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Abstract

Continental- to global-scale hydrologic and land surface models increasingly include

representations of the groundwater system. Such large-scale models are essential for
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examining, communicating, and understanding the dynamic interactions between the Earth
System above and below the land surface as well as the opportunities and limits of
groundwater resources. We argue that both large-scale and regional-scale groundwater models
have utility, strengths and limitations so continued modeling at both scales is essential and
mutually beneficial. A crucial quest is how to evaluate the realism, capabilities and performance
of large-scale groundwater models given their modeling purpose of addressing large-scale
science or sustainability questions as well as limitations in data availability and
commensurability. Evaluation should identify if, when or where large-scale models achieve
their purpose or where opportunities for improvements exist so that such models better
achieve their purpose. We suggest that reproducing the spatio-temporal details of regional-
scale models and matching local data is not a relevant goal. Instead, it is important to decide on
reasonable model expectations regarding when a large scale model is performing ‘well enough’
in the context of its specific purpose. The decision of reasonable expectations is necessarily
subjective even if the evaluation criteria are quantitative. Our objective is to provide
recommendations for improving the evaluation of groundwater representation in continental-
to global-scale models. We describe current modeling strategies and evaluation practices, and
subsequently discuss the value of three evaluation strategies: 1) comparing model outputs with
available observations of groundwater levels or other state or flux variables (observation-based
evaluation); 2) comparing several models with each other with or without reference to actual
observations (model-based evaluation); and 3) comparing model behavior with expert
expectations of hydrologic behaviors in particular regions or at particular times (expert-based

evaluation). Based on evolving practices in model evaluation as well as innovations in
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observations, machine learning and expert elicitation, we argue that combining observation-,
model-, and expert-based model evaluation approaches, while accounting for
commensurability issues, may significantly improve the realism of groundwater representation
in large-scale models. Thus advancing our ability for quantification, understanding, and
prediction of crucial Earth science and sustainability problems. We encourage greater
community-level communication and cooperation on this quest, including among global
hydrology and land surface modelers, local to regional hydrogeologists, and hydrologists

focused on model development and evaluation.

1. INTRODUCTION: why and how is groundwater modeled at continental to global scales?

Groundwater is the largest human- and ecosystem-accessible freshwater storage component of
the hydrologic cycle (UNESCO, 1978; Margat & Van der Gun, 2013; Gleeson et al., 2016).
Therefore, better understanding of groundwater dynamics is critical at a time when the ‘great
acceleration’ (Steffen et al., 2015) of many human-induced processes is increasing stress on
water resources (Wagener et al., 2010; Montanari et al., 2013; Sivapalan et al., 2014; van Loon
et al., 2016), especially in regions with limited data availability and analytical capacity.
Groundwater is often considered to be an inherently regional rather than global resource or
system. This is partially reasonable because local to regional peculiarities of hydrology, politics
and culture are paramount to groundwater resource management (Foster et al. 2013) and
groundwater dynamics in different continents are less directly connected and coupled than
atmospheric dynamics. Regional-scale analysis and models are essential for addressing local to

regional groundwater issues. Generally, regional scale modeling is a mature, well-established
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field (Hill & Tiedeman, 2007; Kresic, 2009; Zhou & Li, 2011; Hiscock & Bense, 2014; Anderson et
al. 2015a) with clear and robust model evaluation guidelines (e.g. ASTM, 2016; Barnett et al.,
2012). Regional models have been developed around the world; for example, Rossman &
Zlotnik (2014) and Vergnes et al. (2020) synthesize regional-scale groundwater models across

the western United States and Europe, respectively.

Yet, important global aspects of groundwater both as a resource and as part of the Earth
System are emerging (Gleeson et al. 2020). First, our increasingly globalized world trades virtual
groundwater and other groundwater-dependent resources in the food-energy-water nexus,
and groundwater often crosses borders in transboundary aquifers. A solely regional approach
can be insufficient to analysing and managing these complex global interlinkages. Second, from
an Earth system perspective, groundwater is part of the hydrological cycle and connected to
the atmosphere, oceans and the deeper lithosphere. A solely regional approach is insufficient
to uncover and understand the complex interactions of groundwater within the Earth System
and teleconnections, which are groundwater levels or flows in one region linked to
geographically separated regions via physical or socio-economic processes. Regional
approaches generally focus on important aquifers which underlie only a portion of the world’s
land mass or population and do not include many other parts of the land surface that may be
important for processes like surface water-groundwater exchange flows and
evapotranspiration. A global approach is also essential to assess the impact of groundwater

depletion on sea level rise, since groundwater storage loss rate on all continents of the Earth
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must be aggregated. Thus, we argue that groundwater is simultaneously a local, regional, and
increasingly global resource and system and that examining groundwater problems, solutions,
and interactions at all scales is crucial. As a consequence, we urgently require predictive
understanding about how groundwater, used by humans and connected with other

components of the Earth System, operates at a variety of scales.

Based on the arguments above for considering global perspectives on groundwater, we see four
specific purposes of representing groundwater in continental- to global-scale hydrological or

land surface models and their climate modeling frameworks:

(1) To understand and quantify interactions between groundwater and past, present and
future climate. Groundwater systems can have far-reaching effects on climate affecting
modulation of surface energy and water partitioning with a long-term memory (Anyah
et al., 2008; Maxwell and Kollet, 2008; Koirala et al. 2013; Krakauer et al., 2014;
Maxwell et al., 2016; Taylor, et al., 2013a; Meixner et et, 2018; Wang et al., 2018;
Keune et al., 2018). While there have been significant advances in understanding the
role of lateral groundwater flow on evapotranspiration (Maxwell & Condon, 2016;
Bresciani et al, 2016), the interactions between climate and groundwater over longer
time scales (Cuthbert et al., 2019) as well as between irrigation, groundwater, and
climate (Condon and Maxwell, 2019; Condon et al 2020) remain largely unresolved.
Additionally, it is well established that old groundwater with slow turnover times are

common at depth (Befus et al. 2017; Jasechko et al. 2017). Groundwater connections to
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the atmosphere are well documented in modeling studies (e.g. Forrester and Maxwell,
2020). Previous studies have demonstrated connections between the atmospheric
boundary layer and water table depth (e.g. Maxwell et al 2007; Rahman et al, 2015),
under land cover disturbance (e.g. Forrester et al 2018), under extremes (e.g. Kuene et
al 2016) and due to groundwater pumping (Gilbert et al 2017). While a number of
open source platforms have been developed to study these connections (e.g. Maxwell
et al 2011; Shrestha et al 2014; Sulis, 2017), these platforms are regional to continental
in extent. Recent work has shown global impacts of groundwater on atmospheric

circulation (Wang et al 2018), but groundwater is still quite simplified in this study.

(2) To understand and quantify two-way interactions between groundwater, the rest of

the hydrologic cycle, and the broader Earth System. As the main storage component of
the freshwater hydrologic cycle, groundwater systems support baseflow levels in
streams and rivers, and thereby ecosystems and agricultural productivity and other
ecosystem services in both irrigated and rainfed systems (Scanlon et al., 2012; Qiu et
al., 2019; Visser, 1959; Zipper et al., 2015, 2017). When pumped groundwater is
transferred to oceans (Konikow 2011; Wada et al., 2012; Doll et al., 2014a; Wada,
2016; Caceres et al., 2020; Luijendijk et al. 2020), resulting sea-level rise can impact
salinity levels in coastal aquifers, and freshwater and solute inputs to the ocean
(Moore, 2010; Sawyer et al., 2016). Difficulties are complicated by international trade
of virtual groundwater which causes aquifer stress in disparate regions (Dalin et al.,

2017)
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(3) To inform water decisions and policy for large, often transboundary groundwater
systems in an increasingly globalized world (Wada & Heinrich, 2013; Herbert & DAoll,
2019). For instance, groundwater recharge from large-scale models has been used to
guantify groundwater resources in Africa, even though large-scale models do not yet
include all recharge processes that are important in this region (Taylor et al., 2013b;

Jasechko et al. 2014; Cuthbert et al., 2019; Hartmann et al., 2017).

(4) To create visualizations and interactive opportunities that inform citizens and
consumers, whose decisions have global-scale impacts, about the state of groundwater
all around the world such as the World Resources Institute’s Aqueduct website

(https://www.wri.org/aqueduct), a decision-support tool to identify and evaluate

global water risks.

The first two purposes are science-focused while the latter two are sustainability-focused. In
sum, continental- to global-scale hydrologic models incorporating groundwater offer a coherent
scientific framework to examine the dynamic interactions between the Earth System above and
below the land surface, and are compelling tools for conveying the opportunities and limits of
groundwater resources to people so that they can better manage the regions they live in, and
better understand the world around them. We consider both large-scale and regional-scale
models to be useful practices that should both continue to be conducted rather than one
replacing another. Ideally large-scale and regional-scale models should benefit from the other
since each has strengths and weaknesses and together the two practices enrich our

understanding and support the management of groundwater across scales (Section 2).
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The challenge of incorporating groundwater processes into continental- or global-scale models
is formidable and sometimes controversial. Some of the controversy stems from unanswered
guestions about how best to represent groundwater in the models whereas some comes from
skepticism about the feasibility of modelling groundwater at non-traditional scales. We
advocate for the representation of groundwater stores and fluxes in continental to global
models for the four reasons described above. We do not claim to have all the answers on how
best to meet this challenge. We contend, however, that the hydrologic community needs to
work deliberately and constructively towards effective representations of groundwater in

global models.

Driven by the increasing recognition of the purpose of representing groundwater in
continental- to global-scale models, many global hydrological models and land surface models
have incorporated groundwater to varying levels of complexity depending on the model
provenance and purpose. Different from regional-scale groundwater models that generally
focus on subsurface dynamics, the focus of these models is on estimating either runoff and
streamflow (hydrological models) or land-atmosphere water and energy exchange (land surface
models). Simulation of groundwater storages and hydraulic heads mainly serve to quantify
baseflow that affects streamflow during low flow periods or capillary rise that increases
evapotranspiration. Some land-surface models use approaches based on the topographic index
to simulate fast surface and slow subsurface runoff based on the fraction of saturated area in

the grid cell (Clark et al., 2015; Fan et al., 2019); groundwater in these models does not
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explicitly have water storage or hydraulic heads (Famiglietti & Wood, 1994; Koster et al., 2000;
Niu et al., 2003; Takata et al., 2003). In many hydrological models, groundwater is represented
as a linear reservoir that is fed by groundwater recharge and drains to a river in the same grid
cell (Miller Schmied et al., 2014; Gascoin et al., 2009; Ngo-Duc et al., 2007). Time series of
groundwater storage but not hydraulic heads are computed. This prevents simulation of lateral
groundwater flow between grid cells, capillary rise and two-way exchange flows between
surface water bodies and groundwater (Doll et al., 2016). However, representing groundwater
as a water storage compartment that is connected to soil and surface water bodies by
groundwater recharge and baseflow and is affected by groundwater abstractions and returns,
enables global-scale assessment of groundwater resources and stress (Herbert and Do6ll, 2019)
and groundwater depletion (Doll et al., 2014a; Wada et al., 2014; de Graaf et al., 2014). In some
land surface models, the location of the groundwater table with respect to the land surface is
simulated within each grid cell to enable simulation of capillary rise (Niu et al., 2007) but, as in
the case of simulating groundwater as a linear reservoir, lateral groundwater transport or two-

way surface water-groundwater exchange cannot be simulated with this approach.

Increasingly, models for simulating groundwater flows between all model grid cells in entire
countries or globally have been developed, either as stand-alone models or as part of
hydrological models (Vergnes & Decharme, 2012; Fan et al., 2013; Lemieux et al. 2008; de Graaf
et al,, 2017; Kollet et al., 2017; Maxwell et al., 2015; Reinecke et al., 2018, de Graaf et al 2019).

The simulation of groundwater in large-scale models is a nascent and rapidly developing field

10
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with significant computational and parameterization challenges which have led to significant
and important efforts to develop and evaluate individual models. It is important to note that
herein ‘large-scale models’ refer to models that are laterally extensive across multiple regions
(hundreds to thousands of kilometers) and generally include the upper tens to hundreds of
meters of subsurface and have resolutions sometimes as small as ~1 km. In contrast, ‘regional-
scale’ models (tens to hundreds of kilometers) have long been developed for a specific region
or aquifer and can include greater depths and resolutions, more complex hydrostratigraphy and
are often developed from conceptual models with significant regional knowledge. Regional-
scale models include a diverse range of approaches from stand-alone groundwater models (i.e.,
representing surface water and vadose zone processes using boundary conditions such as
recharge) to fully integrated groundwater-surface water models. In the future, large-scale
models could be developed in a number of different directions which we only briefly introduce
here to maintain our primary focus on model evaluation. One important direction is clearer
representation of three-dimensional geology and heterogeneity including karst (Condon et al.
in review) which should be considered as part of conceptual model development prior to

numerical model implementation.

Now that a number of models that represent groundwater at continental to global scales have
been developed and will continue evolving, it is equally important that we advance how we
evaluate these models. To date, large-scale model evaluation has largely focused on individual

models, with inconsistent practices between models and little community-level discussion or

11
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cooperation, that lack the rigor of regional-scale model evaluation. Overall, we have only a
partial and piecemeal understanding of the capabilities and limitations of different approaches
to representing groundwater in large-scale models. Our objective is to provide clear
recommendations for evaluating groundwater representation in continental and global models.
We focus on model evaluation because this is the heart of model trust and reproducibility
(Hutton et al., 2016) and improved model evaluation will guide how and where it is most
important to focus future model development. We describe current model evaluation practices
(Section 2) and consider diverse and uncertain sources of information, including observations,
models, and experts to holistically evaluate the simulation of groundwater-related fluxes,
stores and hydraulic heads (Section 3). We stress the need for an iterative and open-ended
process of model improvement through continuous model evaluation against the different
sources of information. We explicitly contrast the terminology used herein of ‘evaluation’ and
‘comparison’ against terminology such as ‘calibration’ or ‘validation’ or ‘benchmarking’, which
suggests a modelling process that is at some point complete. We extend previous
commentaries advocating improved hydrologic process representation and evaluation in large-
scale hydrologic models (Clark et al. 2015; Melsen et al. 2016) by adding expert-elicitation and
machine learning for more holistic evaluation. We also consider model objective and model
evaluation across the diverse hydrologic landscapes which can both uncover blindspots in
model development. It is important to note that we do not consider water quality or
contamination, even though water quality or contamination is important for water resources,
management and sustainability, since large-scale water quality models are in their infancy (van

Vliet et al., 2019)

12
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We bring together somewhat disparate scientific communities as a step towards greater
community-level cooperation on these challenges, including global hydrology and land surface
modelers, local to regional hydrogeologists, and hydrologists focused on model development
and evaluation. We see three audiences beyond those currently directly involved in large-scale
groundwater modeling that we seek to engage to accelerate model evaluation: 1) regional
hydrogeologists who could be reticent about global models, and yet have crucial knowledge
and data that would improve evaluation; 2) data scientists with expertise in machine learning,
artificial intelligence etc. whose methods could be useful in a myriad of ways; and 3) the
multiple Earth Science communities that are currently working towards integrating
groundwater into a diverse range of models so that improved evaluation approaches are built

directly into model development.

2. CURRENT MODEL EVALUATION PRACTICES

Here we provide a brief overview of current large-scale groundwater models, the synergies and
differences between regional-scale and large-scale model evaluation and development as well

as the imitations of current evaluation practices for large-scale models.

2.1 Brief overview of current large-scale groundwater models

Various large-scale models exist along a spectrum of model complexity, which can make it
difficult to determine the most appropriate model for a specific application. We developed a

simple but systematic classification of current large-scale groundwater models (Table 1) to
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summarize the main characteristics of existing models for the interdisciplinary audience of
GMD. This classification builds on other reviews (Bierkens 2015; Condon et al., in review) and is
not exhaustive, nor is it the only way to classify large-scale groundwater models. It is meant to
be a first classification attempt that should evolve with time. We suggest that groundwater in
current large-scale models can be classified functionally by two aspects that are crucial to how
groundwater impacts water, energy, and nutrient budgets. First, whether lateral subsurface
flow to a river is simulated within each cell independently of other cells, as 2D lateral
groundwater flow between all cells or as 3D groundwater flow. Second, we distinguish two
types of coupling between groundwater and related compartments (variably saturated soil
zone, surface water, atmospheric processes): ‘one-way’ coupling (for example, recharge is
imposed from the surface with no feedback from capillary rise or vegetation uptake, or
groundwater flow to the surface does not depend on surface head) from ‘two-way’ coupling
involves feedback loops. We also note atmospheric coupling which involves coupling a
groundwater-surface model with an atmospheric model to propagate the influence of
groundwater from the surface to the atmosphere, and the resulting feedback onto the surface
and groundwater. This classification scheme (which could also be called a model typology) is
based on a number of model characteristics such as the fluxes, stores and other features (Table

1).

2.2 Synergies between regional-scale and large-scales

14
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Regional-scale and large-scale groundwater models are both governed by the same physical
equations and share many of the same challenges. Like large-scale models, some regional-scale
models have challenges with representing important regional hydrologic processes such as
mountain block recharge (Markovich et al. 2019), and data availability challenges (such as the
lack of reliable subsurface parameterization and hydrologic monitoring data) are common. We
propose there are largely untapped potential synergies between regional-scale and large-scale
models based on these commonalities and the inherent strengths and limitations of each scale

(Section 1).

Much can be learned from regional-scale models to inform the development and evaluation of
large-scale groundwater models. Regional-scale models are evaluated using a variety of data
types, some of which are available and already used at the global scale and some of which are
not. In general, the most common data types used for regional-scale groundwater model
evaluation match global-scale groundwater models: hydraulic head and either total streamflow
or baseflow estimated using hydrograph separation approaches (eg. RRCA, 2003; Woolfenden
and Nishikawa, 2014; Tolley et al., 2019). However, numerous data sources unavailable or not
currently used at the global scale have also been applied in regional-scale models, such as
elevation of surface water features (Hay et al., 2018), existing maps of the potentiometric
surface (Meriano and Eyles, 2003), and dendrochronology (Schilling et al., 2014) and stable and
radiogenic isotopes for determining water sources and residence times (Sanford, 2011). These

and other ‘non-classical’ observations (Schilling et al. 2019) could be the inspiration for model
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evaluation of large-scale models in the future but are beyond our scope to discuss. Further,
given the smaller domain size of regional-scale models, expert knowledge and local ancillary
data sources can be more directly integrated and automated parameter estimation approaches
such as PEST are tractable (Leaf et al., 2015; Hunt et al., 2013). We directly build upon this

practice of integration of expert knowledge below in Section 3.3.

We propose that there may also be potential benefits of large-scale models for the
development of regional-scale models. For instance, the boundary conditions of some regional-
scale models could be improved with large-scale model results. The boundary conditions of
regional-scale models are often assumed, calibrated or derived from other models or data. In a
regional-scale model, increasing the model domain (moving the boundary conditions away
from region of interests) or incorporating more hydrologic processes (for example, moving the
boundary condition from recharge to the land surface incorporating evapotranspiration and
infiltration) both can reduce the impact of boundary conditions on the region and problem of
interest. Another potential benefit of large-scale models for regional-scale models is fuller
inclusion of large-scale hydrologic and human processes that could further enhance the ability
of regional-scale models to address both the science-focused and sustainability-focused
purposes described in Section 1. For example, the stronger representation of large-scale
atmospheric processes means that the downwind impact of groundwater irrigation on
evapotranspiration on precipitation and streamflow can be assessed (DeAngelis et al., 2010;

Kustu et al., 2011). Or, the effects of climate change and increased water use that affect the
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inflow of rivers into the regional modelling domain can be taken from global scale analyses
(Wada and Bierkens, 2014 ). Also, regional groundwater depletion might be largely driven by
virtual water trade which can be better represented in global analysis and models than
regional-scale models (Dalin et al. 2017). Therefore the processes and results of large-scale
models could be used to make regional-scale models even more robust and better address key

science and sustainability questions.

Given the strengths of regional models, a potential alternative to development of large-scale
groundwater models would be combining or aggregating multiple regional models in a
patchwork approach (as in Zell and Sanford, 2020) to provide global coverage. This would have
the advantage of better respecting regional differences but potentially create additional
challenges because the regional models would have different conceptual models, governing
equations, boundary conditions etc. in different regions. Some challenges of this patchwork
approach include 1) the required collaboration of a large number of experts from all over the
world over a long period of time; 2) regional groundwater flow models alone are not sufficient,
they need to be integrated into a hydrological model so that groundwater-soil water and the
surface water-groundwater interactions can be simulated; 3) the extent of regional aquifers
does not necessarily coincide with the extent of river basins; and 4) the bias of regional
groundwater models towards important aquifers which as described above, underlie only a
portion of the world’s land mass or population and may bias estimates of fluxes such as surface

water-groundwater exchange or evapotranspiration. Given these challenges, we argue that a
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patchwork approach of integrating multiple regional models is a compelling idea but likely
insufficient to achieve the purposes of large-scale groundwater modeling described in Section
1. Although this nascent idea of aggregating regional models is beyond the scope of this
manuscript, we consider this an important future research avenue, and encourage further
exploration and improvement of regional-scale model integration from the groundwater

modeling community.

2.3 Differences between regional-scale and large-scales

Although there are important similarities and potential synergies across scales, it is important
to consider how or if large-scale models are fundamentally different to regional-scale models,
especially in ways that could impact evaluation. The primary differences between large-scale
and regional-scale models are that large-scale models (by definition) cover larger areas and, as
a result, typically include more data-poor areas and are generally built at coarser resolution.

These differences impact evaluations in at least five relevant ways:

1) Commensurability errors (also called ‘representativeness’ errors) occur either when

modelled grid values are interpolated and compared to an observation ‘point’ or when
aggregation of observed ‘point’ values are compared to a modelled grid value (Beven,
2005; Tustison et al., 2001; Beven, 2016; Pappenberger et al., 2009; Rajabi et al., 2018).
For groundwater models in particular, commensurability error will depend on the number

and locations of observation points, the variability structure of the variables being
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compared such as hydraulic head and the interpolation or aggregation scheme applied
(Tustison et al., 2001; Pappenberger et al., 2009; Reinecke et al., 2020). Commensurability
is a problem for most scales of modelling, but likely more significant the coarser the
model. Regional-scale groundwater models typically have fewer (though not insignificant)

commensurability issues due to smaller grid cell sizes compared to large-scale models.

2) Specificity to region, objective and model evaluation criteria because regional-scale

models are developed specifically for a certain region and modeling or management
objective whereas large-scale models are often more general and include different
regions. As a result, large-scale models often have greater heterogeneity of processes and
parameters, may not adopt the same calibration targets and variables, and are not subject
to the policy or litigation that sometimes drives model evaluation of regional-scale

models.

3) Computational requirements can be immense for large-scale models which leads to

challenges with uncertainty and sensitivity analysis. While some regional-scale models
also have large computational demands, large-scale models cover larger domains and are

therefore more vulnerable to this potential constraint.

4) Data availability for large-scale models can be limited because they typically include data-

poor areas, which leads to challenges when only using observations for model evaluation.
While data availability also affects regional-scale models, they are often developed for
regions with known hydrological challenges based on existing data and/or modeling

efforts are preceded by significant regional data collection from detailed sources (such as
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local geological reports) that are not often included in continental to global datasets used

for large-scale model parameterization.

5) Subsurface detail in regional-scale models routinely include heterogeneous and

anisotropic parameterizations which could be improved in future large-scale models. For
example, intense vertical anisotropy routinely induces vertical flow dynamics from vertical
head gradients that are tens to thousands of times greater than horizontal gradients
which profoundly alter the meaning of the deep and shallow groundwater levels, with
only the latter remotely resembling the actual water table. In contrast, currently most
large-scale models use a single vertically homogeneous value for each grid cell, or at best

have two layers (de Graaf et al,. 2017)

2.4 Limitations of current evaluation practices for large-scale models

Evaluation of large-scale models has often focused on streamflow or evapotranspiration
observations but joint evaluation together with groundwater-specific variables is appropriate
and necessary (e.g. Maxwell et al. 2015; Maxwell and Condon, 2016). Groundwater-specific
variables useful for evaluating the groundwater component of large-scale models include: a)
hydraulic head or water table depth; b) groundwater storage and groundwater storage changes
which refer to long-term, negative or positive trends in groundwater storage where long-term,
negative trends are called groundwater depletion; c) groundwater recharge; d) flows between

groundwater and surface water bodies; and e) human groundwater abstractions and return

20



425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

flows to groundwater. It is important to note that groundwater and surface water hydrology

communities often have slightly different definitions of terms like recharge and baseflow

(Barthel, 2014); we therefore suggest trying to precisely define the meanings of such words

using the actual hydrologic fluxes which we do below. Table 2 shows the availability of

observational data for these variables but does not evaluate the quality and robustness of

observations. Overall there are significant inherent challenges of commensurability and

measurability of groundwater observations in the evaluation of large-scale models. We

describe the current model evaluation practices for each of these variables here:

a)

Simulated hydraulic heads or water table depth in large scale models are
frequently compared to well observations, which are often considered the crucial
data for groundwater model evaluation. Hydraulic head observations from a large
number groundwater wells (>1 million) have been used to evaluate the spatial
distribution of steady-state heads (Fan et al., 2013, de Graaf et al., 2015; Maxwell et
al., 2015; Reinecke et al., 2019a, 2020). Transient hydraulic heads with seasonal
amplitudes (de Graaf et al. 2017), declining heads in aquifers with groundwater
depletion (de Graaf et al. 2019) and daily transient heads (Tran et al 2020) have also
been compared to well observations. All evaluation with well observations is
severely hampered by the incommensurability of point values of observed head with
simulated heads that represent averages over cells of a size of tens to hundreds

square kilometers; within such a large cell, land surface elevation, which strongly
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b)

governs hydraulic head, may vary a few hundred meters, and average observed
head strongly depends on the number and location of well within the cell (Reinecke
et al., 2020). Additional concerns with head observations are the 1) strong sampling
bias of wells towards accessible locations, low elevations, shallow water tables, and
more transmissive aquifers in wealthy, generally temperate countries (Fan et al.,
2019); 2) the impacts of pumping which may or may not be well known; 3)
observational errors and uncertainty (Post and von Asmuth, 2013; Fan et al., 2019);
and 4) that heads can reflect the poro-elastic effects of mass loading and unloading
rather than necessarily aquifer recharge and drainage (Burgess et al, 2017). To date,
simulated hydraulic heads have more often been compared to observed heads
(rather than water table depth) which results in lower relative errors (Reinecke et
al., 2020) because the range of heads (10s to 1000s m head) is much larger than the

range of water table depths (<1 m to 100s m).

Simulated groundwater storage trends or anomalies in large-scale hydrological
models have been evaluated using observations of groundwater well levels
combined with estimates of storage parameters, such as specific yield; local-scale
groundwater modeling; and translation of regional total water storage trends and
anomalies from satellite gravimetry (GRACE: Gravity Recovery And Climate
Experiment) to groundwater storage changes by estimating changes in other

hydrological storages (Doll et al., 2012; 2014a). Groundwater storage changes
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volumes and rates have been calculated for numerous aquifers, primarily in the
United States, using calibrated groundwater models, analytical approaches, or
volumetric budget analyses (Konikow, 2010). Regional-scale models have also been
used to simulate groundwater storage trends untangling the impacts of water
management during drought (Thatch et al. 2020). Satellite gravimetry (GRACE) is
important but has limitations (Alley and Konikow, 2015). First, monthly time series
of very coarse-resolution groundwater storage are indirectly estimated from
observations of total water storage anomalies by satellite gravimetry (GRACE) but
only after model- or observation-based subtraction of water storage changes in
glaciers, snow, soil and surface water bodies (Lo et al., 2016; Rodell et al., 2009;
Wada, 2016). As soil moisture, river or snow dynamics often dominate total water
storage dynamics, the derived groundwater storage dynamics can be so uncertain
that severe groundwater drought cannot be detected in this way (Van Loon et al.,
2017). Second, GRACE cannot detect the impact of groundwater abstractions on
groundwater storage unless groundwater depletion occurs (D6l et al., 2014a,b).
Third, the very coarse resolution can lead to incommensurability but in the opposite
direction of well observations. It is important to note that the focus is on storage
trends or anomalies since total groundwater storage to a specific depth (Gleeson et
al., 2016) or in an aquifer (Konikow, 2010) can be estimated but the total
groundwater storage in a specific region or cell cannot be simulated or observed

unless the depth of interest is specified (Condon et al., 2020).
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c)

d)

Simulated large-scale groundwater recharge (vertical flux across the water table)
has been evaluated using compilations of point estimates of groundwater recharge,
results of regional-scale models, baseflow indices, and expert opinion (D6ll and
Fiedler, 2008; Hartmann et al., 2015) or compared between models (e.g. Wada et al.
2010). In general, groundwater recharge is not directly measurable except by meter-
scale lysimeters (Scanlon et al., 2002), and many groundwater recharge methods
such as water table fluctuations and chloride mass balance also suffer from similar
commensurability issues as water table depth data. Although sometimes an input or
boundary condition to regional-scale models, recharge in many large-scale

groundwater models is simulated and thus can be evaluated.

The flows between groundwater and surface water bodies (rivers, lakes, wetlands)
are simulated by many models but are generally not evaluated directly against
observations of such flows since they are very rare and challenging. Baseflow (the
slowly varying portion of streamflow originating from groundwater or other delayed
sources) or streamflow ‘low flows’ (when groundwater or other delayed sources
predominate), generally cannot be used to directly quantify the flows between
groundwater and surface water bodies at large scales. Groundwater discharge to
rivers can be estimated from streamflow observations only in the very dense gauge
network and/or if streamflow during low flow periods is mainly caused by

groundwater discharge and not by water storage in upstream lakes, reservoirs or
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e)

wetlands. These conditions are rarely met in case of streamflow gauges with large
upstream areas that can be used for comparison to large-scale model output. de
Graaf et al. (2019) compared the simulated timing of changes in groundwater
discharge to observations and regional-scale models, but only compared the fluxes
directly between the global- and regional-scale models. Due to the challenges of
directly observing the flows between groundwater and surface water bodies at large
scales, this is not included in the available data in Table 2; instead in Section 3 we
highlight the potential for using baseflow or the spatial distribution of perennial,

intermittent and ephemeral streams in the future.

Groundwater abstractions have been evaluated by comparison to national, state
and county scale statistics in the U.S. (Wada et al. 2010, Déll et al., 2012, 20144, de
Graaf et al. 2014). Irrigation is the dominant groundwater use sector in many
regions; however, irrigation pumpage is generally estimated from crop water
demand and rarely metered. GRACE and other remote sensing data have been used
to estimate the irrigation water abstractions (Anderson et al. 2015b). The lack of
records or observations of abstraction introduces significant uncertainties into large-
scale models and is simulated and thus can be evaluated. Human groundwater
abstractions and return flows as well as groundwater recharge and the flows
between groundwater and surface water bodies are necessary to simulate storage

trends (described above). But each of these are considered separate observations
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since they each have different data sources and assumptions. Groundwater
abstraction data at the well scale are severely hampered by the incommensurability

like hydraulic head and recharge described above.

3. HOW TO IMPROVE THE EVALUATION OF LARGE-SCALE GROUNDWATER MODELS

Based on Section 2, we argue that the current model evaluation practices are insufficient to
robustly evaluate large-scale models. We therefore propose evaluating large-scale models using
at least three strategies (pie-shapes in Figure 1): observation-, model-, and expert-driven
evaluation which are potentially mutually beneficial because each strategy has its strengths and
weaknesses. We are not proposing a brand new evaluation method here but rather separating
strategies to consider the problem of large-scale model evaluation from different but highly
interconnected perspectives. All three strategies work together for the common goal of

‘improved model large-scale model evaluation’ which is what is the centre of Figure 1.

When evaluating large-scale models, it is necessary to first consider reasonable expectations or
how to know a model is ‘well enough’. Reasonable expectations should be based on the
modeling purpose, hydrologic process understanding and the plausibly achievable degree of
model realism. First, model evaluation should be clearly linked to the four science- or
sustainability-focused purposes of representing groundwater in large-scale models (Section 1)
and second, to our understanding of relevant hydrologic processes. The objective of large-scale

models cannot be to reproduce the spatio-temporal details that regional-scale models can
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551 reproduce. Determining the reasonable expectations is necessarily subjective, but can be

552  approached using observation-, model-, and expert-driven evaluation. As a simple first step in
553  setting realistic expectations, we propose that three physical variables can be used to form

554  more convincing arguments that a large-scale model is well enough: change in groundwater
555  storage, water table depth, and regional fluxes between groundwater and surface water. Below
556  we explore in more detail additional variables and approaches that can support this simple

557  approach.

558

559  Across all three model evaluation strategies of observation-, model-, and expert-driven

560 evaluation, we advocate three principles underpinning model evaluation (base of Figure 1),
561 none of which we are the first to suggest but we highlight here as a reminder: 1) model

562  obijectives, such as the groundwater science or groundwater sustainability objective

563 summarised in Section 1, are important to model evaluation because they provide the context
564  through which relevance of the evaluation outcome is set; 2) all sources of information

565 (observations, models and experts) are uncertain and this uncertainty needs to be quantified
566  for robust evaluation; and 3) regional differences are likely important for large-scale model
567 evaluation - understanding these differences is crucial for the transferability of evaluation

568 outcomes to other places or times.

569
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We stress that we see the consideration and quantification of uncertainty as an essential need
across all three types of model evaluation we describe below, so we discuss it here rather than
with model-driven model evaluation (Section 3.2) where uncertainty analysis more narrowly
defined would often be discussed. We further note that large-scale models have only been
assessed to a very limited degree with respect to understanding, quantifying, and attributing
relevant uncertainties. Expanding computing power, developing computationally frugal
methods for sensitivity and uncertainty analysis, and potentially employing surrogate models
can enable more robust sensitivity and uncertainty analysis such as used in regional-scale
models (Habets et al., 2013; Hill, 2006; Hill & Tiedeman, 2007; Reinecke et al., 2019b). For now,
we suggest applying computationally frugal methods such as the elementary effect test or local
sensitivity analysis (Hill, 2006; Morris, 1991; Saltelli et al., 2000). Such sensitivity and
uncertainty analyses should be applied not only to model parameters and forcings but also to
model structural properties (e.g. boundary conditions, grid resolution, process simplification,
etc.) (Wagener and Pianosi, 2019). This implies that the (independent) quantification of
uncertainty in all model elements (observations, parameters, states, etc.) needs to be improved

and better captured in available metadata.

We advocate for considering regional differences more explicitly in model evaluation since
likely no single model will perform consistently across the diverse hydrologic landscapes of the
world (Van Werkhoven et al., 2008). Considering regional differences in large-scale model

evaluation is motivated by recent model evaluation results and is already starting to be
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practiced. Two recent sensitivity analyses of large-scale models reveal how sensitivities to input
parameters vary in different regions for both hydraulic heads and flows between groundwater
and surface water (de Graaf et al. 2019; Reinecke et al., 2020). In mountain regions, large-scale
models tend to underestimate steady-state hydraulic head, possibly due to over-estimated
hydraulic conductivity in these regions, which highlights that model performance varies in
different hydrologic landscapes. (de Graaf et al., 2015; Reinecke et al. 2019b). Additionally,
there are significant regional differences in performance with low flows for a number of large-
scale models (Zaherpour et al. 2018) likely because of diverse implementations of groundwater
and baseflow schemes. Large-scale model evaluation practice is starting to shift towards
highlighting regional differences as exemplified by two different studies that explicitly mapped
hydrologic landscapes to enable clearer understanding of regional differences. Reinecke et al.
(2019b) identified global hydrological response units which highlighted the spatially distributed
parameter sensitivities in a computationally expensive model, whereas Hartmann et al. (2017)
developed and evaluated models for karst aquifers in different hydrologic landscapes based on
different a priori system conceptualizations. Considering regional differences in model
evaluation suggests that global models could in the future consider a patchwork approach of
different conceptual models, governing equations, boundary conditions etc. in different
regions. Although beyond the scope of this manuscript, we consider this an important future

research avenue.

3.1 Observation-based model evaluation
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Observation-based model evaluation is the focus of most current efforts and is important
because we want models to be consistent with real-world observations. Section 2 and Table 2
highlight both the strengths and limitations of current practices using observations. Despite
existing challenges, we foresee significant opportunities for observation-based model
evaluation and do not see data scarcity as a reason to exclude groundwater in large-scale
models or to avoid evaluating these models. It is important to note that most so-called
‘observations’ are modeled or derived quantities, and often at the wrong scale for evaluating
large-scale models (Table 2; Beven, 2019). Given the inherent challenges of direct
measurement of groundwater fluxes and stores especially at large scales, herein we consider
the word ‘observation’ loosely as any measurements of physical stores or fluxes that are
combined with or filtered through models for an output. For example, GRACE gravity
measurements are combined with model-based estimates of water storage changes in glaciers,
snow, soil and surface water for ‘groundwater storage change observations’ or streamflow
measurements are filtered through baseflow separation algorithms for ‘baseflow observations’.
The strengths and limitations as well as the data availability and spatial and temporal attributes
of different observations are summarized in Table 2 which we hope will spur more systematic

and comprehensive use of observations.

Here we highlight nine important future priorities for improving evaluation using available
observations. The first five priorities focus on current observations (Table 2) whereas the latter

four focus on new methods or approaches:

30



632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

1)

2)

Focus on transient observations of the water table depth rather than
hydraulic head observations that are long-term averages or individual times
(often following well drilling). Water table depth are likely more robust
evaluation metrics than hydraulic head because water table depth reveals
great discrepancies and is a complex function of the relationship between
hydraulic head and topography that is crucial to predicting system fluxes
(including evapotranspiration and baseflow). Comparing transient
observations and simulations instead of long-term averages or individual
times incorporates more system dynamics of storage and boundary
conditions as temporal patterns are more important than absolute values
(Heudorfer et al. 2019). For regions with significant groundwater depletion,
comparing to declining water tables is a useful strategy (de Graaf et al. 2019),
whereas in aquifers without groundwater depletion, seasonally varying

water table depths are likely more useful observations (de Graaf et al. 2017).

Use baseflow, the slowly varying portion of streamflow originating from
groundwater or other delayed sources. Doll and Fiedler (2008) included the
baseflow index in evaluating recharge and baseflow has been used to
calibrate the groundwater component of a land surface model (Lo et al.
2008, 2010). But the baseflow index (BFl), linear and nonlinear baseflow
recession behavior or baseflow fraction (Gnann et al., 2019) have not been
used to evaluate any large-scale model that simulates groundwater flows

between all model grid cells. There are limitations of using BFl and baseflow
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3)

4)

recession characteristics to evaluate large-scale models (Table 2). Using
baseflow only makes sense when the baseflow separation algorithm is better
than the large-scale model itself, which may not be the case for some large-
scale models and only in time periods that can be assumed to be dominated
by groundwater discharge. Similarly, using recession characteristics is
dependent on an appropriate choice of recession extraction methods. But
this remains available and obvious data derived from streamflow or spring

flow observations that has been under-used to date.

Use the spatial distribution of perennial, intermittent, and ephemeral
streams as an observation, which to our best knowledge has not been done
by any large-scale model evaluation. The transition between perennial and
ephemeral streams is an important system characteristic in groundwater-
surface water interactions (Winter et al. 1998), so we suggest that this might
be a revealing evaluation criteria although there are similar limitations to
using baseflow. The results of both quantifying baseflow and mapping
perennial streams depend on the methods applied, they are not useful for
guantifying groundwater-surface water interactions when there is upstream
surface water storage, and they do not directly provide information about

fluxes between groundwater and surface water.

Use data on land subsidence to infer head declines or aquifer properties for

regions where groundwater depletion is the main cause of compaction
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5)

6)

(Bierkens and Wada, 2019). Lately, remote sensing methods such as GPS,
airborne and space borne radar and lidar are frequently used to infer land
subsidence rates (Erban et al., 2014). Also, a number of studies combine
geomechanical modelling (Ortega-Guerrero et al 1999; Minderhoud et al
2017) and geodetic data to explain the main drivers of land subsidence. A
few papers (e.g. Zhang and Burbey 2016) use a geomechanical model
together with a withdrawal data and geodetic observations to estimate

hydraulic and geomechanical subsoil properties.

Consider using socio-economic data for improving model input. For
example, reported crop yields in areas with predominant groundwater
irrigation could be used to evaluate groundwater abstraction rates. Or using
well depth data (Perrone and Jasechko, 2019) to assess minimum aquifer
depths or in coastal regions and deltas, the presence of deeper fresh

groundwater under semi-confining layers.

Derive additional new datasets using meta-analysis and/or geospatial
analysis such as gaining or losing stream reaches (e.g., from interpolated
head measurements close to the streams), springs and groundwater-
dependent surface water bodies, or tracers. Each of these new data sources
could in principle be developed from available data using methods already
applied at regional scales but do not currently have an ‘off the shelf’ global

dataset. For example, some large-scale models have been explicitly
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7)

compared with residence time and tracer data (Maxwell et al., 2016) which
have also been recently compiled globally (Gleeson et al., 2016; Jasechko et
al., 2017). This could be an important evaluation tool for large-scale models
that are capable of simulating flow paths, or can be modified to do, though a
challenge of this approach is the conservativity of tracers. Future meta-
analyses data compilations should report on the quality of the data and

include possible uncertainty ranges as well as the mean estimates.

Use machine learning to identify process representations (e.g. Beven, 2020)
or spatiotemporal patterns, for example of perennial streams, water table
depths or baseflow fluxes, which might not be obvious in multi-dimensional
datasets and could be useful in evaluation. For example, Yang et al. (2019)
predicted the state of losing and gaining streams in New Zealand using
Random Forest algorithms. A staggering variety of machine learning tools are
available and their use is nascent yet rapidly expanding in geoscience and
hydrology (Reichstein et al., 2019; Shen, 2018; Shen et al., 2018; Wagener et
al., 2020). While large-scale groundwater models are often considered ‘data-
poor’, it may seem strange to propose using data-intensive machine learning
methods to improve model evaluation. But some of the data sources are
large (e.g over 2 million water level measurements in Fan et al. 2013
although biased in distribution) whereas other observations such as
evapotranspiration (Jung et al., 2011) and baseflow (Beck et al. 2013) are

already interpolated and extrapolated using machine learning. Moving
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8)

forwards, it is important to consider commensurability while applying

machine learning in this context.

Consider comparing models against hydrologic signatures - indices that
provide insight into the functional behavior of the system under study
(Wagener et al., 2007; McMilan, 2020). The direct comparison of simulated
and observed variables through statistical error metrics has at least two
downsides. One, the above mentioned unresolved problem of
commensurability, and two, the issue that such error metrics are rather
uninformative in a diagnostic sense - simply knowing the size of an error does
not tell the modeller how the model needs to be improved, only that it does
(Yilmaz et al., 2009). One way to overcome these issues, is to derive
hydrologically meaningful signatures from the original data, such as the
signatures derived from transient groundwater levels by Heudorfer et al.
(2019). For example, recharge ratio (defined as the ratio of groundwater
recharge to precipitation) might be hydrologically more informative than
recharge alone (Jasechko et al., 2014) or the water table ratio and
groundwater response time (Cuthbert et al. 2019; Opie et al., 2020) which
are spatially-distributed signatures of groundwater systems dynamics. Such
signatures might be used to assess model consistency (Wagener & Gupta,
2005; Hrachowitz et al.2014) by looking at the similarity of patterns or spatial
trends rather than the size of the aggregated error, thus reducing the

commensurability problem.
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9)

Understand and quantify commensurability error issues better so that a
fairer comparison can be made across scales using existing data. As described
above, commensurability errors will depend on the number and locations of
observation points, the variability structure of the variables being compared
such as hydraulic head and the interpolation or aggregation scheme applied.
While to some extent we may appreciate how each of these factors affect
commensurability error in theory, in practice their combined effects are
poorly understood and methods to quantify and reduce commensurability
errors for groundwater model purposes remain largely undeveloped. As
such, quantification of commensurability error in (large-scale) groundwater
studies is regularly overlooked as a source of uncertainty because it cannot
be satisfactorily evaluated (Tregoning et al., 2012). Currently, evaluation of
simulated groundwater heads is plagued by, as yet, poorly quantified
uncertainties stemming from commensurability errors and we therefore
recommend future studies focus on developing solutions to this problem. An
additional, subtle but important and unresolved commensurability issue can
stem from conceptual models. Different hydrogeologists examining different
scales, data or interpreting geology differently can produce quite different

conceptual models of the same region (Troldborg et al. 2007).

We recommend evaluating models with a broader range of currently available data sources
(with explicit consideration of data uncertainty and regional differences) while also

simultaneously working to derive new data sets. Using data (such as baseflow, land subsidence,
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or the spatial distribution of perennial, intermittent, and ephemeral streams) that is more
consistent with the scale modelled grid resolution will hopefully reduce the commensurability
challenges. However, data distribution and commensurability issues will likely still be present,

which underscores the importance of the two following strategies.

3.2. Model-based model evaluation

Model-based model evaluation, which includes model intercomparison projects (MIP) and
model sensitivity and uncertainty analysis, can be done with or without explicitly using
observations. We describe both inter-model and inter-scale comparisons which could be

leveraged to maximize the strengths of each of these approaches.

The original MIP concept offers a framework to consistently evaluate and compare models, and
associated model input, structural, and parameter uncertainty under different objectives (e.g.,
climate change, model performance, human impacts and developments). Early model
intercomparisons of groundwater models focused on nuclear waste disposal (SKI, 1984). Since
the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS; Sellers et
al., 1993), the first large-scale MIP, the land surface modeling community has used MIPs to
deepen understanding of land physical processes and to improve their numerical
implementations at various scales from regional (e.g., Rh6ne-aggregation project; Boone et al.,
2004) to global (e.g., Global Soil Wetness Project; Dirmeyer, 2011). Two examples of recent
model intercomparison efforts illustrate the general MIP objectives and practice. First, ISIMIP

(Schewe et al., 2014; Warszawski et al., 2014) assessed water scarcity at different levels of
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global warming. Second, IH-MIP2 (Kollet et al., 2017) used both synthetic domains and an
actual watershed to assess fully-integrated hydrologic models because these cannot be
validated easily by comparison with analytical solutions and uncertainty remains in the
attribution of hydrologic responses to model structural errors. Model comparisons have
revealed differences, but it is often unclear whether these stem from differences in the model
structures, differences in how the parameters were estimated, or from other modelling choices
(Duan et al., 2006). Attempts for modular modelling frameworks to enable comparisons
(Wagener et al., 2001; Leavesley et al., 2002; Clark et al., 2008; Fenicia et al., 2011; Clark et al.,
2015) or at least shared explicit modelling protocols and boundary conditions (Refsgaard et al.,
2007; Ceola et al., 2015; Warszawski et al., 2014) have been proposed to reduce these

problems.

Inter-scale model comparison - for example, comparing a global model to a regional-scale
model - is a potentially useful approach which is emerging for surface hydrology models
(Hattermann et al., 2017; Huang et al., 2017) and could be applied to large-scale models with
groundwater representation. For example, declining heads and decreasing groundwater
discharge have been compared between a calibrated regional-scale model (RRCA, 2003) and a
global model (de Graaf et al., 2019). A challenge to inter-scale comparisons is that regional-
scale models often have more spatially complex subsurface parameterizations because they
have access to local data which can complicate model inter-comparison. Another approach

which may be useful is running large-scale models over smaller (regional) domains at a higher
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spatial resolution (same as a regional-scale model) so that model structure influences the
comparison less. In the future, various variables that are hard to directly observe at large scales
but routinely simulated in regional-scale models such as baseflow or recharge could be used to
evaluate large-scale models, although these flux estimates can contain large uncertainty. In this
way, the output fluxes and intermediate spatial scale of regional models provide a bridge across
the “river of incommensurability” between highly location-specific data such as well
observations and the coarse resolution of large-scale models. In such an evaluation, the
uncertainty of flux estimates and scale of aggregation are both important to consider. It is
important to consider that regional-scale models are not necessarily or inherently more
accurate than large-scale models since problems may arise from conceptualization,

groundwater-surface water interactions, scaling issues, parameterization etc.

In order for a regional-scale model to provide a useful evaluation of a large-scale model, there
are several important documentation and quality characteristics it should meet. At a bare
minimum, the regional-scale model must be accessible and therefore meet basic replicability
requirements including open and transparent input and output data and model code to allow
large-scale modelers to run the model and interpret its output. Documentation through peer
review, either through a scientific journal or agency such as the US Geological Survey, would be
ideal. It is particularly important that the documentation discusses limitations, assumptions and
uncertainties in the regional-scale model so that a large-scale modeler can be aware of

potential weaknesses and guide their comparison accordingly. Second, the boundary conditions
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and/or parameters being evaluated need to be reasonably comparable between the regional-
and large-scale models. For example, if the regional-scale model includes human impacts
through groundwater pumping while the large-scale model does not, a comparison of baseflow
between the two models may not be appropriate. Similarly, there needs to be consistency in
the time period simulated between the two models. Finally, as with data-driven model
evaluation, the purpose of the large-scale model needs to be consistent with the model-based
evaluation; matching the hydraulic head of a regional-scale model, for instance, does not
indicate that estimates of stream-aquifer exchange are valid. Ideally, we recommend
developing a community database of regional-scale models that meet this criteria. It is
important to note that Rossman & Zlotnik (2014) review 88 regional-scale models while a good
example of such a repository is the California Groundwater Model Archive

(https://ca.water.usgs.gov/sustainable-groundwater-management/california-groundwater-

modeling.html).

In addition to evaluating whether models are similar in terms of their outputs, e.g. whether
they simulate similar groundwater head dynamics, it is also relevant to understand whether the
influence of controlling parameters are similar across models. This type of analysis provides
insights into process controls as well as dominant uncertainties. Sensitivity analysis provides
the mathematical tools to perform this type of model evaluation (Saltelli et al., 2008; Pianosi et
al., 2016; Borgonovo et al., 2017). Recent applications of sensitivity analysis to understand

modelled controls on groundwater related processes include the study by Reinecke et al.
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(2019b) trying to understand parametric controls on groundwater heads and flows within a
global groundwater model. Maples et al. (2020) demonstrated that parametric controls on
groundwater recharge can be assessed for complex models, though over a smaller domain. As
highlighted by both of these studies, more work is needed to understand how to best use
sensitivity analysis methods to assess computationally expensive, spatially distributed and
complex groundwater models across large domains (Hill et al., 2016). In the future, it would be
useful to go beyond parameter uncertainty analysis (e.g. Reinecke et al. 2019b) to begin to look
at all of the modelling decisions holistically such as the forcing data (Weiland et al., 2015) and
digital elevation models (Hawker et al., 2018). Addressing this problem requires advancements
in statistics (more efficient sensitivity analysis methods), computing (more effective model
execution), and access to large-scale models codes (Hutton et al. 2016), but also better
utilization of process understanding, for example to create process-based groups of parameters
which reduces the complexity of the sensitivity analysis study (e.g. Hartmann et al., 2015;

Reinecke et al., 2019b).

3.3 Expert-based model evaluation

A path much less traveled is expert-based model evaluation which would develop hypotheses
of phenomena (and related behaviors, patterns or signatures) we expect to emerge from large-
scale groundwater systems based on expert knowledge, intuition, or experience. In essence,
this model evaluation approach flips the traditional scientific method around by using
hypotheses to test the simulation of emergent processes from large-scale models, rather than

using large-scale models to test our hypotheses about environmental phenomena. This might
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be an important path forward for regions where available data is very sparse or unreliable. The
recent discussion by Fan et al. (2019) shows how hypotheses about large-scale behavior might
be derived from expert knowledge gained through the study of smaller scale systems such as
critical zone observatories. While there has been much effort to improve our ability to make
hydrologic predictions in ungauged locations through the regionalization of hydrologic variables
or of model parameters (Bloeschl et al., 2013), there has been much less effort to directly
derive expectations of hydrologic behavior based on our perception of the systems under

study.

Large-scale models could then be evaluated against such hypotheses, thus providing a general
opportunity to advance how we connect hydrologic understanding with large-scale modeling - a
strategy that could also potentially reduce epistemic uncertainty (Beven et al., 2019), and which
may be especially useful for groundwater systems given the data limitations described above.
Developing appropriate and effective hypotheses is crucial and should likely focus on large-
scale controlling factors or relationships between controlling factors and output in different
parts of the model domain; hypotheses that are too specific may only be able to be tested by
certain model complexities or in certain regions. To illustrate the type of hypotheses we are

suggesting, we list some examples of hypotheses drawn from current literature:

e water table depth and lateral flow strongly affect transpiration partitioning
(Famiglietti and Wood, 1994; Salvucci and Entekhabi, 1995; Maxwell & Condon,

2016);
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e the percentage of inter-basinal regional groundwater flow increases with aridity or
decreases with frequency of perennial streams (Gleeson & Manning, 2008;

Goderniaux et al, 2013; Schaller and Fan, 2008); or

° human water use systematically redistributes water resources at the continental

scale via non-local atmospheric feedbacks (Al-Yaari et al., 2019; Keune et al., 2018).

Alternatively, it might be helpful to also include hypotheses that have been shown to be
incorrect since models should also not show relationships that have been shown to not exist in
nature. For example of a hypotheses that has recently been shown to be incorrect is that the
baseflow fraction (baseflow volume/precipitation volume) follows the Budyko curve (Gnann et
al. 2019) . As yet another alternative, hydrologic intuition could form the basis of model
experiments, potentially including extreme model experiments (far from the natural
conditions). For example, an experiment that artificially lowers the water table by decreasing
precipitation (or recharge directly) could hypothesize the spatial variability across a domain
regarding how ‘the drainage flux will increase and evaporation flux will decrease as the water
table is lowered’. These hypotheses are meant only for illustrative purposes and we hope
future community debate will clarify the most appropriate and effective hypotheses. We
believe that the debate around these hypotheses alone will lead to advance our understanding,

or, at least highlight differences in opinion.
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Formal approaches are available to gather the opinions of experts and to integrate them into a
joint result, often called expert elicitation (Aspinall, 2010; Cooke, 1991; O’Hagan, 2019). Expert
elicitation strategies have been used widely to describe the expected behavior of
environmental or man-made systems for which we have insufficient data or knowledge to build
models directly. Examples include aspects of future sea-level rise (Bamber and Aspinall, 2013),
tipping points in the Earth system (Lenton et al., 2018), or the vulnerability of bridges to scour
due to flooding (Lamb et al., 2017). In the groundwater community, expert opinion is already
widely used to develop system conceptualizations and related model structures (Krueger et al.,
2012; Rajabi et al., 2018; Refsgaard et al., 2007), or to define parameter priors (Ross et al.,
2009; Doherty and Christensen, 2011; Brunner et al., 2012; Knowling and Werner, 2016; Rajabi
and Ataie-Ashtiani, 2016). The term expert opinion may be preferable to the term expert

knowledge because it emphasizes a preliminary state of knowledge (Krueger et al., 2012).

A critical benefit of expert elicitation is the opportunity to bring together researchers who have
experienced very different groundwater systems around the world. It is infeasible to expect
that a single person could have gained in-depth experience in modelling groundwater in semi-
arid regions, in cold regions, in tropical regions etc. Being able to bring together different
experts who have studied one or a few of these systems to form a group would certainly create
a whole that is bigger than the sum of its parts. If captured, it would be a tremendous source of
knowledge for the evaluation of large-scale groundwater models. Expert elicitation also has a

number of challenges including: 1) formalizing this knowledge in such a way that it is still usable

44



928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

by third parties that did not attend the expert workshop itself; and 2) perceived or real
differences in perspectives, priorities and backgrounds between regional-scale and large-scale

modelers.

So, while expert opinion and judgment play a role in any scientific investigation (O’Hagan,
2019), including that of groundwater systems, we rarely use formal strategies to elicit this
opinion. It is also less common to use expert opinion to develop hypotheses about the dynamic
behavior of groundwater systems, rather than just priors on its physical characteristics. Yet, it is
intuitive that information about system behavior can help in evaluating the plausibility of model
outputs (and thus of the model itself). This is what we call expert-based evaluation herein.
Expert elicitation is typically done in workshops with groups of a dozen or so experts (e.g. Lamb
et al., 2018). Upscaling such expert elicitation in support of global modeling would require some
web-based strategy and a formalized protocol to engage a sufficiently large number of people.
Contributors could potentially be incentivized to contribute to the web platform by publishing a
data paper with all contributors as co-authors and a secondary analysis paper with just the core
team as coauthors. We recommend the community develop expert elicitation strategies to
identify effective hypotheses that directly link to the relevant large-scale hydrologic processes

of interest.

4. CONCLUSIONS: towards a holistic evaluation of groundwater representation in large-scale models

45



947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

Ideally, all three strategies (observation-based, model-based, expert-based) should be pursued
simultaneously because the strengths of one strategy might further improve others. For
example, expert- or model-based evaluation may highlight and motivate the need for new
observations in certain regions or at new resolutions. Or observation-based model evaluation
could highlight and motivate further model development or lead to refined or additional
hypotheses. We thus recommend the community significantly strengthens efforts to evaluate
large-scale models using all three strategies. Implementing these three model evaluation
strategies may require a significant effort from the scientific community, so we therefore
conclude with two tangible community-level initiatives that would be excellent first steps that
can be pursued simultaneously with efforts by individual research groups or collaborations of

multiple research groups.

First, we need to develop a ‘Groundwater Modeling Data Portal’ that would both facilitate and
accelerate the evaluation of groundwater representation in continental to global scale models
(Bierkens, 2015). Existing initiatives such as IGRAC’s Global Groundwater Monitoring Network

(https://www.un-igrac.org/special-project/ggmn-global-groundwater-monitoring-network) and

HydroFrame (www.hydroframe.org), are an important first step but were not designed to

improve the evaluation of large-scale models and the synthesized data remains very
heterogeneous - unfortunately, even groundwater level time series data often remains either
hidden or inaccessible for various reasons. This open and well documented data portal should

include:

46


https://www.un-igrac.org/special-project/ggmn-global-groundwater-monitoring-network
http://www.hydroframe.org/

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

a) observations for evaluation (Table 2) as well as derived signatures (Section 3.1);

b) regional-scale models that meet the standards described above and could facilitate
inter-scale comparison (Section 3.2) and be a first step towards linking regional

models (Section 2.2);

c) Schematizations, conceptual or perceptual models of large-scale models since

these are the basis of computational models; and

d) Hypothesis and other results derived from expert elicitation (Section 3.3).

Meta-data documentation, data tagging, aggregation and services as well as consistent data
structures using well-known formats (netCDF, .csv, .txt) will be critical to developing a useful,
dynamic and evolving community resource. The data portal should be directly linked to
harmonized input data such as forcings (climate, land and water use etc.) and parameters
(topography, subsurface parameters etc.), model codes, and harmonized output data. Where
possible, the portal should follow established protocols, such as the Dublin Core Standards for

metadata (https://dublincore.org) and ISIMIP protocols for harmonizing data and modeling

approach, and would ideally be linked to or contained within an existing disciplinary repository

such as HydroShare (https://www.hydroshare.org/) to facilitate discovery, maintenance, and

long-term support. Additionally, an emphasis on model objective, uncertainty and regional
differences as highlighted (Section 3) will be important in developing the data portal. Like
expert-elicitation, contribution to the data portal could be incentivized through co-authorship

in data papers and by providing digital object identifiers (DOIs) to submitted data and models
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so that they are citable. By synthesizing and sharing groundwater observations, models, and
hypotheses, this portal would be broadly useful to the hydrogeological community beyond just

improving global model evaluation.

Second, we suggest ISIMIP, or a similar model intercomparison project, could be harnessed as a
platform to improve the evaluation of groundwater representation in continental to global
scale models. For example, in ISIMIP (Warszawski et al., 2014), modelling protocols have been
developed with an international network of climate-impact modellers across different sectors
(e.g. water, agriculture, energy, forestry, marine ecosystems) and spatial scales. Originally,
ISIMIP started with multi-model comparison (model-based model evaluation), with a focus on
understanding how model projections vary across different sectors and different climate
change scenarios (ISIMIP Fast Track). However, more rigorous model evaluation came to
attention more recently with ISIMIP2a, and various observation data, such as river discharge
(Global Runoff Data Center), terrestrial water storage (GRACE), and water use (national
statistics), have been used to evaluate historical model simulation (observation-based model
evaluation). To better understand model differences and to quantify the associated uncertainty
sources, ISIMIP2b includes evaluating scenarios (land use, groundwater use, human impacts,
etc) and key assumptions (no explicit groundwater representation, groundwater availability for
the future, water allocation between surface water and groundwater), highlighting that
different types of hypothesis derived as part of the expert-based model evaluation could

possibly be simulated as part of the ISIMIP process in the future. While there has been a
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significant amount of research and publications on MIPs including surface water availability,
limited multi-model assessments for large-scale groundwater studies exist. Important aspects
of MIPs in general could facilitate all three model evaluation strategies: community-building
and cooperation with various scientific communities and research groups, and making the

model input and output publicly available in a standardized format.

Large-scale hydrologic and land surface models increasingly represent groundwater, which we
envision will lead to a better understanding of large-scale water systems and to more
sustainable water resource use. We call on various scientific communities to join us in this
effort to improve the evaluation of groundwater in continental to global models. As described
by examples above, we have already started this journey and we hope this will lead to better
outcomes especially for the goals of including groundwater in large-scale models that we
started with above: improving our understanding of Earth system processes; and informing
water decisions and policy. Along with the community currently directly involved in large-scale
groundwater modeling, above we have made pointers to other communities who we hope will
engage to accelerate model evaluation: 1) regional hydrogeologists, who would be useful
especially in expert-based model evaluation (Section 3.3); 2) data scientists with expertise in
machine learning, artificial intelligence etc. whose methods could be useful especially for
observation- and model-based model evaluation (Sections 3.1 and 3.2); and 3) the multiple
Earth Science communities that are currently working towards integrating groundwater into a

diverse range of models so that improved evaluation approaches are built directly into model
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development. Together we can better understand what has always been beneath our feet, but

often forgotten or neglected.
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Table 1. A possible model classification based on three model classes and various model characteristics; see link

to google doc to view easier (google doc will be migrated to a community github page if article accepted)

Table 1. Model classification for large-scale models representing groundwater (1)
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Table 2. Available observations for evaluating the groundwater component of large-scale models

Data type

Strengths

Limitations

Data availability and spatial
resolution

Available observations already used to evaluate

large-scale models

Hydraulic heads or
water table depth
(averages or single
times)

Direct observation of
groundwater levels and
storage

observations biased
towards North America and
Europe; non-
commensurable with large-
scale models; mixture of
observation times

IGRAC Global Groundwater
Monitoring Network; USGS;
Fan et al. (2013)

Point measurements at
existing wells

Hydraulic heads or
water table depth
(transient)

Direct observation of
changing groundwater
levels and storage

As above

time-series available in a few
regions, especially through
USGS and European
Groundwater Drought

Initiative

Point measurements at
existing wells

Total water storage
anomalies (GRACE)

Globally available and
regionally integrated
signal of water storage
trends and anomalies

Groundwater changes are
uncertain model remainder;
very coarse spatial
resolution and limited
period

Various mascons gridded with
resolution of ~100,000 km?
which are then processed as
groundwater storage change;
Scanlon et al. (2016)

Storage change
(regional aquifers)

Regionally integrated
response of aquifer
(independent estimates
derived by various
methods)

Bias towards North America
and Europe

Konikow (2011); Déll et al.
(2014a)

Regional aquifers (10,000s to
100,000s km?)

Recharge

Direct inflow of
groundwater system

Challenging to measure and
upscale

Doll and Fiedler (2008);
Hartmann et al. (2017); Mohan
et al. (2018); Moeck et al.
(2020)
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Point to small basin

Abstractions

Crucial for groundwater
depletion and
sustainability studies

National scale data highly
variable in quality;
downscaling uncertain

de Graaf et al. (2014); Doll et
al. (2014a)

National-scale data down-
scaled to grid

Streamflow or
spring flow
observations

Widely available at
various scales; low flows
can be related to
groundwater

Challenging to quantify the
flows between
groundwater and surface
water from streamflow

Global Runoff Data Centre
(GRDC) or other data sources;
large to small basin; Olarinoye
et al. (2020)

point measurements of spring
flow

Evapotranspiration

Widely available;
related to groundwater
recharge or discharge
(for shallow water
tables)

Not a direct groundwater
observations

Various datasets; e.g. Miralles
et al. (2016);

gridded

Available observations not being used to evaluate large-scale models

Baseflow index (BFI)
or (non-)linear
baseflow recession
behavior

Possible integrator of
groundwater
contribution to
streamflow over a basin

BFl and k values vary with
method; baseflow may be
dominated by upstream
surface water storage
rather than groundwater
inflow; can not identify
losing river conditions

Beck et al. (2013)

Point observations
extrapolated by machine
learning
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https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/ELOHA/Pages/Global-Streamflow-Databases.aspx
https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/ELOHA/Pages/Global-Streamflow-Databases.aspx

Perennial stream
map

Ephemeral streams are
losing streams, whereas
perennial streams could
be gaining (or impacted
by upstream surface
water storage)

Mapping perennial streams
requires arbitrary
streamflow and duration
cutoffs; not all perennial
stream reaches are
groundwater-influenced;
does not provide
information about
magnitude of
inflows/outflows.

Schneider et al. (2017);
Cuthbert et al. (2019);

Spatially continuous along
stream networks

Gaining or losing
stream reaches

Multiple techniques for
measurement
(interpolated head
measurements,
streamflow data, water
chemistry). Constrains
direction of fluxes at
groundwater system
boundaries

Relevant processes occur at
sub-grid-cell resolution.

Not globally available but see
Bresciani et al. (2018) for a
regional example;

Spatially continuous along
stream networks

Springs and
groundwater-
dependent surface
water bodies

Constrains direction of
fluxes at groundwater
system boundaries

Relevant processes occur at
sub-grid-cell resolution.

Springs available for various
regions but not globally;
Springer, & Stevens (2009)
Point measurements at water
feature locations

Tracers (heat,
isotopes or other
geochemical)

Provides information
about temporal aspects
of groundwater systems
(e.g. residence time)

No large-scale models
simulate transport
processes (Table S1)

Isotopic data compiled but no
global data for heat or other
chemistry; Gleeson et al.
(2016); Jasechko et al. (2017)

Point measurements at
existing wells or surface water
features

Surface elevation
data (leveling, GPS,
radar/lidar) an in
particular land
subsidence
observations

Provides information
about changes in
surface elevation that
are related to
groundwater head
variations or
groundwater head
decline

Provides indirect
information and needs a
geomechanical model to
translate to head.
Introduces additional
uncertainty of
geomechnical properties.

Leveling data, GPS data and
lidar observations mostly
limited to areas of active
subsidence; Minderhoud et al.
(2019,2020).

Global data on elevation
change are available from the
Sentinel 1 mission.
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Figure 1: Improved large-scale model evaluation rests on three pillars: observation-, model-,
and expert-based model evaluation. We argue that each pillar is an essential strategy so that
all three should be simultaneously pursued by the scientific community. The three pillars of
model evaluation all rest on three core principles related to 1) model objectives, 2)
uncertainty and 3) regional differences.

Observation-based
evaluation
(Section 3.1)

Improved large-
scale model
evaluation

Improved model evaluation rests of three core principles:
1) Modelling purpose or objective are paramount

2) All sources of information are uncertain
3) Regional differences are important
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