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Abstract 37 

Continental- to global-scale hydrologic and land surface models increasingly include representations of 38 

the groundwater system. Such large-scale models are essential for examining, communicating, and 39 

understanding the dynamic interactions between the Earth System above and below the land surface as 40 

well as the opportunities and limits of groundwater resources. We argue that both large-scale and 41 

regional-scale groundwater models have utility, strengths and limitations so continued modeling at both 42 

scales is essential and mutually beneficial. A crucial quest is how to evaluate the realism, capabilities and 43 

performance of large-scale groundwater models given their modeling purpose of addressing large-scale 44 

science or sustainability questions as well as limitations in data availability and commensurability. 45 

Evaluation should identify if, when or where large-scale models achieve their purpose or where 46 

opportunities for improvements exists so that such models better  achieve their purpose. We suggest 47 

that reproducing the spatio-temporal details of regional-scale models and matching local data is not a 48 

relevant goal. Instead, it is important to decide on reasonable model expectations regarding when a 49 

large scale model is performing ‘well enough’ in the context of its specific purpose. The decision of 50 

reasonable expectations is necessarily subjective even if the evaluation criteria is quantitative. Our 51 

objective is to provide recommendations for improving the evaluation of groundwater representation in 52 

continental- to global-scale models. We describe current modeling strategies and evaluation practices, 53 

and subsequently discuss the value of three evaluation strategies: 1) comparing model outputs with 54 

available observations of groundwater levels or other state or flux variables (observation-based 55 

evaluation); 2) comparing several models with each other with or without reference to actual 56 

observations (model-based evaluation); and 3) comparing model behavior with  expert expectations of 57 

hydrologic behaviors in particular regions or at particular times (expert-based evaluation). Based on 58 

evolving practices in model evaluation as well as innovations in observations, machine learning and 59 

expert elicitation, we argue that combining observation-, model-, and expert-based model evaluation 60 
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approaches, while accounting for commensurability issues, may significantly improve the realism of 61 

groundwater representation in large-scale models. Thus advancing our ability for quantification, 62 

understanding, and prediction of crucial Earth science and sustainability problems. We encourage 63 

greater community-level communication and cooperation on this quest, including among global 64 

hydrology and land surface modelers, local to regional hydrogeologists, and hydrologists focused on 65 

model development and evaluation.  66 

1. INTRODUCTION: why and how is groundwater modeled at continental to global scales? 67 

Groundwater is the largest human- and ecosystem-accessible freshwater storage component of the 68 

hydrologic cycle (UNESCO, 1978; Margat & Van der Gun, 2013; Gleeson et al., 2016). Therefore, better 69 

understanding of groundwater dynamics is critical at a time when the ‘great acceleration’ (Steffen et al., 70 

2015) of many human-induced processes is increasing stress on water resources (Wagener et al., 2010; 71 

Montanari et al., 2013; Sivapalan et al., 2014; van Loon et al., 2016), especially in regions with limited 72 

data availability and analytical capacity. Groundwater is often considered to be an inherently regional 73 

rather than global resource or system. This is partially reasonable because local to regional peculiarities 74 

of hydrology, politics and culture are paramount to groundwater resource management (Foster et al. 75 

2013) and groundwater dynamics in different continents are less directly connected and coupled than 76 

atmospheric dynamics. Regional-scale analysis and models are essential for addressing local to regional 77 

groundwater issues. Generally, regional scale modeling is a mature, well-established field (Hill & 78 

Tiedeman, 2007; Kresic, 2009; Zhou & Li, 2011; Hiscock & Bense, 2014; Anderson et al. 2015a) with clear 79 

and robust model evaluation guidelines (e.g. ASTM, 2016; Barnett et al., 2012). Regional models have 80 

been developed around the world; for example, Rossman & Zlotnik (2014) and Vergnes et al. (2020) 81 

synthesize regional-scale groundwater models across the western United States and Europe, 82 

respectively. 83 
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 84 

Yet, important global aspects of groundwater both as a resource and as part of the Earth System are 85 

emerging (Gleeson et al. 2020). First, our increasingly globalized world trades virtual groundwater and 86 

other groundwater-dependent resources in the food-energy-water nexus, and groundwater often 87 

crosses borders in transboundary aquifers. A solely regional approach can be insufficient to analysing 88 

and managing these complex global interlinkages. Second, from an Earth system perspective, 89 

groundwater is part of the hydrological cycle and connected to the atmosphere, oceans and the deeper 90 

lithosphere. A solely regional approach is insufficient to uncover and understand the complex 91 

interactions and teleconnections of groundwater within the Earth System. Regional approaches 92 

generally focus on important aquifers which underlie only a portion of the world’s land mass or 93 

population and do not include many other parts of the land surface that may be important for processes 94 

like surface water-groundwater exchange flows and evapotranspiration. A global approach is also 95 

essential to assess the impact of groundwater depletion on sea level rise, since groundwater storage loss 96 

rate on all continents of the Earth must be aggregated. Thus, we argue that groundwater is 97 

simultaneously a local, regional, and increasingly global resource and system and that examining 98 

groundwater problems, solutions, and interactions at all scales is crucial. As a consequence, we urgently 99 

require predictive understanding about how groundwater, used by humans and connected with other 100 

components of the Earth System, operates at a variety of scales.  101 

 102 

Based on the arguments above for considering global perspectives on groundwater, we see four specific 103 

purposes of representing groundwater in continental- to global-scale hydrological or land surface 104 

models and their climate modeling frameworks:  105 

(1) To understand and quantify interactions between groundwater and past, present and future 106 

climate. Groundwater systems can have far-reaching effects on climate affecting modulation of 107 
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surface energy and water partitioning with a long-term memory (Anyah et al., 2008; Maxwell and 108 

Kollet, 2008; Koirala et al. 2013; Krakauer et al., 2014; Maxwell et al., 2016; Taylor, et al., 2013; 109 

Meixner et et, 2018; Wang et al., 2018; Keune et al., 2018). While there have been significant 110 

advances in understanding the role of lateral groundwater flow on evapotranspiration (Maxwell & 111 

Condon, 2016; Bresciani et al, 2016), the interactions between climate and groundwater over 112 

longer time scales (Cuthbert et al., 2019) as well as between irrigation, groundwater, and climate 113 

(Condon and Maxwell, 2019; Condon et al 2020) remain largely unresolved. Additionally, it is well 114 

established that old groundwater with slow turnover times are common at depth (Befus et al. 115 

2017; Jasechko et al. 2017). Groundwater connections to the atmosphere are well documented in 116 

modeling studies (e.g. Forrester and Maxwell, 2020).  Previous studies have demonstrated 117 

connections between the atmospheric boundary layer and water table depth (e.g. Maxwell et al 118 

2007; Rahman et al, 2015), under land cover disturbance (e.g. Forrester et al 2018), under 119 

extremes (e.g. Kuene et al 2016) and due to groundwater pumping (Gilbert et al 2017).  While a 120 

number of open source platforms have been developed to study these connections (e.g. Maxwell 121 

et al 2011; Shrestha et al 2014; Sulis, 2017) these platforms are regional to continental in extent.  122 

Recent work has shown global impacts of groundwater on atmospheric circulation (Wang et al 123 

2018), but groundwater is still quite simplified in this study.  124 

(2) To understand and quantify two-way interactions between groundwater, the rest of the 125 

hydrologic cycle, and the broader Earth System. As the main storage component of the freshwater 126 

hydrologic cycle, groundwater systems support baseflow levels in streams and rivers, and thereby 127 

ecosystems and agricultural productivity and other ecosystem services in both irrigated and 128 

rainfed systems (Scanlon et al., 2012; Qiu et al., 2019; Visser, 1959; Zipper et al., 2015, 2017). 129 

When pumped groundwater is transferred to  oceans (Konikow 2011; Wada et al., 2012; Döll et 130 

al., 2014a; Wada, 2016; Caceres et al., 2020; Luijendijk et al. 2020), resulting sea-level rise can 131 
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impact salinity levels in coastal aquifers, and freshwater and solute inputs to the ocean (Moore, 132 

2010; Sawyer et al., 2016). Difficulties are complicated by international trade of virtual 133 

groundwater which causes aquifer stress in disparate regions (Dalin et al., 2017) 134 

(3) To inform water decisions and policy for large, often transboundary groundwater systems in an 135 

increasingly globalized world (Wada & Heinrich, 2013; Herbert & Döll, 2019). For instance, 136 

groundwater recharge from large-scale models has been used to quantify groundwater resources 137 

in Africa, even though large-scale models do not yet include all recharge processes that are 138 

important in this region (Taylor et al., 2013; Jasechko et al. 2014; Cuthbert et al., 2019; Hartmann 139 

et al., 2017).  140 

(4) To create visualizations and interactive opportunities that inform citizens and consumers, whose 141 

decisions have global-scale impacts, about the state of groundwater all around the world such as 142 

the World Resources Institute’s Aqueduct website (https://www.wri.org/aqueduct), a decision-143 

support tool to identify and evaluate global water risks. 144 

The first two purposes are science-focused while the latter two are sustainability-focused. In sum, 145 

continental- to global-scale hydrologic models incorporating groundwater offer a coherent scientific 146 

framework to examine the dynamic interactions between the Earth System above and below the land 147 

surface, and are compelling tools for conveying the opportunities and limits of groundwater resources 148 

to people so that they can better manage the regions they live in, and better understand the world 149 

around them. We consider both large-scale and regional-scale models to be useful practices that should 150 

both continue to be conducted rather than one replacing another. Ideally large-scale and regional-scale 151 

models should benefit from the other since each has strengths and weaknesses and together the two 152 

practices enrich our understanding and support the management of groundwater across scales (Section 153 

2). 154 
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The challenge of incorporating groundwater processes into continental- or global-scale models is 155 

formidable and sometimes controversial. Some of the controversy stems from unanswered questions 156 

about how best to represent groundwater in the models whereas some comes from skepticism about 157 

the feasibility of modelling groundwater at non-traditional scales. We advocate for the representation of 158 

groundwater stores and fluxes in continental to global models for the four reasons described above. We 159 

do not claim to have all the answers on how best to meet this challenge. We contend, however, that the 160 

hydrologic community needs to work deliberately and constructively towards effective representations 161 

of groundwater in global models. 162 

 163 

Driven by the increasing recognition of the purpose of representing groundwater in continental- to 164 

global-scale models, many global hydrological models and land surface models have incorporated 165 

groundwater to varying levels of complexity depending on the model provenance and purpose. Different 166 

from regional-scale groundwater models that generally focus on subsurface dynamics, the focus of these 167 

models is on estimating either runoff and streamflow (hydrological models) or land-atmosphere water 168 

and energy exchange (land surface models). Simulation of groundwater storages and hydraulic heads 169 

mainly serve to quantify baseflow that affects streamflow during low flow periods or capillary rise that 170 

increases evapotranspiration. Some land-surface models use approaches based on the topographic 171 

index to simulate fast surface and slow subsurface runoff based on the fraction of saturated area in the 172 

grid cell (Clark et al., 2015; Fan et al., 2019); groundwater in these models does not have water storage 173 

or  hydraulic heads (Famiglietti & Wood, 1994; Koster et al., 2000; Niu et al., 2003; Takata et al., 2003). 174 

In many hydrological models, groundwater is represented as a linear reservoir that is fed by 175 

groundwater recharge and drains to a river in the same grid cell (Müller Schmied et al., 2014; Gascoin et 176 

al., 2009; Ngo-Duc et al., 2007).  Time series of groundwater storage but not hydraulic heads are 177 

computed. This prevents simulation of lateral groundwater flow between grid cells, capillary rise and 178 
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two-way exchange flows between surface water bodies and groundwater (Döll et al., 2016). However, 179 

representing groundwater as a water storage compartment that is connected to soil and surface water 180 

bodies by groundwater recharge and baseflow and is affected by groundwater abstractions and returns, 181 

enables global-scale assessment of groundwater resources and stress (Herbert and Döll, 2019) and 182 

groundwater depletion (Döll et al., 2014a; Wada et al., 2014; de Graaf et al., 2014). In some land surface 183 

models, the location of the groundwater table with respect to the land surface is simulated within each 184 

grid cell to enable simulation of capillary rise (Niu et al., 2007) but, as in the case of simulating 185 

groundwater as a linear reservoir, lateral groundwater transport or two-way surface water-groundwater 186 

exchange cannot be simulated with this approach.  187 

 188 

Increasingly, models for simulating groundwater flows between all model grid cells in entire countries or 189 

globally have been developed, either as stand-alone models or as part of hydrological models (Vergnes 190 

& Decharme, 2012; Fan et al., 2013; Lemieux et al. 2008; de Graaf et al., 2017; Kollet et al., 2017; 191 

Maxwell et al., 2015; Reinecke et al., 2018, de Graaf et al 2019). The simulation of groundwater in large-192 

scale models is a nascent and rapidly developing field with significant computational and 193 

parameterization challenges which have led to significant and important efforts to develop and evaluate 194 

individual models. It is important to note that herein ‘large-scale models’ refer to models that are 195 

laterally extensive across multiple regions (hundreds to thousands of kilometers) and generally include 196 

the upper tens to hundreds of meters of subsurface and have resolutions sometimes as small as ~1 km. 197 

In contrast, ‘regional-scale’ models (tens to hundreds of kilometers) have long been developed for a 198 

specific region or aquifer and can include greater depths and resolutions, more complex 199 

hydrostratigraphy and are often developed from conceptual models with significant regional knowledge. 200 

Regional-scale models include a diverse range of approaches from stand-alone groundwater models 201 

(i.e., representing surface water and vadose zone processes using boundary conditions such as recharge) 202 
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to fully integrated groundwater-surface water models. In the future, large-scale models could be 203 

developed in a number of different directions which we only briefly introduce here to maintain our 204 

primary focus on model evaluation. One important direction is clearer representation of three-205 

dimensional geology and heterogeneity including karst (Condon et al. in prep) which should be 206 

considered as part of conceptual model development prior to numerical model implementation.  207 

 208 

Now that a number of models that represent groundwater at continental to global scales have been 209 

developed and will continue evolving, it is equally important that we advance how we evaluate these 210 

models. To date, large-scale model evaluation has largely focused on individual models and lacked the 211 

rigor of regional-scale model evaluation, with inconsistent practices between models and little 212 

community-level discussion or cooperation. Overall, we have only a partial and piecemeal understanding 213 

of the capabilities and limitations of different approaches to representing groundwater in large-scale 214 

models. Our objective is to provide clear recommendations for evaluating groundwater representation 215 

in continental and global models. We focus on model evaluation because this is the heart of model trust 216 

and reproducibility (Hutton et al., 2016) and improved model evaluation will guide how and where it is 217 

most important to focus future model development. We describe current model evaluation practices 218 

(Section 2) and consider diverse and uncertain sources of information, including observations, models 219 

and experts to holistically evaluate the simulation of groundwater-related fluxes, stores and hydraulic 220 

heads (Section 3). We stress the need for an iterative and open-ended process of model improvement 221 

through continuous model evaluation against the different sources of information. We explicitly 222 

contrast the terminology used herein of ‘evaluation’ and ‘comparison’ against terminology such as 223 

‘calibration’ or ‘validation’ or ‘benchmarking’, which suggests a modelling process that is at some point 224 

complete. We extend previous commentaries advocating improved hydrologic process representation 225 

and evaluation in large-scale hydrologic models (Clark et al. 2015; Melsen et al. 2016) by adding expert-226 
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elicitation and machine learning for more holistic evaluation. We also consider model objective and 227 

model evaluation across the diverse hydrologic landscapes which can both uncover blindspots in model 228 

development. It is important to note that we do not consider water quality or contamination, even 229 

though water quality or contamination is important for water resources, management and 230 

sustainability, since large-scale water quality models are in their infancy (van Vliet et al., 2019)  231 

 232 

We bring together somewhat disparate scientific communities as a step towards greater community-233 

level cooperation on these challenges, including global hydrology and land surface modelers, local to 234 

regional hydrogeologists, and hydrologists focused on model development and evaluation. We see three 235 

audiences beyond those currently directly involved in large-scale groundwater modeling that we seek to 236 

engage to accelerate model evaluation: 1) regional hydrogeologists who could be reticent about global 237 

models, and yet have crucial knowledge and data that would improve evaluation; 2) data scientists with 238 

expertise in machine learning, artificial intelligence etc. whose methods could be useful in a myriad of 239 

ways; and 3) the multiple Earth Science communities that are currently working towards integrating 240 

groundwater into a diverse range of models so that improved evaluation approaches are built directly 241 

into model development.  242 

2. CURRENT MODEL EVALUATION PRACTICES  243 

Here we provide a brief overview of the synergies and differences between regional-scale and large-244 

scale model evaluation and development as well as the imitations of current evaluation practices for 245 

large-scale models.  246 

 247 

2.1 Synergies between regional-scale and large-scales 248 
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Regional-scale and large-scale groundwater models are both governed by the same physical equations 249 

and share many of the same challenges.  Like large-scale models, some regional-scale models have 250 

challenges with representing important regional hydrologic processes such as mountain block recharge 251 

(Markovich et al. 2019), and data availability challenges (such as the lack of reliable subsurface 252 

parameterization and hydrologic monitoring data) are common. We propose there are largely untapped 253 

potential synergies between regional-scale and large-scale models based on these commonalities and 254 

the inherent strengths and limitations of each scale (Section 1). 255 

 256 

Much can be learned from regional-scale models to inform the development and evaluation of large-257 

scale groundwater models. Regional-scale models are evaluated using a variety of data types, some of 258 

which are available and already used at the global scale and some of which are not. In general, the most 259 

common data types used for regional-scale groundwater model evaluation match global-scale 260 

groundwater models: hydraulic head and either total streamflow or baseflow estimated using 261 

hydrograph separation approaches (eg. RRCA, 2003; Woolfenden and Nishikawa, 2014; Tolley et al., 262 

2019). However, numerous data sources unavailable or not currently used at the global scale have also 263 

been applied in regional-scale models, such as elevation of surface water features (Hay et al., 2018), 264 

existing maps of the potentiometric surface (Meriano and Eyles, 2003), and dendrochronology (Schilling 265 

et al., 2014) - these and other ‘non-classical’ observations (Schilling et al. 2019) could be the inspiration 266 

for model evaluation of large-scale models in the future but are beyond our scope to discuss. Further, 267 

given the smaller domain size of regional-scale models, expert knowledge and local ancillary data 268 

sources can be more directly integrated and automated parameter estimation approaches such as PEST 269 

are tractable (Leaf et al., 2015; Hunt et al., 2013). We directly build upon this practice of integration of 270 

expert knowledge below in Section 3.3.  271 

 272 
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We  propose that there may also be potential benefits of large-scale models for the development of 273 

regional-scale models. For instance, the boundary conditions of some regional-scale models could be 274 

improved with large-scale model results. The boundary conditions of regional-scale models are often 275 

assumed, calibrated or derived from other models or data. In a regional-scale model, increasing the 276 

model domain (moving the boundary conditions away from region of interests) or incorporating more 277 

hydrologic processes (for example, moving the boundary condition from recharge to the land surface 278 

incorporating evapotranspiration and infiltration) both can reduce the impact of boundary conditions on 279 

the region and problem of interest. Another potential benefit of large-scale models for regional-scale 280 

models is the more fulsome inclusion of large-scale hydrologic and human processes that could further 281 

enhance the ability of regional-scale models to address both the science-focused and sustainability-282 

focused purposes described in Section 1. For example, the stronger representation of large-scale 283 

atmospheric processes means that the downwind impact of groundwater irrigation on 284 

evapotranspiration on precipitation and streamflow can be assessed (DeAngelis et al., 2010; Kustu et al., 285 

2011). Or, the effects of climate change and increased water use that affect the inflow of rivers into the 286 

regional modelling domain can be taken from global scale analyses (Wada and Bierkens, 2014 ). Also, 287 

regional groundwater depletion might be largely driven by virtual water trade which can be better 288 

represented in global analysis and models than regional-scale models (Dalin et al. 2017). Therefore the 289 

processes and results of large-scale models could be used to make regional-scale models even more 290 

robust and better address key science and sustainability questions. 291 

 292 

Given the strengths of regional models, a potential alternative to development of large-scale 293 

groundwater models would be combining or aggregating multiple regional models in a patchwork 294 

approach (as in Zell and Sanford, 2020) to provide global coverage. This would have the advantage of 295 

better respecting regional differences but potentially create additional challenges because the regional 296 
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models would have different conceptual models, governing equations, boundary conditions etc. in 297 

different regions. Some challenges of this patchwork approach include 1) the required collaboration of a 298 

large number of experts from all over the world over a long period of time; 2) regional groundwater flow 299 

models alone are not sufficient, they need to be integrated into a hydrological model so that 300 

groundwater-soil water and the surface water-groundwater interactions can be simulated; 3) the extent 301 

of regional aquifers does not necessarily coincide with the extent of river basins; and 4) the bias of 302 

regional groundwater models towards important aquifers which as described above, underlie only a 303 

portion of the world’s land mass or population and may bias estimates of fluxes such as surface water-304 

groundwater exchange or evapotranspiration. Given these challenges, we argue that a patchwork 305 

approach of integrating multiple regional models is a compelling idea but likely insufficient to achieve 306 

the purposes of large-scale groundwater modeling described in Section 1. Although this nascent idea of 307 

aggregating regional models is beyond the scope of this manuscript, we consider this an important 308 

future research avenue, and encourage further exploration and improvement of regional-scale model 309 

integration from the groundwater modeling community. 310 

 311 

2.2 Differences between regional-scale and large-scales 312 

Although there are important similarities and potential synergies across scales, it is important to 313 

consider how or if large-scale models are fundamentally different to regional-scale models, especially in 314 

ways that could impact evaluation. The primary differences between large-scale and regional-scale 315 

models are that large-scale models (by definition) cover larger areas and, as a result, typically include 316 

more data-poor areas and are generally built at coarser resolution. These differences impact evaluations 317 

in at least five relevant ways:  318 

1) Commensurability errors (also called ‘representativeness’ errors) occur either when modelled grid 319 

values are interpolated and compared to an observation ‘point’ or when aggregation of observed 320 
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‘point’ values are compared to a modelled grid value (Beven, 2005; Tustison et al., 2001; Beven, 321 

2016; Pappenberger et al., 2009; Rajabi et al., 2018). For groundwater models in particular, 322 

commensurability error will depend on the number and locations of observation points, the 323 

variability structure of the variables being compared such as hydraulic head and the interpolation or 324 

aggregation scheme applied (Tustison et al., 2001; Pappenberger et al., 2009; Reinecke et al., 2020). 325 

Commensurability is a problem for most scales of modelling, but likely more significant the coarser 326 

the model. Regional-scale groundwater models typically have fewer (though not insignificant) 327 

commensurability issues due to smaller grid cell sizes compared to large-scale models.  328 

2) Specificity to region, objective and model evaluation criteria because regional-scale models are 329 

developed specifically for a certain region and modeling or management objective whereas large-330 

scale models are often more general and include different regions. As a result, large-scale models 331 

often have greater heterogeneity of processes and parameters, may not adopt the same calibration 332 

targets and variables, and are not subject to the policy or litigation that sometimes drives model 333 

evaluation of regional-scale models.  334 

3) Computational requirements can be immense for large-scale models which leads to challenges with 335 

uncertainty and sensitivity analysis. While some regional-scale models also have large 336 

computational demands, large-scale models cover larger domains and are therefore more 337 

vulnerable to this potential constraint.  338 

4) Data availability for large-scale models can be limited because they typically include data-poor 339 

areas, which leads to challenges when only using observations for model evaluation. While data 340 

availability also affects regional-scale models, they are often developed for regions with known 341 

hydrological challenges based on existing data and/or modeling efforts are preceded by significant 342 

regional data collection from detailed sources (such as local geological reports) that are not often 343 

included in continental to global datasets used for large-scale model parameterization. 344 

https://doi.org/10.5194/gmd-2021-97
Preprint. Discussion started: 20 April 2021
c© Author(s) 2021. CC BY 4.0 License.



15 

5) Subsurface detail in regional-scale models routinely include heterogeneous and anisotropic 345 

parameterizations which could be improved in future large-scale models. For example, intense 346 

vertical anisotropy routinely induces vertical flow dynamics from vertical head gradients that are 347 

tens to thousands of times greater than horizontal gradients which profoundly alter the meaning of 348 

the deep and shallow groundwater levels, with only the latter remotely resembling the actual water 349 

table. In contrast, currently most large-scale models use a single vertically homogeneous value for 350 

each grid cell, or at best have two layers (de Graaf et al,. 2017) 351 

 352 

2.3 Limitations of current evaluation practices for large-scale models 353 

Evaluation of large-scale models has often focused on streamflow or evapotranspiration observations 354 

but joint evaluation together with groundwater-specific variables is appropriate and necessary (e.g. 355 

Maxwell et al. 2015; Maxwell and Condon, 2016). Groundwater-specific variables useful for evaluating 356 

the groundwater component of large-scale models include a) hydraulic head or water table depth; b) 357 

groundwater storage and groundwater storage changes which refer to long-term, negative or positive 358 

trends in groundwater storage where long-term, negative trends are called groundwater depletion; c) 359 

groundwater recharge; d) flows between groundwater and surface water bodies; and e) human 360 

groundwater abstractions and return flows to groundwater. It is important to note that groundwater 361 

and surface water hydrology communities often have slightly different definitions of terms like recharge 362 

and baseflow (Barthel, 2014); we therefore suggest trying to precisely define the meanings of such 363 

words using the actual hydrologic fluxes which we do below. Table 1 shows the availability of 364 

observational data for these variables but does not evaluate the quality and robustness of observations. 365 

Overall there are significant inherent challenges of commensurability and measurability of groundwater 366 

observations in the evaluation of large-scale models.  We describe the current model evaluation 367 

practices for each of these variables here: 368 
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 369 

a) Simulated hydraulic heads or water table depth in large scale models are frequently compared 370 

to well observations, which are often considered the crucial data for groundwater model 371 

evaluation. Hydraulic head observations from a large number groundwater wells (>1 million) 372 

have been used to evaluate the spatial distribution of steady-state heads (Fan et al., 2013, de 373 

Graaf et al., 2015; Maxwell et al., 2015; Reinecke et al., 2019a, 2020). Transient hydraulic heads 374 

with seasonal amplitudes (de Graaf et al. 2017), declining heads in aquifers with groundwater 375 

depletion (de Graaf et al. 2019) and daily transient heads (Tran et al 2020) have also been 376 

compared to well observations. All evaluation with well observations is severely hampered by 377 

the incommensurability of point values of observed head with simulated heads that represent 378 

averages over cells of a size of tens to hundreds square kilometers; within such a large cell, land 379 

surface elevation, which strongly governs hydraulic head, may vary a few hundred meters, and 380 

average observed head strongly depends on the number and location of well within the cell 381 

(Reinecke et al., 2020). Additional concerns with head observations are the 1) strong sampling 382 

bias of wells towards accessible locations, low elevations, shallow water tables, and more 383 

transmissive aquifers in wealthy, generally temperate countries (Fan et al., 2019); 2) the impacts 384 

of pumping which may or may not be well known; 3) observational errors and uncertainty (Post 385 

and von Asmuth, 2013; Fan et al., 2019); and 4) that heads can reflect the poro-elastic effects of 386 

mass loading and unloading rather than necessarily aquifer recharge and drainage (Burgess et al, 387 

2017). To date, simulated hydraulic heads have more often been compared to observed heads 388 

(rather than water table depth) which results in lower relative errors (Reinecke et al., 2020) 389 

because the range of heads (10s to 1000s m head) is much larger than the range of water table 390 

depths (<1 m to 100s m).  391 

 392 
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b) Simulated groundwater storage trends or anomalies in large-scale hydrological models have 393 

been evaluated using observations of groundwater well levels combined with estimates of 394 

storage parameters, such as specific yield; local-scale groundwater modeling; and translation of 395 

regional total water storage trends and anomalies from satellite gravimetry (GRACE: Gravity 396 

Recovery And Climate Experiment) to groundwater storage changes by estimating changes in 397 

other hydrological storages (Döll et al., 2012; 2014a). Groundwater storage changes volumes 398 

and rates have been calculated for numerous aquifers, primarily in the United States, using 399 

calibrated groundwater models, analytical approaches, or volumetric budget analyses (Konikow, 400 

2010). Regional-scale models have also been used to simulate groundwater storage trends 401 

untangling the impacts of water management during drought (Thatch et al. 2020). Satellite 402 

gravimetry (GRACE) is important but has limitations (Alley and Konikow, 2015). First, monthly 403 

time series of very coarse-resolution groundwater storage are indirectly estimated from 404 

observations of total water storage anomalies by satellite gravimetry (GRACE) but only after 405 

model- or observation-based subtraction of water storage changes in glaciers, snow, soil and 406 

surface water bodies (Lo et al., 2016; Rodell et al., 2009; Wada, 2016). As soil moisture, river or 407 

snow dynamics often dominate total water storage dynamics, the derived groundwater storage 408 

dynamics can be so uncertain that severe groundwater drought cannot be detected in this way 409 

(Van Loon et al., 2017). Second, GRACE cannot detect the impact of groundwater abstractions 410 

on groundwater storage unless groundwater depletion occurs (Döll et al., 2014a,b). Third, the 411 

very coarse resolution can lead to incommensurability but in the opposite direction of well 412 

observations. It is important to note that the focus is on storage trends or anomalies since total 413 

groundwater storage to a specific depth (Gleeson et al., 2016) or in an aquifer (Konikow, 2010) 414 

can be estimated but the total groundwater storage in a specific region or cell cannot be 415 

simulated or observed unless the depth of interest is specified (Condon et al., 2020). 416 
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 417 

c) Simulated large-scale groundwater recharge (vertical flux across the water table) has been 418 

evaluated using compilations of point estimates of groundwater recharge, results of regional-419 

scale models, baseflow indices, and expert opinion (Döll and Fiedler, 2008; Hartmann et al., 420 

2015) or compared between models (e.g. Wada et al. 2010). In general, groundwater recharge is 421 

not directly measurable except by meter-scale lysimeters (Scanlon et al., 2002), and many 422 

groundwater recharge methods such as water table fluctuations and chloride mass balance also 423 

suffer from similar commensurability issues as water table depth data. Although sometimes an 424 

input or boundary condition to regional-scale models, recharge in many large-scale groundwater 425 

models is simulated and thus can be evaluated. 426 

 427 

d) The flows between groundwater and surface water bodies (rivers, lakes, wetlands) are 428 

simulated by many models but are generally not evaluated directly against observations of such 429 

flows since they are very rare and challenging. Baseflow (the slowly varying portion of 430 

streamflow originating from groundwater or other delayed sources) or streamflow ‘low flows’ 431 

(when groundwater or other delayed sources predominate), generally cannot be used to directly 432 

quantify the flows between groundwater and surface water bodies at large scales. Groundwater 433 

discharge to rivers can be estimated from streamflow observations only in the very dense gauge 434 

network and/or if streamflow during low flow periods is mainly caused by groundwater 435 

discharge and not by water storage in upstream lakes, reservoirs or wetlands. These conditions 436 

are rarely met in case of streamflow gauges with large upstream areas that can be used for 437 

comparison to large-scale model output. de Graaf et al. (2019) compared the simulated timing 438 

of changes in groundwater discharge to observations and regional-scale models, but only 439 

compared the fluxes directly between the global- and regional-scale models.  Due to the 440 
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challenges of directly observing the flows between groundwater and surface water bodies at 441 

large scales, this is not included in the available data in Table 1; instead in Section 3 we highlight 442 

the potential for using baseflow or the spatial distribution of perennial, intermittent and 443 

ephemeral streams in the future. 444 

 445 

e) Groundwater abstractions have been evaluated by comparison to national, state and county 446 

scale statistics in the U.S. (Wada et al. 2010, Döll et al., 2012, 2014a, de Graaf et al. 2014). 447 

Irrigation is the dominant groundwater use sector in many regions; however, irrigation pumpage  448 

is generally estimated from crop water demand and rarely metered although GRACE and other 449 

remote sensing data have been used to estimate the irrigation water demand (Anderson et al. 450 

2015b). The lack of records or observations of abstraction introduces significant uncertainties 451 

into large-scale models and is simulated and thus can be evaluated. Human groundwater 452 

abstractions and return flows as well as groundwater recharge and the flows between 453 

groundwater and surface water bodies are necessary to simulate storage trends (described 454 

above). But each of these are considered separate observations since they each have different 455 

data sources and assumptions. Groundwater abstraction data at the well scale are severely 456 

hampered by the incommensurability like hydraulic head and recharge described above. 457 

3. HOW TO IMPROVE THE EVALUATION OF LARGE-SCALE GROUNDWATER MODELS  458 

Based on Section 2, we argue that the current model evaluation practices are insufficient to robustly 459 

evaluate large-scale models. We therefore propose evaluating large-scale models using at least three 460 

strategies (pie-shapes in Figure 1): observation-, model-, and expert-driven evaluation which are 461 

potentially mutually beneficial because each strategy has its strengths and weaknesses. We are not 462 

proposing a brand new evaluation method here but rather separating strategies to consider the problem 463 

https://doi.org/10.5194/gmd-2021-97
Preprint. Discussion started: 20 April 2021
c© Author(s) 2021. CC BY 4.0 License.



20 

of large-scale model evaluation from different but highly interconnected perspectives. All three 464 

strategies work together for the common goal of ‘improved model large-scale model evaluation’ which 465 

is what is the centre of Figure 1. 466 

 467 

When evaluating large-scale models, it is necessary to first consider reasonable expectations or how to 468 

know a model is ‘well enough’. Reasonable expectations should be based on the modeling purpose, 469 

hydrologic process understanding and the plausibly achievable degree of model realism. First, model 470 

evaluation should be clearly linked to the four science- or sustainability-focused purposes of 471 

representing groundwater in large-scale models (Section 1) and second, to our understanding of 472 

relevant hydrologic processes. The objective of large-scale models cannot be to reproduce the spatio-473 

temporal details that regional-scale models can reproduce. Determining the reasonable expectations is 474 

necessarily subjective, but can be approached using observation-, model-, and expert-driven evaluation. 475 

As a simple first step in setting realistic expectations, we propose that three physical variables can be 476 

used to form more convincing arguments that a large-scale model is well enough:  change in 477 

groundwater storage, water table depth, and regional fluxes between groundwater and surface water. 478 

Below we explore in more detail additional variables and approaches that can support this simple 479 

approach. 480 

 481 

Across all three model evaluation strategies of observation-, model-, and expert-driven evaluation, we 482 

advocate three principles underpinning model evaluation (base of Figure 1), none of which we are the 483 

first to suggest but we highlight here as a reminder: 1) model objectives, such as the groundwater 484 

science or groundwater sustainability objective summarised in Section 1, are important to model 485 

evaluation because they provide the context through which relevance of the evaluation outcome is set;  486 

2) all sources of information (observations, models and experts) are uncertain and this uncertainty 487 
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needs to be quantified for robust evaluation; and 3) regional differences are likely important for large-488 

scale model evaluation - understanding these differences is crucial for the transferability of evaluation 489 

outcomes to other places or times.  490 

 491 

We stress that we see the consideration and quantification of uncertainty as an essential need across all 492 

three types of model evaluation we describe below, so we discuss it here rather than with model-driven 493 

model evaluation (Section 3.2) where uncertainty analysis more narrowly defined would often be 494 

discussed. We further note that large-scale models have only been assessed to a very limited degree 495 

with respect to understanding, quantifying, and attributing relevant uncertainties. Expanding computing 496 

power, developing computationally frugal methods for sensitivity and uncertainty analysis, and 497 

potentially employing surrogate models can enable more robust sensitivity and uncertainty analysis 498 

such as used in regional-scale models (Habets et al., 2013; Hill, 2006; Hill & Tiedeman, 2007; Reinecke et 499 

al., 2019b). For now, we suggest applying computationally frugal methods such as the elementary effect 500 

test or local sensitivity analysis (Hill, 2006; Morris, 1991; Saltelli et al., 2000). Such sensitivity and 501 

uncertainty analyses should be applied not only to model parameters and forcings but also to model 502 

structural properties (e.g. boundary conditions, grid resolution, process simplification, etc.) (Wagener 503 

and Pianosi, 2019). This implies that the (independent) quantification of uncertainty in all model 504 

elements (observations, parameters, states, etc.) needs to be improved and better captured in available 505 

metadata.  506 

 507 

We advocate for considering regional differences more explicitly in model evaluation since likely no 508 

single model will perform consistently across the diverse hydrologic landscapes of the world (Van 509 

Werkhoven et al., 2008). Considering regional differences in large-scale model evaluation is motivated 510 

by recent model evaluation results and is already starting to be practiced. Two recent sensitivity 511 
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analyses of large-scale models reveal how sensitivities to input parameters vary in different regions for 512 

both hydraulic heads and flows between groundwater and surface water (de Graaf et al. 2019; Reinecke 513 

et al., 2020). In mountain regions, large-scale models tend to underestimate steady-state hydraulic 514 

head, possibly due to over-estimated hydraulic conductivity in these regions, which  highlights that 515 

model performance varies in different hydrologic landscapes. (de Graaf et al., 2015; Reinecke et al. 516 

2019b). Additionally, there are significant regional differences in performance with low flows for a 517 

number of large-scale models (Zaherpour et al. 2018) likely because of diverse implementations of 518 

groundwater and baseflow schemes. Large-scale model evaluation practice is starting to shift towards 519 

highlighting regional differences as exemplified by two different studies that explicitly mapped 520 

hydrologic landscapes to enable clearer understanding of regional differences. Reinecke et al. (2019b) 521 

identified global hydrological response units which highlighted the spatially distributed parameter 522 

sensitivities in a computationally expensive model, whereas Hartmann et al. (2017) developed and 523 

evaluated models for karst aquifers in different hydrologic landscapes based on different a priori system 524 

conceptualizations.  Considering regional differences in model evaluation suggests that global models 525 

could in the future consider a patchwork approach of different conceptual models, governing equations, 526 

boundary conditions etc. in different regions. Although beyond the scope of this manuscript, we 527 

consider this an important future research avenue. 528 

3.1 Observation-based model evaluation  529 

Observation-based model evaluation is the focus of most current efforts and is important because we 530 

want models to be consistent with real-world observations. Section 2 and Table 1 highlight both the 531 

strengths and limitations of current practices using observations. Despite existing challenges, we foresee 532 

significant opportunities for observation-based model evaluation and do not see data scarcity as a 533 

reason to exclude groundwater in large-scale models or to avoid evaluating these models. It is important 534 

https://doi.org/10.5194/gmd-2021-97
Preprint. Discussion started: 20 April 2021
c© Author(s) 2021. CC BY 4.0 License.



23 

to note that most so-called ‘observations’ are modeled or derived quantities, and often at the wrong 535 

scale for evaluating large-scale models (Table 1; Beven, 2019). Given the inherent challenges of direct 536 

measurement of groundwater fluxes and stores especially at large scales, herein we consider the word 537 

‘observation’ loosely as any measurements of physical stores or fluxes that are combined with or filtered 538 

through models for an output. For example, GRACE gravity measurements are combined with model-539 

based estimates of water storage changes in glaciers, snow, soil and surface water for ‘groundwater 540 

storage change observations’ or streamflow measurements are filtered through baseflow separation 541 

algorithms for ‘baseflow observations’.  The strengths and limitations as well as the data availability and 542 

spatial and temporal attributes of different observations are summarized in Table 1 which we hope will 543 

spur more systematic and comprehensive use of observations.   544 

 545 

Here we highlight nine important future priorities for improving evaluation using available observations. 546 

The first five priorities focus on current observations (Table 1) whereas the latter four focus on new 547 

methods or approaches: 548 

1) Focus on transient observations of the water table depth rather than hydraulic head 549 

observations that are long-term averages or individual times (often following well 550 

drilling). Water table depth are likely more robust evaluation metrics than hydraulic 551 

head because water table depth reveals great discrepancies and is a complex function of 552 

the relationship between hydraulic head and topography that is crucial to predicting 553 

system fluxes (including evapotranspiration and baseflow). Comparing transient 554 

observations and simulations instead of  long-term averages or individual times 555 

incorporates more system dynamics of storage and boundary conditions as temporal 556 

patterns are more important than absolute values (Heudorfer et al. 2019). For regions 557 

with significant groundwater depletion, comparing to declining water tables is a useful 558 
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strategy (de Graaf et al. 2019), whereas in aquifers without groundwater depletion, 559 

seasonally varying  water table depths are likely more useful observations (de Graaf et 560 

al. 2017).  561 

2) Use baseflow, the slowly varying portion of streamflow originating from groundwater or 562 

other delayed sources. Döll and Fiedler (2008) included the baseflow index in evaluating 563 

recharge and baseflow has been used to calibrate the groundwater component of a land 564 

surface model (Lo et al. 2008, 2010). But the baseflow index (BFI), linear and nonlinear 565 

baseflow recession behavior or baseflow fraction (Gnann et al., 2019) have not been 566 

used to evaluate any large-scale model that simulates groundwater flows between all 567 

model grid cells. There are limitations of using BFI and baseflow recession characteristics 568 

to evaluate large-scale models (Table 1). Using baseflow only makes sense when the 569 

baseflow separation algorithm is better than the large-scale model itself, which may not 570 

be the case for some large-scale models and only in time periods that can be assumed 571 

to be dominated by groundwater discharge. Similarly, using recession characteristics is 572 

dependent on an appropriate choice of recession extraction methods. But this remains 573 

available and obvious data derived from streamflow or spring flow observations that has 574 

been under-used to date.  575 

3) Use the spatial distribution of perennial, intermittent, and ephemeral streams as an 576 

observation, which to our best knowledge has not been done by any large-scale model 577 

evaluation. The transition between perennial and ephemeral streams is an important 578 

system characteristic in groundwater-surface water interactions (Winter et al. 1998), so 579 

we suggest that this might be a revealing evaluation criteria although there are similar 580 

limitations to using baseflow. The results of both quantifying baseflow and mapping 581 

perennial streams depend on the methods applied, they are not useful for quantifying 582 
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groundwater-surface water interactions when there is upstream surface water storage, 583 

and they do not directly provide information about fluxes between groundwater and 584 

surface water. 585 

4) Use data on land subsidence to infer head declines or aquifer properties for regions 586 

where  groundwater depletion is the main cause of compaction (Bierkens and Wada, 587 

2019). Lately, remote sensing methods such as GPS, airborne and space borne radar and 588 

lidar are frequently used to infer land subsidence rates (Erban et al., 2014).   Also, a 589 

number of studies combine geomechanical modelling (Ortega-Guerrero et al 1999; 590 

Minderhoud et al 2017) and geodetic data to explain the main drivers of land 591 

subsidence. A few papers (e.g. Zhang and Burbey 2016) use a geomechanical model 592 

together with a withdrawal data and geodetic observations to estimate hydraulic and 593 

geomechanical subsoil properties. 594 

5) Consider using socio-economic data for improving model input. For example, reported 595 

crop yields in areas with predominant groundwater irrigation could be used to evaluate 596 

groundwater abstraction rates. Or using well depth data (Perrone and Jasechko, 2019) 597 

to assess minimum aquifer depths or in coastal regions and deltas, the presence of 598 

deeper fresh groundwater under semi-confining layers. 599 

6) Derive additional new datasets using meta-analysis and/or geospatial analysis such as 600 

gaining or losing stream reaches (e.g., from interpolated head measurements close to 601 

the streams), springs and groundwater-dependent surface water bodies, or tracers. 602 

Each of these new data sources could in principle be developed from available data 603 

using methods already applied at regional scales but do not currently have an ‘off the 604 

shelf’ global dataset. For example, some large-scale models have been explicitly 605 

compared with residence time and tracer data (Maxwell et al., 2016) which have also 606 
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been recently compiled globally (Gleeson et al., 2016; Jasechko et al., 2017). This could 607 

be an important evaluation tool for large-scale models that are capable of simulating 608 

flow paths, or can be modified to do although a challenge of this approach is the 609 

conservativity of tracers. Future meta-analyses data compilations should report on the 610 

quality of the data and include possible uncertainty ranges as well as the mean 611 

estimates.  612 

7) Use machine learning to identify process representations (e.g. Beven, 2020) or 613 

spatiotemporal patterns, for example of perennial streams, water table depths or 614 

baseflow fluxes, which might not be obvious in multi-dimensional datasets and could be 615 

useful in evaluation. For example, Yang et al. (2019) predicted the state of losing and 616 

gaining streams in New Zealand using random forests. A staggering variety of machine 617 

learning tools are available and their use is nascent yet rapidly expanding in geoscience 618 

and hydrology (Reichstein et al., 2019; Shen, 2018; Shen et al., 2018; Wagener et al., 619 

2020). While large-scale groundwater models are often considered ‘data-poor’, it may 620 

seem strange to propose using data-intensive machine learning methods to improve 621 

model evaluation. But some of the data sources are large (e.g over 2 million water level 622 

measurements in Fan et al. 2013 although biased in distribution) whereas other 623 

observations such as evapotranspiration (Jung et al., 2011) and baseflow (Beck et al. 624 

2013) are already interpolated and extrapolated using machine learning. Moving 625 

forwards, it is important to consider commensurability while applying machine learning 626 

in this context. 627 

8) Consider comparing models against hydrologic signatures - indices that provide insight 628 

into the functional behavior of the system under study (Wagener et al., 2007; McMilan, 629 

2020). The direct comparison of simulated and observed variables through statistical 630 
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error metrics has at least two downsides. One, the above mentioned unresolved 631 

problem of commensurability, and two, the issue that such error metrics are rather 632 

uninformative in a diagnostic sense - simply knowing the size of an error does not tell 633 

the modeller how the model needs to be improved, only that it does (Yilmaz et al., 634 

2009). One way to overcome these issues, is to derive hydrologically meaningful 635 

signatures from the original data, such as the signatures derived from transient 636 

groundwater levels by Heudorfer et al. (2019). For example, recharge ratio (defined as 637 

the ratio of groundwater recharge to precipitation) might be hydrologically more 638 

informative than recharge alone (Jasechko et al., 2014) or the water table ratio and 639 

groundwater response time (Cuthbert et al. 2019; Opie et al., 2020) which are spatially-640 

distributed signatures of groundwater systems dynamics. Such signatures might be used 641 

to assess model consistency (Wagener & Gupta, 2005; Hrachowitz et al.2014) by looking 642 

at the similarity of patterns or spatial trends rather than the size of the aggregated 643 

error, thus reducing the commensurability problem.  644 

9) Understand and quantify commensurability error issues better so that a fairer 645 

comparison can be made across scales using existing data. As described above, 646 

commensurability errors will depend on the number and locations of observation 647 

points, the variability structure of the variables being compared such as hydraulic head 648 

and the interpolation or aggregation scheme applied. While to some extent we may 649 

appreciate how each of these factors affect commensurability error in theory, in 650 

practice their combined effects are poorly understood and methods to quantify and 651 

reduce commensurability errors for groundwater model purposes remain largely 652 

undeveloped. As such, quantification of commensurability error in (large-scale) 653 

groundwater studies is regularly overlooked as a source of uncertainty because it cannot 654 
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be satisfactorily evaluated (Tregoning et al., 2012).  Currently, evaluation of simulated 655 

groundwater heads is plagued by, as yet, poorly quantified uncertainties stemming from 656 

commensurability errors and we therefore recommend future studies focus on 657 

developing solutions to this problem. An additional, subtle but important and 658 

unresolved commensurability issue can stem from conceptual models. Different 659 

hydrogeologists examining different scales, data or interpreting geology differently can  660 

produce quite different conceptual models of the same region (Troldborg et al. 2007).  661 

We recommend evaluating models with a broader range of currently available data sources (with 662 

explicit consideration of data uncertainty and regional differences) while also simultaneously working to 663 

derive new data sets. Using data (such as baseflow, land subsidence, or the spatial distribution of 664 

perennial, intermittent, and ephemeral streams) that is more consistent with the scale modelled grid 665 

resolution will hopefully reduce the commensurability challenges. However, data distribution and 666 

commensurability issues will likely still be present, which underscores the importance of the two 667 

following strategies. 668 

3.2. Model-based model evaluation  669 

Model-based model evaluation, which includes model intercomparison projects (MIP) and model 670 

sensitivity and uncertainty analysis, can be done with or without explicitly using observations. We 671 

describe both inter-model and inter-scale comparisons which could be leveraged to maximize the 672 

strengths of each of these approaches.  673 

 674 

The original MIP concept offers a framework to consistently evaluate and compare models, and 675 

associated model input, structural, and parameter uncertainty under different objectives (e.g., climate 676 

change, model performance, human impacts and developments). Early model intercomparisons of 677 
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groundwater models focused on nuclear waste disposal (SKI, 1984). Since the Project for the 678 

Intercomparison of Land-Surface Parameterization Schemes (PILPS; Sellers et al., 1993), the first large-679 

scale MIP, the land surface modeling community has used MIPs to deepen understanding of land 680 

physical processes and to improve their numerical implementations at various scales from regional (e.g., 681 

Rhône-aggregation project; Boone et al., 2004) to global (e.g., Global Soil Wetness Project; Dirmeyer, 682 

2011). Two examples of recent model intercomparison efforts illustrate the general MIP objectives and 683 

practice. First, ISIMIP (Schewe et al., 2014; Warszawski et al., 2014) assessed water scarcity at different 684 

levels of global warming. Second, IH-MIP2 (Kollet et al., 2017) used both synthetic domains and an 685 

actual watershed to assess fully-integrated hydrologic models because these cannot be validated easily 686 

by comparison with analytical solutions and uncertainty remains in the attribution of hydrologic 687 

responses to model structural errors. Model comparisons have revealed differences, but it is often 688 

unclear whether these stem from differences in the model structures, differences in how the 689 

parameters were estimated, or from other modelling choices (Duan et al., 2006). Attempts for modular 690 

modelling frameworks to enable comparisons (Wagener et al., 2001; Leavesley et al., 2002; Clark et al., 691 

2008; Fenicia et al., 2011; Clark et al., 2015) or at least shared explicit modelling protocols and boundary 692 

conditions (Refsgaard et al., 2007; Ceola et al., 2015; Warszawski et al., 2014) have been proposed to 693 

reduce these problems.  694 

 695 

Inter-scale model comparison - for example, comparing a global model to a regional-scale model - is a 696 

potentially useful approach which is emerging for surface hydrology models (Hattermann et al., 2017; 697 

Huang et al., 2017) and could be applied to large-scale models with groundwater representation. For 698 

example, declining heads and decreasing groundwater discharge have been compared between a 699 

calibrated regional-scale model (RRCA, 2003) and a global model (de Graaf et al., 2019). A challenge to 700 

inter-scale comparisons is that regional-scale models often have more spatially complex subsurface 701 
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parameterizations because they have access to local data which can complicate model inter-702 

comparison. Another approach which may be useful is running large-scale models over smaller 703 

(regional) domains at a higher spatial resolution (same as a regional-scale model) so that model 704 

structure influences the comparison less. In the future, various variables that are hard to directly 705 

observe at large scales but routinely simulated in regional-scale models such as baseflow or recharge 706 

could be used to evaluate large-scale models. In this way, the output fluxes and intermediate spatial 707 

scale of regional models provide a bridge across the “river of incommensurability” between highly 708 

location-specific data such as well observations and the coarse resolution of large-scale models. It is 709 

important to consider that regional-scale models are not necessarily or inherently more accurate than 710 

large-scale models since problems may arise from conceptualization, groundwater-surface water 711 

interactions, scaling issues, parameterization etc. 712 

 713 

In order for a regional-scale model to provide a useful evaluation of a large-scale model, there are 714 

several important documentation and quality characteristics it should meet. At a bare minimum, the 715 

regional-scale model must be accessible and therefore meet basic replicability requirements including 716 

open and transparent input and output data and model code to allow large-scale modelers to run the 717 

model and interpret its output. Documentation through peer review, either through a scientific journal 718 

or agency such as the US Geological Survey, would be ideal. It is particularly important that the 719 

documentation discusses limitations, assumptions and uncertainties in the regional-scale model so that 720 

a large-scale modeler can be aware of potential weaknesses and guide their comparison accordingly. 721 

Second, the boundary conditions and/or parameters being evaluated need to be reasonably comparable 722 

between the regional- and large-scale models. For example, if the regional-scale model includes human 723 

impacts through groundwater pumping while the large-scale model does not, a comparison of baseflow 724 

between the two models may not be appropriate. Similarly, there needs to be consistency in the time 725 

https://doi.org/10.5194/gmd-2021-97
Preprint. Discussion started: 20 April 2021
c© Author(s) 2021. CC BY 4.0 License.



31 

period simulated between the two models. Finally, as with data-driven model evaluation, the purpose of 726 

the large-scale model needs to be consistent with the model-based evaluation; matching the hydraulic 727 

head of a regional-scale model, for instance, does not indicate that estimates of stream-aquifer 728 

exchange are valid. Ideally, we recommend developing a community database of regional-scale models 729 

that meet this criteria. It is important to note that Rossman & Zlotnik (2014) review 88 regional-scale 730 

models while a good example of such a repository is the California Groundwater Model Archive 731 

(https://ca.water.usgs.gov/sustainable-groundwater-management/california-groundwater-732 

modeling.html). 733 

  734 

In addition to evaluating whether models are similar in terms of their outputs, e.g. whether they 735 

simulate similar groundwater head dynamics, it is also relevant to understand whether the influence of 736 

controlling parameters are similar across models. This type of analysis provides insights into process 737 

controls as well as dominant uncertainties.  Sensitivity analysis provides the mathematical tools to 738 

perform this type of model evaluation (Saltelli et al., 2008; Pianosi et al., 2016; Borgonovo et al., 2017). 739 

Recent applications of sensitivity analysis to understand modelled controls on groundwater related 740 

processes include the study by Reinecke et al. (2019b) trying to understand parametric controls on 741 

groundwater heads and flows within a global groundwater model. Maples et al. (2020) demonstrated 742 

that parametric controls on groundwater recharge can be assessed for complex models, though over a 743 

smaller domain. As highlighted by both of these studies, more work is needed to understand how to 744 

best use sensitivity analysis methods to assess computationally expensive, spatially distributed and 745 

complex groundwater models across large domains (Hill et al., 2016). In the future, it would be useful to 746 

go beyond parameter uncertainty analysis (e.g. Reinecke et al. 2019b) to begin to look at all of the 747 

modelling decisions holistically such as the forcing data (Weiland et al., 2015) and digital elevation 748 

models (Hawker et al., 2018). Addressing this problem requires advancements in statistics (more 749 
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efficient sensitivity analysis methods), computing (more effective model execution), and access to large-750 

scale models codes (Hutton et al. 2016), but also better utilization of process understanding, for 751 

example to create process-based groups of parameters which reduces the complexity of the sensitivity 752 

analysis study (e.g. Hartmann et al., 2015; Reinecke et al., 2019b).  753 

3.3 Expert-based model evaluation 754 

A path much less traveled is expert-based model evaluation which would develop hypotheses of 755 

phenomena (and related behaviors, patterns or signatures) we expect to emerge from large-scale 756 

groundwater systems based on expert knowledge, intuition, or experience. In essence, this model 757 

evaluation approach flips the traditional scientific method around by using hypotheses to test the 758 

simulation of emergent processes from large-scale models, rather than using large-scale models to test 759 

our hypotheses about environmental phenomena. This might be an important path forward for regions 760 

where available data is very sparse or unreliable. The recent discussion by Fan et al. (2019) shows how 761 

hypotheses about large-scale behavior might be derived from expert knowledge gained through the 762 

study of smaller scale systems such as critical zone observatories. While there has been much effort to 763 

improve our ability to make hydrologic predictions in ungauged locations through the regionalization of 764 

hydrologic variables or of model parameters (Bloeschl et al., 2013), there has been much less effort to 765 

directly derive expectations of hydrologic behavior based on our perception of the systems under study.  766 

 767 

Large-scale models could then be evaluated against such hypotheses, thus providing a general 768 

opportunity to advance how we connect hydrologic understanding with large-scale modeling - a strategy 769 

that could also potentially reduce epistemic uncertainty (Beven et al., 2019), and which may be 770 

especially useful for groundwater systems given the data limitations described above. Developing 771 

appropriate and effective hypotheses is crucial and should likely focus on large-scale controlling factors 772 
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or relationships between controlling factors and output in different parts of the model domain; 773 

hypotheses that are too specific may only be able to be tested by certain model complexities or in 774 

certain regions. To illustrate the type of hypotheses we are suggesting, we list some examples of 775 

hypotheses drawn from current literature:  776 

● water table depth and lateral flow strongly affect transpiration partitioning (Famiglietti and 777 

Wood, 1994; Salvucci and Entekhabi, 1995; Maxwell & Condon, 2016); 778 

● the percentage of inter-basinal regional groundwater flow increases with aridity or decreases 779 

with frequency of perennial streams (Gleeson & Manning, 2008; Goderniaux et al, 2013; Schaller 780 

and Fan, 2008); or 781 

● human water use systematically redistributes water resources at the continental scale via non-782 

local atmospheric feedbacks (Al-Yaari et al., 2019; Keune et al., 2018).  783 

Alternatively, it might be helpful to also include hypotheses that have been shown to be incorrect since 784 

models should also not show relationships that have been shown to not exist in nature. For example of   785 

a hypotheses that has recently been shown to be incorrect is that the baseflow fraction (baseflow 786 

volume/precipitation volume) follows the Budyko curve (Gnann et al. 2019) . As yet another alternative, 787 

hydrologic intuition could form the basis of model experiments, potentially including extreme model 788 

experiments (far from the natural conditions). For example, an experiment that artificially lowers the 789 

water table by decreasing precipitation (or recharge directly) could hypothesize the spatial variability 790 

across a domain regarding how ‘the drainage flux will increase and evaporation flux will decrease as the 791 

water table is lowered’. These hypotheses are meant only for illustrative purposes and we hope future 792 

community debate will clarify the most appropriate and effective hypotheses. We believe that the 793 

debate around these hypotheses alone will lead to advance our understanding, or, at least highlight 794 

differences in opinion.   795 

 796 
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Formal approaches are available to gather the opinions of experts and to integrate them into a joint 797 

result, often called expert elicitation (Aspinall, 2010; Cooke, 1991; O’Hagan, 2019). Expert elicitation 798 

strategies have been used widely to describe the expected behavior of environmental or man-made 799 

systems for which we have insufficient data or knowledge to build models directly. Examples include 800 

aspects of future sea-level rise (Bamber and Aspinall, 2013), tipping points in the Earth system (Lenton 801 

et al., 2018), or the vulnerability of bridges to scour due to flooding (Lamb et al., 2017). In the 802 

groundwater community, expert opinion is already widely used to develop system conceptualizations 803 

and related model structures (Krueger et al., 2012; Rajabi et al., 2018; Refsgaard et al., 2007), or to 804 

define parameter priors (Ross et al., 2009; Doherty and Christensen, 2011; Brunner et al., 2012; 805 

Knowling and Werner, 2016; Rajabi and Ataie-Ashtiani, 2016). The term expert opinion may be 806 

preferable to the term expert knowledge because it emphasizes a preliminary state of knowledge 807 

(Krueger et al., 2012). 808 

 809 

A critical benefit of expert elicitation is the opportunity to bring together researchers who have 810 

experienced very different groundwater systems around the world. It is infeasible to expect that a single 811 

person could have gained in-depth experience in modelling groundwater in semi-arid regions, in cold 812 

regions, in tropical regions etc. Being able to bring together different experts who have studied one or a 813 

few of these systems to form a group would certainly create a whole that is bigger than the sum of its 814 

parts. If captured, it would be a tremendous source of knowledge for the evaluation of large-scale 815 

groundwater models. Expert elicitation also has a number of challenges including: 1) formalizing this 816 

knowledge in such a way that it is still usable by third parties that did not attend the expert workshop 817 

itself; and 2) perceived or real differences in perspectives, priorities and backgrounds between regional-818 

scale and large-scale modelers. 819 

 820 
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So, while expert opinion and judgment play a role in any scientific investigation (O’Hagan, 2019), 821 

including that of groundwater systems, we rarely use formal strategies to elicit this opinion. It is also less 822 

common to use expert opinion to develop hypotheses about the dynamic behavior of groundwater 823 

systems, rather than just priors on its physical characteristics. Yet, it is intuitive that information about 824 

system behavior can help in evaluating the plausibility of model outputs (and thus of the model itself). 825 

This is what we call expert-based evaluation herein. Expert elicitation is typically done in workshops with 826 

groups of a dozen or so experts (e.g. Lamb et al., 2018). Upscaling such expert elicitation in support of 827 

global modeling would require some web-based strategy and a formalized protocol to engage a 828 

sufficiently large number of people. Contributors could potentially be incentivized to contribute to the 829 

web platform by publishing a data paper with all contributors as co-authors and a secondary analysis 830 

paper with just the core team as coauthors. We recommend the community develop expert elicitation 831 

strategies to identify effective hypotheses that directly link to the relevant large-scale hydrologic 832 

processes of interest. 833 

4. CONCLUSIONS: towards a holistic evaluation of groundwater representation in large-scale models 834 

Ideally, all three strategies (observation-based, model-based, expert-based) should be pursued 835 

simultaneously because the strengths of one strategy might further improve others. For example, 836 

expert- or model-based evaluation may highlight and motivate the need for new observations in certain 837 

regions or at new resolutions. Or observation-based model evaluation could highlight and motivate 838 

further model development or lead to refined or additional hypotheses. We thus recommend the 839 

community significantly strengthens efforts to evaluate large-scale models using all three strategies. 840 

Implementing these three model evaluation strategies may require a significant effort from the scientific 841 

community, so we therefore conclude with two tangible community-level initiatives that would be 842 
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excellent first steps that can be pursued simultaneously with efforts by individual research groups or 843 

collaborations of multiple research groups.  844 

 845 

First, we need to develop a ‘Groundwater Modeling Data Portal’ that would both facilitate and 846 

accelerate the evaluation of groundwater representation in continental to global scale models (Bierkens, 847 

2015). Existing initiatives such as IGRAC’s Global Groundwater Monitoring Network  (https://www.un-848 

igrac.org/special-project/ggmn-global-groundwater-monitoring-network) and HydroFrame 849 

(www.hydroframe.org), are an important first step but were not designed to improve the evaluation of 850 

large-scale models and the synthesized data remains very heterogeneous - unfortunately, even 851 

groundwater level time series data often remains either hidden or inaccessible for various reasons. This 852 

open and well documented data portal should include: 853 

a) observations for evaluation (Table 1) as well as derived signatures (Section 3.1); 854 

b) regional-scale models that meet the standards described above and could facilitate inter-scale 855 

comparison (Section 3.2) and be a first step towards linking regional models (Section 2.1); 856 

c) Schematizations, conceptual or perceptual models of large-scale models since these are the 857 

basis of computational models; and 858 

d) Hypothesis and other results derived from expert elicitation (Section 3.3). 859 

Meta-data documentation, data tagging, aggregation and services as well as consistent data structures 860 

using well-known formats (netCDF, .csv, .txt) will be critical to developing a useful, dynamic and evolving 861 

community resource. The data portal should be directly linked to harmonized input data such as forcings 862 

(climate, land and water use etc.) and parameters (topography, subsurface parameters etc.), model 863 

codes, and harmonized output data. Where possible, the portal should follow established protocols, 864 

such as the Dublin Core Standards for metadata (https://dublincore.org) and ISIMIP protocols for 865 

harmonizing data and modeling approach, and would ideally be linked to or contained within an existing 866 
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disciplinary repository such as HydroShare (https://www.hydroshare.org/) to facilitate discovery, 867 

maintenance, and long-term support. Additionally, an emphasis on model objective, uncertainty and 868 

regional differences as highlighted (Section 3) will be important in developing the data portal. Like 869 

expert-elicitation, contribution to the data portal could be incentivized through co-authorship in data 870 

papers and by providing digital object identifiers (DOIs) to submitted data and models so that they are 871 

citable. By synthesizing and sharing groundwater observations, models, and hypotheses, this portal 872 

would be broadly useful to the hydrogeological community beyond just improving global model 873 

evaluation. 874 

 875 

Second, we suggest ISIMIP, or a similar model intercomparison project, could be harnessed as a 876 

platform to improve the evaluation of groundwater representation in continental to global scale models. 877 

For example, in ISIMIP (Warszawski et al., 2014), modelling protocols have been developed with an 878 

international network of climate-impact modellers across different sectors (e.g. water, agriculture, 879 

energy, forestry, marine ecosystems) and spatial scales. Originally, ISIMIP started with multi-model 880 

comparison (model-based model evaluation), with a focus on understanding how model projections 881 

vary across different sectors and different climate change scenarios (ISIMIP Fast Track). However, more 882 

rigorous model evaluation came to attention more recently with ISIMIP2a, and various observation data, 883 

such as river discharge (Global Runoff Data Center), terrestrial water storage (GRACE), and water use 884 

(national statistics), have been used to evaluate historical model simulation (observation-based model 885 

evaluation). To better understand model differences and to quantify the associated uncertainty sources, 886 

ISIMIP2b includes evaluating scenarios (land use, groundwater use, human impacts, etc) and key 887 

assumptions (no explicit groundwater representation, groundwater availability for the future, water 888 

allocation between surface water and groundwater), highlighting that different types of hypothesis 889 

derived as part of the expert-based model evaluation could possibly be simulated as part of the ISIMIP 890 

https://doi.org/10.5194/gmd-2021-97
Preprint. Discussion started: 20 April 2021
c© Author(s) 2021. CC BY 4.0 License.



38 

process in the future. While there has been a significant amount of research and publications on MIPs 891 

including surface water availability, limited multi-model assessments for large-scale groundwater 892 

studies exist. Important aspects of MIPs in general could facilitate all three model evaluation strategies: 893 

community-building and cooperation with various scientific communities and research groups, and 894 

making the model input and output publicly available in a standardized format.  895 

 896 

Large-scale hydrologic and land surface models increasingly represent groundwater, which we envision 897 

will lead to a better understanding of large-scale water systems and to more sustainable water resource 898 

use. We call on various scientific communities to join us in this effort to improve the evaluation of 899 

groundwater in continental to global models. As described by examples above, we have already started 900 

this journey and we hope this will lead to better outcomes especially for the goals of including 901 

groundwater in large-scale models that we started with above: improving our understanding of Earth 902 

system processes; and informing water decisions and policy. Along with the community currently 903 

directly involved in large-scale groundwater modeling, above we have made pointers to other 904 

communities who we hope will engage to accelerate model evaluation: 1) regional hydrogeologists, who 905 

would be useful especially in expert-based model evaluation (Section 3.3); 2) data scientists with 906 

expertise in machine learning, artificial intelligence etc. whose methods could be useful especially for 907 

observation- and model-based model evaluation (Sections 3.1 and 3.2); and 3) the multiple Earth 908 

Science communities that are currently working towards integrating groundwater into a diverse range of 909 

models so that improved evaluation approaches are built directly into model development. Together we 910 

can better understand what has always been beneath our feet, but often forgotten or neglected.  911 

  912 

 913 

 914 
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Table 1. Available observations for evaluating the groundwater component of large-scale models 936 
  937 

Data type Strengths Limitations Data availability and  spatial 
resolution 

Available observations already used to evaluate large-scale models 

Hydraulic heads or 
water table depth 
(averages or single 
times)  

Direct observation of 
groundwater levels and 
storage 

observations biased towards 
North America and Europe; 
non- commensurable with 
large-scale models; mixture 
of observation times 

IGRAC Global Groundwater 
Monitoring Network; Fan et al., 
2013; USGS 
Point measurements at existing 
wells 

Hydraulic heads  or 
water table depth 
(transient)  

Direct observation of 
changing groundwater 
levels and storage 

As above  time-series available in a few 
regions, especially through USGS  
and European Groundwater 
Drought Initiative 
Point measurements at existing 
wells 

Total water 
storage anomalies 
(GRACE) 

Globally available and 
regionally integrated 
signal of  water storage 
trends and anomalies 

Groundwater changes are 
uncertain model remainder; 
very coarse spatial 
resolution and limited period 

Various mascons gridded with 
resolution of ∼100,000 km2 

(Scanlon et al. 2016) 
which are then processed as 
groundwater storage change 

Storage change 
(regional aquifers) 

Regionally integrated 
response of aquifer 

Bias towards North America 
and Europe 

Konikow 2011 
Döll et al., 2014a 
Regional aquifers (10,000s to 
100,000s km2 ) 

Recharge Direct inflow of 
groundwater system 

Challenging to measure and 
upscale 

Döll and Fiedler, 2008; Hartmann 
et al. 2017; Mohan et al. 2018; 
Moeck et al. 2020 
Point to small basin 

Abstractions Crucial for groundwater 
depletion and 
sustainability studies 

National scale data highly 
variable in quality; 
downscaling uncertain 

de Graaf et al. 2014 
Döll et al. 2014 
National-scale data down-scaled 
to grid 

Streamflow or 
spring flow 
observations 

Widely available at 
various scales; low flows 
can be related to 
groundwater 

Challenging to quantify the 
flows between groundwater 
and surface water from 
streamflow  

Global Runoff Data Centre (GRDC) 
or other data sources; large to 
small basin; Olarinoye et al. 2020 
point measurements of spring 
flow 
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Evapotranspiration Widely available; related 
to groundwater recharge 
or discharge (for shallow 
water tables) 

Not a direct groundwater 
observations 

Various datasets (Miralles et al., 
2016); gridded  

Available observations not being used to evaluate large-scale models  

Baseflow index 
(BFI) or (non-
)linear baseflow 
recession behavior 

Possible integrator of 
groundwater 
contribution to 
streamflow over a basin 

BFI and k values vary with 
method; baseflow may be 
dominated by upstream 
surface water storage rather 
than groundwater inflow; 
can not identify losing river 
conditions 

Beck et al. (2013) 
Point observations extrapolated 
by machine learning 

Perennial stream 
map 

Ephemeral streams are 
losing streams, whereas 
perennial streams could 
be gaining (or impacted 
by upstream surface 
water storage)  

Mapping perennial streams 
requires arbitrary 
streamflow and duration 
cutoffs;  not all perennial 
streams reaches are 
groundwater-influenced; 
does not provide 
information about 
magnitude of 
inflows/outflows. 

Schneider et al. (2017) 
Cuthbert et al. (2019); 
Spatially continuous along stream 
networks 

Gaining or losing 
stream reaches  

Multiple techniques for 
measurement 
(interpolated head 
measurements, 
streamflow data, water 
chemistry). Constrains 
direction of fluxes at 
groundwater system 
boundaries 

Relevant processes occur at 
sub-grid-cell resolution. 

Not globally available but see 
Bresciani et al. (2018) for a 
regional example; 
Spatially continuous along stream 
networks 

Springs and 
groundwater-
dependent surface 
water bodies 

Constrains direction of 
fluxes at groundwater 
system boundaries 

Relevant processes occur at 
sub-grid-cell resolution. 

Springs available for various 
regions (e.g. Springer, & Stevens, 
2009) but not globally;  
Point measurements at water 
feature locations  

Tracers (heat, 
isotopes or other 
geochemical) 

Provides information 
about temporal aspects 
of groundwater systems 
(e.g. residence time) 

No large-scale models 
simulate transport processes 
(Table S1) 

Isotopic data compiled (Gleeson 
et al., 2016; Jasechko et al., 2017) 
but no global data for heat or 
other chemistry;  
Point measurements at existing 
wells or surface water features 
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Surface elevation 
data (leveling, GPS, 
radar/lidar) an in 
particular land 
subsidence 
observations 

Provides information 
about changes in surface 
elevation that are 
related to groundwater 
head variations or 
groundwater head 
decline 

Provides indirect information 
and needs a geomechanical 
model to translate to head. 
Introduces additional 
uncertainty of geomechnical 
properties. 

Leveling data, GPS data and lidar 
observations mostly limited to 
areas of active subsidence (e.g.  
Minderhoud et al., 2019,2020) 
and not always open. Global data 
on elevation change are available 
from the Sentinel 1 mission. 

 938 
 939 
  940 

 941 
 942 
Figure 1: Improved large-scale model evaluation rests on three pillars: observation-, model-, and 943 
expert-based model evaluation. We argue that each pillar is an essential strategy so that all three 944 
should be simultaneously pursued by the scientific community.  The three pillars of model evaluation 945 
all rest on three core principles related to 1) model objectives, 2) uncertainty and 3) regional 946 
differences. 947 
 948 
 949 
 950 
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