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Abstract. A previous study on the use of nudging in EAMv1 had an unresolved issue, namely a simulation nudged to EAMv1’s

own meteorology showed non-negligible deviations from the free-running baseline simulation over some of the subtropical

marine stratocumulus and trade cumulus regions. Here, we demonstrate the deviations can be substantially reduced by (1)

changing where nudging tendency is calculated in the time integration loop of a nudged EAM simulation to improve the

consistency with the free-running baseline and (2) increasing the frequency of constraining data to better capture strong sub-5

diurnal variations.

The resulting improvements in the climate representativeness provide motivation for an investigation of the potential benefits

of using newer reanalysis products with higher data frequency in nudged hindcast simulations that aim at capturing the observed

weather events. Simulations using EAMv1’s standard horizontal resolution (approximately 1o) are nudged towards 6-hourly

ERA-Interim reanalysis and 6-hourly, 3-hourly, and hourly ERA5 reanalysis; These simulations are evaluated against the10

climatology of free-running EAMv1 simulations as well as reanalyses, satellite retrievals, and in-situ measurements from the

Atmospheric Radiation Measurement (ARM) user facility. For the 1o EAMv1 simulations, we recommend using the relocated

nudging tendency calculation and 3-hourly ERA5 reanalysis.

Simulations aiming at estimating the anthropogenic aerosol effect (Faer) often use nudging to help discern signal from noise.

The sensitivity of such estimates to the details of the nudging configuration is investigated in EAMv1, again using the standard15

1o horizontal resolution. It is found that when estimating the global mean Faer, the source and frequency of constraining

data have a relatively small impact while the selection of nudged variables can change the results substantially. Consistent with

previous studies, we find that the simulated ice cloud formation is sensitive to whether air temperature in EAMv1 is constrained

by reanalysis. Nudging temperature in addition to horizontal winds to reanalysis leads to Faer estimates that significantly

differ from the free-running baseline. When nudged towards the free-running baseline, constraining temperature in addition to20

horizontal winds in EAMv1 can result in a more constrained meteorological adjustment to the aerosol perturbation, which also

leads to a slightly biased estimate. These results suggest that nudging the horizontal winds but not air temperature is a better

choice for estimating the anthropogenic aerosol effect in EAMv1.
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1 Introduction

Nudging (or Newtonian relaxation) is widely used for diagnosing sensitivities of climate simulations to modifications in model25

formulation and parameters (Lohmann and Hoose, 2009; Zhang et al., 2012; Separovic et al., 2012; Lin et al., 2016) as well as

changes in computational methods (e.g., Wan et al., 2014) and external forcing (Kooperman et al., 2012; Zhang et al., 2014). It

has been shown that by constraining the large-scale meteorological conditions (e.g. horizontal winds) toward weather reanalysis

or a baseline simulation, nudging can help reduce noise caused by natural variability and hence allow for the detection of signals

without long simulations or large ensembles (e.g., Kooperman et al., 2012). However, nudging should be used with care. The30

configuration of the nudged simulations must be carefully evaluated based on the purpose of the sensitivity experiment. Many

studies have shown that the forcing terms introduced by nudging can be sufficiently strong to break the internal balance

between the resolved dynamics and parameterized physics (e.g. Jeuken et al., 1996) or to cause significant changes in the

model’s climate (e.g. Zhang et al., 2014), making the results less useful for interpreting the behavior of the original model.

Sun et al. (2019) evaluated two types of nudged simulations conducted with the atmosphere component of the Energy Ex-35

ascale Earth System Model version 1 (EAMv1, Rasch et al., 2019; Xie et al., 2018) at the standard hoirzontal resolution with

approximately 1o grid spacing. One type of the simulations was constrained by reanalysis products and the second type was

constrained by meteorological fields written out from a free-running baseline simulation conducted with the same model (here-

after referred to as the “baseline nudging” method). They showed that simulations using baseline nudging closely resembled

the free-running simulation for the key meteorological variables evaluated therein, as evidenced by the high spatial and tempo-40

ral correlations between the nudged and free-running simulations. On the other hand, systematic decreases in the annual mean

shortwave cloud radiative forcing (SWCF) were observed in subtropical and tropical regions when nudging was used, with lo-

cal annual averages as large as 8Wm−2. The discrepancies are inconvenient as they result in inaccuracies in the anthropogenic

aerosol effects estimated using baseline nudging.

The study presented here starts with an effort to address these discrepancies. The sequence of calculations related to nudging45

in EAMv1’s time integration loop is reviewed (Sections 2.2 and 3.1) and the time-step-by-time-step temporal evolution of the

model state in the subtropics is analyzed (Section 3.2). We demonstrate that the discrepancy issue in 1o simulations in Sun et al.

(2019) can be substantially alleviated by two revisions of the nudging implementation: first, changing the sequence of calcu-

lations in a nudged EAM simulation to improve consistency with the free-running baseline; second, increasing the frequency

of constraining data from 6-hourly to 3-hourly to better capture strong sub-diurnal variations. The resulting improvements in50

climate representativeness are presented in Section 3.

Motivated by the improvements, additional simulations and analyses are presented in Section 4 to explore the potential

benefits of using newer reanalysis products with higher data frequency in nudged simulations that aim at capturing the observed

weather events. In many previous studies (e.g., Telford et al., 2008; Zhang et al., 2014), the reanalysis products used for

generating the nudging data were available only 4 times per day. This was the case, for example, for the ERA-Interim reanalysis55

(Dee et al., 2011) from the European Centre for Medium-Range Weather Forecasts (ECMWF) as well as the reanalysis of

Kanamitsu et al. (2002) from the National Centers for Environmental Prediction and National Center for Atmospheric Research
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(NCEP/NCAR). In recent years, reanalysis data with higher temporal frequency are emerging. For example, MERRA-2 (Gelaro

et al., 2017) from the National Aeronautics and Space Administration’s Global Modeling and Assimilation Office is available

every 3 hours, while the ERA5 reanalysis from ECMWF (Hersbach et al., 2020) has hourly data. On the one hand, using high-60

frequency reanalysis data for nudging may better constrain a simulation. On the other hand, processing more data before and

during a simulation will consume more resources for data processing and storage. Therefore, it is useful to evaluate the benefit

of using high-frequency nudging data. Furthermore, since ERA5 is a new reanalysis product that has not been widely used for

nudged simulations, it is useful to compare simulations nudged towards ERA5 and ERA-interim, evaluate hindcast skills of

these simulations, and provide a recommendation. For those purposes, we present in Section 4 simulations constrained using65

6-hourly ERA-Interim reanalysis and 6-hourly, 3-hourly, or hourly ERA5 reanalysis. Hindcast skills of the nudged 1o EAMv1

simulations are evaluated against global-scale satellite retrievals of outgoing longwave radiation and precipitation, as well

as in-situ measurements of air temperature, humidity, and horizontal winds from the Atmospheric Radiation Measurement

(ARM) user facility. Since one of our primary interests in using nudged simulations is to efficiently estimate the climate

impact of anthropogenic aerosols (Faer), we present in Section 5 some analysis of the sensitivity of the estimate to nudging70

implementation. Our findings and recommendations are summarized in Section 6.

2 Model and simulations

2.1 A brief overview of EAMv1

E3SM is a global Earth system model developed by the U.S. Department of Energy (Golaz et al., 2019). The present study

focuses on nudging applications in the E3SM Atmosphere Model version 1 (EAMv1; Rasch et al., 2019; Xie et al., 2018).75

EAMv1 uses the hydrostatic spectral element (SE) dynamical core on a cubed-sphere mesh (Dennis et al., 2012; Taylor et al.,

2010) to solve the equations for large-scale dynamics and tracer transport. The key subgrid-scale physical processes considered

in EAMv1 include deep convection (hereafter Deep Cu; Zhang and McFarlane, 1995), turbulence and shallow convection

(Golaz et al., 2002; Larson et al., 2002), cloud microphysics (Morrison and Gettelman, 2008; Gettelman and Morrison, 2015;

Wang et al., 2014), aerosol life cycle (Liu et al., 2016; Wang et al., 2020), and radiation (Iacono et al., 2008; Mlawer et al.,80

1997). EAMv1 is interactively coupled with a land model (Oleson et al., 2013).

Figure 1a shows the sequence of dynamics and physics calculations (i.e., the time integration loop) in EAMv1. More detailed

descriptions of the time stepping and coupling of physics and dynamics can be found in Zhang et al. (2018) and Wan et al.

(2021, 2022). One important feature relevant to the discussion below is that most of the atmospheric processes are numerically

coupled using sequential splitting. This means after a model component (e.g., a parameterization) predicts the rate-of-change85

(also called tendency) of the model state caused by the atmospheric process it represents, the model state will be updated using

the predicted tendency before being handled to the next model component (e.g., another parameterization).

The simulations presented in this paper use a horizontal resolution of approximately 1◦ (∼110 km). There are 72 layers

in the vertical, extending from the Earth’s surface to ∼0.1 hPa (∼64 km). The vertical grid spacing is uneven, with the layer

thickness ranging typically from 20 m to 100 m near the surface and up to 600 m near the model top.90
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2.2 Nudging in EAMv1

The nudging implementation in EAMv1 was described and evaluated in Sun et al. (2019), so we only provide a brief introduc-

tion here. Nudging constrains the model solution toward prescribed atmospheric conditions for a certain variable by adding a

relaxation term to the prognostic equation:(
∂Xm

∂t

)
ndg

=−Xm −Xp

τ
, (1)95

where X in Eq. (1) represents a model state variable like horizontal winds (U, V), temperature (T), or specific humidity (Q).

Subscript m refers to the model-predicted value. Subscript p indicates the prescribed field that is taken or derived from either

a global weather reanalysis or a free-running simulation using the same model. τ denotes the relaxation time scale. All three

quantities, Xm, Xp, and τ , can affect the sign and strength of the nudging-induced forcing.

Pink boxes in the left panel of Figure 1 illustrate where the nudging-related calculations occur in the default EAMv1. In100

a nudged simulation, after the resolved dynamics (see blue box in figure) has been calculated, a nudging tendency term in

the form of Eq. (1) is calculated for each nudged variable with Xm being the value of X after the dynamical core. After the

entire physics parameterization suite has been calculated, the sum of the parameterization-induced tendencies and the nudging

tendencies are passed to the physics-dynamics coupling interface.

It is worth noting that, when an EAM simulation is considered to be a baseline simulation, the dynamical and thermodynam-105

ical variables (e.g., U, V, T, Q, and the surface pressure PS) that are archived – and subsequently used in a nudged simulation

as the prescribed atmospheric state – are the values saved before the radiation calculation (cf. pink dashed box in Fig. 1a). In

other words, in the default EAMv1, the Xp in the right-hand side of Eq. (1) is archived before radiation while the Xm in that

same equation corresponds to the model state after the dynamical core. As is discussed in Section 3.1, the fact that Xp and Xm

correspond to different locations in the time integration loop plays an important role in causing the issue in Sun et al. (2019)110

that motivated this study.

2.3 Simulations

The EAMv1 simulations presented in this paper are summarized in Table 1. All the simulations involved active atmosphere and

land but used prescribed sea surface temperature (SST) and sea ice extension, following the protocol from the Atmospheric

Model Intercomparison Project (Gates et al., 1999). The SST and sea-ice extension used in this study are weekly data from115

the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation (OI) analysis (Reynolds et al., 2002).

Other external forcings, including volcanic aerosols, solar variability, concentrations of greenhouse gases, and anthropogenic

emissions of aerosols and their precursors, were prescribed following the World Climate Research Programme (WCRP) Cou-

pled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016; Hoesly et al., 2018; Feng et al., 2020).

All simulations were performed from 1 October 2009 to 31 December 2010. The first 3 months were discarded as model120

spin-up, and the remaining 1 year of model output was used for analysis. The choice of simulation year was based on conve-

nience, as hourly ERA5 data of 2010 were readily available to us. Sun et al. (2019) have shown that the annual mean cloud
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Figure 1. Flowcharts showing the sequence of dynamics and physics calculations within one time step in an EAMv1 simulation. Pink boxes

indicate where the nudging-related calculations occur. Panel (a) is adapted from Fig. S1 in Sun et al. (2019) and corresponds to the default

EAMv1 code. Panel (b) is the revised sequence of calculations evaluated in this study. The key difference is that in panel (b), the calculation of

nudging tendency using Eq. (1) occurs at the same location where the prescribed meteorological state is written out in the baseline simulation,

i.e., before the radiation parameterization. Panel (b) is described in detail in Section 3.1.

radiative forcing and its shortwave and longwave components derived from 1-year nudged simulations are representative of the

corresponding longer-term (e.g., 5-year) statistics (see, e.g., Fig. 19 therein).

To estimate the anthropogenic aerosol effect Faer, pairs of simulations were conducted. Each pair had identical experimental125

setup except that the emissions of aerosols and their precursor gases were set to the values of the year 2010 to represent the

present-day (PD) condition in one simulation and the values of the year 1850 to represent the pre-industrial (PI) condition

in the second simulation. The greenhouse gas concentrations, SST, and sea ice extent are unchanged (i.e., fixed at their year-

2010 values). The main differences between PI and PD aerosol emissions include anthropogenic sulfur, black carbon, organic

carbon, primary organic carbon, and SOA precursors (applied as yields) emissions. Biomass burning emissions are also slightly130

changed from the PD condition to PI . Dust, sea salt, and marine organic aerosol emissions are calculated online using the

surface wind speed and surface properties predicted in each simulation.

Three groups of simulations are presented in this paper. The first group consists of five pairs of 15-month simulations.

The first pair is two free-running baseline simulations referred to as CLIM PD and CLIM PI in the remainder of the paper.

From the CLIM PD simulation, the before-radiation values of U, V, T, Q, and PS were archived at 1-hour, 3-hour, and 6-135

hour frequencies to constrain some of the subsequent simulations. The other four pairs in group one were nudged to 6-hourly

temperature output from the CLIM PD simulation but using long relaxation time scales of 10 days, 10.1 days, 10.2 days, 10.3
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days, respectively. These relaxation time scales correspond to values of 1/τ on the order of 10−6, which resulted in physically

insignificant constraints on the simulations. Therefore, the four pairs of nudged simulations can effectively be considered to be

free-running although with perturbations introduced to the 3D temperature field that can be used to quantify natural variability140

in the evolution of the atmospheric state. A similar experimentation strategy has been used by Liu et al. (2018) to generate

hindcast ensembles to investigate the radiative forcing of fire-emitted aerosols.

The second group of simulations was nudged to the meteorology archived from the CLIM PD simulation in group 1, re-

gardless of whether the PD or PI emissions were used in the nudged simulations. Nudging was applied at every time step and

vertical level using a 6 h relaxation time scale. The simulations labeled DNDG_UV6 and DNDG_UVT6 used the sequence of145

calculations shown in Fig. 1a (i.e., the default EAMv1) while RNDG_UV6 and RNDG_UVT6 used the revised sequence shown

in Fig. 1b and explained in Section 3.1. The impact of the revised sequence is evaluated in Section 3.1. The difference between

experiments labeled with “_UV” and “_UVT” is whether only the horizontal winds were nudged (“_UV”) or both winds and

temperature were nudged (“_UVT”). The ending number 6 in the experiment names indicates the use of 6-hourly output from

CLIM. Additional simulations were conducted, also using the revised sequence of calculations but constrained by 3-hourly150

or 1-hourly output from the CLIM PD simulation (RNDG_UV3 and RNDG_UVT3; RNDG_UV1 and RNDG_UVT1). These

simulations are compared with RNDG_UV6 and RNDG_UVT6 in Section 3.2 to evaluate the impact of the frequency of the

constraining data .

The third group of simulations was nudged toward two reanalysis products, ERA-Interim (Dee et al., 2011) and ERA5

(Hersbach et al., 2020), to assess whether using a newer product (ERA5) and its higher data frequency, instead of the older155

ERA-Interim at 6-hour intervals, can provide nudged hindcast simulations that agree better with the observational data. The

reanalysis products were spatially remapped to the cubed-sphere grid and 72 model layers used by EAMv1, following the

method used in the Community Earth System Model Version 2 (CESM2; https://ncar.github.io/CAM/doc/build/html/users_

guide/physics-modifications-via-the-namelist.html#nudging). Topographical differences between EAMv1 and the reanalysis

model were taken into account during the vertical interpolation. This group of simulations are compared to global or quasi-160

global observational data of surface precipitation rate and the top of atmosphere outgoing longwave radiation from satellite

retrievals (Section 4.2) as well as in-situ measurements from the Atmospheric Radiation Measurement (ARM) program (Sec-

tion 4.3).

3 Improving climate representativeness of simulations nudged to CLIM

This section focuses on analyzing the PD simulations listed in group 2 of Table 1. The CLIM PD simulation in group 1 is used165

as the baseline simulation and referred to as CLIM for brevity.

Before this work, the EAMv1 simulations nudged to 6-hourly output from CLIM were known to show non-negligible

differences from CLIM. For example, Fig. 15b in Sun et al. (2019) showed the weakening of 1-year mean SWCF on the

order of 2–8 W m−2 in large areas of the subtropical marine and coastal regions when horizontal winds and temperature

were both nudged. The differences exceeded 8 W m−2 in some regions over the southeast Pacific Ocean and South America.170
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Table 1. List of simulations described in Section 2.3. Nudging was applied at each physics time step. A 6-h relaxation time scale was

used in the nudged simulations in groups 2 and 3. For the CLIMp1–CLIMp4 simulations, very long relaxation time scales (about 10 days)

were applied to generate ensemble members in addition to CLIM. The present-day (PD, year 2010) external forcing was used to carry out

simulations with all of the listed configurations. The pre-industrial (PI, year 1850) emissions of aerosols and precursors were used to carry

out additional simulations for a subset of the configurations (see the right-most column).

Group Simulation Flowchart Nudged variables Constraining data Nudging relaxation Aerosol and precursor

number short name and frequency time scale gas emissions

1 CLIM Fig. 1a None N/A N/A PD and PI

1 CLIMp1 Fig. 1a T CLIM PD (6 hr) 10.1 days PD and PI

1 CLIMp2 Fig. 1a T CLIM PD (6 hr) 10.2 days PD and PI

1 CLIMp3 Fig. 1a T CLIM PD (6 hr) 10.3 days PD and PI

1 CLIMp4 Fig. 1a T CLIM PD (6 hr) 10.4 days PD and PI

2 DNDG_UV6 Fig. 1a U, V. CLIM PD (6 hr) 6 hr PD

2 DNDG_UVT6 Fig. 1a U, V, T CLIM PD (6 hr) 6 hr PD and PI

2 RNDG_UV6 Fig. 1b U, V CLIM PD (6 hr) 6 hr PD and PI

2 RNDG_UVT6 Fig. 1b U, V, T CLIM PD (6 hr) 6 hr PD and PI

2 RNDG_UV3 Fig. 1b U, V CLIM PD (3 hr) 6 hr PD and PI

2 RNDG_UVT3 Fig. 1b U, V,T CLIM PD (3 hr) 6 hr PD and PI

2 RNDG_UV1 Fig. 1b U, V CLIM PD (1 hr) 6 hr PD

2 RNDG_UVT1 Fig. 1b U, V, T CLIM PD (1 hr) 6 hr PD

3 DNDG_ERAI_UV6 Fig. 1a U, V ERA-Interim (6 hr) 6 hr PD

3 DNDG_ERAI_UVT6 Fig. 1a U, V, T ERA-Interim (6 hr) 6 hr PD

3 RNDG_ERAI_UV6 Fig. 1b U, V ERA-Interim (6 hr) 6 hr PD

3 RNDG_ERAI_UVT6 Fig. 1b U, V, T ERA-Interim (6 hr) 6 hr PD

3 RNDG_ERA5_UV6 Fig. 1b U, V ERA5 (6 hr) 6 hr PD and PI

3 RNDG_ERA5_UV3 Fig. 1b U, V ERA5 (3 hr) 3 hr PD and PI

3 RNDG_ERA5_UVT6 Fig. 1b U, V, T ERA5 (6 hr) 6 hr PD and PI

3 RNDG_ERA5_UVT3 Fig. 1b U, V, T ERA5 (3 hr) 3 hr PD and PI

3 RNDG_ERA5_UVT1 Fig. 1b U, V, T ERA5 (1 hr) 6 hr PD

Figure 15a in that same paper showed that constraining only the horizontal winds (i.e., no temperature nudging) would remove

the discrepancies in most of the subtropical regions, although one would find 4–8 W m−2 of strengthening of the annual mean

SWCF close to the coast of Peru. The corresponding discrepancies seen in the total cloud forcing (CF) and cloud cover are

shown in panels (b) and (d) of Fig. 2 and Fig. A1 in this paper. The CF in this paper is defined as the sum of short-wave and

long-wave radiative forcings. When winds and temperature are both nudged, we see a substantial number of grid cells in the175

subtropical Pacific and Atlantic oceans where the relative differences on the order of 10% to 20% are seen in total CF when

compared to the annual mean total CF in the baseline simulation CLIM (Fig. A2d). Discrepancies of such magnitudes are

counterintuitive since the constraining data were generated from the same model driven by the same external forcing. On the

other hand, since nudging introduces forcing terms in the form of Eq. (1) to the model’s governing equations, any differences
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Figure 2. Global annual mean total cloud radiative forcing (CF, unit: W m−2) in the free-running simulation (CLIM, panel a) and the

differences between nudged simulations and CLIM (panels b-e). All simulations in this figure used the PD aerosol and precursor emissions.

Descriptions of the simulation setups can be found in Section 2.3 and Table 1. The magenta box over the Peruvian stratocumulus region in

panel (e) is further analyzed in Fig. 3.

between Xm and Xp will lead to deviations from a free-running simulation. Below, we show that such deviations can be180

significantly reduced by revising the sequence of calculations in nudged simulations and thereby achieving better consistency

with the free-running baseline (Section 3.1), as well as by increasing the data frequency of the constraining meteorology to

better capture higher-frequency variations in time (Section 3.2).

3.1 Calculation of nudging tendency

As mentioned in Section 2.2, in EAMv1’s nudging implementation before this study, the baseline simulation’s atmospheric185

state was archived before the radiation parameterization while the nudging-induced forcing (i.e., Eq. (1)) was calculated after

the dynamical core. Since EAMv1 uses sequential splitting to couple most of the atmospheric processes (cf. Section 2.1), if we
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use a subscript “DYN” to label the atmospheric state after the dynamical core and a subscript “ARC” to label the atmospheric

state being archived, then the the old nudging implementation was, effectively,(
∂Xm

∂t

)
ndg

= −Xm,DYN −Xp,ARC

τ
(2)190

=

(
−Xm,ARC −Xp,ARC

τ

)
+

(
Xm,ARC −Xm,DYN

τ

)
(3)

In our understanding, the first term on the right-hand side of Eq. (3) is the intended nudging tendency while the second term is

inadvertent. Furthermore, the second term can be understood as the total tendency caused by deep convection, turbulence, and

stratiform cloud parameterizations scaled by a factor of ∆t/τ where ∆t is the physics time step. Since these moist processes are

known to strongly affect the atmospheric state, especially temperature and humidity, it is not surprising that nudged simulations195

using Eq. (2) deviate from their free-running baseline.

When the calculation of the nudging tendency is moved before the radiation parameterization so that Xp from the baseline

simulation and Xm in the nudged simulation come from the same location of the time integration cycle (see schematic in

Fig. 1b), we have, as intended,(
∂Xm

∂t

)
ndg

= −Xm,ARC −Xp,ARC

τ
. (4)200

Sensitivity experiments confirm that using Eq. (4) instead of Eq. (2) significantly reduces discrepancies between the UVT-

nudged and free-running simulations, as can be seen by comparing Fig. 2e with 2d. The annual mean total CF differences are

reduced to within 1 W m−2 for the majority of the grid cells and within 2 W m−2 in the subtropics and tropics, with only a

small number of grid cells showing differences between 2–5 W m−2. The discrepancies between UV-nudged and free-running

simulations are also reduced, although not as significantly (Fig. 2c versus 2b). The remaining discrepancies are investigated in205

the next subsection.

3.2 Frequency of constraining data

Nudged simulations in the literature (e.g., Kooperman et al., 2012; Subramanian and Zhang, 2014; Ma et al., 2014, 2015;

Lin et al., 2016; Fast et al., 2016), including our own work (e.g., Zhang et al., 2014; Sun et al., 2019), often used 6-hourly

constraining data. The historical reason was that reanalysis data used to be available only 4 times per day. Such a frequency,210

on the other hand, can be insufficient for capturing fast variations because of the problem of aliasing.

Figure 3 shows the evolution of lower-troposphere (700 hPa) zonal wind and temperature averaged over the Peruvian stra-

tocumulus region marked by the magenta box in Fig. 2e, for a 2-day period starting from 00Z 02 in January 2010. In Fig. 3,

the black solid lines are time-step-by-time-step output from CLIM where ∆t = 30 min. The dashed lines are the linearly in-

terpolated time series used in the calculation of nudging tendencies; green, blue, and red correspond to cases in which the215

constraining data was provided at 1 h, 3 h, and 6 h frequencies, respectively. The EAMv1-simulated wind field in the Peruvian

stratocumulus region shows prominent 12 h cycles. Linear interpolation of 6-hourly data misses all the local maxima and min-

ima (red line in Fig. 3a) while the interpolation from 3-hourly data provides substantial improvements (blue line in Fig. 3a).
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Figure 3. Time evaluation of (a) zonal wind (unit: m s−1) and (b) temperature (unit: oC) at the model level closest to 700 hPa during a 48-h

period starting from 00Z 02 January 2010. The values shown are horizontal averages over the magenta box in Fig. 2e. The black thick lines

are time-step-by-time-step output from CLIM. The red, blue, and green lines are time-step-by-time-step values of Xp in Eq. (1) that were

obtained by linear temporal interpolation using 6-hr, 3-hr and 1-hr output of CLIM.

The temperature time series in Fig. 3b also shows 12 h variations although the amplitude is much smaller compared to the

diurnal cycle.220

Considering the multiscale nature of the atmospheric motions, one can speculate there are modes of variability that need

higher than 3-hourly sampling frequency to avoid aliasing. The sensitivity experiments conducted using 6 h, 3 h, and 1 h

constraining data (cf. group 2 of Table 1 and Fig. 4), however, suggest that nudged simulations using 3-hourly data can

provide annual mean cloud forcing estimates that agree with CLIM within 1 W m−2 for most grid cells, at least for the 1◦

simulations considered here. In the future, before nudged simulations are conducted at substantially higher resolutions (e.g.,225

0.25◦ or convection-permitting), it will be useful to find out whether the better-resolved fine-scale motions will require higher

frequencies of constraining data.

3.3 Climate representativeness beyond cloud radiative forcing

The investigations discussed in Sections 3.1 and 3.2 focused on cloud radiative forcing. In Fig. 5, we further evaluate the

climate representativeness of the nudged simulations by assessing the annual averages of twenty 2D fields that are often230

examined during model development and tuning. These fields are labeled along the x-axis in panel Fig. 5d and explained in
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Figure 4. Differences in annual mean total cloud forcing (∆CF, unit: W m−2) between nudged simulations and CLIM, all using PD (year

2010) forcing conditions. Simulations shown in the left column used only wind nudging while simulations shown in the right column used

wind and temperature nudging. From the first row to the bottom row, the frequency of constraining data used in the nudged simulation is

6-hourly, 3-hourly, and hourly, respectively. The simulation setups are described in Section 2.3 and Table 1.

Appendix A2. For each of the nudged PD simulations listed in group 2 of Table 1 and each of the twenty fields, we calculated

two error metrics with respect to the CLIM PD simulation: one measuring the difference in the global annual mean (Fig. 5a-b)

and one measuring the root-mean-square difference in the annually-averaged global geographical pattern (Fig. 5c-d).

Consistent with the cloud forcing results shown in Figs. 2 and 4, the revised sequence of calculations and 3 h data frequency235

have larger impacts on the UVT-nudged simulations than on UV-nudged simulations. Nevertheless, we see a systematic reduc-

tion of global mean and pattern errors across all twenty quantities evaluated in Fig. 5 (i.e., yellow bars are substantially shorter

than orange bars; green bars are significantly shorter than yellow bars). In simulations RNDG_UVT3 and RNDG_UV3, the

errors in global averages are reduced to less than 1% (green bars in Fig. 5a-b). The errors in geographical patterns are re-

duced to 2% or less for the UVT-nudged simulation and 3% or less for the UV-nudged simulation (green bars in Fig. 5c-d).240
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Figure 5. Comparison of annual averages in nudged simulations and CLIM, all using PD (year 2010) forcing conditions. The physical quan-

tities labeled along the x-axis are explained in Table A2. Panels (a) and (b) show relative differences in the simulated global averages. Panels

(c) and (d) show relative differences in the simulated geographical distributions. The hatched bars shown in panels (a) and (c) correspond

to simulations using wind and temperature nudging; the bars without hatching shown in panels (b) and (d) correspond to simulations using

wind-only nudging. Different colors in the same panel indicate different nudging configurations (sequence of calculations and frequency of

constraining data). All differences were calculated against CLIM. Further details can be found in Section 3.3 and Appendix A2.

12



Comparing panels c and d in Fig. 5, we see lower errors associated with UVT-nudging; this is possibly an indication of better

consistency between winds and temperature when both are nudged. Further increase of data frequency to 1 h only leads to

limited improvements in the simulated geographical patterns. We consistently see the fact that increasing data frequency from

6-hourly to 3-hourly leads to a better agreement of global averages with the free-running simulation, but a further increase to

hourly data no longer leads to substantial differences. This can be seen not only in Fig. 5a-b but also in the additional cloud-245

and precipitation-related quantities shown in Table S1.

Therefore, for future applications that use 1 ◦ simulations nudged to the model’s own meteorology, we recommend using the

revised sequence of calculations depicted in Fig. 1b and 3-hourly constraining data. Future investigations are needed to find

out whether nudged simulations at higher spatial resolutions will require more frequent constraining data.

4 Evaluation of simulations nudged to reanalyses250

As mentioned in the introduction, a common application of nudging is to force the simulated large-scale meteorological condi-

tions to follow the trajectory of the observed evolution so as to facilitate process-level model evaluation or composite analyses

focused on specific types of weather events. In this case, nudged simulations are typically performed using gridded reanalysis

products from an operational weather prediction center as the constraining data. The findings from the previous section, espe-

cially the conclusion that higher frequency of the constraining data might help better capture important modes of variability,255

motivated us to evaluate the potential benefits of using more recent reanalysis products such as ERA5 (Hersbach et al., 2020)

and MERRA2 (Gelaro et al., 2017). Since ERA5 has the highest data frequency (i.e., hourly), and ERA5 is also known to

show better agreement with observations when compared with its predecessor ERA-Interim (Hersbach et al., 2020), we focus

on ERA5-constrained simulations in this section and use the sensitivity experiments listed in group 3 of Table 1 to answer the

following questions:260

– What is the impact of nudging on the simulated mean climate? (Section 4.1)

– Do ERA5-nudged hindcast simulations agree better with observations than the ERA-Interim-nudged simulations? (Sec-

tion 4.2)

– How frequently should the nudging data be provided to obtain sufficiently good hindcast skill? (Section 4.3)

The discussion in this section focuses on simulations performed under PD forcing conditions.265

4.1 Global and regional mean climate

Since the long-term climate simulated by the free-running EAMv1 is known to have non-negligible biases with respect to

observational data (Rasch et al., 2019; Xie et al., 2018), nudging towards reanalysis is expected to result in significant changes

in the statistical features of the simulated climate. When U and V are nudged to 6-hourly meteorology from ERA-Interim,

the annual mean total CF can deviate from CLIM by more than -20 W m −2 in the Californian, Peruvian, and Namibian270
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Figure 6. Annual mean differences in the total cloud forcing (∆CF, unit: W m−2) in PD simulations of the year 2010. The top row shows the

differences between simulations nudged to ERA-Interim and the free-running baseline (CLIM). The second row shows differences between

simulations nudged to ERA5 and ERA-Interim, both using 6-hourly constraining data temporally interpolated to every model time step.

The third row shows the differences between simulations that interpolate 3-hourly versus 6-hourly reanalysis data to constrain the model

simulated meteorology. The last row is like the third row, but showing differences between two simulations nudged to hourly versus 3-hourly

reanalysis data interpolated to model time steps. The left and right columns correspond to wind-only nudging and wind-and-temperature

nudging, respectively. Details of the simulation setup can be found in Section 2.3 and Table 1.
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stratocumulus regions (Fig. 6a). When T is also nudged, we see deviations on the order of -10 W m −2 to -20 W m −2 over the

storm tracks and 10 W m −2 to 40 W m −2 over the trade cumulus regions (Fig. 6b). In terms of global averages, nudging only U

and V to 6-hourly ERA-Interim data gives a total CF very close to the value in CLIM; the shortwave and longwave components

deviate from the corresponding values in CLIM by about 0.3 W m −2 (cf. simulation RNDG_ERAI_UV6 in Table S1). If T is

nudged in addition to U and V, the global mean total CF deviates from the value in CLIM by about -1.7 W m −2, attributable275

mainly to the longwave component (cf. simulation RNDG_ERAI_UVT6 in Table S2). These results are consistent with the

conclusion from Sun et al. (2019) that ERA-nudged runs differ substantially from CLIM.

The second row of Fig. 6 shows the impact of using ERA5 instead of ERA-Interim while keeping a 6-hourly data frequency.

The resulting changes are substantially smaller than the differences between ERA-nudged simulations and CLIM, although we

still see some CF differences in the subtropics and tropics as large as 10 W m −2 to 20 W m −2. The relatively small impact of280

replacing ERA-Interim with ERA5 is expected, as the differences between ERA5 and ERA-Interim are substantially smaller

than the differences between either reanalysis and the free-running EAMv1 simulations. (As an example, the annual mean

zonal mean pressure-latitude cross-sections of air temperature differences are shown in Fig. A3). Increasing the data frequency

from 6-hourly to 3-hourly can lead to local changes of 1 to 4 W m −2 in CF. These magnitudes are similar to what we have seen

in Fig. 4a-d for the simulations nudged to CLIM. Further increasing the data frequency to hourly only introduces negligible285

changes, again similar to what we have seen in simulations nudged to CLIM (Fig. 4e-f).

A large number of model output variables have been examined in addition to CF, where we consistently see the differences

between ERA-Interim-nudged and ERA5 nudged simulations being substantially smaller than the differences between nudged

runs and CLIM, although the magnitudes are non-negligible in some regions. We also consistently see the fact that increasing

data frequency from 6-hourly to 3-hourly can lead to discernible changes locally while a further increase to hourly data no290

longer leads to substantial differences. The impacts of data frequency on the simulated global averages are generally very

small (cf. Table S2).

4.2 Global and regional weather events

To evaluate the simulation of large-scale weather events, we follow the procedure used for Fig. 5 in Sun et al. (2019) and ex-

amine the anomaly correlation between nudged simulations and the observations. Here, an anomaly is defined as the deviation295

of a simulated or observed quantity from the corresponding (simulated or observed) monthly average at the same geograph-

ical location. We first examined the anomaly correlation between the nudged simulations and the corresponding reanalysis

(ERA-Interim or ERA5) for temperature, specific humidity, as well as horizontal and vertical winds at various pressure levels.

The results were found to be very similar to those presented in Fig. 5 in Sun et al. (2019). ERA-Interim and ERA5 nudged

simulations show similar correlations to the corresponding reanalyses (cf. Fig. S1).300

Since the discussion in this section focuses on comparing the hindcast skill of the ERA-Interim-nudged and ERA5-nudged

simulations, we present in Figs. 7 and 8 an evaluation against global and regional-scale satellite retrievals of outgoing long-

wave radiation (OLR) and surface precipitation rate. Panel (a) in each figure shows the annual average of spatial correlations in

different latitude bands; panel (b) in each figure shows the spatially averaged temporal correlations of the anomalies. In Fig. 7,
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Figure 7. Anomaly correlation between simulated and observed OLR and precipitation: (a) annual mean spatial correlation; (b) spatially av-

eraged temporal correlation. Different rows within a panel correspond to different nudged simulations. Different latitude bands are examined

separately: the Polar Regions (60−90oS, 60−90oN), the midlatitudes (30−60oS, 30−60oN), and the tropics (20oS−20oN). The physical

quantities and sources of observational data are indicated along the x-axis in each panel. All correlations were calculated from anomalies

with respect to monthly averages. Gray boxes indicate missing values resulting from observational data being unavailable. The simulation

setups are described in Section 2.3 and Table 1.

the two upper rows in each panel compare ERA-Interim-nudged and ERA5-nudged simulations that used wind-only nudging,305

while the lower rows compare simulations that also used temperature nudging. Figure 8 compares ERA5-nudged simulations

that used different data frequencies. The EAM-simulated OLR is compared with National Oceanic and Atmospheric Admin-

istration’s (NOAA’s) daily retrievals from the High Resolution Infrared Radiation Sounder (HIRS, Lee et al., 2007) and the

Advanced Very High Resolution Radiometer (AVHRR, Stowe et al., 2002). The simulated total precipitation rate is compared

with 3-hourly data from the Tropical Rainfall Measuring Mission (TRMM) 3B42V7 product (Huffman et al., 2007; Huffman310

and Bolvin, 2013) and daily data from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural

Networks-Climate Data Record (labeled as “P-CDR" in figures here, Ashouri et al., 2015). Further details of the datasets and

the comparison procedure can be found in Sun et al. (2019).

The anomaly correlations shown in Fig. 7 indicate that the correlations in the high- and mid-latitude regions are very similar

between the ERA5 and ERA-Interim nudged simulations regardless of whether temperature is constrained. In the low latitudes315

(20 ◦S to 20 ◦N), the correlations are higher when ERA5 is used as the constraining data, in terms of both OLR and precipita-
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Figure 8. Similar to Fig. 7 but for simulations using different data frequencies (6-hourly, 3-hourly, or hourly). All simulations shown in this

figure were nudged to the ERA5 reanalysis. Simulations shown in the top three rows of (a) and (b) used the wind-only (U, V) nudging, while

simulations shown in the bottom three rows of (a) and (b) used the wind and temperature (U, V, and T) nudging.

tion, and both with or without temperature nudging. Figure 8 indicates that the changes associated with higher data frequency

are small for the annual or regional averages shown here.

Figure 9 evaluates the simulated zonal and temporal propagation of meridionally averaged precipitation rate in boreal spring

(March to May) of 2010 over the tropical Pacific Ocean (10oS–10oN, 60oE–90oW, upper row) and North America (25oN–320

50oN, 150oE-60oW, lower row). Panels (a) and (d) are Hovmöller diagrams plotted from the TRMM data. The bar charts

show the correlation between the Hovmöller diagram of TRMM data and the corresponding Hovmöller diagrams plotted from

various nudged simulations. Consistent with the anomaly correlations shown in Figs. 7 and 8, in the tropics we see a clear

improvement in the simulated propagation of precipitation when ERA5 is used as the constraining data (Fig. 9b) while in

the mid-latitudes there are no substantial differences between ERA-Interim-nudged and ERA5-nudged results (Fig. 9e). The325

impact of frequency of the constraining data is negligible (Fig. 9c, f). The same conclusions can be drawn if we use the root-

mean-squre error (RMSE) as the evaluation metric (cf. Figure A4), and if we change the evaluation to a different season (cf.

Fig. S2).

As an aside, we note that the better precipitation hindcast skills in the mid-latitudes than in the tropics (Fig. 9c versus d) are

consistent with the findings in Sun et al. (2019). The impact of constraining temperature appears to be negligible for the 2010330

results shown here (Fig. 9c-d, solid fill versus hatching), while Sun et al. (2019) showed better precipitation hindcast skill with
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Figure 9. Evaluation of the spatio-temporal distribution of daily precipitation from 1 March to 31 May 2010 over the tropical Pacific Ocean

(10oS–10oN, 60oE–90oW, upper row) and North America (25oN–50oN, 150oE-60oW, lower row). (a) and (d): Hovmöller diagram of the

meridionally averaged total precipitation rates (PRECT, unit: mm day−1) from TRMM. The dates are labeled along the y axis. (b–c) and

(e–f): correlations between a Hovmöller diagram derived from TRMM and the Hovmöller diagram derived from various nudged simulations.

Panels (b) and (e) compare simulations using ERA-Interim or ERA5 as constraining data and with or without temperature nudging. Panels

(c) and (f) compare simulations with U, V or U, V, and T nudged towards ERA5 but using 6-hourly, 3-hourly, and hourly reanalysis for the

constraining data. All nudged simulations shown here used the sequence of calculations in Fig. 1b, so the prefix “RNDG_” is dropped to

keep the legends short. The simulation setups are described in Section 2.3 and Table 1.
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additional temperature nudging for spring 2011, especially in the tropics (see Figures 6 and 7 therein). This suggests that the

role of temperature nudging can be case-dependent. Future evaluation in this aspect will be useful.

4.3 Comparison with the ARM observations

To further assess the hindcast skill of the nudged simulations, we use the radiosonde observations collected by the US De-335

partment of Energy’s Atmospheric Radiation Measurement (ARM) user facility. Radiosonde data are often considered to

be reliable high-accuracy measurements (Milrad, 2017) and therefore can provide an objective evaluation of model sim-

ulations. Data from three ARM atmospheric observatories are selected to cover different climate regimes, including the

Southern Great Plains (SGP) site over the mid-latitude land (https://www.arm.gov/capabilities/observatories/sgp), the North

Slope of Alaska (NSA) site in the Northern Hemisphere polar region (https://www.arm.gov/capabilities/observatories/nsa),340

and the Tropical Western Pacific sites at Manus (TWPC1), Nauru (TWPC2), and Darwin (TWPC3) in the tropics (https:

//www.arm.gov/capabilities/observatories/twp). To our knowledge, radiosonde measurements from these sites were not used in

the data assimilation system producing the ERA reanalysis products, and hence can be considered to be independent data for

the evaluation of the simulations nudged to ERA-Interim or ERA5.

The simulated temperature, relative humidity, and horizontal winds in January 2010 are evaluated against measurements345

collected in the same time period at SGP (Fig. 10a-d), NSA (Fig. 10e-h), and three TWP sites (TWPC1 in Fig. 11a-d, TWPC2

in Fig. 11e-h, and TWPC3 in Fig. 11i-l). The ERA-Interim reanalysis (black dashed lines in the figures) and ERA5 (black solid

lines) are also included for comparison. The 6-hourly model output and reanalysis products were horizontally remapped to the

locations of ARM sites using bilinear interpolation. For each of the meteorological quantities shown here, the root-mean-square

errors (RMSEs) between the ERA-nudged simulations (or ERA analyses) and the ARM measurements were calculated with350

all available vertical profiles at the sites in January 2010. For each of the variables shown in Figs. 10 and 11 (i.e., T, RH, U,

or V), the numbers of available vertical profiles at SGP, NSA, TWPC1, TWPC2 and TWPC3 were 121, 63, 49, 57 and 127,

respectively (ARM observatories provide data four times a day at SGP and TWPC3, and twice a day at the NSA, TWPC1 and

TWPC2). The temporal correlations between EAM simulations or ERA analyses and the ARM measurements are shown in

Fig. A5 and Fig. A6 in the Appendix.355

As expected, reanalyses (black lines in Fig. 10, Fig. 11, Fig. A5 and Fig. A6 ) show better agreement with the ARM

radiosonde data compared to the nudged EAM simulations (colored lines). ERA5 (solid black in Fig. 10 and Fig. A5) is in

general better than ERA-Interim (dashed black) at the mid-latitude SGP site and the high-latitude NSA site. For the three ARM

TWP sites in the tropics, ERA5 is not always better than ERA-Interim. For example, ERA5’s zonal wind field (U, solid black

in Fig. 10d) shows larger RMSEs below 500 hPa compared to the ERA-Interim (dashed black).360

The ERA-nudged simulations show good agreement with the ARM radiosonde measurements at the mid-latitude (SGP)

and high-latitude (NSA) sites (Fig. 10). Compared to the ERA-Interim-nudged simulations (colored dashed lines), the ERA5-

nudged simulations (colored solid lines) have slightly better hindcast skills. In addition, EAM simulations with temperature

nudging (red, orange and green lines) show overall better hindcast skills, regardless of which ERA product was used as the

constraining data. Slightly better hindcast skills for horizontal winds can be obtained by using the 3-hourly ERA5 data (green365
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Figure 10. Comparison of two reanalysis products (ERA-Interim and ERA5, black lines) and various nudged simulations (colored lines)

with ARM radiosonde measurements of January 2010 at the location of Southern Great Plains (SGP) (36.607oN, 97.488oW; panels a–d),

and North Slope of Alaska (NSA) (71.323o N,156.609o W; panels e–h), The four columns from left to right show the root-mean-square

error (RMSE) in temperature (T, unit: oC), relative humidity (RH, unit: percent), zonal wind (U, unit: m s−1) and meridional wind (V, unit:

m s−1). All nudged simulations shown here used the sequence of calculations in Fig. 1b, so the prefix “RNDG_” is dropped in this figure to

keep the labels short. The simulation setups can be found in Section 2.3 and Table 1. RMSEs were calculated from 6-hourly data for ARM

SGP (121 profiles per variable) and 12-hourly data for ARM NSA (63 profiles per variable) in January 2010. The radiosonde observations

at ARM NSA site were only available twice per day. Bilinear interpolation was used to remap the reanalyses and model output to the two

ARM sites.

lines) for nudging instead of using 6-hourly data (red lines). Using 3-hourly (green lines) or hourly (orange lines) constraining

data gives very similar results.

Consistent with the experiences reported in the literature (e.g., Jeuken et al., 1996; Sun et al., 2019), weather events in the

tropics are less well constrained by nudging. Compared to the ARM SGP and NSA sites (Fig. 10, Fig. A5), the magnitude of

the RMSEs in ERA-nudged simulation at three ARM TWP sites are in similar ranges (Fig. 11), while the temporal correlations370

are smaller at the tropical sites, especially for temperature and relative humidity (Fig. A6). At the tropical sites, we do not see

systematic improvements when switching from EAM-Interim to EAM5 for the constraining data or when increasing the data

frequency, although the UVT nudging (red, orange and green lines in Fig. 11 and Fig. A6) still provides better hindcast skills

than the UV nudging (blue lines).
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Figure 11. As in Fig. 10 but showing the root-mean-square-errors (RMSEs) at the location of Tropical Western Pacific (TWP) site at Manus

(2.060o S,147.425o E; panels a–d), Nauru (0.502o S,166.917o E; panels e–h), and Darwin (12.425o S,130.892o E); panels i–l). The

simulation setups can be found in Section 2.3 and Table 1. RMSEs were calculated from 12-hourly data for ARM TWP1 (49 profiles per

variable) and TWPC2 (57 profiles per variable), and 6-hourly data for TWPC3 (127 profiles per variable) in January 2010. We note that the

radiosonde observation only samples twice per day at ARM TWPC1 and TWPC2, and four time per day at TWPC3. Bilinear interpolation

was used to remap the reanalyses and model output to the three ARM sites.
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5 Impact on the estimation of anthropogenic aerosol effect375

Nudging has been recognized as a useful and computationally efficient technique to estimate the anthropogenic aerosol effect

(Faer) in global climate models (Kooperman et al., 2012; Zhang et al., 2014, 2016; Ghan et al., 2016; Liu et al., 2018). In

this section, we evaluate the impact of nudging implementation on the estimated Faer in EAMv1. It is of practical value

to identify nudging implementations capable of providing Faer estimates that are consistent with those in the free-running

simulations, as Faer has been identified as one of the key aspects that need more attention in the future development and380

evaluation of EAM (Golaz et al., 2019; Zhang et al., 2022). Similar to previous studies, we derive Faer by contrasting a pair of

nudged EAMv1 simulations conducted with PD (year 2010) and PI (year 1850) emissions of the anthropogenic aerosols and

precursors following the CMIP6 protocol (Eyring et al., 2016; Hoesly et al., 2018; Feng et al., 2020).

As explained in Sect. 2.3 and summarized in group 1 of Table 1, we carried out 5 pairs of 1-year simulations without

nudging (the “CLIM" runs) or with very weak nudging (simulations “CLIMp1"–“CLIMp4"). The 5-member mean, one-year385

mean, globally averaged PD-PI difference in the top-of-atmosphere (TOA) net radiative flux, ∆FNET, is about -1.7 W m−2.

The shortwave component is ∆FSNT = -2.4 W m−2, and the longwave component is ∆FLNT = -0.7 W m−2 (Table S3).

These numbers are consistent with the effective aerosol forcing estimates reported in Sect. 6.1 of Golaz et al. (2019). The

PD-PI differences in shortwave and longwave cloud forcings ∆SWCF = -1.7 W m−2 and ∆LWCF = 0.6 W m−2, respectively

(Table S3).390

In Fig. 12, we compare various configurations of the nudged simulations with CLIM in terms of the annual mean PD-PI

differences averaged over the globe or the tropics. All results were normalized by the ensemble mean of CLIM; the thick black

whiskers attached to the gray bars indicate the two-standard-deviation ranges of the CLIM ensemble. The non-normalized data

can be found in Table S3 in the supplemental materials. All of the nudged simulations shown in the figure used the revised

sequence of calculations and 3-hourly constraining data. Two of the nudged simulations were constrained by ERA5 and the395

other two by CLIM PD. We also compare simulations conducted using UV-nudging with those using UVT-nudging.

Panel (a) of Fig. 12 shows the global mean PD-PI differences in the TOA fluxes and cloud forcing. Keeping in mind the

ensemble spread of the CLIM simulations, we see that the estimates obtained with UV-nudging (pink bars) are consistent with

the estimates from CLIM, while the estimates obtained with UVT-nudging (green bars) show statistically significant deviations

from CLIM. This is true for both the ERA5-nudged and CLIM-nudged simulations, and the impact of temperature nudging is400

considerably larger when ERA5 is used as the constraining data. The ∆FSNT estimated by NDG_ERA5_UVT3 is about 25%

lower than CLIM, and the ∆FLNT is about 50% lower than CLIM. The same qualitative conclusions can be drawn when we

focus only on the tropics (panel b of Fig. 12), and the underestimation resulting from nudging temperature to ERA5 is more

severe than for the global averages.

To help explain the impact of temperature nudging on the Faer estimates, we show in the second row of Fig. 12 the PD-PI405

differences in the global and tropical mean total cloud fraction (∆CLDTOT), cloud liquid and ice water path (∆LWP and

∆IWP), and total precipitable water (∆TMQ). All results are again normalized by the ensemble mean of CLIM, and the

non-normalized data can be found in Table S3. Among the four quantities, ∆CLDTOT and ∆IWP show the largest and most
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Figure 12. First row: global mean (a) and topical mean (b) annually-averaged anthropogenic aerosol effect (PD-PI differences, denoted by

∆) estimated by free-running (i.e. CLIM) and nudged EAM simulations. FSNT and FLNT are the TOA net shortwave and longwave radiation

flux, respectively. SWCF and LWCF are the shortwave and longwave cloud radiative forcing, respectively. Second row: the same as in the

first row but for global mean (c) and topical mean (d) annually-averaged PD-PI difference in total cloud fraction (CLDTOT), liquid water

path (LWP), ice water path (IWP) and total precipitable water (TMQ). All values have been normalized by the ensemble mean of CLIM. The

thick whiskers attached to the grey bars indicate the two-standard-deviation ranges of the 5-member CLIM ensemble. The non-normalized

data can be found in Table S3. The simulations are described in Section 2.3 and Table 1.
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Figure 13. Upper row: zonal and annual mean differences in temperature (∆T, unit: K) between the CLIM PD simulation and the ERA5

reanalysis (panel a), and between a nudged PD simulation and ERA5 (panel b). The nudged simulation is labeled as “NDG_ERA5 (PD)”

for brevity in panel b; it correspond to the simulation RNDG_ERA5_UVT3 in Table 1 performed with PD emissions of aerosols and

precursors. Lower row: PD-PI differences of in-cloud ice number concentration (∆ICINC, unit: # cm−3) derived from free-running (i.e.

CLIM) simulations (panel c) and from EAMv1 simulations UVT-nudging towards ERA5 (i.e. RNDG_ERA5_UVT3, panel d). Details of

simulation setup can be found in Sect. 2.3 and Table 1.

significant reductions when temperature is nudged to ERA5, which can be further explained by the zonal and annual mean

temperature differences (∆T) and in-cloud ice number concentration differences (∆ICINC) shown in Fig. 13.410

Fig. 13a suggests that EAMv1’s climatology, when compared to ERA5, features cold biases on the order of 1-2 K in the

upper troposphere over the tropical and mid-latitude regions where small ice crystals are often formed through homogeneous

ice nucleation. These small ice crystals are known to have a large impact on the simulated cloud radiative forcing. Nudging

EAM’s temperature towards ERA5 effectively introduces bias corrections (Fig 13b) that lead to a warmer base state and

weakened homogeneous ice nucleation (Fig. A7b). Consequently, the PD-PI changes in aerosol and precursor emissions cause415

substantially smaller ∆ICNIC compared to CLIM (Fig. 13d versus c), which explains the significant reduction in ∆FLNT and

∆LWCF shown as hatched green bars in Fig. 12a–b. This reasoning is consistent with the finding in Zhang et al. (2014) that
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temperature nudging in EAMv1’s predecessor model CAM5 led to a substantial decrease in the ice cloud amount and a weaker

impact of anthropogenic aerosols on longwave radiation.

Figure 12a–b indicates that when EAMv1 simulations are nudged to its own climatology, constraining temperature also420

has significant impacts on the estimated ∆FSNT and ∆SWCF (see green versus pink bars with solid fill). This is mainly

due to the constrained temperature adjustment to the aerosol perturbation, since the PD and PI simulations were nudged

towards the same CLIM PD simulation. The anthropogenic aerosols and precursors are known to have significant impacts

on air temperature (Fig. A8a). When only the horizontal winds are nudged towards CLIM PD, the impacts of anthropogenic

aerosols and precursors on temperature are smaller than in the free-running simulations but nevertheless still sizable (Fig. A8b).425

In contrast, the nudging of temperature substantially reduces the PD-PI temperature differences as expected (Fig. A8c). The

results shown in Fig. A8 suggest that the constrained temperature response mainly affects the simulated PD-PI changes in

cloud liquid mass (∆CLDLIQ, Fig. A8, second row) and cloud ice mass (∆CLDICE, Fig. A8, third row) in the middle and

lower troposphere (i.e., below 500hPa). This explains why the solid green bars in Fig. 12 deviate from the gray bars more in

the shortwave radiation than in the longwave component.430

Overall, consistent with previous studies using other global aerosol-climate models (e.g. Kooperman et al., 2012; Zhang

et al., 2014; Ghan et al., 2016), our results indicate that nudging the horizontal winds but not temperature towards the ERA5

reanalysis or EAM’s own meteorology is the preferred simulation configuration to estimate Faer. The temperature nudging

needs to be applied with caution, as the potential climatology discrepancies between CLIM and reanalysis might lead to large

biases in the Faer estimation.435

In Figure 14, we evaluate the impact of the frequency of the constraining data. At least for the global and annual mean Faer,

the results obtained from simulations using 6-hourly constraining data (orange bars in the figure) are very similar to those

obtained using 3-hourly constraining data (blue bars), regardless of whether UV-nudging (Fig. 14, upper row) or UVT-nudging

(Fig. 14, lower row) is used. The small impact of constraining data frequency on global and tropical mean Faer estimates

is expected. As shown in Section 3.2, the impact of constraining data frequency on present-day simulations is sizable only440

in limited regions where strong diurnal variations exist. Therefore, using 6-hourly constraining data in nudged simulations is

sufficient for estimating the time-mean Faer.

6 Conclusions

Nudging has been widely used in the development and evaluation of global and regional atmospheric models. In this work, we

further improved the nudging implementation in EAMv1 compared to the work of Sun et al. (2019) and evaluated the impact445

on the climate representativeness, the hindcast skill of nudged simulations, and the estimation of anthropogenic aerosol effects.

The study was motivated by an unresolved issue in Sun et al. (2019), namely a nudged EAMv1 simulation constrained by

EAMv1’s own meteorology showed non-negligible local deviations from the baseline, with annually-averaged SWCF changes

as large as 4–8 W m−2 over some of the subtropical marine stratocumulus and trade cumulus regions. Two reasons were

identified: First, EAMv1 outputs meteorological fields (from a baseline simulation) for nudging before the radiation parame-450
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Figure 14. Global mean (a, c) and topical mean (b, d) annually-averaged anthropogenic aerosol effect (PD-PI differences, denoted by ∆)

estimated by free-running (i.e. CLIM, grey bars) and nudged EAM simulations (colored bars). FSNT and FLNT are the TOA net shortwave

and longwave radiation flux, respectively. SWCF and LWCF are the shortwave and longwave cloud radiative forcing, respectively. All values

have been normalized by the ensemble mean of CLIM. The thick whiskers attached to the grey bars indicate the two-standard-deviation

ranges of the 5-member CLIM ensemble. The upper row compares the UV-nudged simulations with CLIM, and the lower row compares

the UVT-nudged simulations with CLIM. The solid color bars indicate simulations nudged towards CLIM; the hatched color bars indicate

simulations nudged towards ERA5 reanalysis. Orange and blue bars correspond to nudged simulations performed with 6-hourly and 3-hourly

constraining data, respectively. The simulations are described in Section 2.3 and Table 1.
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terization, but the nudging tendency is calculated at a different location in the time integration loop, i.e., after the dynamical

core. This inconsistency introduced an unintended contribution to the nudging tendency that was proportional to the effect of

deep convection, shallow convection, and cloud microphysics on the simulated atmosphere (Section 3.1). Second, the EAM-

simulated winds and temperature in the lower troposphere were found to have high-frequency modes with non-negligible

magnitudes. For example, the zonal wind in the Peruvian stratocumulus region was found to have a prominent 12-hour cycle.455

Such variations cannot be properly captured by a 6-hourly sampling frequency, hence resulting in significant aliasing issues

with the constraining data used for nudging (Section 3.2). We showed that by moving the calculation of nudging tendency to

the same location as data output (Fig. 1b) and by increasing the frequency of constraining data to 3-hourly, one could largely

remove the discrepancies between a 1◦ free-running EAMv1 simulation and a 1◦ nudged simulation constrained by EAM’s

own meteorology. Further increasing the data frequency to hourly only provided marginal improvements. For future studies460

that nudge EAM towards its own meteorology, we recommend using the revised implementation and the 3-hourly constraining

data for 1◦ simulations. Whether higher horizontal resolution can benefit from higher data frequency remains to be investi-

gated İn Table A1, we have provided the nudging-related namelist settings for two of the simulations discussed in this paper

to demonstrate how to turn on the revised sequence of calculations and change the constraining data frequency.

The abovementioned improvements further motivated us to investigate the potential benefits of using the ERA5 reanalysis465

data, which are available at a higher frequency compared to ERA-Interim, for nudged hindcast simulations. In terms of the

annual mean fields, there were discernible but small regional changes when switching from ERA-Interim to ERA5 or changing

the constraining data frequency when using ERA5. The impacts on global mean climate were found to be small (Section 4.1).

Satellite retrievals of OLR and precipitation were used to evaluate the model’s skill in capturing real weather events. When

ERA5 was used instead of ERA-Interim, the simulated OLR and precipitation were significantly improved, especially in the470

tropics. We also evaluated the nudged simulations using radiosonde measurements from several ARM sites in different climate

regimes. At the SGP and NSA sites, the simulated horizontal winds, temperature, and relative humidity were systematically

improved when replacing ERA-Interim with ERA5 and when using higher-frequency nudging data. Significant improvements

are seen in the mid and high-latitude ARM sites. At the tropical sites (TWPC1, TWPC2, and TWPC3), the improvements

were not as significant. At SGP and NSA, nudging winds and temperature together was found to further improve the hindcast475

skill of the simulations. Overall, the good agreement in the simulated and observed meteorological conditions provides a good

basis for possible future studies that use ARM measurements to help identify parameterization deficiencies and improve the

representation of cloud and aerosol-related atmospheric processes in EAM.

Last but not least, we evaluated the impact of nudging on the estimated anthropogenic aerosol effects (Faer). Results show

that the frequency of the constraining data has negligible impacts on the estimated global and tropical averages of annual mean480

Faer. Similar to conclusions from earlier studies, we recommend nudging the horizontal winds but not the air temperature

when attempting to obtain estimates of Faer that are consistent with the estimates from free-running simulations. The reason

is twofold: when nudging toward a reanalysis product, the effective temperature bias correction introduced by nudging can

significantly change the model’s mean climate and consequently change the simulated clouds and the estimates of Faer; when
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nudging toward the model’s own meteorology, nudging temperature in addition to horizontal winds can result in a strongly485

constrained temperature response to the aerosol perturbation, and subsequently change the simulated Faer.

We note that the 1◦ configuration of EAMv1 was used in this study. The benefits of the temporal and spatial resolutions of

the ERA5 data might not have been fully revealed. As pointed out by Jeuken et al. (1996), the linear temporal interpolation

in nudging can become more questionable for higher-resolution simulations as more short time scale processes are resolved.

Also, compared to ERA-Interim, ERA5 can provide more accurate meteorological variables at finer spatial scales, so the490

ERA5-nudged simulation might perform even better at high resolutions than seen in the 1◦ simulations discussed here. The

high-resolution configuration of EAMv1 is substantially more expensive, and hence was not used in this study. However,

with the upcoming release of EAMv2, the use of the new physics grid (Hannah et al., 2021) and semi-Lagrangian advection

scheme (Bradley et al., 2019) will substantially reduce the computational cost. It will be useful to further explore nudged EAM

simulations at higher resolutions.495
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Appendix A: Supporting Information

A1 Nudging-related namelist setups for EAMv1 simulations

Table A1. List of the setups for nudging-related namelist variables in DNDG_ERAI_UVT6 and RNDG_ERA5_UVT3 conducted with

EAMv1 in this study. The nudging-related setups in DNDG_ERAI_UVT6 followed the default EAMv1 with the sequence of calculations

shown in Fig 1a. The RNDG_ERAI_UVT6 used the sequence of calculations shown in Fig 1b with the revised nudging-related setups (rows

in bold face) suggested by this study. See Table 1 and Section 2.3 in the main text for the detailed descriptions for DNDG_ERAI_UVT6 and

RNDG_ERA5_UVT3.

&nudging_nl DNDG_ERAI_UVT6 RNDG_ERA5_UVT3

nudge_model .True. .True.

nudge_method ‘Linear’ ‘Linear’

nudge_currentstep .False. .False.

Nudge_loc_physout .False. .True.

nudge_tau 6.0 6.0

model_times_per_day 48 48

nudge_times_per_day 4 8

nudge_ucoef 1.0 1.0

nudge_uprof 1 1

nudge_vcoef 1.0 1.0

nudge_vprof 1 1

nudge_tcoef 1.0 1.0

nudge_tprof 1 1

nudge_qcoef 0.0 0.0

nudge_qprof 0 0

nudge_pscoef 0.0 0.0

nudge_psprof 0 0

nudge_path ‘./ERA-Interim/’ ‘./ERA5/’

nudge_file_template ‘interim_se_%y-%m-%d-%s.nc’ ‘era5_ne30L72_%y-%m-%d-%s.nc’

nudge_file_ntime 1 1

nudge_beg_year 2009 2009

nudge_beg_month 10 10

nudge_beg_day 1 1

nudge_end_year 2011 2011

nudge_end_month 1 1

nudge_end_day 1 1
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A2 Method to generate error metrics for Figure 5

The physical qualities listed in Table A2 are used to construct the error metics for the evaluation of nudged simulations in

EAMv1. These physical quantities have also been widely used to evaluate climate model fidelity (e.g., Donahue and Caldwell,500

2018; Wan et al., 2021). The error metrics as shown in Figure 5 include the relative differences in the simulated global averages

and the relative differences in global patterns between the test simulations and the reference simulation conducted by EAM.

Following Wan et al. (2021), the relative difference in simulated global averages are defined as the mean differences between

the test simulation and reference simulation, normalized by the annual mean value from the reference simulation. While the

relative difference in global pattern is defined as the centered root-mean-square (RMS) differences of the patterns between the505

test simulation and reference simulation, normalized by the RMS of the pattern in the reference simulation. A “pattern" here

represents the annal mean, global, geographical distribution of a physical quantity.

Table A2. List of observational data and EAM’s output used for evaluating the nudged simulations. The observational data were obtained

from NCAR AMWG diagnostics package (http://www.cgd.ucar.edu/amp/amwg/diagnostics/plotType.html).

Physical quantity EAM output

Surface longwave downwelling flux FLDS

Surface net longwave flux FLNS

TOA upward longwave flux FLUT

TOA clearsky upward longwave flux FLUTC

Surface net shortwave flux FSNS

TOA net shortwave flux FSNTOA

TOA clearsky net shortwave flux FSNTOAC

Longwave cloud forcing LWCF

Shortwave cloud forcing SWCF

Total cloud amount CLDTOT

200 hPa zonal wind U

500 hPa geopotential height Z3

Precipitation rate PRECT

Total precipitable water TMQ

Sea level pressure PSL

Surface latent heat flux LHFLX

Surface sensible heat flux SHFLX

Surface stress TAUX, TAUY

2m air temperature TREFHT

Sea level temperature on land TS
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A3 Additional figures

Figure A1. As in Figure 2 but showing results for the total cloud fraction fields (CLDTOT, unit: percent). The simulation setups are described

in Section 2.3 and Table 1.
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Figure A2. As in Fig. 2 but showing the relative differences in total cloud forcing (CF, unit: W m−2) in panels (b)–(e). The simulation setups

are described in Section 2.3 and Table 1.

Figure A3. Year 2010 annual mean zonally averaged temperature differences (∆ T, unit: K) between ERA-Interim (“ERAI") and ERA5

(panel a), and between EAMv1’s free-running simulation CLIM and ERA5 (panel b).
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Figure A4. As in Figure 9 but the root-mean-square-errors (RMSEs) between a Hovmöller diagram derived from TRMM and the Hovmöller

diagram derived from various nudged simulations are shown in panels (b–c) and (e–f). The simulation setups are described in Section 2.3

and Table 1.
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Figure A5. As in Fig. 10 but showing the temporal correlations between various nudged simulations (colored lines) or reanalysis products

(ERA-Interim and ERA5, black lines) and the ARM measurements. The simulation setups are described in Section 2.3 and Table 1.
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Figure A6. As in Fig. 11 but showing the temporal correlations between various nudged simulations (colored lines) or reanalysis products

(ERA-Interim and ERA5, black lines) and the ARM measurements. The simulation setups are described in Section 2.3 and Table 1.
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Figure A7. Annual mean zonally averaged (a) in-cloud ice number concentration (ICINC, unit: # cm−3) from EAMv1 free-running simula-

tion (i.e., CLIM), and (b) difference in ICINC (∆ICINC, unit: # cm−3) between CLIM and nudged EAMv1 simulation. The NDG_ERA5

in the figure caption is the acronym of RNDG_ERA5_UVT3 (nudged towards 3-hourly wind and temperature fields from ERA5 reanalysis).

All simulations used present-day (PD) aerosol emissions. See details in Section 2.3 and Table 1.
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Figure A8. PD-PI differences in temperature (∆T, unit: K, top row), cloud liquid water mixing ratio (∆CLDLIQ, unit: mg kg−1, middle row)

and cloud ice water mixing ratio (∆CLDICE, unit: mg kg−1, bottom row) from the free-running (i.e. CLIM) and nudged EAM simulations.

RNDG_UVT3 (second column) is for wind-only nudging, and RNDG_UVT3 (third column) is for nudging to both wind and temperature

fields. The 3-hourly constraining data frequency is used for all nudged simulations. Both PD and PI simulations are nudged to CLIM (PD

meteorology) in EAMv1. See details in Section 2.3 and Table 1.
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