator, returns column i of the matrix that corresponds to the advection. We use this to construct a sparse matrix

in compressed-row-storage format that corresponds to the advection operator.

For our test problems, we diagnosed the 5-day averaged IRFs and vertical diffusivities for the 5-year analysis period of

the parent model. We repeated the simulation for 105 days, diagnosing 1-day averaged IRFs. With this methodology and the

7-minute time step, the one-day averaged operators are each an average of 1440 IRF snapshots and the five-day averaged180

operators are each an average of 7200 IRF snapshots. The data volume of the global parent model five years’ worth of 5-day

averaged operators (365 IRFs and diffusivities) is about 9 TB. Once transformed to transport operators, the data volume is 4

TB.
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2.4 Flux-limited advection

The parent model uses a nonlinear Flux-Limited Lax-Wendroff advection scheme; the flux limiter is equivalent to the ULTI-185

MATE flux-limiter described in Leonard (1991) and Hundsdorfer and Trompert (1994). Because FEOTS treats offline advec-

tion as a linear operation, online advection with the parent model, in this case, can not be equivalent. In what follows, we will

illustrate how the impulse functions result in the diagnosis of a more diffusive advection scheme than Lax-Wendroff.

In POP, the tracer equations are discretized using a finite volume approximation on an Arakawa B-grid. The non-linear Flux-

Limited Lax-Wendroff scheme is applied in three-dimensions using a dimensional splitting technique, the details of which can190

be found in Chapter 6 of Smith et al. (2010). For the purpose of this discussion, it is sufficient to consider the one-dimensional

problem of calculating the advective flux at a tracer cell face. The advective flux at a tracer cell face can be written as

Ff = uf [cu + Ψ(r)(cd− cu)] (9)

where Ff is the advective flux at a tracer cell face, uf is the normal velocity at a tracer cell face, cu corresponds to the tracer

concentration in the upwind direction, cd corresponds to the tracer concentration in the downwind direction, and Ψ(r) is the195

limiter function where r is a measure of the monotonicity of c. The monotonicity in this method is defined as

r =
cu− cu−1

cd− cu
(10)

where cu−1 is the tracer concentration one cell further in the upstream direction. When r < 0, the tracer concentration has a

local maximum or minimum centered around cu. For the ULTIMATE flux limiter, Ψ(r) = 0 when r < 0, in which case the flux

evaluates to the upwind flux.200

The impulse functions used in this study all have local maximum centered at the impulse locations. At the impulse locations,

r < 0, and therefore the diagnosed flux is the more diffusive upwind flux. This behavior will be apparent and quantified when

comparing the online and offline simulations in subsection 3.2.

2.5 Time integration

Forward integration of the offline tracer model uses Backward Euler for vertical mixing and can use Forward Euler, Adams-205

Bashforth 2nd Order, or Adams-Bashforth 3rd Order for transport. As in Bardin et al. (2014), we forward step an equation

for the volume anomaly using a forward Euler method. Volume anomalies arise due to divergence in the transport field at the

upper-most z-level that are associated with fluctuations of the free-surface.

In general, the time integration scheme can be written as

vn+1 = vn + ∆tAni (11)210

(I+Vn+1 +Dv)cn+1 = (I+Vn)cn + ∆t(A+Dh)c∗ (12)

where v is the volume anomaly, i is a constant vector whose elements are all set to one, c∗ depends on the time integration

scheme that is used (Table 1) and Vn+1 is a diagonal matrix whose diagonal elements are the volume anomalies.
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Method c∗

Forward Euler cn

Adams-Bashforth 2nd Order 3cn−cn−1

2

Adams-Bashforth 3rd Order 23cn−16cn−1+5cn−2

12

Table 1. Optional values for c∗ in Eq. (12), based on the choice in time integration scheme. 3rd Order Adams-Bashforth is used for the

Argentine Basin test problem presented in this paper.

In ocean models, advection and horizontal diffusion operators have a compact stencil, enabling the use of the IRF approach

described in the previous section to ‘capture’ these advection and diffusion operators. However, vertical diffusion is usually215

treated differently, by solving a tri-diagonal system that touches the entire water column. The reason is that high values of

vertical diffusivity are applied where the water column is unstable; and these values easily render any explicit scheme unstable.

Consequently, as the region of influence of the vertical diffusion operator is the entire water column, the IRF approach would

demand a separate IRF field for each vertical level of the model grid, which is prohibitive for finely resolved grids. Instead,

FEOTS treats the vertical solve similarly as the parent model, so rather than IRFs, the vertical diffusivities are diagnosed,220

saved, and used to recreate the vertical diffusion operators offline.

Forward stepping FEOTS requires inverting a tri-diagonal system of equations, given by equation (12), for the tracer con-

centration in order to incorporate vertical mixing. To solve this system, we use the preconditioned conjugate gradient algorithm

(Shewchuk, 1994) with a diagonal preconditioner. The initial solution guess for the vertical mixing solver is set as the tracer

concentration that is predicted without vertical mixing,225

cn+1
0 = (I+Vn+1)−1((I+Vn)cn + ∆t(A+Dh)c∗) (13)

For the results presented in this paper, we use the 3rd Order Adams-Bashforth time integrator and the conjugate gradient

solver is stopped when the residual magnitude, relative to the initial solution guess magnitude, is less than 10−6. We use a 15

minute time step, and a typical maximum CFL value, obtained by eigenvalue analysis of the transport operators, is O(0.1).

2.6 Constant Preservation Test Problem230

We now show that constant preservation is expected in the discrete system. This provides the foundation for a test case that we

use to verify the FEOTS implementation. From Equations (11) and (12), we start by assuming that there is no lateral or vertical

diffusion and the initial tracer field is a constant value of 1 (c0=i). The discrete system at the initial time step is then,

v1 = v0 + ∆tAi (14a)

(I+V1)c1 = (I+V0)i+ ∆tAi (14b)235
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Note that we can write these equations using indicial notation, which makes it easier to obtain the result for c1

v1j = v0j + ∆t
∑
k

Aj,k (15a)

c1j + v1j c
1
j = 1 + v0j + ∆t

∑
k

Aj,k (15b)

Substituting (15a) into (15b) gives

(1 + v0j + ∆t
∑
k

Aj,k)c1j = 1 + v0j + ∆t
∑
k

Aj,k (16)240

The only solution to (16) is c1j = 1 for each j, implying that the discrete solution remains a constant. If we progress to the

next time step, using Forward Euler, the same result is obtained. If instead, we switch to second order Adams Bashforth for the

next time step, we have that

c∗k =
3c1k − c0k

2
= 1 (17)

Using this for c∗ results in245

(1 + v2j + ∆t
∑
k

Aj,k)c2j = 1 + v1j + ∆t
∑
k

Aj,k (18)

which again implies that c2 = i. This result also holds for 3rd order Adams-Bashforth in this case, since

c∗k =
23c2− 16c1 + 5c0

12
= 1 (19)

when c2 = c1 = c0 = i.

When vertical mixing is introduced, the solution obtained in (16) serves as an initial guess to the conjugate gradient solver.250

If the initial guess for the solver is a constant tracer field,

Dvc = 0 (20)

This result in (20) is due to the use of a finite volume discretization for the vertical diffusion with no-flux conditions at the

ocean surface and at the sea-floor. In exact arithmetic, we would therefore expect the tracer field to remain a constant.

This analysis shows that a constant tracer field remains a constant tracer field under the discretizations employed in FEOTS.255

Finite precision arithmetic, however, can produce slight deviations from a constant field, and the results presented in section

3.1 characterize the behavior of round-off errors for a constant tracer field, both with and without vertical mixing.

2.7 The Argentine Basin Test Problem

As discussed in the introduction, the Argentine Basin is an ideal region for testing a tracer transport capability in an eddying

ocean model. In this paper we compare online and offline simulations of dye tracers that are initialized at the boundaries of260
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the Argentine Basin, here chosen as [52.18oS,28.06oS]× [70.25oW,24.90oW ]. In all simulations, the only source of tracers

comes from the model boundary conditions applied along the southern, eastern, and northern boundaries.

We want to distinguish between water masses that originate from each of the domain boundaries and above and below 1000

m depth. This is accomplished by simulating six passive tracer fields Di with boundary conditions:

D1 : c1b =H(1000− z) when φ= 52.18oS (21a)265

D2 : c2b =H(z− 1000) when φ= 52.18oS (21b)

D3 : c3b =H(1000− z) when θ = 24.90oW (21c)

D4 : c4b =H(z− 1000) when θ = 24.90oW (21d)

D5 : c5b =H(1000− z) when φ= 28.06oS (21e)

D6 : c6b =H(z− 1000) when φ= 28.06oS (21f)270

where H(x) is the Heaviside step function. With this configuration, tracers D1, D3, and D5 are released in the upper 1000 m,

on the southern, eastern, and northern boundaries, respectively; while tracersD2,D4, andD6 are released below 1000 m. Note

that maximum mixed layer depths in the Argentine Basin in winter are around 500 m in this model, so deep convection should

not play a role in the transport of these tracers across the 1000 m depth horizon.

3 Results275

In this section, we present results of an offline regional study focused on the Argentine Basin. We first present verification of

the constant preservation property (section 3.1). Then we present a comparison of the tracer simulation results in the parent

model (online) and the offline model using 5-day averaged transport operators (section 3.2), followed by a comparison between

1-day and 5-day averaged transport operators (section 3.3). Finally, we will discuss the computational performance of the code

(section 3.4) on the systems where our simulations were conducted.280

3.1 Constant Preservation

The parent model uses a finite volume discretization that guarantees the preservation of constant tracer fields. To verify that

FEOTS accurately diagnoses transport operators that are representative of the parent model, our first simulation involves

verifying that a constant tracer field remains constant under the action of the diagnosed transport operators.

In all of our simulations, we have opted to use single precision arithmetic and have enabled aggressive compiler optimizations285

(compiler option -Ofast with GCC 9.2.0). These choices were made to minimize data storage costs for the transport operators

and post-processing output and to optimize the time-to-solution for the offline simulations. Although analytically we expect

that the FEOTS algorithm should preserve constant tracer fields, errors from floating point arithmetic are expected to be the

main source of constant preservation errors.
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Figure 1. Vertical profile of the max volume anomaly after 5 days (gray) and after 5 years (black). In the exact form of the equations, the

volume anomaly should only exist in the first vertical layer at the ocean surface. Non-zero values in the volume beneath the surface layer

arise due to round-off errors.

To better understand the spatial distribution and the relative impact of round-off errors, we configure a simulation where290

the initial tracer field is set to c0 = 1 and there is no external source or sink of tracer. Since ∇c0 = 0 and ∇ ·u = 0 under the

discretizations used in the parent model, we expect that ct = 0 and c= c0 = 1 for all time, as demonstrated in section 2.6.

Figure 1 shows the maximum volume anomaly in the domain as a function of depth after five days and five years of inte-

gration. Analytically, the volume anomaly is expected to be zero in all cells except the top-most layer. At the surface layer,

fluctuations in the free surface height are associated with non-zero fluid divergences that contribute to changes in the fluid295

volume. Beneath the surface layer, the fluid velocity field is expected to be divergence free. In general, larger errors in the

volume anomaly are observed above 1000 m depth. After five days, errors in the deep ocean are O(10−5) and after five years,

the deep ocean volume anomaly errors have grown by an order of magnitude to O(10−4). Larger errors are observed above

1000 m, reaching O(10−3) after 5 years. Note that the volume anomaly field is identical for all choices in time integrator for

the dye tracer and is independent of vertical mixing.300

Errors in the volume anomaly lead to spurious values for predicted tracer concentrations. For this simulation, any deviation

of the tracer concentration from its initial uniform value is erroneous. Figure 2 shows the max error in the dye tracer as a

function of depth after five days and five years of integration, with and without mixing. After five years of integration, the

maximum relative error with mixing is about 0.05% and without mixing is about 0.01%. At depth, the errors in the tracer are

comparable with and without mixing. However, above 1000 m, particularly in the mixed layer, the inclusion of mixing results305

in an accumulation of round-off errors.

3.2 The Argentine Basin test case: Offline vs. Online Comparison

In addition to quantifying errors for the constant-tracer scenario, a practical concern is in the comparison between the online and

offline tracer simulations. Do the tracer distributions simulated by FEOTS using transport operators diagnosed from the parent
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Figure 2. Vertical profile of the max error in the dye tracer after 5 days (gray) and after 5 years (black) for simulations with mixing (left) and

without mixing (right). Errors that arise from integrating a uniform tracer field arise from round-off errors in volume anomaly. When mixing

is enabled, vertical mixing redistributes errors and resulting in elevated errors in the upper layers in the simulation.

model E3SMv0-HiLAT03 (offline) faithfully represent the tracer distributions simulated by the parent model itself (online)?310

The time-averaging of the transport operators will introduce differences between the online and offline simulations, as will the

flux-corrected advection operator. Our aim is to quantify and qualitatively describe the differences between a tracer simulation

conducted directly in the online parent model and the offline model. We do this for our example problem, namely determining

the source waters of the Zapiola Anticyclone.

Figure 3 compares the tracer fields obtained with the online and offline method, at the end of the 5-year analysis period. The315

dye tracers shown are those that are released in the upper 1000 m at each of the three domain boundaries. Visual inspection

shows that the online simulation has sharper gradients compared to the offline simulation, even though the same dynamical

features are visible. This is a result of the non-linear advection operator that is more diffusive when applied to impulse functions

than to a smooth tracer field, as explained in section 2.4. The advective errors also affect integrated quantities of dye tracers

within the Zapiola Anticyclone. Figure 4 shows the vertical distribution of tracer concentrations averaged over the Zapiola320

Anticyclone, while Fig. 5 shows the total tracer stock.

Dye tracer D1, sourced at the southern boundary in the upper 1000 m, reaches the ZA after about 45 days in the online

simulation (Fig. 4, upper row). Concentrations in the upper 1000 m rise steadily in the first 2 years; then become mostly steady,

indicating saturation is reached (Fig. 5a, black dashed). Just below the surface, concentrations in the final 3 years average

about 0.76, suggesting that 76% of the surface waters within the ZA may be derived from the Southern Ocean through the325

Malvinas Current. At 984 m this fraction is 0.45. Tracer stock below 1000 m increases slowly and contains 17% of the column

stock after 5 years (Fig. 5a, black dotted). The offline simulation reproduces this behavior qualitatively, but with significant

quantitative differences.D1 reaches the ZA about 5 days earlier and increases faster than the online simulation, but upper-layer

stock plateaus at a slightly lower level (Fig. 5a, gray dashed). Tracer fraction reaches 0.74 just below the surface, close to the

online simulation, but the saturation value of 0.37 at 1000 m depth is significantly lower. Figure 4 (upper row) shows that this330
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Figure 3. Online and offline tracer concentrations –and their difference– at 204 m depth, and at the end of the full 5-year period for which

operators were diagnosed at 5-daily averages. Shown are dye tracers a) D1 (sourced at the southern boundary), b) D3 (eastern boundary),

and c) D5 (northern boundary); all sourced in the upper 1000 m. Gray contour indicates the location of the Zapiola Anticyclone.
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Figure 4. Hovmüller plots of the concentrations of the 6 dye tracers, averaged over the Zapiola Anticyclone; for the online (left column) and

offline (center) simulations, and their difference (right). The 1000 m level is indicated by the light gray line.
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Figure 5. Total stock (1015 kg) of the 6 dye tracers in the Zapiola Anticyclone, for the online (black) and offline (gray) simulations. Dashed

and dotted lines are the stock above and below 1000 m, respectively.
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is due to a significant vertical redistribution of tracers by vertical diffusion that depletes tracers from the upper 1000 m and

increases concentrations below. Indeed, the inventory below 1000 m accounts for 30% of the column stock after 5 years.

The story is similar for dye tracer D2, which is sourced at the southern boundary below 1000 m. It arrives in the ZA after 87

days in the online simulation. The stock below 1000 m (Fig. 5b, black dotted) rises quickly through the first 2 years, followed

by a more gradual (linear) rise after that. Tracer concentrations at 1049 m level out at 0.20 after 3 years. The total contribution335

of Southern Ocean waters (D1+D2) is about 59% at 1000 m depth. The offline simulation reproduces this behavior quite well,

but displays higher inventories in the upper 1000 m that increases the overall column stock by 9% after 5 years. The vertical

profiles again clearly show the impact of vertical diffusion that depletes tracers in the 1000-3000 depth range, and increases

concentrations below and above (Fig. 4; second row).D2 concentration at 1049 m depth levels out at 0.21, with a total Southern

Ocean contribution at 1000 m of 56%.340

The next-largest contribution to the ZA tracer inventory is coming from the north through Dye tracers D5 (upper 1000 m)

and D6 (below 1000 m). It takes about 110 days for D5 to arrive at the ZA, and the surface concentration saturates at about

0.18 after 550 days (as the does the upper-layer tracer stock; Fig. 5e, black dashed, overlain by solid). This suggests that the

Brazil Current may contribute about 20% of the surface waters in the ZA. At 984 m, however, this fraction is still only 0.015

after 5 years, and rising, probably reflecting the strongly sheared character of the Brazil Current, and the long transit time from345

the northern domain boundary to the ZA. Notable concentrations of D6 reach the ZA after 2 years, but trace quantities already

arrive after about 270 days, having been mixed upward into the upper layer and transported southward in the Brazil Current.

The offline simulations display qualitatively similar behavior, but D5 inventories are significantly higher (+40%), with again

significant sequestration below 1000 m. D6 stock is slightly lower (-7%) than in the online simulations, despite higher values

above 1000 m.350

Dye tracers D3 and D4, released at the eastern domain boundary, take much longer to reach the ZA due, to very low

westward flow velocities in the interior part of the basin. Offline stock of D3 in the upper 1000 m is about 50% smaller than in

the online simulation, a deficiency that can only be partly explained by sequestration below 1000 m. D4 stock is 65% too high,

with enhanced stock both below and above 1000 m depth.

Based on the propagation speed of the diffusion front of D1 in the offline simulation (Fig. 4a, center column), we can make355

a rough estimate of the artificial vertical diffusivity that is introduced by the advection issue. We are able to model the depth of

the diffusion front below z0 =−1000 m and after t0 = 132 days as z = z0−
√

4D(t− t0), when D = 1.74 · 10−2m2/s. This

is 2 to 3 orders of magnitude larger than typical values for background diffusivity used in ocean models.

3.3 The Argentine Basin test case: The Role of Temporal Averaging

The parent model is capable of producing velocity fields that have a wide range of scales of spatial and temporal variability.360

The shortest temporal periods are on the order of a few time steps and the longest period is the duration of the simulation.

In general, higher resolution models introduce more variability on shorter length and time scales and some consideration is

needed when selecting an averaging period for the transport operator diagnosis. For storage reasons, it is not practical to store

snapshots of the transport operators at every time step. Conversely, representing the ocean transport with long time averages
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Figure 6. Comparison of stock (1012 kg) of dye tracersD1 andD2 in the Zapiola Anticyclone for the original simulation with 5-day-averaged

operators, and the alternate simulation with 1-day-averaged operators. Shown are the differences between the offline simulation using 5-day

averaged operators and the corresponding online simulation (black); between the offline simulation using 5-day averaged operators, and the

alternate offline simulation, with 1-day averaged operators averaged to 5 days (dark gray); and between the alternate offline simulations with

1-day averaged operators averaged to 5 days, and the 1-day averaged operators (light gray). Note that the alternative simulation is a different

realization of this chaotic system, and hence diverges from the original simulation after initialization.

may exclude the effects of important variability. The choice in time averaging period for the transport operators can impact the365

evolution of tracers calculated in FEOTS and an appropriate balance of practicality and accuracy should be struck.

To our knowledge, there is currently no definitive guidance on choosing the averaging period for velocity fields in an offline

tracer simulation, the averaging period should be chosen so that variability in the underlying advection field is well resolved.

Here, the impact of temporal averaging is investigated by comparing simulations with 1-day and 5-day averaged operators. To

that end, we ran another online simulation for which we saved 1-day averaged IRFs. This simulation was run for 105 days,370

producing 105 operator sets. The offline simulations were run for 365 days, hence cycling through the operator set almost 3.5

times.

The online simulations that produced the 1-day and 5-day averaged operators were not bit-for-bit identical, as we inadver-

tently specified different processor counts. A positive consequence of this oversight is that we have two different realizations

of the same chaotic system, allowing us to assess how the tracer advection error compares to trajectory divergence, in terms of375

their impact on tracer stock. Figure 6 shows that averaging 1-day averaged operators to 5-day averages has a very small impact

on the tracer stock (light gray); the impact on spatial distributions is similarly small (not shown). This shows that 5-day aver-
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Metric/Model POP Global FEOTS Regional FEOTS Global (est.)

CPU-hours per sim. year 9020 47 2115

hours per sim. year 3.7 7.8 352.5

Sim. years per day 6.5 3 0.06

Cores Required 2432 6 6
Table 2. The computational costs, model throughput, and computational hardware requirements are compared for the online parent model

(POP), a regional configuration of FEOTS, and the estimated expenses for a global offline FEOTS simulation.

aged operators are sufficient to accurately reproduce tracer distributions. Comparison of the black and dark gray lines shows

that the impact of trajectory divergence on tracer stock (dark gray) is of similar magnitude as the impact of the advection error

(black), at least for the first year of simulations.380

3.4 Computational performance

One goal of FEOTS is to perform tracer calculations at a lower computational cost than the parent model. Additionally, FEOTS

allows researchers to take advantage of transport operators produced by state-of-the-art climate simulations to conduct regional

offline simulations. This provides flexibility in studying ocean transport phenomena and increases the value of online produced

model data while considerably reducing the computational expense for researchers solely interested in studies involving passive385

tracers. Here we evaluate the computational performance of a regional FEOTS configuration and compare it with the global

parent model.

The total cost of using FEOTS is associated with the following steps :

1. Impulse functions are generated from the model grid,

2. An online simulation is done with POP that reads in the impulse functions and outputs IRFs averaged over the desired390

averaging interval (e.g., 1 day, 5 days),

3. The diagnosed IRFs are translated from gridded output to a sparse matrix format,

4. Offline passive tracer simulations are run

The first three steps are one-time costs that are necessary to generate the transport operator database. In our experience, impulse

function generation introduces a negligible cost, requiring only a few minutes to run in serial. Simulation of the passive tracers395

with the parent model to generate the impulse response functions requires about a factor of six more cpu-hours than when

running without tracers. This is the most significant up-front cost in generating the transport operator database. Diagnosis of

the sparse matrices introduces a small cost; for the parent model presented here, about 15 minutes of wall-time on a single core

is needed per transport operator. The expense of the offline passive tracer simulation depends on the specific use case. Below,

we provide an example below based on the Argentine Basin test problem and a simple global simulation.400
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Name Percent Time

VerticalMixingAction 29.73%

VerticalMixingPrecondition 27.49%

VerticalMixing_POP_FEOTS 18.62%

CalculateTendency_TracerStorage 12.28%

DotProduct_POP_FEOTS 11.19%
Table 3. Flat profile of FEOTS showing the top five most expensive routines for an offline regional simulation

Table 2 summarizes a comparison of the computational expense and compute platform size requirements between POP

and FEOTS. We ran the 0.3◦ ocean/sea ice configuration of E3SM-HiLAT on LANL’s Institutional Computing clusters. A

typical simulation with 6 dye tracers costs 9020 cpu-hrs per simulated year, using 2432 cores on 76 nodes. The throughput is

6.5 simulated years per wall-clock day. The simulation with 53 IRFs (in addition to the 6 dye tracers) typically costs 45,000

cpu-hrs, with a throughput of 1.60 simulated years per day when using 2912 cores.405

In contrast, a one-year offline FEOTS simulation of the Argentine Basin problem with 6 tracers takes roughly 47 cpu-hrs,

and a throughput of 3 simulated years per day on 6 cores. Table 3 shows the five most expensive routines in FEOTS and the

percentage of the total wall-time spent executing those routines. The iterative treatment of vertical mixing is most expensive;

a one-year simulation without vertical mixing costs 6.8 cpu-hrs, and provides a throughput of 20 simulated years per day on 6

cores. All of these routines execute sparse matrix-vector multiplication in order to compute advective and diffusive tendencies,410

suggesting future improvements to sparse matrix-vector multiplication in FEOTS would be beneficial.

Currently, offline global simulations at eddy resolving resolutions are slow and require a large amount of memory per core.

For our global model, about 15 GB of memory is needed for the offline simulation at single precision, and 30 GB at double

precision. At the time of this study, our focus was on the proving the transient simulation capabilities, which could be done

at a low computational cost in regional simulations; we did not obtain direct measurements of FEOTS’ runtime for global415

transient simulations. However, we are interested in understanding whether this methodology is potentially computationally

competitive, in comparison to online tracer simulations in the parent model.

To develop an estimate for a global offline simulation with FEOTS, we assume that the cpu-hours scale linearly with the

number of grid cells. This is reasonable since the majority of FEOTS’ runtime is spent in sparse matrix-vector multiplication,

which scales linearly with the number of rows. The Argentine Basin simulation has 1.02× 106 grid cells, whereas a global420

configuration about 45 times more grid cells. Thus, an offline simulation with FEOTS is expected to cost about 2115 cpu-hours

per simulation year in the current version, 77% less cpu-hours than the parent model. However, the expected throughput for an

offline global simulation is estimated as 1 model year for every 15 days. Although FEOTS is currently expected to take longer

to produce global transient simulations, it is probable that exposing parallelism in FEOTS will provide comparable run-times

to the parent model at a reduced computational expense. Though this is not a definitive result, it is a reasonable estimate that425

motivates future work in exposing parallelism in FEOTS.
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4 Discussion

Based on this work, we posit that offline tracer simulations provide a viable modeling capability at a significantly reduced

computational expense compared to online models. With the reduction in computational expense, however, we have shown

that the offline simulations can produce tracer distributions consistent with a more diffusive ocean circulation than online430

models. A potential approach to mitigate this problem, when using nonlinear flux-limiting advection schemes, is to replace the

impulse fields with smoother basis functions, as discussed by Khatiwala et al. (2005).

When using impulse fields with sharp discontinuities, the 3rd Order flux-limited Lax-Wendroff advection scheme reduces

effectively to a first order upwind scheme. By leveraging smoother basis functions for the impulse fields with this scheme, a less

diffusive advection operator can be diagnosed. Using a smoother basis function, however, is expected to introduce additional435

complications for diagnosing transport operators. In general, the process of diagnosing the transport operators can be thought

of as a matrix projection problem,

AF = R (22)

where A is the transport operator we want to diagnose, F is a matrix whose columns are the impulse fields, and R is a matrix

whose columns are the impulse response fields. The advection operator is obtained by multiplying (22) by the right-inverse of440

F

A = RF−1 (23)

Ideally, the basis function we choose should be smooth enough to retain higher order terms in the 3rd Order flux-limited Lax-

Wendroff advection scheme. For computational purposes, the basis functions would ideally be mutually orthonormal so that

the inverse is easy to calculate,445

F−1 = FT (24)

This approach, along with experimentation with other advection schemes, is planned for future work.

With regards to performance, FEOTS can provide offline tracer modeling capabilities at significantly reduced computational

expense (cpu-hours) and with practical runtimes for regional simulations. Projected computational resource requirements (cpu-

hours) were shown to be about 77% less than the online parent model. Estimated runtimes for global simulations, however,450

indicate that parallelism FEOTS needs to be exposed before it is practical for this use case. Addressing the slow runtime for

global offline simulations is critical for working towards a framework that allows for the calculation of steady state solutions

within a practical amount of time. Currently, our plan for reducing runtime is to leverage open-source toolkits, like PSBLAS

(Filippone and Colajanni, 2000), to handle sparse matrix operations in parallel

5 Conclusions455

In this paper we introduced the Fast Equilibration of Ocean Tracers Software (FEOTS), which is an end-to-end set of tools to

efficiently calculate tracer distributions on a global or regional sub-domain. Key features currently implemented in FEOTS and
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discussed in this paper include impulse field generation through graph coloring, impulse response function translation into a

sparse matrix representation of transport operators (advection), regional sub-domain transport operator generation from global

transport operators, and offline forward simulation with the diagnosed operators. These are key components for calculating460

equilibrium tracer fields, which we aim to implement in future releases. In our example problem we diagnose transport opera-

tors from a global eddy-permitting configuration of the POP ocean model, and calculate the distribution of passive dye tracers

in the Argentine Basin for a 5-year period. The offline simulations are shown to produce more diffuse tracer distributions

than the online parent model simulations This demonstration shows the feasibility of this approach, while at the same time

highlighting the challenges of the Impulse Response Functions approach.465

Code and data availability. The current version of FEOTS (v0.0.0) is available from the project website: https://github.com/FluidNumerics/FEOTS/

under the 3-Clause BSD licence. The exact version of the model used to produce the results used in this paper is archived on Zenodo

(https://doi.org/10.5281/zenodo.5576912). The input data and scripts to run the model and produce the plots for all the simulations presented

in this paper are also archived on Zenodo (DOI: 10.5281/zenodo.6250938). A codelab tutorial to walk-through running the Argentine Basin

simulations is available online at https://fluidnumerics.github.io/FEOTS/codelabs/feots-on-google-cloud/#0.470
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