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Abstract. The Sea Ice Evaluation Tool (SITool) described in this paper is a performance metrics and 10 

diagnostics tool developed to evaluate the skill of Arctic and Antarctic model reconstructions of sea ice 

concentration, extent, edge location, drift, thickness, and snow depth. It is a Python-based software and 

consists of well-documented functions used to derive various sea ice metrics and diagnostics. Here, the 

SITool version 1.0 (v1.0) is introduced and documented, and is then used to evaluate the performance of 

global sea ice reconstructions from nine models that provided sea ice output under the experimental 15 

protocols of the Coupled Model Intercomparison Project 6 (CMIP6) Ocean Model Intercomparison 

Project with two different atmospheric forcing datasets: the Coordinated Ocean-ice Reference 

Experiments version 2 (CORE-II) and the updated Japanese 55-year atmospheric reanalysis (JRA55-

do). Two sets of observational references for the sea ice concentration, thickness, snow depth, and ice 

drift are systematically used to reflect the impact of observational uncertainty on model performance. 20 

Based on available model outputs and observational references, the ice concentration, extent, and edge 

location during 1980-2007, as well as the ice thickness, snow depth, and ice drift during 2003-2007 are 

evaluated. In general, model biases are larger than observational uncertainties and model performances 

are primarily consistent compared to different observational references. By changing the atmospheric 

forcing from CORE-II to JRA55-do reanalysis data, the overall performance (mean state, interannual 25 

variability and trend) of the simulated sea ice areal properties in both hemispheres, as well as the mean 

ice thickness simulation in the Antarctic, the mean snow depth and ice drift simulations in both 

hemispheres are improved. The simulated sea ice areal properties are also improved in the model with 

higher spatial resolution. For the cross-metric analysis, there is no link between the performance in one 

variable and the performance in another. The SITool is an open-access version-controlled software that 30 

can run on a wide range of CMIP6 compliant sea ice outputs. The current version of SITool (v1.0) is 

primarily developed to evaluate atmosphere-forced simulations and it could be eventually extended to 

fully coupled models. 
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1 Introduction  

Most regional and global climate models now include an interactive sea ice model, reflecting the reality 35 

that sea ice plays a fundamental role in the polar environment, by influencing air-sea-ice exchanges, 

atmospheric and oceanic processes, and climate change. Large inter-model spread exists in the 

performance of sea ice simulations in the Coupled Model Intercomparison Project 5 (CMIP5) for both 

the Arctic and Antarctic (Massonnet et al., 2012; Stroeve et al., 2012, 2014; Turner et al., 2013; Zunz et 

al., 2013; Shu et al., 2015). Some improvements are identified in the CMIP6 models: (1) a more 40 

realistic estimate of sea ice loss for a given amount of CO2 emissions and global warming in the Arctic 

(Notz et al., 2020), (2) reduced inter-model spreads in summer and winter ice area and improved ice 

concentration distribution in the Antarctic (Roach et al., 2020), (3) lower inter-model spreads in the 

mean state and trend of both the Arctic and Antarctic ice extents (Shu et al., 2020). However, sea ice 

projections and evaluations are still not systematic and to date, no tool allows precise tracking of sea ice 45 

model performance through time from one version to the next. The Earth System Model Evaluation 

Tool (ESMValTool) has been developed for routine evaluation of climate model simulations in CMIP 

including many components of the Earth system (Eyring et al., 2016, 2020). It is an efficient tool to 

obtain a broad view on the overall performance of a climate model, and it provides sea ice diagnostics 

on the ice concentration and extent, as well as relationships between sea ice variables. In addition to sea 50 

ice diagnostics, the Sea Ice Evaluation Tool (SITool) introduced in this paper provides systematic sea 

ice metrics for assessing large-scale sea ice simulations from various aspects.  

The SITool has been designed to describe inter-model differences quantitatively and to help teams 

managing various versions of a sea ice model, detecting bugs in newly developed versions, or tracking 

the time-evolution of model performance. The SITool quantifies the performance of sea ice model 55 

simulations by providing systematic and meaningful sea ice metrics and diagnostics on each sea ice 

variable with thorough comparisons to a set of observational references. Arctic and Antarctic 

performance metrics and diagnostics on ice coverage, drift, thickness and snow depth are provided from 

seasonal to multi-decadal time scales whenever observational references are available. These sea ice 

metrics give a detailed view of sea ice state and highlight major deficiencies in the sea ice simulation. 60 

The SITool is written in the open-source language Python and distributed under the Nucleus for 

European Modelling of the Ocean (NEMO) standard tools. The SITool is provided with the reference 

code and documentation to make sure the final results are traceable and reproducible.  

Here, the SITool version 1.0 (v1.0) is applied to evaluate the performances of Arctic and Antarctic 

historical sea ice simulations under the experimental protocols of the CMIP6 Ocean Model 65 

Intercomparison Project (OMIP, Griffies et al., 2016). OMIP provides global ocean-sea ice model 

simulations with a prescribed atmospheric forcing, which gives the opportunity to intercompare sea ice 

model performance under fully controlled conditions. In OMIP, two streams of experiments were 
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carried out: OMIP1, forced by the Coordinated Ocean-ice Reference Experiments version 2 interannual 

forcing (CORE-II, Large and Yeager, 2009), and OMIP2, forced by the updated Japanese 55-year 70 

atmospheric reanalysis (JRA55-do, Tsujino et al., 2018). The OMIP protocol ensures a close 

experimental setup among the different models. Models were run with both atmospheric forcings, when 

possible, to identify and attribute the influences of changed atmospheric forcings on sea ice 

characteristics. Tsujino et al. (2020) and Chassignet et al. (2020) evaluated the impact of atmospheric 

forcing and horizontal resolution on the global ocean–sea ice model simulations based on the 75 

experimental protocols of OMIP provided by model groups participated in this intercomparison project. 

Their studies focused on the evaluation of ocean components from sea surface height, temperature, 

salinity, mixed layer depth, kinetic energy to circulation changes. Some aspects of sea ice simulations 

are assessed in both hemispheres relative to an observational dataset. Tsujino et al. (2020) provide 

spatial maps of the 1980–2009 mean ice concentration and time series of ice extent in summer and 80 

winter, and Taylor diagrams of the interannual variations of ice extent under CORE-II and JRA55-do 

forcings. Chassignet et al. (2020) show spatial maps of the 1980–2018 mean ice concentration and ice 

thickness in summer and winter, and time series of annual mean ice extent and ice volume under 

different horizontal resolutions. In this paper, we focus on the sea ice in OMIP simulations available 

from the Earth System Grid Federation in a more systematic manner, including more sea ice variables 85 

(e.g., ice edge location, snow depth, and ice drift). The performance metrics and diagnostics (spatial 

maps and/or time series diagrams) for each ice variable are provided compared to two sets of 

observational references when data is available to appreciate the importance of observational 

uncertainty in the assessment. 

This paper is organized as follows. The SITool (v1.0) with the details of sea ice metrics and diagnostics 90 

is described in section 2. The CMIP6 OMIP models and observational references are introduced in 

section 3. In section 4, the application of the SITool (v1.0) to CMIP6 OMIP and the results of the model 

performance are presented and discussed. Finally, conclusions and discussion are provided in section 5. 

Appendix A presents some additional sea ice diagnostics. The source code of the SITool (v1.0) used to 

assess the model skills is publicly available in the repository as shown in the section on  “Code and data 95 

availability”. 

2 Overview of SITool (v1.0) 

A schematic overview of the SITool (v1.0) workflow and its application in evaluating the CMIP6 OMIP 

model performance is shown in Fig. 1. The input sea ice data from model outputs and observations are 

detailed in section 3. The methods of the metrics calculation are discussed below in section 2.1 followed 100 

Massonnet et al. (2011) with some modifications. Namely, (1) more observational references are used to 

calculate the observational errors and the incorporation of observational errors is a prerequisite to do the 
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comparisons here, (2) ice edge location and snow depth metrics are included, (3) the method to 

calculate the vector correlation coefficient is updated. The SITool (v1.0) also produces additional sea 

ice diagnostics (spatial maps and time series diagrams) to help understand why metrics vary from one 105 

dataset to the next. Table 1 provides an overview of the diagnostic fields along with input variables, 

output results and corresponding figures in this paper, python scripts in the repository, and comments. 

All the sea ice data from model outputs and observational references are regridded to the polar 

stereographic 25 km resolution grid using a kd-tree (k-dimensional, Bentley, 1975) nearest neighbour 

interpolation method provided by a python package (a component of the SITool workflow). The kd-tree 110 

is a binary search tree with a two-dimensional spatial index structure for use in this study. The 

interpolation yields less than 5% error for each sea ice variable (not shown), which indicates that the 

results are not sensitive to the interpolation method used here. This interpolation allows point-by-point 

comparison and avoids the systematic bias of sea ice extent under different grids, due to differences in 

land-sea masks.   115 

 
Figure 1. Schematic overview of the SITool (v1.0) and its application to the CMIP6 OMIP model evaluation. 
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Table 1. Overview of the diagnostic fields along with input variables, output results and corresponding 
figures in this paper, python scripts in the repository, and comments. 120 

 

Diagnostic 

fields 

Input variables Output results 

(Figure(s)) 

Python 

scripts  

Comments 

Sea ice 

concentration 

Ice concentration (%), 

grid cell area (m2)  

Metrics (Fig. 2), 

spatial maps (Figs. 

A1-A4) 

siconc.py Metrics: 1980-2007 mean state, interannual variability, and trend of 

ice concentration simulation; 

Spatial maps: 1980-2007 February and September mean ice 

concentration differences in both hemispheres 

Sea ice extent Ice concentration (%), 

grid cell area (m2) 

Metrics (Figs. 5a,b), 

time series diagrams 

(Figs. 3-4) 

siext.py Metrics: Similar to ice concentration evaluation; 

Time series diagrams: 1980–2007 mean seasonal cycle, monthly 

anomalies and trends of ice extent in both hemispheres 

Sea ice edge Ice concentration (%), 

grid cell area (m2) 

Metrics (Fig. 5c), 

time series diagrams 

(Fig. 6) 

siedge.py Metrics: 1980-2007 mean state ice edge location simulation; 

Time series diagrams: 1980-2007 mean seasonal cycle of IIEE in 

both hemispheres 

Sea ice 

thickness 

Ice thickness (m)  Metrics (Fig. 7a), 

spatial maps (Figs. 

A5-A6) 

sithick.py Metrics: 2003-2007 mean state ice thickness simulation; 

Spatial maps: 1980-2007 February (Arctic) and September 

(Antarctic) mean ice thickness differences  

Snow depth Snow depth (m) Metrics (Fig. 7b), 

spatial maps (Figs. 

A7-A8) 

sndepth.py Metrics: 2003-2007 mean state snow depth simulation; 

Spatial maps: 1980-2007 February (Arctic) and September 

(Antarctic) mean snow depth differences 

Sea ice drift 

(magnitude 

and direction) 

Ice velocity in x-

direction (m s-1), 

Ice velocity in y-

direction (m s-1) 

Metrics (Fig. 10), 

spatial maps (Figs. 

8-9, A9-A12) 

sidrift.py Metrics: 2003-2007 mean kinetic energy and vector correlations; 

Spatial maps: 2003-2007 significant ice-motion vector correlation 

coefficients; 2003-2007 February and September mean ice-motion 

mean kinetic energy differences in both hemispheres  

2.1 Sea ice metrics and diagnostics   

The general approach to derive metrics is by computing scaled absolute errors. We first compute the 

errors (in absolute value) between some simulated characteristics (e.g., sea ice extent) in individual 

models and the corresponding characteristic in observational references, respectively. Then, we scale 125 

these errors by a typical error to finally get the corresponding metric. The typical error is defined as the 

absolute difference of the relevant characteristic between two observational references when 

observations are available, and is therefore a proxy for observation uncertainty. Because our metrics are 

defined as scaled absolute errors, they are oriented positively meaning that lower values indicate better 

skill, and a value of 1 means that model error is comparable to observational uncertainty. 130 

2.1.1 Sea ice concentration, extent, and edge location 

The methods to calculate the metrics of ice concentration on the mean state, interannual variability, and 

trend in both hemispheres are introduced here. The consistent equations used to calculate the 

differences of the mean state (Meandiff), interannual variability (Stddiff) and trend (Trenddiff) between 

two datasets are shown below:  135 
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Meandiff =
[ |C!"
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!!!
A!!!!
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!!!

,                                                                                             (1) 

Stddiff =
|std C!! − C!"! − std C!! − C!"! |×A!!!!

!!!

A!!!!
!!!

,                                                                                 (2) 

Trenddiff =
|trend C!! − C!"! − trend C!! − C!"! |×A!!!!

!!!

A!!!!
!!!

,                                                                   (3) 

where n =1,...,12 and i =1,...,N denote the twelve months and the grid cells, respectively, C!" and C!" 

are monthly mean ice concentrations from two datasets used to do the comparison, A and D are grid cell 

area and the days in each month, respectively, C! and C! are monthly ice concentrations from two 

datasets, and ‘std’ is the abbreviation of standard deviation. For the mean state evaluation, we compute 

the monthly mean ice concentration over the study period (1980-2007 for the CMIP6 OMIP model 140 

evaluation), and calculate the absolute difference between each model output and the observational 

reference over 12 months at each grid cell as shown in equation (1). For the interannual variability and 

trend evaluation, we compute the standard deviation and linear regression on the monthly anomalies of 

ice concentration over the study period, and compute the absolute difference between each model output 

and the observational reference at each grid cell as shown in equations (2) and (3). Then we average 145 

these errors spatially weighted by grid cell areas. The typical errors are the differences between two 

observational references on the mean state, interannual variability, and trend by applying the same 

method shown before. The differences between each model output and the observational reference are 

computed and scaled by corresponding typical errors to get the metrics on ice concentration. The 

September (February) mean ice concentration differences between each model output and the 150 

observational reference, and between two observational references in both hemispheres are provided for 

diagnosis. These representative months of the summer and winter are selected because normally they 

respectively correspond to the minimum and maximum seasonal values of sea ice extent for both 

hemispheres in observations. 

The ice extent is calculated as the total area of grid cells with the ice concentration above 15%. The 155 

same procedure is followed for ice extent metrics calculation as for ice concentration, except for the 

spatial averaging since ice extent is already an integrated quantity. The mean seasonal cycle, monthly 

anomalies, and trend of ice extent in both hemispheres from different models and two observational 

references are provided for diagnosis.  

The integrated ice-edge error (IIEE) is the total area where the models and observational references 160 

disagree on the ice concentration being above or below 15% including both the ice extent error and a 
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misplacement error (Goessling et al., 2016). For the mean IIEE evaluation, we compute the monthly 

mean IIEE between each model output and the observational reference over the study period. The 

typical error is the mean IIEE between two observational references themselves. The differences 

between each model output and the observational reference are computed and scaled by the typical error 165 

to get the metric on the ice edge location. The mean seasonal cycles of IIEE between each model output 

and the observational reference, and between two observational references in both hemispheres are 

provided for diagnosis. 

2.1.2 Sea ice thickness and snow depth  

The same procedure is followed for ice thickness and snow depth metrics calculation as for ice 170 

concentration, except for the spatial averaging with equal weight. For the CMIP6 OMIP model 

evaluation before 2007, the ice thickness and snow depth observations are limited to some months. 

Because the observational data are not complete to calculate differences between two observational 

references, the typical errors of ice thickness and snow depth are computed from the ice thickness and 

snow depth uncertainties of specific months from Envisat data. The mean winter (February for the 175 

Arctic and September for the Antarctic) ice thickness and snow depth from ESA’s Environmental 

Satellite (Envisat) radar altimeter data and the differences between model outputs and Envisat data are 

provided for diagnosis in this study.  The mean ice thickness and snow depth differences of other 

months in both hemispheres can be provided for diagnosis in the future during other study periods when 

observational references are available. This is not included in this study due to the limited observations 180 

for the evaluation before 2007. 

2.1.3 Sea ice drift 

The ice drift metrics include the evaluation of both the magnitude and direction of ice vectors by 

calculating the mean kinetic energy (MKE) and vector correlation of the ice vectors. The MKE is 

computed as: 185 

MKE =
1
2 (u

! + v!),                                                                                                                                                 (4) 

where u and v are zonal and meridional components of ice drift, respectively. For the MKE evaluation, 

we compute the monthly mean MKE over the study period and calculate the absolute difference 

between individual models and observational references over the 12 months at each grid cell. Then we 

average these errors spatially with equal weight. The typical error is the difference between two 

observational references of the MKE by applying the same method discussed before. The differences 190 

between each model output and the observational reference are computed and scaled by the typical error 

to get the metric on the ice drift magnitude.  
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The monthly mean ice vectors during the study period from individual models and observational 

references are correlated at each grid point by using a vector correlation measure, which is a 195 

generalization of the simple correlation coefficient between two scalar time series (Holland and Kwok, 

2012). The vector correlation coefficient r2 is computed by following the equations in Crosby et al. 

(1993), and the correlation coefficient is scaled (by a number 2) to keep it between 0 and 1 in our study. 

The nr2 follows the chi-square distribution with four degrees of freedom, and the correlations are 

significant at a level of 99% when nr2>8 with samples less than 64 based on the cumulative frequency 200 

distributions in Crosby et al. (1993). The significant correlation coefficients between individual models 

and observational references, and between two observational references are provided for diagnosis at 

each grid cell. Then we average these significant correlation coefficients spatially with equal weight. 

The typical correlation coefficient is a spatially averaged correlation coefficient between two 

observational references. As higher correlation coefficients indicate better skill, the typical correlation 205 

coefficients are scaled by the correlation coefficients between individual models and observational 

references to make it consistent with other metrics (lower values indicate better skill). The September 

(February) MKE differences and ice-motion vector correlation coefficients between each model output 

and the observational reference, and between two observational references in both hemispheres are 

provided for diagnosis.  210 

3 Models and observational references 

In this study, the SITool (v1.0) is used to evaluate the CMIP6 OMIP model skills in simulating the 

historical sea ice properties for both hemispheres. The CMIP6 OMIP models and a set of observational 

references providing ice concentration, thickness, snow depth, and ice drift are introduced in this 

section. Two sets of observational references for each sea ice variable are used for comparison. 215 

The CMIP6 OMIP models used are shown in Table 2 with model details such as atmospheric forcing, 

ocean models, sea ice models, spatial resolution, and related references. A major improvement in 

JRA55-do atmospheric forcing relative to the CORE-II forcing is the increased temporal frequency 

from 6 to 3 hours and horizontal resolution from 1.875° to 0.5625°. The surface fields of JRA55-do 

forcing have been adjusted to match reference datasets based on high-quality satellite observations and 220 

several other atmospheric reanalysis products, as detailed in Tsujino et al. (2018). Nine models were run 

with either CORE-II or JRA55-do forcing; five of them were forced by both CORE-II and JRA55-do 

reanalysis; out of the four remaining models, one of them was forced by JRA55-do reanalysis only, and 

the other three were forced by CORE-II reanalysis only. The CMCC-CM2-HR4 (~0.25°) and CMCC-

CM2-SR5 (~1°) models are different in spatial resolution, which provides an opportunity to identify the 225 

influence of model resolution on sea ice simulation. The CORE-II forcing dataset has not been updated 

since 2009 and the two GFDL models only provide the model outputs until 2007. This is why the 
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evaluation period is chosen as 1980-2007 for ice concentration, extent, and edge location (the 

corresponding observations are available from 1980). The evaluation period is 2003-2007 for ice 

thickness, snow depth, and ice drift because some observational references are limited before 2003, and 230 

then the corresponding metrics are only on the mean state. The evaluation period can be extended in the 

future when different model and observational datasets are considered. 

Table 2. The details of nine CMIP6-OMIP models evaluated in the study. 

Model  Institution Atmospheric forcing Ocean Model  Sea Ice 

Model 

Spatial 

Resolution 

References 

CMCC-CM2-HR4 CMCC  JRA55-do NEMO3.6 CICE4 ORCA-0.25° Cherchi et al. (2019) 

CMCC-CM2-SR5 CMCC  CORE-II/JRA55-do NEMO3.6  CICE4 ORCA-1° 

EC-Earth3 EC-Earth  CORE-II/JRA55-do NEMO3.6  LIM3 ORCA-1°  EC-Earth consortium (2019) 

GFDL-CM4 NOAA GFDL CORE-II OM4 SIS2 tripolar,  ~0.25° Held et al. (2019) 

GFDL-OM4p5B NOAA GFDL CORE-II OM4 SIS2 tripolar,  ~0.5° Zadeh et al. (2018) 

IPSL-CM6A-LR IPSL  CORE-II NEMO-OPA LIM3 eORCA-1° Boucher et al. (2020) 

MIROC6 JAMSTEC-AORI-

NIES-RCCS 

CORE-II/JRA55-do COCO 

4.9  

COCO 

4.9 

tripolar, 

~1°✕(0.5-1)° 

Tatebe et al. (2019) 

MRI-ESM2-0 MRI CORE-II/JRA55-do MRI. 

COM4.4 

MRI. 

COM4.4 

tripolar, 

~1°✕(0.3-0.5)° 

Yukimoto et al. (2019) 

NorESM2-LM NorESM  CORE-II/JRA55-do BLOM CICE 

5.1.2 

tripolar, 

~1°✕(0.25-1)° 

Seland et al. (2020) 

The observational reference products for sea ice concentration, thickness, snow depth, and ice drift used 

to compare with model simulations are summarized in Table 3. The first ice concentration product 235 

derives from the passive microwave data of the Scanning Multichannel Microwave Radiometer 

(SMMR), the Special Sensor Microwave Imager (SSM/I), and the Special Sensor Microwave 

Imager/Sounder (SSMIS), which are processed by using the NASA Team algorithm (NSIDC-0051, 

Cavalieri et al., 1996). The other product is based on the same raw data, but uses the EUMETSAT 

Ocean and Sea Ice Satellite Application Facility algorithm (OSI-450, Lavergne et al., 2019).  240 

Our first ice thickness product is derived from the measurements of ESA’s Envisat radar altimeter and 

provided by the Centre of Topography of Oceans and Hydrosphere (CTOH, Guerreiro et al., 2017). The 

other ice thickness product is from the measurements of the NASA’s Ice, Cloud, and land Elevation 

Satellite (ICESat) Geoscience Laser Altimeter System (GLAS), and reprocessed separately for the 

Arctic (NSIDC-0393, Yi and Zwally, 2009) and Antarctic (Kurtz and Markus, 2012). The sea ice 245 

freeboard is less uncertain in observations than thickness, however, only five CMIP6 OMIP models at 
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present provide sea ice freeboard and the model's seawater densities, sea ice densities, and snow 

densities are not provided to calculate the freeboard. The Envisat data includes ice thickness and 

thickness uncertainties from November to April for the Arctic with coverage up to 81.5° N and May to 

October for the Antarctic from 2003. The ICESat data used here includes 13 measurement campaigns 250 

for the Arctic and 11 for the Antarctic during 2003-2007, and these campaign periods are limited to the 

months of February-March, March-April, May-June, October-November with each roughly 33 days. 

The comparisons between individual models and the two observational references are thus restricted to 

these months when data is available. The months chosen for the comparison are different from two ice 

thickness observational references, which can contribute to the differences in ice thickness performance 255 

metrics. 

Table 3. Observational references used to compare with model simulations. 

Variable (period) Dataset name References Available online at: 

Sea ice 

concentration 

(1980-2007) 

NSIDC-0051 Cavalieri et al. (1996) https://nsidc.org/data/nsidc-0051 

OSI-450 Lavergne et al. (2019) http://osisaf.met.no/p/ice/ 

Sea ice thickness 

(2003-2007) 

Envisat Guerreiro et al. (2017) http://ctoh.legos.obs-mip.fr/data/sea-ice-products/sea-ice-thickness 

ICESat NH: Yi and Zwally (2009) 

SH: Kurtz and Markus (2012) 

NH: https://nsidc.org/data/nsidc-0393 

SH: https://earth.gsfc.nasa.gov/index.php/cryo/data/antarctic-sea-ice-thickness 

Snow depth 

(2003-2007) 

Envisat Guerreiro et al. (2017) http://ctoh.legos.obs-mip.fr/data/sea-ice-products/sea-ice-thickness 

SnowModel-LG Liston et al. (2020) and 

Stroeve et al. (2020) 

http://dx.doi.org/10.5067/27A0P5M6LZBI 

Sea ice drift 

(2003-2007) 

ICDC-

NSIDCv4.1 

Tschudi et al. (2019) https://icdc.cen.uni-hamburg.de/en/seaicedrift-satobs-global.html 

KIMURA  KIMURA et al. (2013) https://ads.nipr.ac.jp/vishop/ 

The Envisat thickness data also includes snow depth and associated uncertainty. The other snow depth 

product derives from a Lagrangian snow‐evolution model (SnowModel‐LG) forced by the European 

Centre for Medium‐Range Weather Forecasts (ECMWF) 5th Generation (ERA5) atmospheric 260 

reanalysis, and NSIDC sea ice concentration and trajectory datasets (Liston et al., 2020; Stroeve et al., 

2020). The SnowModel‐LG data is only provided for the Arctic Ocean.  The SnowModel‐LG data used 

to do the comparison is in the same months as the Envisat data from 2003 to 2007. 

The first ice drift product is processed by NSIDC and enhanced by the Integrated Climate Data Center 

(ICDC-NSIDCv4.1). This product derives from SMMR, SSM/I, SSMIS, and the Advanced Very High 265 

Resolution Radiometer (AVHRR) for the Antarctic. In addition to the above data, data of the Advanced 

Multichannel Scanning Radiometer-Earth Observing System (AMSR-E), observations of the 
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International Arctic Buoy Program (IABP), and ice drift derived from NCEP/NCAR surface winds are 

used for the Arctic Ocean. The second ice drift dataset is processed by Kimura et al. (2013) and derived 

from the AMSR-E data for both hemispheres from 2003.  270 

The ice vectors are reprocessed before calculating the ice drift metrics. The ice vectors from 

observational references and models are rotated and interpolated to the polar stereographic grid. The 

monthly mean ice vectors of the observational references are computed when there are more than 10 

days with valid daily drift data. The ICDC-NSIDCv4.1 ice drift data was shown to be biased low (i.e., 

too slow) relative to buoy data (Schwegmann et al. 2011; Barthélemy et al., 2018) and is therefore 275 

corrected by multiplying the drift components with a correction factor of 1.357 (Haumann et al., 2016). 

The ice vectors from observational references and models are removed when ice concentrations are 

below 50%, or the data is closer than 75 km to the coast, or with a spurious value, to reduce the spatial 

and temporal noise by following Haumann et al. (2016).   

4. SITool application and results 280 

The SITool (v1.0) described in Section 2 is applied in this section to assess the performance of the sea 

ice simulations for both hemispheres carried out under the CMIP6 OMIP1 and OMIP2 protocols. 

Models forced by CORE-II atmospheric reanalysis data (OMIP1) or JRA55-do reanalysis data (OMIP2) 

are marked as <model name + /C or /J>, respectively. The OMIP1 and OMIP2 model means shown 

below are from five models of CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-285 

LM providing both OMIP1 and OMIP2 model outputs. All the sea ice data from models and 

observational references are interpolated to the NSIDC-0051 polar stereographic 25 km resolution grid 

for comparison. The typical errors are the differences between two observational references for the ice 

concentration, extent, edge location, and ice drift, while typical errors of ice thickness and snow depth 

are calculated from the thickness and snow depth uncertainties of specific months from Envisat data. 290 

4.1 Sea ice concentration, extent, and edge location  

Figure 2 shows that model errors on ice concentration simulations are around two to five times the 

observational uncertainty and the ice concentration simulations are much closer to the NSIDC-0051 

data (Fig. 2a) compared to the OSI-450 data (Fig. 2b). In general, the overall ice concentration 

simulations (mean state, interannual variability, and trend) in both hemispheres are improved under 295 

OMIP2 protocol, forced by JRA55-do reanalysis. This is identified in Figs. 2a and 2b by comparing the 

5 OMIP1 and OMIP2 model mean values (last two rows), and also by comparing five models’ values 

separately under either OMIP protocol. The overall ice concentration simulations in both hemispheres 

are also improved in CMCC-CM2-HR4/J with higher spatial resolution of ocean-sea ice model 

compared to CMCC-CM2-SR5/J (first and third rows). The improvements on the overall ice 300 
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concentration simulations are not sensitive to the chosen observational reference and then robust. The 

improved ice concentration simulations are found compared to different observational references except 

for the interannual variability of the Antarctic ice concentration compared to the OSI-450 data as shown 

in the fifth column of Fig. 2b.  

 305 
Figure 2. The ice concentration metrics of 14 model outputs under OMIP1 (/C) and OMIP2 (/J) protocols, 14-model mean (Model 

mean), 5-OMIP1-model mean (Model mean/C) and 5-OMIP2-model mean (Model mean/J) from CMCC-CM2-SR5, EC-Earth3, 

MIROC6, MRI-ESM2-0, and NorESM2-LM compared to (a) NSIDC-0051 and (b) OSI-450 data. The six columns correspond to 

model performance metrics on the mean state, standard deviation (Std Ano) and trend (Trend Ano) of monthly anomalies of the 

Arctic and Antarctic ice concentration during 1980-2007. Lower values indicate better skill. 310 
 

The metrics on the interannual variability of ice concentration (second and fifth columns) are the 

highest among all metrics, which indicates relatively lower skill on the simulation of ice concentration 

variability in both hemispheres compared to the mean state and trend. The overall best performance on 

ice concentration simulations including the mean state, interannual variability, and trend is in 315 

NorESM2-LM forced by JRA55-do reanalysis for both hemispheres. To help understand the differences 

in the ice concentration metrics, the 1980-2007 September and February mean ice concentration 

differences between the OSI-450 and NSIDC-0051 data, and between model outputs and the NSIDC-

0051 data are produced for both hemispheres in the appendix A: Figs. A1-A4.  
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Figures 3a and 3b reveal that the monthly ice extent differences between two observational references 320 

(observational uncertainty, black × vs. cyan +) are much smaller compared to the model bias (red lines 

vs. black/cyan marks) in both hemispheres. The negative ice extent biases under OMIP1 protocol in the 

summer of both hemispheres are reduced under OMIP2 protocol (Figs. 3a and 3b, red solid vs. dash-

dotted) by changing the atmospheric forcing to JRA55-do reanalysis. The reduced mean ice extent 

biases in the summer under OMIP2 protocol are also identified in Tsujino et al. (2020) (see their Fig. 22 325 

and Table. D7). In the boreal winter, the 5-model mean ice extents under OMIP1 and OMIP2 protocols 

show no obvious difference (Fig. 3a, red solid vs. dash-dotted), and the ice extents among most models 

are close to the observational references (Fig. 3c) except for the MIROC6 (orange) and MRI-ESM2-0 

(gray). In the austral winter, large spread exists for the ice extent simulation (Fig. 3d), and the positive 

ice extent bias under OMIP1 protocol (Fig. 3b, red solid) becomes a negative one under OMIP2 330 

protocol (red dash-dotted). The absolute value of ice extent bias in the austral winter under OMIP2 

protocol is not reduced compared to that under OMIP1 protocol (Fig. 3b, red dash-dotted vs. solid).  

 
Figure. 3. The 1980–2007 mean seasonal cycle of ice extent (106 km2) from 14-model mean (brick red solid), 5-model mean under 

OMIP1 and OMIP2 protocols (red solid and dash-dotted), NSIDC-0051 (black ×) and OSI-450 (cyan +) in the (a) Arctic and (b) 335 
Antarctic. The 5-model mean is from CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM. The mean 

seasonal cycle from 14 model outputs under OMIP1 (/C) and OMIP2 (/J) protocols are shown in the (c) and (d), and the model 

outputs under OMIP2 protocol from the five models are in dash-dotted lines. 

 

The biases of 5-model mean ice extent monthly anomalies under OMIP1 protocol compared to the 340 

observational mean (green vs. black solid) are reduced under OMIP2 protocol (orange vs. black solid) 
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in both hemispheres as shown in Fig. 4. The standard deviations of the monthly anomalies of ice extent 

in both hemispheres are smaller under OMIP2 protocol than that under OMIP1 protocol. In the Arctic 

(Figs. 4a and 4b), the negative biases of ice extent monthly anomalies during 1980-1982 and after 1998, 

as well as positive bias during 1986-1990 are reduced in the OMIP2 model mean (orange vs. green 345 

solid). However, the declining trend of ice extent from the observational mean (black dashed) is close to 

the OMIP1 model mean (green dashed) but not the OMIP2 model mean (orange dashed). This can be 

caused by the error compensation of the negative ice extent biases to observational mean during 1980-

1982 and after 1998 in the OMIP1 model mean. In the Antarctic (Figs. 4c and 4d), the reduced bias is 

obvious after 1988 in the OMIP2 model mean (orange vs. green solid). The increasing trend of the 350 

Antarctic ice extent in the observational mean (black dashed) is not shown in the OMIP1 and OMIP2 

mean (green and orange dashed). The ice extent monthly anomalies in each model under OMIP1 and 

OMIP2 protocols are compared separately, and the improvements on the simulations of ice extent 

interannual variability are found in the OMIP2 model outputs of individual models (not shown). The 

improved interannual variability of ice extent in the OMIP2 simulations is also identified in Tsujino et 355 

al. (2020) (see their Figs. 22 and 23). 

 
Fig. 4. The 1980–2007 monthly anomalies of ice extent (106 km2) from the observational mean of NSIDC-0051 and OSI-450 (black 

solid), 5-model mean under OMIP1 or OMIP2 protocol (green vs. orange solid) in the Arctic (a, b) and Antarctic (c, d). The 5-

model mean is from CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM. The dashed lines are the trends 360 
computed from linear regression over 1980-2007. The standard deviation (Std, 106 km2) and trend (106 km2/decade) of the monthly 

anomalies of ice extent are computed and displayed.  

 

Figs. 5a and 5b show that the model errors on ice extent simulation are much larger than the 

observational uncertainty in most cases, and the large values on the fifth columns are due to the very 365 

low typical error (0.0009×106 km2) of the Antarctic interannual ice extent variability. In general, the ice 

extent simulations on the mean state and interannual variability for the Arctic, as well as the interannual 
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variability and trend for the Antarctic are improved under OMIP2 protocol, forced by JRA55-do 

reanalysis. This is identified in Figs. 5a and 5b by comparing the 5 OMIP1 and OMIP2 model mean 

values (last two rows), though there are several exceptions for the simulation of individual models 370 

under either OMIP protocol. The improved ice extent simulations are identified compared to different 

observational references. 

Figure 5. The ice extent metrics of 14 model outputs under OMIP1 (/C) and OMIP2 (/J) protocols, 14-model mean (Model mean), 

5-OMIP1-model mean (Model mean/C) and 5-OMIP2-model mean (Model mean/J) from CMCC-CM2-SR5, EC-Earth3, 375 
MIROC6, MRI-ESM2-0, and NorESM2-LM compared to (a) NSIDC-0051 and (b) OSI-450 data. The six columns correspond to 

model performance metrics on the mean state, standard deviation (Std Ano) and trend (Trend Ano) of monthly anomalies of the 

Arctic and Antarctic ice extent during 1980-2007. (c) The mean state ice edge location metrics during 1980-2007 in both 

hemispheres compared to the NSIDC-0051 (first two columns) and OSI-450 data (last two columns). Lower values indicate better 

skill. 380 
 

The simulation of Arctic ice extent trend under OMIP2 protocol is not better than that under OMIP1 

protocol (the third columns in Figs. 5a and 5b), which is due to the error compensation of the monthly 

anomalies biases of the ice extent during different periods under OMIP1 protocol as explained in Figs. 

4a and 4b. This error compensation can change the trend and make it close to the observational 385 

references even though the monthly anomalies are not well presented in the OMIP1 models. The 

unimproved Antarctic mean ice extent under OMIP2 protocol can also be found in Fig. 3b where the ice 

extent bias in the austral winter is not reduced under OMIP2 protocol. This is not consistent with what 

we found for the improvement in the ice concentration simulation under OMIP2 protocol, which is 

possibly because ice extent cancels out regional concentration differences. The overall best performance 390 
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on ice extent simulation including the mean state, interannual variability, and trend is in EC-Earth3/C 

for the Arctic and in MRI-ESM2-0/J for the Antarctic.  

To gain insights in the spatial distribution of errors, we then apply the IIEE (Goessling et al., 2016) as 

introduced in section 2. In both hemispheres, the IIEEs between models and NSIDC-0051 are obviously 

much larger than that between two observational references as shown in Fig. 6. The largest model errors 395 

and model spreads are in the summer of both hemispheres. The IIEE under OMIP1 protocol is much 

reduced under OMIP2 protocol especially in the summer of both hemispheres (Figs. 6a and 6b, red solid 

vs. dash-dotted) by changing the atmospheric forcing to JRA55-do reanalysis. In both hemispheres, the 

large IIEE in CMCC-CM2-SR5/J (light purple dashed) is reduced in CMCC-CM2-HR4/J (dark purple 

solid) with higher spatial resolution of ocean-sea ice model during all the seasons (Figs. 6c and 6d). To 400 

identify the ice edge location errors of various models, the contours of 15% concentration derived from 

the 1980-2007 September and February mean ice concentration are also shown for both hemispheres in 

the appendix A: Figs. A1-A4. 

 

Figure.  6. The 1980–2007 mean seasonal cycle of the Integrated Ice-Edge Error (IIEE, vs. NSIDC-0051, 106 km2) from 14-model 405 
mean (brick red solid), 5-model mean under OMIP1 and OMIP2 protocols (red solid and dash-dotted), and OSI-450 (cyan +) in 

the (a) Arctic and (b) Antarctic. The 5-model mean is from CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and 

NorESM2-LM. The mean seasonal cycle from 14 model outputs under OMIP1 (/C) and OMIP2 (/J) protocols are shown in the (c) 

and (d), and the model outputs under OMIP2 protocol from the five models are in dash-dotted lines. 
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The mean state ice edge location metrics in Fig. 5c shows that model errors on ice edge location 410 

simulations are around two to six times the observational uncertainty, and the ice edge location 

simulations in the Arctic are much better than that in the Antarctic. Zampieri et al. (2019) also show that 

the prediction skill of sea ice edge location is 30% lower in the Antarctic than in the Arctic from 

coupled subseasonal forecast systems. The lower prediction skill in the Antarctic can be related to more 

complicated ocean dynamic processes there, which decrease the persistence of ice areal changes 415 

(Ordoñez et al., 2018). The mean state ice edge location simulations in both hemispheres are improved 

under OMIP2 protocol, which is identified in Fig. 5c by comparing the 5-model mean values (last two 

rows), and also by comparing five models’ values separately under either OMIP protocol. The mean 

state ice edge location simulations in both hemispheres are also improved in CMCC-CM2-HR4/J with 

higher ocean-sea ice model resolution compared to CMCC-CM2-SR5/J (first and third rows). The 420 

improved ice edge location simulations are identified compared to different observational references. 

The best performance on the mean state ice edge location simulations is in CMCC-CM2-HR4/J for both 

hemispheres.  

4.2 Sea ice thickness and snow depth  

Fig. 7 shows the mean state ice thickness and snow depth metrics, and the interannual variability and 425 

trend metrics are not included here because the observational record is too short to make such an 

assessment (Tilling et al., 2015). The model errors on the mean ice thickness and snow depth 

simulations are not obviously larger (even smaller in some models) than the observational uncertainty. 

The mean ice thickness simulation during 2003-2007 is improved in the Antarctic under OMIP2 

protocol, forced by JRA55-do reanalysis. This is identified in Fig. 7a by comparing the 5-model mean 430 

values (last two rows), and also by comparing the five models’ values separately under either OMIP 

protocol (an exception in NorESM2-LM compared to the Icesat data). The improved Antarctic mean ice 

thickness simulations are identified compared to different observational references. The best 

performance on the mean ice thickness simulation is in IPSL-CM6A-LR/C for the Arctic, while for the 

Antarctic the best performance is in CMCC-CM2-HR4/J compared to the Envisat data and in GFDL-435 

OM4p5B/C compared to the ICESat data. The different model performance on the mean ice thickness 

simulations by comparing to two observational references are due to the different months chosen for the 

ice thickness comparison. 
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Figure 7. The mean state (a) ice thickness and (b) snow depth metrics during 2003-2007 of 14 model outputs under OMIP1 (/C) 440 
and OMIP2 (/J) protocols, 14-model mean (Model mean), 5-OMIP1-model mean (Model mean/C) and 5-OMIP2-model mean 

(Model mean/J) from CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM. The four columns in (a) 

correspond to ice thickness metrics in both hemispheres compared to the Envisat (first two) and ICESat data (last two), and the 

three columns in (b) correspond to snow depth metrics compared to the Envisat data in both hemispheres (first two) and the 

SnowModel-LG data in the Arctic (last one). Lower values indicate better skill. 445 
 

The mean snow depth simulation during 2003-2007 in both hemispheres improved a bit under OMIP2 

protocol, which can be found by comparing 5-model mean values under either OMIP protocol (last two 

rows) in Fig. 7b. The improvement on the mean snow depth simulation is relatively small compared to 

other ice metrics. The best performance on the mean snow depth simulation for the Arctic is in 450 

MIROC6/C compared to the Envisat data and in GFDL-CM4/C compared to the SnowModel‐LG data, 

and for the Antarctic, the best performance is in NorESM2-LM/J (Fig. 7b). To help understand the 

differences in the ice thickness and snow depth metrics, the 2003-2007 winter-mean ice thickness and 

snow depth from Envisat data, and the differences between model outputs and Envisat data are 

produced for both hemispheres in the appendix A: Figs. A5-A8.  455 
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4.3 Sea ice drift 

The magnitude and direction of simulated ice drifts are evaluated by calculating the MKE and the 

vector correlation from monthly mean ice vector data during 2003-2007. The vector correlation 

coefficients are measured by using a generalization of the simple correlation coefficient between two 

scalar time series as introduced in section 2. The significant correlation coefficient at a level of 99% 460 

between ICDC-NSIDCv4.1 and KIMURA data, and between 14 model outputs and KIMURA data in 

the Arctic (Fig. 8) and Antarctic (Fig. 9) are displayed. The correlation coefficients are much lower 

between model outputs and the KIMURA data than that between two observational references. This is 

obvious for the coastal regions of Greenland and Canadian archipelago in the Arctic and the Weddell 

Sea and the Ross Sea in the Antarctic, as well as the ice edge location of the Weddell Sea among some 465 

models. This implies that model errors on the ice-vector direction simulations are much larger than the 

observational uncertainty. The correlation coefficients are higher under OMIP2 protocol than that under 

OMIP1 protocol (third vs. second column in Figs. 8 and 9), which indicate the improvement on the ice-

vector direction simulation when forced by JRA55-do atmospheric forcing in both hemispheres.  

Figure 10 shows that model errors on the mean ice drift simulations are larger than the observational 470 

uncertainty. In general, the ice drift simulations on the magnitude (Fig. 10a) and direction (Fig. 10b) in 

both hemispheres are improved under OMIP2 protocol, forced by JRA55-do reanalysis. This is 

identified from the 5 OMIP1 and OMIP2 model mean values (last two rows), and also by comparing 

five models’ values separately under either OMIP protocol (an exception in CMCC-CM2-SR5 of the 

Arctic ice-vector magnitude in Fig. 10a). The improved mean ice drift simulations under OMIP2 475 

protocol are found compared to not only the ICDC-NSIDCv4.1 data but also the KIMURA data. The 

overall best performance on sea ice drift simulations including the magnitude and direction is in 

MIROC6/J for both hemispheres. To help understand the differences in the ice-motion magnitude 

metrics, the 2003-2007 September and February mean ice-motion MKE differences between the ICDC-

NSIDCv4.1 and KIMURA data, and between model outputs and the KIMURA data are produced for 480 

both hemispheres in the appendix A: Figs. A9-A12. 
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Figure 8. The significant Arctic ice-motion vector correlation coefficients from monthly mean data during 2003–2007 at a level of 

99% between ICDC-NSIDCv4.1/model outputs and the KIMURA data (m2 s-2). The second and third columns are from 5 OMIP1 

and OMIP2 model outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively.  485 
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Figure 9. The significant Antarctic ice-motion vector correlation coefficients from monthly mean data during 2003–2007 at a level 

of 99% between ICDC-NSIDCv4.1/model outputs and the KIMURA data (m2 s-2). The second and third columns are from 5 

OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 
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 490 
 

Figure. 10. The ice drift metrics of 14 model outputs under OMIP1 (/C) and OMIP2 (/J) protocols, 14-model mean (Model mean), 

5-OMIP1-model mean (Model mean/C) and 5-OMIP2-model mean (Model mean/J) from CMCC-CM2-SR5, EC-Earth3, 

MIROC6, MRI-ESM2-0, and NorESM2-LM. The four columns correspond to model performance metrics on the (a) mean kinetic 

energy (MKE) and (b) the vector correlations during 2003-2007 of the Arctic and Antarctic compared to the ICDC-NSIDCv4.1 495 
(first two) and KIMURA data (last two). Lower values indicate better skill. 

4.4 Cross-metric analysis       

From previous analyses, it seems that there is no best sea ice model simulation, but rather that each 

model has strengths and weaknesses. To further illustrate this aspect, the metrics of each sea ice 

variable are ranked in a cross-metric analysis, where the link between the model performance in one 500 

variable and the performance in another is clearly highlighted. By changing the atmospheric forcing 

from CORE-II to JRA55-do reanalysis data, the sea ice model simulations are improved in general. In 

order to make the comparison simple, six models (CMCC-CM2-HR4, CMCC-CM2-SR5, EC-Earth3, 

MIROC6, MRI-ESM2-0 and NorESM2-LM) forced by the JRA55-do reanalysis were retained for this 
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analysis. The best and worst performing models for six ice variables are listed in Table 4. It is found 505 

that no single model performs best in all ice metrics as there is no link between performance in one 

variable and performance in another. For example, the NorESM2-LM/J is the best regarding the ice 

concentration and snow depth simulation, but the worst for the ice drift simulation in the Antarctic, and 

the MIROC6/J is the best regarding the ice drift simulation, but the worst for the ice extent and 

thickness simulation in the Arctic.  510 

Table 4. The best (in bold) and worst performing models for the six evaluated sea ice variables, among 

the models which were run with JRA55-do reanalysis (CMCC-CM2-HR4, CMCC-CM2-SR5, EC-

Earth3, MIROC6, MRI-ESM2-0 and NorESM2-LM). The numbers are derived from the performance 

metrics in Figs. 2, 5, 7, 10 (marked as () and []). The values given average the three metrics (mean state, 

interannual variability and trend) for ice concentration and ice extent from Figs. 2, 5a and b; the two 515 

metrics for the magnitude and vector correlations for ice drift from Fig. 10. The values for the ice edge 

location, thickness and snow depth are the metric of mean state from Figs. 5c and 7. In some cases, such 

as for the ice thickness evaluation, the best and worst performing models are different compared to 

different sets of observations. 

  Arctic Antarctic 

Ice concentration 

(vs. NSIDC-0051) [vs. OSI-450] 

NorESM2-LM/J (2.3) [2.7] 

CMCC-CM2-SR5/J (2.8) [3.5] 

NorESM2-LM/J (2.3) [2.9] 

EC-Earth3/J (3.0) MRI-ESM2-0/J [3.7] 

Ice extent 

(vs. NSIDC-0051) [vs. OSI-450] 

EC-Earth3/J (6.6) [6.2] 

MIROC6/J (13.5) [13] 

MRI-ESM2-0/J (7.9) [8.1] 

NorESM2-LM/J (33.8) [34.2] 

Ice edge location 

(vs. NSIDC-0051) [vs. OSI-450] 

CMCC-CM2-HR4/J (1.5) [1.7] 

MRI-ESM2-0/J (2.7) [2.7] 

CMCC-CM2-HR4/J (3.8) [4.2] 

MRI-ESM2-0/J (5.4) [5.7] 

Ice thickness 

(vs. Envisat) [vs. Icesat] 

CMCC-CM2-SR5/J (1.1)  

MRI-ESM2-0/J [1.6] 

MIROC6/J (1.8) [2.5] 

CMCC-CM2-HR4/J (1.4)  

MRI-ESM2-0/J [0.7] 

MRI-ESM2-0/J (1.9)  

CMCC-CM2-HR4/J [1.7] 

Snow depth  

(vs. Envisat) [vs. SnowModel-LG] 

NorESM2-LM/J (1.0) [0.7] 

CMCC-CM2-SR5/J (1.1) [0.9] 

NorESM2-LM/J  (0.6)  

CMCC-CM2-HR4/J (1.1) 

Ice drift 

(vs. ICDC-NSIDCv4.1) [vs. KIMURA] 

MIROC6/J (1.2) [1.2] 

CMCC-CM2-HR4/J (2.0)[2.0] 

MIROC6/J (1.2) [1.2]  

NorESM2-LM/J (2.1) [1.9] 

5 Conclusions and discussion 520 

The SITool (v1.0), a performance metrics and diagnostics tool for CMIP6-compliant sea ice outputs, is 

introduced in this paper. The evaluation includes ice concentration, extent, edge location, thickness, 
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snow depth, and ice drift. The SITool (v1.0) provides rating scores for each sea ice variable in both 

hemispheres by comparing them to a set of observational references, using two observational references 

to account for the role of observational uncertainty in the evaluation process. In this paper, we evaluate 525 

the CMIP6 OMIP sea ice simulations with SITool (v1.0) to demonstrate the proof of concept and 

potentialities behind it. Specifically, we evaluate the performances of OMIP historical sea ice 

simulations (1980-2007 for sea ice areal properties, 2003-2007 for ice drift, thickness and snow depth).  

Our main findings on CMIP6 OMIP simulations are summarized below. By changing the atmospheric 

forcing from CORE-II to JRA55-do reanalysis data, the improvement are identified in (1) the ice 530 

concentration simulations including the mean, interannual variability and trend in both hemispheres, (2) 

the ice extent simulations including the mean and interannual variability in the Arctic, as well as the 

interannual variability and trend in the Antarctic, (3) the mean ice edge location simulations in both 

hemispheres, (4) the mean ice thickness simulations in the Antarctic and the mean snow depth 

simulations in both hemispheres, (5) the ice drift simulations including the magnitude and direction in 535 

both hemispheres. By increasing the horizontal resolution of CMCC-CM2 ocean-sea ice model, the 

improvements are identified in the sea ice concentration (mean, interannual variability and trend) and 

the mean ice edge location simulations in both hemispheres. 

In general, model errors are larger than observational uncertainty, and model performances on the ice 

concentration, extent, edge location, and ice drift simulations are consistent when comparing to 540 

different observational references. For the ice thickness and snow depth evaluation, the rating scores are 

not consistent compared to different observational references, which is due to the limited observations 

and to the fact that different months were chosen for comparison during 2003-2007. This finding shows 

that sea ice thickness and snow depth estimates are still at a more early stage of maturity compared to 

datasets of sea ice concentration or drift.  545 

The improvements of mean ice concentration simulations in the summer for both hemispheres by 

changing the atmospheric forcing and increasing the horizontal resolution are also identified in Tsujino 

et al. (2020) and Chassignet et al. (2020). The reduced mean ice extent bias in boreal summer and much 

improved interannual variability of ice extent in OMIP2 simulations are also proved in Tsujino et al. 

(2020). For the mean ice thickness simulation, Chassignet et al. (2020) also shows that the improvement 550 

is not obvious by increasing the horizontal resolution of ocean-sea ice models. To understand the 

processes leading to the improvement of model simulations under different atmospheric forcings and 

ocean-sea ice models, we will discuss the sensitivity of sea ice simulation to CMIP6 OMIP model 

physics in an upcoming companion paper.  

The metrics make a summary of the model performance on different aspects of the sea ice system to 555 

help detect the inter-model differences or track the time-evolution of model performance efficiently. 
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However, the usage of metrics comes at the risk of over-interpretation by summarizing all the complex 

behavior of models to one number. In fact, a good metric can be obtained for many wrong reasons, so 

that we do not recommend relying exclusively on these metrics to orient strategic choices regarding, 

e.g., sea ice model development. While it is running, SITool (v1.0) produces spatial maps (Figs. 8, 9 and 560 

Figs. A1-A12 in Appendix A) and time series diagrams (Figs. 3, 4, 6) that can be consulted by the 

expert to understand the origin of one particular metric value.  

While SITool (v1.0) is primarily designed to assess ocean-sea ice simulations forced by atmospheric 

reanalysis, it can also be used to evaluate coupled model simulations (e.g., CMIP6 historical runs). We 

draw the reader’s attention to the fact that, in that case, several metrics may become less relevant and 565 

less easy to interpret. Indeed, a coupled model is not supposed to produce sea ice output that is in phase 

with real observations due to the presence of irreducible climate internal variability. This is particularly 

true for the evaluation of sea ice thickness and snow depth, for which the limited time span (2003-2007) 

is likely not enough to draw robust conclusions regarding model performance. 

Appendices A: Sea ice diagnostics 570 

In this appendix, additional sea ice diagnostics are given to help understand why metrics vary from one 

dataset to the next. The spatial distribution of the differences between model simulations and the 

observational reference is presented Figs. A1-A12 and the model simulations under OMIP1 and OMIP2 

protocols are listed in the second and third columns, respectively. This includes the 1980-2007 

September and February mean ice concentration differences (Figs. A1-A4), the 2003-2007 winter mean 575 

ice thickness (Figs. A5-A6) and snow depth differences (Figs. A7-A8) (February for the Arctic and 

September for the Antarctic), and the 2003-2007 September and February mean ice-motion MKE 

differences (Figs. A9-A12). 
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Figure A1. The 1980-2007 September mean Arctic ice concentration differences between OSI-450/model outputs and the NSIDC-580 
0051 data (colors), and contours of 15% concentration of the NSIDC-0051 data (green lines) and OSI-450/model outputs (magenta 

lines). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6, 

MRI-ESM2-0, NorESM2-LM, respectively. 
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Figure A2. The 1980-2007 February mean Arctic ice concentration differences between OSI-450/model outputs and the NSIDC-585 
0051 data (colors), and contours of 15% concentration of the NSIDC-0051 data (green lines) and OSI-450/model outputs (magenta 

lines). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6, 

MRI-ESM2-0, NorESM2-LM, respectively. 
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Figure A3. The 1980-2007 February mean Antarctic ice concentration differences between OSI-450/model outputs and the NSIDC-590 
0051 data (colors), and contours of 15% concentration of the NSIDC-0051 data (green lines) and OSI-450/model outputs (magenta 

lines). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6, 

MRI-ESM2-0, NorESM2-LM, respectively. 
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Figure A4. The 1980-2007 September mean Antarctic ice concentration differences between OSI-450/model outputs and the 595 
NSIDC-0051 data (colors), and contours of 15% concentration of the NSIDC-0051 data (green lines) and OSI-450/model outputs 

(magenta lines). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-Earth3, 

MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 
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Figure A5. The 2003-2007 February mean Arctic ice thickness from Envisat data (first picture, m) and ice thickness differences 600 
between model outputs and Envisat data (m). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of 

CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 
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Figure A6. The 2003-2007 September mean Antarctic ice thickness from Envisat data (first picture, m) and ice thickness 

differences between model outputs and Envisat data (m). The second and third columns are from 5 OMIP1 and OMIP2 model 605 
outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 



32 
 

 
Figure A7. The 2003-2007 February mean Arctic snow depth from Envisat data (first picture, m) and snow depth differences 

between model outputs and Envisat data (m). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of 

CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 610 
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Figure A8. The 2003-2007 September mean Antarctic snow depth from Envisat data (first picture, m) and snow depth differences 

between model outputs and Envisat data (m). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of 

CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 
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 615 
Figure A9. The 2003-2007 September mean Arctic ice-motion MKE differences between ICDC-NSIDCv4.1/model outputs and the 

KIMURA data (m2 s-2). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-

Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 
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Figure A10. The 2003-2007 February mean Arctic ice-motion MKE differences between ICDC-NSIDCv4.1/model outputs and the 620 
KIMURA data (m2 s-2). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-

Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 
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Figure A11. The 2003-2007 February mean Antarctic MKE differences between ICDC-NSIDCv4.1/model outputs and the 

KIMURA data (m2 s-2). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-625 
Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 
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Figure A12. The 2003-2007 September mean Antarctic MKE differences between ICDC-NSIDCv4.1/model outputs and the 

KIMURA data (m2 s-2). The second and third columns are from 5 OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-

Earth3, MIROC6, MRI-ESM2-0, NorESM2-LM, respectively. 630 
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Code and data availability. The latest release of SITool (v1.0) is publicly available on Zenodo at 

https://doi.org/10.5281/zenodo.4621147 (Lin et al., 2021). The source code of the SITool (v1.0) is 

developed fully based on freely available Python packages and libraries and is released on the GitHub 635 

repository available at https://github.com/XiaLinUCL/Sea-Ice-Evaluation-Tool. CMIP6 OMIP data are 

freely available from the Earth System Grid Federation. Observational references used in this paper are 

detailed in section 3 and listed in Table 3, and they are not distributed with SITool (v1.0) because 

SITool (v1.0) is restricted to the code as open-source software. 
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