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Abstract 46 

Continental- to global-scale hydrologic and land surface models increasingly include 47 

representations of the groundwater system. Such large-scale models are essential for 48 
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examining, communicating, and understanding the dynamic interactions between the Earth 49 

System above and below the land surface as well as the opportunities and limits of 50 

groundwater resources. We argue that both large-scale and regional-scale groundwater models 51 

have utility, strengths and limitations so continued modeling at both scales is essential and 52 

mutually beneficial. A crucial quest is how to evaluate the realism, capabilities and performance 53 

of large-scale groundwater models given their modeling purpose of addressing large-scale 54 

science or sustainability questions as well as limitations in data availability and 55 

commensurability. Evaluation should identify if, when or where large-scale models achieve 56 

their purpose or where opportunities for improvements exist so that such models better 57 

achieve their purpose. We suggest that reproducing the spatio-temporal details of regional-58 

scale models and matching local data is not a relevant goal. Instead, it is important to decide on 59 

reasonable model expectations regarding when a large scale model is performing ‘well enough’ 60 

in the context of its specific purpose. The decision of reasonable expectations is necessarily 61 

subjective even if the evaluation criteria are quantitative. Our objective is to provide 62 

recommendations for improving the evaluation of groundwater representation in continental- 63 

to global-scale models. We describe current modeling strategies and evaluation practices, and 64 

subsequently discuss the value of three evaluation strategies: 1) comparing model outputs with 65 

available observations of groundwater levels or other state or flux variables (observation-based 66 

evaluation); 2) comparing several models with each other with or without reference to actual 67 

observations (model-based evaluation); and 3) comparing model behavior with  expert 68 

expectations of hydrologic behaviors in particular regions or at particular times (expert-based 69 

evaluation). Based on evolving practices in model evaluation as well as innovations in 70 
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observations, machine learning and expert elicitation, we argue that combining observation-, 71 

model-, and expert-based model evaluation approaches, while accounting for 72 

commensurability issues, may significantly improve the realism of groundwater representation 73 

in large-scale models. Thus advancing our ability for quantification, understanding, and 74 

prediction of crucial Earth science and sustainability problems. We encourage greater 75 

community-level communication and cooperation on this quest, including among global 76 

hydrology and land surface modelers, local to regional hydrogeologists, and hydrologists 77 

focused on model development and evaluation. 78 

1.      INTRODUCTION: why and how is groundwater modeled at continental to global scales? 79 

Groundwater is the largest human- and ecosystem-accessible freshwater storage component of 80 

the hydrologic cycle (UNESCO, 1978; Margat & Van der Gun, 2013; Gleeson et al., 2016). 81 

Therefore, better understanding of groundwater dynamics is critical at a time when the ‘great 82 

acceleration’ (Steffen et al., 2015) of many human-induced processes is increasing stress on 83 

water resources (Wagener et al., 2010; Montanari et al., 2013; Sivapalan et al., 2014; van Loon 84 

et al., 2016), especially in regions with limited data availability and analytical capacity. 85 

Groundwater is often considered to be an inherently regional rather than global resource or 86 

system. This is partially reasonable because local to regional peculiarities of hydrology, politics 87 

and culture are paramount to groundwater resource management (Foster et al. 2013) and 88 

groundwater dynamics in different continents are less directly connected and coupled than 89 

atmospheric dynamics. Regional-scale analysis and models are essential for addressing local to 90 

regional groundwater issues. Generally, regional scale modeling is a mature, well-established 91 
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field (Hill & Tiedeman, 2007; Kresic, 2009; Zhou & Li, 2011; Hiscock & Bense, 2014; Anderson et 92 

al. 2015a) with clear and robust model evaluation guidelines (e.g. ASTM, 2016; Barnett et al., 93 

2012). Regional models have been developed around the world; for example, Rossman & 94 

Zlotnik (2014) and Vergnes et al. (2020) synthesize regional-scale groundwater models across 95 

the western United States and Europe, respectively. 96 

  97 

Yet, important global aspects of groundwater both as a resource and as part of the Earth 98 

System are emerging (Gleeson et al. 2020). First, our increasingly globalized world trades virtual 99 

groundwater and other groundwater-dependent resources in the food-energy-water nexus, 100 

and groundwater often crosses borders in transboundary aquifers. A solely regional approach 101 

can be insufficient to analysing and managing these complex global interlinkages. Second, from 102 

an Earth system perspective, groundwater is part of the hydrological cycle and connected to 103 

the atmosphere, oceans and the deeper lithosphere. A solely regional approach is insufficient 104 

to uncover and understand the complex interactions of groundwater within the Earth System 105 

and teleconnections, which are groundwater levels or flows in one region linked to 106 

geographically separated regions via physical or socio-economic processes. Regional 107 

approaches generally focus on important aquifers which underlie only a portion of the world’s 108 

land mass or population and do not include many other parts of the land surface that may be 109 

important for processes like surface water-groundwater exchange flows and 110 

evapotranspiration. A global approach is also essential to assess the impact of groundwater 111 

depletion on sea level rise, since groundwater storage loss rate on all continents of the Earth 112 
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must be aggregated. Thus, we argue that groundwater is simultaneously a local, regional, and 113 

increasingly global resource and system and that examining groundwater problems, solutions, 114 

and interactions at all scales is crucial. As a consequence, we urgently require predictive 115 

understanding about how groundwater, used by humans and connected with other 116 

components of the Earth System, operates at a variety of scales. 117 

  118 

Based on the arguments above for considering global perspectives on groundwater, we see four 119 

specific purposes of representing groundwater in continental- to global-scale hydrological or 120 

land surface models and their climate modeling frameworks: 121 

(1) To understand and quantify interactions between groundwater and past, present and 122 

future climate. Groundwater systems can have far-reaching effects on climate affecting 123 

modulation of surface energy and water partitioning with a long-term memory (Anyah 124 

et al., 2008; Maxwell and Kollet, 2008; Koirala et al. 2013; Krakauer et al., 2014; 125 

Maxwell et al., 2016; Taylor, et al., 2013a; Meixner et et, 2018; Wang et al., 2018; 126 

Keune et al., 2018). While there have been significant advances in understanding the 127 

role of lateral groundwater flow on evapotranspiration (Maxwell & Condon, 2016; 128 

Bresciani et al, 2016), the interactions between climate and groundwater over longer 129 

time scales (Cuthbert et al., 2019) as well as between irrigation, groundwater, and 130 

climate (Condon and Maxwell, 2019; Condon et al 2020) remain largely unresolved. 131 

Additionally, it is well established that old groundwater with slow turnover times are 132 

common at depth (Befus et al. 2017; Jasechko et al. 2017). Groundwater connections to 133 
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the atmosphere are well documented in modeling studies (e.g. Forrester and Maxwell, 134 

2020).  Previous studies have demonstrated connections between the atmospheric 135 

boundary layer and water table depth (e.g. Maxwell et al 2007; Rahman et al, 2015), 136 

under land cover disturbance (e.g. Forrester et al 2018), under extremes (e.g. Kuene et 137 

al 2016) and due to groundwater pumping (Gilbert et al 2017).  While a number of 138 

open source platforms have been developed to study these connections (e.g. Maxwell 139 

et al 2011; Shrestha et al 2014; Sulis, 2017), these platforms are regional to continental 140 

in extent.  Recent work has shown global impacts of groundwater on atmospheric 141 

circulation (Wang et al 2018), but groundwater is still quite simplified in this study. 142 

(2) To understand and quantify two-way interactions between groundwater, the rest of 143 

the hydrologic cycle, and the broader Earth System. As the main storage component of 144 

the freshwater hydrologic cycle, groundwater systems support baseflow levels in 145 

streams and rivers, and thereby ecosystems and agricultural productivity and other 146 

ecosystem services in both irrigated and rainfed systems (Scanlon et al., 2012; Qiu et 147 

al., 2019; Visser, 1959; Zipper et al., 2015, 2017). When pumped groundwater is 148 

transferred to  oceans (Konikow 2011; Wada et al., 2012; Döll et al., 2014a; Wada, 149 

2016; Caceres et al., 2020; Luijendijk et al. 2020), resulting sea-level rise can impact 150 

salinity levels in coastal aquifers, and freshwater and solute inputs to the ocean 151 

(Moore, 2010; Sawyer et al., 2016). Difficulties are complicated by international trade 152 

of virtual groundwater which causes aquifer stress in disparate regions (Dalin et al., 153 

2017) 154 
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(3) To inform water decisions and policy for large, often transboundary groundwater 155 

systems in an increasingly globalized world (Wada & Heinrich, 2013; Herbert & Döll, 156 

2019). For instance, groundwater recharge from large-scale models has been used to 157 

quantify groundwater resources in Africa, even though large-scale models do not yet 158 

include all recharge processes that are important in this region (Taylor et al., 2013b; 159 

Jasechko et al. 2014; Cuthbert et al., 2019; Hartmann et al., 2017). 160 

(4) To create visualizations and interactive opportunities that inform citizens and 161 

consumers, whose decisions have global-scale impacts, about the state of groundwater 162 

all around the world such as the World Resources Institute’s Aqueduct website 163 

(https://www.wri.org/aqueduct), a decision-support tool to identify and evaluate 164 

global water risks. 165 

The first two purposes are science-focused while the latter two are sustainability-focused. In 166 

sum, continental- to global-scale hydrologic models incorporating groundwater offer a coherent 167 

scientific framework to examine the dynamic interactions between the Earth System above and 168 

below the land surface, and are compelling tools for conveying the opportunities and limits of 169 

groundwater resources to people so that they can better manage the regions they live in, and 170 

better understand the world around them. We consider both large-scale and regional-scale 171 

models to be useful practices that should both continue to be conducted rather than one 172 

replacing another. Ideally large-scale and regional-scale models should benefit from the other 173 

since each has strengths and weaknesses and together the two practices enrich our 174 

understanding and support the management of groundwater across scales (Section 2). 175 

https://www.wri.org/aqueduct
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The challenge of incorporating groundwater processes into continental- or global-scale models 176 

is formidable and sometimes controversial. Some of the controversy stems from unanswered 177 

questions about how best to represent groundwater in the models whereas some comes from 178 

skepticism about the feasibility of modelling groundwater at non-traditional scales. We 179 

advocate for the representation of groundwater stores and fluxes in continental to global 180 

models for the four reasons described above. We do not claim to have all the answers on how 181 

best to meet this challenge. We contend, however, that the hydrologic community needs to 182 

work deliberately and constructively towards effective representations of groundwater in 183 

global models. 184 

  185 

Driven by the increasing recognition of the purpose of representing groundwater in 186 

continental- to global-scale models, many global hydrological models and land surface models 187 

have incorporated groundwater to varying levels of complexity depending on the model 188 

provenance and purpose. Different from regional-scale groundwater models that generally 189 

focus on subsurface dynamics, the focus of these models is on estimating either runoff and 190 

streamflow (hydrological models) or land-atmosphere water and energy exchange (land surface 191 

models). Simulation of groundwater storages and hydraulic heads mainly serve to quantify 192 

baseflow that affects streamflow during low flow periods or capillary rise that increases 193 

evapotranspiration. Some land-surface models use approaches based on the topographic index 194 

to simulate fast surface and slow subsurface runoff based on the fraction of saturated area in 195 

the grid cell (Clark et al., 2015; Fan et al., 2019); groundwater in these models does not 196 
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explicitly have water storage or hydraulic heads (Famiglietti & Wood, 1994; Koster et al., 2000; 197 

Niu et al., 2003; Takata et al., 2003). In many hydrological models, groundwater is represented 198 

as a linear reservoir that is fed by groundwater recharge and drains to a river in the same grid 199 

cell (Müller Schmied et al., 2014; Gascoin et al., 2009; Ngo-Duc et al., 2007).  Time series of 200 

groundwater storage but not hydraulic heads are computed. This prevents simulation of lateral 201 

groundwater flow between grid cells, capillary rise and two-way exchange flows between 202 

surface water bodies and groundwater (Döll et al., 2016). However, representing groundwater 203 

as a water storage compartment that is connected to soil and surface water bodies by 204 

groundwater recharge and baseflow and is affected by groundwater abstractions and returns, 205 

enables global-scale assessment of groundwater resources and stress (Herbert and Döll, 2019) 206 

and groundwater depletion (Döll et al., 2014a; Wada et al., 2014; de Graaf et al., 2014). In some 207 

land surface models, the location of the groundwater table with respect to the land surface is 208 

simulated within each grid cell to enable simulation of capillary rise (Niu et al., 2007) but, as in 209 

the case of simulating groundwater as a linear reservoir, lateral groundwater transport or two-210 

way surface water-groundwater exchange cannot be simulated with this approach. 211 

  212 

Increasingly, models for simulating groundwater flows between all model grid cells in entire 213 

countries or globally have been developed, either as stand-alone models or as part of 214 

hydrological models (Vergnes & Decharme, 2012; Fan et al., 2013; Lemieux et al. 2008; de Graaf 215 

et al., 2017; Kollet et al., 2017; Maxwell et al., 2015; Reinecke et al., 2018, de Graaf et al 2019). 216 

The simulation of groundwater in large-scale models is a nascent and rapidly developing field 217 
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with significant computational and parameterization challenges which have led to significant 218 

and important efforts to develop and evaluate individual models. It is important to note that 219 

herein ‘large-scale models’ refer to models that are laterally extensive across multiple regions 220 

(hundreds to thousands of kilometers) and generally include the upper tens to hundreds of 221 

meters of subsurface and have resolutions sometimes as small as ~1 km. In contrast, ‘regional-222 

scale’ models (tens to hundreds of kilometers) have long been developed for a specific region 223 

or aquifer and can include greater depths and resolutions, more complex hydrostratigraphy and 224 

are often developed from conceptual models with significant regional knowledge. Regional-225 

scale models include a diverse range of approaches from stand-alone groundwater models (i.e., 226 

representing surface water and vadose zone processes using boundary conditions such as 227 

recharge) to fully integrated groundwater-surface water models. In the future, large-scale 228 

models could be developed in a number of different directions which we only briefly introduce 229 

here to maintain our primary focus on model evaluation. One important direction is clearer 230 

representation of three-dimensional geology and heterogeneity including karst (Condon et al. 231 

in review) which should be considered as part of conceptual model development prior to 232 

numerical model implementation. 233 

  234 

Now that a number of models that represent groundwater at continental to global scales have 235 

been developed and will continue evolving, it is equally important that we advance how we 236 

evaluate these models. To date, large-scale model evaluation has largely focused on individual 237 

models, with inconsistent practices between models and little community-level discussion or 238 
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cooperation, that lack the rigor of regional-scale model evaluation. Overall, we have only a 239 

partial and piecemeal understanding of the capabilities and limitations of different approaches 240 

to representing groundwater in large-scale models. Our objective is to provide clear 241 

recommendations for evaluating groundwater representation in continental and global models. 242 

We focus on model evaluation because this is the heart of model trust and reproducibility 243 

(Hutton et al., 2016) and improved model evaluation will guide how and where it is most 244 

important to focus future model development. We describe current model evaluation practices 245 

(Section 2) and consider diverse and uncertain sources of information, including observations, 246 

models, and experts to holistically evaluate the simulation of groundwater-related fluxes, 247 

stores and hydraulic heads (Section 3). We stress the need for an iterative and open-ended 248 

process of model improvement through continuous model evaluation against the different 249 

sources of information. We explicitly contrast the terminology used herein of ‘evaluation’ and 250 

‘comparison’ against terminology such as ‘calibration’ or ‘validation’ or ‘benchmarking’, which 251 

suggests a modelling process that is at some point complete. We extend previous 252 

commentaries advocating improved hydrologic process representation and evaluation in large-253 

scale hydrologic models (Clark et al. 2015; Melsen et al. 2016) by adding expert-elicitation and 254 

machine learning for more holistic evaluation. We also consider model objective and model 255 

evaluation across the diverse hydrologic landscapes which can both uncover blindspots in 256 

model development. It is important to note that we do not consider water quality or 257 

contamination, even though water quality or contamination is important for water resources, 258 

management and sustainability, since large-scale water quality models are in their infancy (van 259 

Vliet et al., 2019) 260 
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  261 

We bring together somewhat disparate scientific communities as a step towards greater 262 

community-level cooperation on these challenges, including global hydrology and land surface 263 

modelers, local to regional hydrogeologists, and hydrologists focused on model development 264 

and evaluation. We see three audiences beyond those currently directly involved in large-scale 265 

groundwater modeling that we seek to engage to accelerate model evaluation: 1) regional 266 

hydrogeologists who could be reticent about global models, and yet have crucial knowledge 267 

and data that would improve evaluation; 2) data scientists with expertise in machine learning, 268 

artificial intelligence etc. whose methods could be useful in a myriad of ways; and 3) the 269 

multiple Earth Science communities that are currently working towards integrating 270 

groundwater into a diverse range of models so that improved evaluation approaches are built 271 

directly into model development. 272 

2.      CURRENT MODEL EVALUATION PRACTICES 273 

Here we provide a brief overview of current large-scale groundwater models, the synergies and 274 

differences between regional-scale and large-scale model evaluation and development as well 275 

as the imitations of current evaluation practices for large-scale models. 276 

2.1 Brief overview of current large-scale groundwater models 277 

Various large-scale models exist along a spectrum of model complexity, which can make it 278 

difficult to determine the most appropriate model for a specific application. We developed a 279 

simple but systematic classification of current large-scale groundwater models (Table 1) to 280 
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summarize the main characteristics of existing models for the interdisciplinary audience of 281 

GMD. This classification builds on other reviews (Bierkens 2015; Condon et al., in review) and is 282 

not exhaustive, nor is it the only way to classify large-scale groundwater models. It is meant to 283 

be a first classification attempt that should evolve with time. We suggest that groundwater in 284 

current large-scale models can be classified functionally by two aspects that are crucial to how 285 

groundwater impacts water, energy, and nutrient budgets. First, whether lateral subsurface 286 

flow to a river is simulated within each cell independently of other cells, as 2D lateral 287 

groundwater flow between all cells or as 3D groundwater flow. Second, we distinguish two 288 

types of coupling between groundwater and related compartments (variably saturated soil 289 

zone, surface water, atmospheric processes): ‘one-way’ coupling (for example, recharge is 290 

imposed from the surface with no feedback from capillary rise or vegetation uptake, or 291 

groundwater flow to the surface does not depend on surface head) from ‘two-way’ coupling 292 

involves feedback loops. We also note atmospheric coupling which involves coupling a 293 

groundwater-surface model with an atmospheric model to propagate the influence of 294 

groundwater from the surface to the atmosphere, and the resulting feedback onto the surface 295 

and groundwater. This classification scheme (which could also be called a model typology) is 296 

based on a number of model characteristics such as the fluxes, stores and other features (Table 297 

1). 298 

  299 

2.2 Synergies between regional-scale and large-scales 300 
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Regional-scale and large-scale groundwater models are both governed by the same physical 301 

equations and share many of the same challenges.  Like large-scale models, some regional-scale 302 

models have challenges with representing important regional hydrologic processes such as 303 

mountain block recharge (Markovich et al. 2019), and data availability challenges (such as the 304 

lack of reliable subsurface parameterization and hydrologic monitoring data) are common. We 305 

propose there are largely untapped potential synergies between regional-scale and large-scale 306 

models based on these commonalities and the inherent strengths and limitations of each scale 307 

(Section 1). 308 

  309 

Much can be learned from regional-scale models to inform the development and evaluation of 310 

large-scale groundwater models. Regional-scale models are evaluated using a variety of data 311 

types, some of which are available and already used at the global scale and some of which are 312 

not. In general, the most common data types used for regional-scale groundwater model 313 

evaluation match global-scale groundwater models: hydraulic head and either total streamflow 314 

or baseflow estimated using hydrograph separation approaches (eg. RRCA, 2003; Woolfenden 315 

and Nishikawa, 2014; Tolley et al., 2019). However, numerous data sources unavailable or not 316 

currently used at the global scale have also been applied in regional-scale models, such as 317 

elevation of surface water features (Hay et al., 2018), existing maps of the potentiometric 318 

surface (Meriano and Eyles, 2003), and dendrochronology (Schilling et al., 2014) and stable and 319 

radiogenic isotopes for determining water sources and residence times (Sanford, 2011). These 320 

and other ‘non-classical’ observations (Schilling et al. 2019) could be the inspiration for model 321 
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evaluation of large-scale models in the future but are beyond our scope to discuss. Further, 322 

given the smaller domain size of regional-scale models, expert knowledge and local ancillary 323 

data sources can be more directly integrated and automated parameter estimation approaches 324 

such as PEST are tractable (Leaf et al., 2015; Hunt et al., 2013). We directly build upon this 325 

practice of integration of expert knowledge below in Section 3.3. 326 

  327 

We  propose that there may also be potential benefits of large-scale models for the 328 

development of regional-scale models. For instance, the boundary conditions of some regional-329 

scale models could be improved with large-scale model results. The boundary conditions of 330 

regional-scale models are often assumed, calibrated or derived from other models or data. In a 331 

regional-scale model, increasing the model domain (moving the boundary conditions away 332 

from region of interests) or incorporating more hydrologic processes (for example, moving the 333 

boundary condition from recharge to the land surface incorporating evapotranspiration and 334 

infiltration) both can reduce the impact of boundary conditions on the region and problem of 335 

interest. Another potential benefit of large-scale models for regional-scale models is fuller 336 

inclusion of large-scale hydrologic and human processes that could further enhance the ability 337 

of regional-scale models to address both the science-focused and sustainability-focused 338 

purposes described in Section 1. For example, the stronger representation of large-scale 339 

atmospheric processes means that the downwind impact of groundwater irrigation on 340 

evapotranspiration on precipitation and streamflow can be assessed (DeAngelis et al., 2010; 341 

Kustu et al., 2011). Or, the effects of climate change and increased water use that affect the 342 



17 

inflow of rivers into the regional modelling domain can be taken from global scale analyses 343 

(Wada and Bierkens, 2014 ). Also, regional groundwater depletion might be largely driven by 344 

virtual water trade which can be better represented in global analysis and models than 345 

regional-scale models (Dalin et al. 2017). Therefore the processes and results of large-scale 346 

models could be used to make regional-scale models even more robust and better address key 347 

science and sustainability questions. 348 

  349 

Given the strengths of regional models, a potential alternative to development of large-scale 350 

groundwater models would be combining or aggregating multiple regional models in a 351 

patchwork approach (as in Zell and Sanford, 2020) to provide global coverage. This would have 352 

the advantage of better respecting regional differences but potentially create additional 353 

challenges because the regional models would have different conceptual models, governing 354 

equations, boundary conditions etc. in different regions. Some challenges of this patchwork 355 

approach include 1) the required collaboration of a large number of experts from all over the 356 

world over a long period of time; 2) regional groundwater flow models alone are not sufficient, 357 

they need to be integrated into a hydrological model so that groundwater-soil water and the 358 

surface water-groundwater interactions can be simulated; 3) the extent of regional aquifers 359 

does not necessarily coincide with the extent of river basins; and 4) the bias of regional 360 

groundwater models towards important aquifers which as described above, underlie only a 361 

portion of the world’s land mass or population and may bias estimates of fluxes such as surface 362 

water-groundwater exchange or evapotranspiration. Given these challenges, we argue that a 363 
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patchwork approach of integrating multiple regional models is a compelling idea but likely 364 

insufficient to achieve the purposes of large-scale groundwater modeling described in Section 365 

1. Although this nascent idea of aggregating regional models is beyond the scope of this 366 

manuscript, we consider this an important future research avenue, and encourage further 367 

exploration and improvement of regional-scale model integration from the groundwater 368 

modeling community. 369 

  370 

2.3 Differences between regional-scale and large-scales 371 

Although there are important similarities and potential synergies across scales, it is important 372 

to consider how or if large-scale models are fundamentally different to regional-scale models, 373 

especially in ways that could impact evaluation. The primary differences between large-scale 374 

and regional-scale models are that large-scale models (by definition) cover larger areas and, as 375 

a result, typically include more data-poor areas and are generally built at coarser resolution. 376 

These differences impact evaluations in at least five relevant ways: 377 

1) Commensurability errors (also called ‘representativeness’ errors) occur either when 378 

modelled grid values are interpolated and compared to an observation ‘point’ or when 379 

aggregation of observed ‘point’ values are compared to a modelled grid value (Beven, 380 

2005; Tustison et al., 2001; Beven, 2016; Pappenberger et al., 2009; Rajabi et al., 2018). 381 

For groundwater models in particular, commensurability error will depend on the number 382 

and locations of observation points, the variability structure of the variables being 383 
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compared such as hydraulic head and the interpolation or aggregation scheme applied 384 

(Tustison et al., 2001; Pappenberger et al., 2009; Reinecke et al., 2020). Commensurability 385 

is a problem for most scales of modelling, but likely more significant the coarser the 386 

model. Regional-scale groundwater models typically have fewer (though not insignificant) 387 

commensurability issues due to smaller grid cell sizes compared to large-scale models. 388 

2) Specificity to region, objective and model evaluation criteria because regional-scale 389 

models are developed specifically for a certain region and modeling or management 390 

objective whereas large-scale models are often more general and include different 391 

regions. As a result, large-scale models often have greater heterogeneity of processes and 392 

parameters, may not adopt the same calibration targets and variables, and are not subject 393 

to the policy or litigation that sometimes drives model evaluation of regional-scale 394 

models. 395 

3) Computational requirements can be immense for large-scale models which leads to 396 

challenges with uncertainty and sensitivity analysis. While some regional-scale models 397 

also have large computational demands, large-scale models cover larger domains and are 398 

therefore more vulnerable to this potential constraint. 399 

4) Data availability for large-scale models can be limited because they typically include data-400 

poor areas, which leads to challenges when only using observations for model evaluation. 401 

While data availability also affects regional-scale models, they are often developed for 402 

regions with known hydrological challenges based on existing data and/or modeling 403 

efforts are preceded by significant regional data collection from detailed sources (such as 404 
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local geological reports) that are not often included in continental to global datasets used 405 

for large-scale model parameterization. 406 

5) Subsurface detail in regional-scale models routinely include heterogeneous and 407 

anisotropic parameterizations which could be improved in future large-scale models. For 408 

example, intense vertical anisotropy routinely induces vertical flow dynamics from vertical 409 

head gradients that are tens to thousands of times greater than horizontal gradients 410 

which profoundly alter the meaning of the deep and shallow groundwater levels, with 411 

only the latter remotely resembling the actual water table. In contrast, currently most 412 

large-scale models use a single vertically homogeneous value for each grid cell, or at best 413 

have two layers (de Graaf et al,. 2017) 414 

  415 

2.4 Limitations of current evaluation practices for large-scale models 416 

Evaluation of large-scale models has often focused on streamflow or evapotranspiration 417 

observations but joint evaluation together with groundwater-specific variables is appropriate 418 

and necessary (e.g. Maxwell et al. 2015; Maxwell and Condon, 2016). Groundwater-specific 419 

variables useful for evaluating the groundwater component of large-scale models include: a) 420 

hydraulic head or water table depth; b) groundwater storage and groundwater storage changes 421 

which refer to long-term, negative or positive trends in groundwater storage where long-term, 422 

negative trends are called groundwater depletion; c) groundwater recharge; d) flows between 423 

groundwater and surface water bodies; and e) human groundwater abstractions and return 424 
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flows to groundwater. It is important to note that groundwater and surface water hydrology 425 

communities often have slightly different definitions of terms like recharge and baseflow 426 

(Barthel, 2014); we therefore suggest trying to precisely define the meanings of such words 427 

using the actual hydrologic fluxes which we do below. Table 2 shows the availability of 428 

observational data for these variables but does not evaluate the quality and robustness of 429 

observations. Overall there are significant inherent challenges of commensurability and 430 

measurability of groundwater observations in the evaluation of large-scale models.  We 431 

describe the current model evaluation practices for each of these variables here: 432 

  433 

a)      Simulated hydraulic heads or water table depth in large scale models are 434 

frequently compared to well observations, which are often considered the crucial 435 

data for groundwater model evaluation. Hydraulic head observations from a large 436 

number groundwater wells (>1 million) have been used to evaluate the spatial 437 

distribution of steady-state heads (Fan et al., 2013, de Graaf et al., 2015; Maxwell et 438 

al., 2015; Reinecke et al., 2019a, 2020). Transient hydraulic heads with seasonal 439 

amplitudes (de Graaf et al. 2017), declining heads in aquifers with groundwater 440 

depletion (de Graaf et al. 2019) and daily transient heads (Tran et al 2020) have also 441 

been compared to well observations. All evaluation with well observations is 442 

severely hampered by the incommensurability of point values of observed head with 443 

simulated heads that represent averages over cells of a size of tens to hundreds 444 

square kilometers; within such a large cell, land surface elevation, which strongly 445 
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governs hydraulic head, may vary a few hundred meters, and average observed 446 

head strongly depends on the number and location of well within the cell (Reinecke 447 

et al., 2020). Additional concerns with head observations are the 1) strong sampling 448 

bias of wells towards accessible locations, low elevations, shallow water tables, and 449 

more transmissive aquifers in wealthy, generally temperate countries (Fan et al., 450 

2019); 2) the impacts of pumping which may or may not be well known; 3) 451 

observational errors and uncertainty (Post and von Asmuth, 2013; Fan et al., 2019); 452 

and 4) that heads can reflect the poro-elastic effects of mass loading and unloading 453 

rather than necessarily aquifer recharge and drainage (Burgess et al, 2017). To date, 454 

simulated hydraulic heads have more often been compared to observed heads 455 

(rather than water table depth) which results in lower relative errors (Reinecke et 456 

al., 2020) because the range of heads (10s to 1000s m head) is much larger than the 457 

range of water table depths (<1 m to 100s m). 458 

 459 

b)     Simulated groundwater storage trends or anomalies in large-scale hydrological 460 

models have been evaluated using observations of groundwater well levels 461 

combined with estimates of storage parameters, such as specific yield; local-scale 462 

groundwater modeling; and translation of regional total water storage trends and 463 

anomalies from satellite gravimetry (GRACE: Gravity Recovery And Climate 464 

Experiment) to groundwater storage changes by estimating changes in other 465 

hydrological storages (Döll et al., 2012; 2014a). Groundwater storage changes 466 
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volumes and rates have been calculated for numerous aquifers, primarily in the 467 

United States, using calibrated groundwater models, analytical approaches, or 468 

volumetric budget analyses (Konikow, 2010). Regional-scale models have also been 469 

used to simulate groundwater storage trends untangling the impacts of water 470 

management during drought (Thatch et al. 2020). Satellite gravimetry (GRACE) is 471 

important but has limitations (Alley and Konikow, 2015). First, monthly time series 472 

of very coarse-resolution groundwater storage are indirectly estimated from 473 

observations of total water storage anomalies by satellite gravimetry (GRACE) but 474 

only after model- or observation-based subtraction of water storage changes in 475 

glaciers, snow, soil and surface water bodies (Lo et al., 2016; Rodell et al., 2009; 476 

Wada, 2016). As soil moisture, river or snow dynamics often dominate total water 477 

storage dynamics, the derived groundwater storage dynamics can be so uncertain 478 

that severe groundwater drought cannot be detected in this way (Van Loon et al., 479 

2017). Second, GRACE cannot detect the impact of groundwater abstractions on 480 

groundwater storage unless groundwater depletion occurs (Döll et al., 2014a,b). 481 

Third, the very coarse resolution can lead to incommensurability but in the opposite 482 

direction of well observations. It is important to note that the focus is on storage 483 

trends or anomalies since total groundwater storage to a specific depth (Gleeson et 484 

al., 2016) or in an aquifer (Konikow, 2010) can be estimated but the total 485 

groundwater storage in a specific region or cell cannot be simulated or observed 486 

unless the depth of interest is specified (Condon et al., 2020). 487 

  488 
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c)      Simulated large-scale groundwater recharge (vertical flux across the water table) 489 

has been evaluated using compilations of point estimates of groundwater recharge, 490 

results of regional-scale models, baseflow indices, and expert opinion (Döll and 491 

Fiedler, 2008; Hartmann et al., 2015) or compared between models (e.g. Wada et al. 492 

2010). In general, groundwater recharge is not directly measurable except by meter-493 

scale lysimeters (Scanlon et al., 2002), and many groundwater recharge methods 494 

such as water table fluctuations and chloride mass balance also suffer from similar 495 

commensurability issues as water table depth data. Although sometimes an input or 496 

boundary condition to regional-scale models, recharge in many large-scale 497 

groundwater models is simulated and thus can be evaluated. 498 

  499 

d)     The flows between groundwater and surface water bodies (rivers, lakes, wetlands) 500 

are simulated by many models but are generally not evaluated directly against 501 

observations of such flows since they are very rare and challenging. Baseflow (the 502 

slowly varying portion of streamflow originating from groundwater or other delayed 503 

sources) or streamflow ‘low flows’ (when groundwater or other delayed sources 504 

predominate), generally cannot be used to directly quantify the flows between 505 

groundwater and surface water bodies at large scales. Groundwater discharge to 506 

rivers can be estimated from streamflow observations only in the very dense gauge 507 

network and/or if streamflow during low flow periods is mainly caused by 508 

groundwater discharge and not by water storage in upstream lakes, reservoirs or 509 
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wetlands. These conditions are rarely met in case of streamflow gauges with large 510 

upstream areas that can be used for comparison to large-scale model output. de 511 

Graaf et al. (2019) compared the simulated timing of changes in groundwater 512 

discharge to observations and regional-scale models, but only compared the fluxes 513 

directly between the global- and regional-scale models.  Due to the challenges of 514 

directly observing the flows between groundwater and surface water bodies at large 515 

scales, this is not included in the available data in Table 2; instead in Section 3 we 516 

highlight the potential for using baseflow or the spatial distribution of perennial, 517 

intermittent and ephemeral streams in the future. 518 

 519 

e)     Groundwater abstractions have been evaluated by comparison to national, state 520 

and county scale statistics in the U.S. (Wada et al. 2010, Döll et al., 2012, 2014a, de 521 

Graaf et al. 2014). Irrigation is the dominant groundwater use sector in many 522 

regions; however, irrigation pumpage  is generally estimated from crop water 523 

demand and rarely metered.  GRACE and other remote sensing data have been used 524 

to estimate the irrigation water abstractions (Anderson et al. 2015b). The lack of 525 

records or observations of abstraction introduces significant uncertainties into large-526 

scale models and is simulated and thus can be evaluated. Human groundwater 527 

abstractions and return flows as well as groundwater recharge and the flows 528 

between groundwater and surface water bodies are necessary to simulate storage 529 

trends (described above). But each of these are considered separate observations 530 
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since they each have different data sources and assumptions. Groundwater 531 

abstraction data at the well scale are severely hampered by the incommensurability 532 

like hydraulic head and recharge described above. 533 

3. HOW TO IMPROVE THE EVALUATION OF LARGE-SCALE GROUNDWATER MODELS 534 

Based on Section 2, we argue that the current model evaluation practices are insufficient to 535 

robustly evaluate large-scale models. We therefore propose evaluating large-scale models using 536 

at least three strategies (pie-shapes in Figure 1): observation-, model-, and expert-driven 537 

evaluation which are potentially mutually beneficial because each strategy has its strengths and 538 

weaknesses. We are not proposing a brand new evaluation method here but rather separating 539 

strategies to consider the problem of large-scale model evaluation from different but highly 540 

interconnected perspectives. All three strategies work together for the common goal of 541 

‘improved model large-scale model evaluation’ which is what is the centre of Figure 1. 542 

  543 

When evaluating large-scale models, it is necessary to first consider reasonable expectations or 544 

how to know a model is ‘well enough’. Reasonable expectations should be based on the 545 

modeling purpose, hydrologic process understanding and the plausibly achievable degree of 546 

model realism. First, model evaluation should be clearly linked to the four science- or 547 

sustainability-focused purposes of representing groundwater in large-scale models (Section 1) 548 

and second, to our understanding of relevant hydrologic processes. The objective of large-scale 549 

models cannot be to reproduce the spatio-temporal details that regional-scale models can 550 
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reproduce. Determining the reasonable expectations is necessarily subjective, but can be 551 

approached using observation-, model-, and expert-driven evaluation. As a simple first step in 552 

setting realistic expectations, we propose that three physical variables can be used to form 553 

more convincing arguments that a large-scale model is well enough:  change in groundwater 554 

storage, water table depth, and regional fluxes between groundwater and surface water. Below 555 

we explore in more detail additional variables and approaches that can support this simple 556 

approach. 557 

  558 

Across all three model evaluation strategies of observation-, model-, and expert-driven 559 

evaluation, we advocate three principles underpinning model evaluation (base of Figure 1), 560 

none of which we are the first to suggest but we highlight here as a reminder: 1) model 561 

objectives, such as the groundwater science or groundwater sustainability objective 562 

summarised in Section 1, are important to model evaluation because they provide the context 563 

through which relevance of the evaluation outcome is set;  2) all sources of information 564 

(observations, models and experts) are uncertain and this uncertainty needs to be quantified 565 

for robust evaluation; and 3) regional differences are likely important for large-scale model 566 

evaluation - understanding these differences is crucial for the transferability of evaluation 567 

outcomes to other places or times. 568 

  569 
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We stress that we see the consideration and quantification of uncertainty as an essential need 570 

across all three types of model evaluation we describe below, so we discuss it here rather than 571 

with model-driven model evaluation (Section 3.2) where uncertainty analysis more narrowly 572 

defined would often be discussed. We further note that large-scale models have only been 573 

assessed to a very limited degree with respect to understanding, quantifying, and attributing 574 

relevant uncertainties. Expanding computing power, developing computationally frugal 575 

methods for sensitivity and uncertainty analysis, and potentially employing surrogate models 576 

can enable more robust sensitivity and uncertainty analysis such as used in regional-scale 577 

models (Habets et al., 2013; Hill, 2006; Hill & Tiedeman, 2007; Reinecke et al., 2019b). For now, 578 

we suggest applying computationally frugal methods such as the elementary effect test or local 579 

sensitivity analysis (Hill, 2006; Morris, 1991; Saltelli et al., 2000). Such sensitivity and 580 

uncertainty analyses should be applied not only to model parameters and forcings but also to 581 

model structural properties (e.g. boundary conditions, grid resolution, process simplification, 582 

etc.) (Wagener and Pianosi, 2019). This implies that the (independent) quantification of 583 

uncertainty in all model elements (observations, parameters, states, etc.) needs to be improved 584 

and better captured in available metadata. 585 

  586 

We advocate for considering regional differences more explicitly in model evaluation since 587 

likely no single model will perform consistently across the diverse hydrologic landscapes of the 588 

world (Van Werkhoven et al., 2008). Considering regional differences in large-scale model 589 

evaluation is motivated by recent model evaluation results and is already starting to be 590 
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practiced. Two recent sensitivity analyses of large-scale models reveal how sensitivities to input 591 

parameters vary in different regions for both hydraulic heads and flows between groundwater 592 

and surface water (de Graaf et al. 2019; Reinecke et al., 2020). In mountain regions, large-scale 593 

models tend to underestimate steady-state hydraulic head, possibly due to over-estimated 594 

hydraulic conductivity in these regions, which  highlights that model performance varies in 595 

different hydrologic landscapes. (de Graaf et al., 2015; Reinecke et al. 2019b). Additionally, 596 

there are significant regional differences in performance with low flows for a number of large-597 

scale models (Zaherpour et al. 2018) likely because of diverse implementations of groundwater 598 

and baseflow schemes. Large-scale model evaluation practice is starting to shift towards 599 

highlighting regional differences as exemplified by two different studies that explicitly mapped 600 

hydrologic landscapes to enable clearer understanding of regional differences. Reinecke et al. 601 

(2019b) identified global hydrological response units which highlighted the spatially distributed 602 

parameter sensitivities in a computationally expensive model, whereas Hartmann et al. (2017) 603 

developed and evaluated models for karst aquifers in different hydrologic landscapes based on 604 

different a priori system conceptualizations.  Considering regional differences in model 605 

evaluation suggests that global models could in the future consider a patchwork approach of 606 

different conceptual models, governing equations, boundary conditions etc. in different 607 

regions. Although beyond the scope of this manuscript, we consider this an important future 608 

research avenue. 609 

3.1 Observation-based model evaluation 610 
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Observation-based model evaluation is the focus of most current efforts and is important 611 

because we want models to be consistent with real-world observations. Section 2 and Table 2 612 

highlight both the strengths and limitations of current practices using observations. Despite 613 

existing challenges, we foresee significant opportunities for observation-based model 614 

evaluation and do not see data scarcity as a reason to exclude groundwater in large-scale 615 

models or to avoid evaluating these models. It is important to note that most so-called 616 

‘observations’ are modeled or derived quantities, and often at the wrong scale for evaluating 617 

large-scale models (Table 2; Beven, 2019). Given the inherent challenges of direct 618 

measurement of groundwater fluxes and stores especially at large scales, herein we consider 619 

the word ‘observation’ loosely as any measurements of physical stores or fluxes that are 620 

combined with or filtered through models for an output. For example, GRACE gravity 621 

measurements are combined with model-based estimates of water storage changes in glaciers, 622 

snow, soil and surface water for ‘groundwater storage change observations’ or streamflow 623 

measurements are filtered through baseflow separation algorithms for ‘baseflow observations’.  624 

The strengths and limitations as well as the data availability and spatial and temporal attributes 625 

of different observations are summarized in Table 2 which we hope will spur more systematic 626 

and comprehensive use of observations.  627 

  628 

Here we highlight nine important future priorities for improving evaluation using available 629 

observations. The first five priorities focus on current observations (Table 2) whereas the latter 630 

four focus on new methods or approaches: 631 
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1)     Focus on transient observations of the water table depth rather than 632 

hydraulic head observations that are long-term averages or individual times 633 

(often following well drilling). Water table depth are likely more robust 634 

evaluation metrics than hydraulic head because water table depth reveals 635 

great discrepancies and is a complex function of the relationship between 636 

hydraulic head and topography that is crucial to predicting system fluxes 637 

(including evapotranspiration and baseflow). Comparing transient 638 

observations and simulations instead of  long-term averages or individual 639 

times incorporates more system dynamics of storage and boundary 640 

conditions as temporal patterns are more important than absolute values 641 

(Heudorfer et al. 2019). For regions with significant groundwater depletion, 642 

comparing to declining water tables is a useful strategy (de Graaf et al. 2019), 643 

whereas in aquifers without groundwater depletion, seasonally varying  644 

water table depths are likely more useful observations (de Graaf et al. 2017). 645 

2)     Use baseflow, the slowly varying portion of streamflow originating from 646 

groundwater or other delayed sources. Döll and Fiedler (2008) included the 647 

baseflow index in evaluating recharge and baseflow has been used to 648 

calibrate the groundwater component of a land surface model (Lo et al. 649 

2008, 2010). But the baseflow index (BFI), linear and nonlinear baseflow 650 

recession behavior or baseflow fraction (Gnann et al., 2019) have not been 651 

used to evaluate any large-scale model that simulates groundwater flows 652 

between all model grid cells. There are limitations of using BFI and baseflow 653 
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recession characteristics to evaluate large-scale models (Table 2). Using 654 

baseflow only makes sense when the baseflow separation algorithm is better 655 

than the large-scale model itself, which may not be the case for some large-656 

scale models and only in time periods that can be assumed to be dominated 657 

by groundwater discharge. Similarly, using recession characteristics is 658 

dependent on an appropriate choice of recession extraction methods. But 659 

this remains available and obvious data derived from streamflow or spring 660 

flow observations that has been under-used to date. 661 

3)     Use the spatial distribution of perennial, intermittent, and ephemeral 662 

streams as an observation, which to our best knowledge has not been done 663 

by any large-scale model evaluation. The transition between perennial and 664 

ephemeral streams is an important system characteristic in groundwater-665 

surface water interactions (Winter et al. 1998), so we suggest that this might 666 

be a revealing evaluation criteria although there are similar limitations to 667 

using baseflow. The results of both quantifying baseflow and mapping 668 

perennial streams depend on the methods applied, they are not useful for 669 

quantifying groundwater-surface water interactions when there is upstream 670 

surface water storage, and they do not directly provide information about 671 

fluxes between groundwater and surface water. 672 

4)     Use data on land subsidence to infer head declines or aquifer properties for 673 

regions where  groundwater depletion is the main cause of compaction 674 
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(Bierkens and Wada, 2019). Lately, remote sensing methods such as GPS, 675 

airborne and space borne radar and lidar are frequently used to infer land 676 

subsidence rates (Erban et al., 2014).   Also, a number of studies combine 677 

geomechanical modelling (Ortega-Guerrero et al 1999; Minderhoud et al 678 

2017) and geodetic data to explain the main drivers of land subsidence. A 679 

few papers (e.g. Zhang and Burbey 2016) use a geomechanical model 680 

together with a withdrawal data and geodetic observations to estimate 681 

hydraulic and geomechanical subsoil properties. 682 

5)     Consider using socio-economic data for improving model input. For 683 

example, reported crop yields in areas with predominant groundwater 684 

irrigation could be used to evaluate groundwater abstraction rates. Or using 685 

well depth data (Perrone and Jasechko, 2019) to assess minimum aquifer 686 

depths or in coastal regions and deltas, the presence of deeper fresh 687 

groundwater under semi-confining layers. 688 

6)     Derive additional new datasets using meta-analysis and/or geospatial 689 

analysis such as gaining or losing stream reaches (e.g., from interpolated 690 

head measurements close to the streams), springs and groundwater-691 

dependent surface water bodies, or tracers. Each of these new data sources 692 

could in principle be developed from available data using methods already 693 

applied at regional scales but do not currently have an ‘off the shelf’ global 694 

dataset. For example, some large-scale models have been explicitly 695 
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compared with residence time and tracer data (Maxwell et al., 2016) which 696 

have also been recently compiled globally (Gleeson et al., 2016; Jasechko et 697 

al., 2017). This could be an important evaluation tool for large-scale models 698 

that are capable of simulating flow paths, or can be modified to do, though a 699 

challenge of this approach is the conservativity of tracers. Future meta-700 

analyses data compilations should report on the quality of the data and 701 

include possible uncertainty ranges as well as the mean estimates. 702 

7)     Use machine learning to identify process representations (e.g. Beven, 2020) 703 

or spatiotemporal patterns, for example of perennial streams, water table 704 

depths or baseflow fluxes, which might not be obvious in multi-dimensional 705 

datasets and could be useful in evaluation. For example, Yang et al. (2019) 706 

predicted the state of losing and gaining streams in New Zealand using 707 

Random Forest algorithms. A staggering variety of machine learning tools are 708 

available and their use is nascent yet rapidly expanding in geoscience and 709 

hydrology (Reichstein et al., 2019; Shen, 2018; Shen et al., 2018; Wagener et 710 

al., 2020). While large-scale groundwater models are often considered ‘data-711 

poor’, it may seem strange to propose using data-intensive machine learning 712 

methods to improve model evaluation. But some of the data sources are 713 

large (e.g over 2 million water level measurements in Fan et al. 2013 714 

although biased in distribution) whereas other observations such as 715 

evapotranspiration (Jung et al., 2011) and baseflow (Beck et al. 2013) are 716 

already interpolated and extrapolated using machine learning. Moving 717 
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forwards, it is important to consider commensurability while applying 718 

machine learning in this context. 719 

8)     Consider comparing models against hydrologic signatures - indices that 720 

provide insight into the functional behavior of the system under study 721 

(Wagener et al., 2007; McMilan, 2020). The direct comparison of simulated 722 

and observed variables through statistical error metrics has at least two 723 

downsides. One, the above mentioned unresolved problem of 724 

commensurability, and two, the issue that such error metrics are rather 725 

uninformative in a diagnostic sense - simply knowing the size of an error does 726 

not tell the modeller how the model needs to be improved, only that it does 727 

(Yilmaz et al., 2009). One way to overcome these issues, is to derive 728 

hydrologically meaningful signatures from the original data, such as the 729 

signatures derived from transient groundwater levels by Heudorfer et al. 730 

(2019). For example, recharge ratio (defined as the ratio of groundwater 731 

recharge to precipitation) might be hydrologically more informative than 732 

recharge alone (Jasechko et al., 2014) or the water table ratio and 733 

groundwater response time (Cuthbert et al. 2019; Opie et al., 2020) which 734 

are spatially-distributed signatures of groundwater systems dynamics. Such 735 

signatures might be used to assess model consistency (Wagener & Gupta, 736 

2005; Hrachowitz et al.2014) by looking at the similarity of patterns or spatial 737 

trends rather than the size of the aggregated error, thus reducing the 738 

commensurability problem. 739 
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9)     Understand and quantify commensurability error issues better so that a 740 

fairer comparison can be made across scales using existing data. As described 741 

above, commensurability errors will depend on the number and locations of 742 

observation points, the variability structure of the variables being compared 743 

such as hydraulic head and the interpolation or aggregation scheme applied. 744 

While to some extent we may appreciate how each of these factors affect 745 

commensurability error in theory, in practice their combined effects are 746 

poorly understood and methods to quantify and reduce commensurability 747 

errors for groundwater model purposes remain largely undeveloped. As 748 

such, quantification of commensurability error in (large-scale) groundwater 749 

studies is regularly overlooked as a source of uncertainty because it cannot 750 

be satisfactorily evaluated (Tregoning et al., 2012).  Currently, evaluation of 751 

simulated groundwater heads is plagued by, as yet, poorly quantified 752 

uncertainties stemming from commensurability errors and we therefore 753 

recommend future studies focus on developing solutions to this problem. An 754 

additional, subtle but important and unresolved commensurability issue can 755 

stem from conceptual models. Different hydrogeologists examining different 756 

scales, data or interpreting geology differently can  produce quite different 757 

conceptual models of the same region (Troldborg et al. 2007). 758 

We recommend evaluating models with a broader range of currently available data sources 759 

(with explicit consideration of data uncertainty and regional differences) while also 760 

simultaneously working to derive new data sets. Using data (such as baseflow, land subsidence, 761 
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or the spatial distribution of perennial, intermittent, and ephemeral streams) that is more 762 

consistent with the scale modelled grid resolution will hopefully reduce the commensurability 763 

challenges. However, data distribution and commensurability issues will likely still be present, 764 

which underscores the importance of the two following strategies. 765 

3.2. Model-based model evaluation 766 

Model-based model evaluation, which includes model intercomparison projects (MIP) and 767 

model sensitivity and uncertainty analysis, can be done with or without explicitly using 768 

observations. We describe both inter-model and inter-scale comparisons which could be 769 

leveraged to maximize the strengths of each of these approaches. 770 

  771 

The original MIP concept offers a framework to consistently evaluate and compare models, and 772 

associated model input, structural, and parameter uncertainty under different objectives (e.g., 773 

climate change, model performance, human impacts and developments). Early model 774 

intercomparisons of groundwater models focused on nuclear waste disposal (SKI, 1984). Since 775 

the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS; Sellers et 776 

al., 1993), the first large-scale MIP, the land surface modeling community has used MIPs to 777 

deepen understanding of land physical processes and to improve their numerical 778 

implementations at various scales from regional (e.g., Rhône-aggregation project; Boone et al., 779 

2004) to global (e.g., Global Soil Wetness Project; Dirmeyer, 2011). Two examples of recent 780 

model intercomparison efforts illustrate the general MIP objectives and practice. First, ISIMIP 781 

(Schewe et al., 2014; Warszawski et al., 2014) assessed water scarcity at different levels of 782 
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global warming. Second, IH-MIP2 (Kollet et al., 2017) used both synthetic domains and an 783 

actual watershed to assess fully-integrated hydrologic models because these cannot be 784 

validated easily by comparison with analytical solutions and uncertainty remains in the 785 

attribution of hydrologic responses to model structural errors. Model comparisons have 786 

revealed differences, but it is often unclear whether these stem from differences in the model 787 

structures, differences in how the parameters were estimated, or from other modelling choices 788 

(Duan et al., 2006). Attempts for modular modelling frameworks to enable comparisons 789 

(Wagener et al., 2001; Leavesley et al., 2002; Clark et al., 2008; Fenicia et al., 2011; Clark et al., 790 

2015) or at least shared explicit modelling protocols and boundary conditions (Refsgaard et al., 791 

2007; Ceola et al., 2015; Warszawski et al., 2014) have been proposed to reduce these 792 

problems. 793 

  794 

Inter-scale model comparison - for example, comparing a global model to a regional-scale 795 

model - is a potentially useful approach which is emerging for surface hydrology models 796 

(Hattermann et al., 2017; Huang et al., 2017) and could be applied to large-scale models with 797 

groundwater representation. For example, declining heads and decreasing groundwater 798 

discharge have been compared between a calibrated regional-scale model (RRCA, 2003) and a 799 

global model (de Graaf et al., 2019). A challenge to inter-scale comparisons is that regional-800 

scale models often have more spatially complex subsurface parameterizations because they 801 

have access to local data which can complicate model inter-comparison. Another approach 802 

which may be useful is running large-scale models over smaller (regional) domains at a higher 803 
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spatial resolution (same as a regional-scale model) so that model structure influences the 804 

comparison less. In the future, various variables that are hard to directly observe at large scales 805 

but routinely simulated in regional-scale models such as baseflow or recharge could be used to 806 

evaluate large-scale models, although these flux estimates can contain large uncertainty. In this 807 

way, the output fluxes and intermediate spatial scale of regional models provide a bridge across 808 

the “river of incommensurability” between highly location-specific data such as well 809 

observations and the coarse resolution of large-scale models. In such an evaluation, the 810 

uncertainty of flux estimates and scale of aggregation are both important to consider. It is 811 

important to consider that regional-scale models are not necessarily or inherently more 812 

accurate than large-scale models since problems may arise from conceptualization, 813 

groundwater-surface water interactions, scaling issues, parameterization etc. 814 

  815 

In order for a regional-scale model to provide a useful evaluation of a large-scale model, there 816 

are several important documentation and quality characteristics it should meet. At a bare 817 

minimum, the regional-scale model must be accessible and therefore meet basic replicability 818 

requirements including open and transparent input and output data and model code to allow 819 

large-scale modelers to run the model and interpret its output. Documentation through peer 820 

review, either through a scientific journal or agency such as the US Geological Survey, would be 821 

ideal. It is particularly important that the documentation discusses limitations, assumptions and 822 

uncertainties in the regional-scale model so that a large-scale modeler can be aware of 823 

potential weaknesses and guide their comparison accordingly. Second, the boundary conditions 824 
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and/or parameters being evaluated need to be reasonably comparable between the regional- 825 

and large-scale models. For example, if the regional-scale model includes human impacts 826 

through groundwater pumping while the large-scale model does not, a comparison of baseflow 827 

between the two models may not be appropriate. Similarly, there needs to be consistency in 828 

the time period simulated between the two models. Finally, as with data-driven model 829 

evaluation, the purpose of the large-scale model needs to be consistent with the model-based 830 

evaluation; matching the hydraulic head of a regional-scale model, for instance, does not 831 

indicate that estimates of stream-aquifer exchange are valid. Ideally, we recommend 832 

developing a community database of regional-scale models that meet this criteria. It is 833 

important to note that Rossman & Zlotnik (2014) review 88 regional-scale models while a good 834 

example of such a repository is the California Groundwater Model Archive 835 

(https://ca.water.usgs.gov/sustainable-groundwater-management/california-groundwater-836 

modeling.html). 837 

  838 

In addition to evaluating whether models are similar in terms of their outputs, e.g. whether 839 

they simulate similar groundwater head dynamics, it is also relevant to understand whether the 840 

influence of controlling parameters are similar across models. This type of analysis provides 841 

insights into process controls as well as dominant uncertainties.  Sensitivity analysis provides 842 

the mathematical tools to perform this type of model evaluation (Saltelli et al., 2008; Pianosi et 843 

al., 2016; Borgonovo et al., 2017). Recent applications of sensitivity analysis to understand 844 

modelled controls on groundwater related processes include the study by Reinecke et al. 845 

https://ca.water.usgs.gov/sustainable-groundwater-management/california-groundwater-modeling.html
https://ca.water.usgs.gov/sustainable-groundwater-management/california-groundwater-modeling.html
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(2019b) trying to understand parametric controls on groundwater heads and flows within a 846 

global groundwater model. Maples et al. (2020) demonstrated that parametric controls on 847 

groundwater recharge can be assessed for complex models, though over a smaller domain. As 848 

highlighted by both of these studies, more work is needed to understand how to best use 849 

sensitivity analysis methods to assess computationally expensive, spatially distributed and 850 

complex groundwater models across large domains (Hill et al., 2016). In the future, it would be 851 

useful to go beyond parameter uncertainty analysis (e.g. Reinecke et al. 2019b) to begin to look 852 

at all of the modelling decisions holistically such as the forcing data (Weiland et al., 2015) and 853 

digital elevation models (Hawker et al., 2018). Addressing this problem requires advancements 854 

in statistics (more efficient sensitivity analysis methods), computing (more effective model 855 

execution), and access to large-scale models codes (Hutton et al. 2016), but also better 856 

utilization of process understanding, for example to create process-based groups of parameters 857 

which reduces the complexity of the sensitivity analysis study (e.g. Hartmann et al., 2015; 858 

Reinecke et al., 2019b). 859 

3.3 Expert-based model evaluation 860 

A path much less traveled is expert-based model evaluation which would develop hypotheses 861 

of phenomena (and related behaviors, patterns or signatures) we expect to emerge from large-862 

scale groundwater systems based on expert knowledge, intuition, or experience. In essence, 863 

this model evaluation approach flips the traditional scientific method around by using 864 

hypotheses to test the simulation of emergent processes from large-scale models, rather than 865 

using large-scale models to test our hypotheses about environmental phenomena. This might 866 
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be an important path forward for regions where available data is very sparse or unreliable. The 867 

recent discussion by Fan et al. (2019) shows how hypotheses about large-scale behavior might 868 

be derived from expert knowledge gained through the study of smaller scale systems such as 869 

critical zone observatories. While there has been much effort to improve our ability to make 870 

hydrologic predictions in ungauged locations through the regionalization of hydrologic variables 871 

or of model parameters (Bloeschl et al., 2013), there has been much less effort to directly 872 

derive expectations of hydrologic behavior based on our perception of the systems under 873 

study. 874 

  875 

Large-scale models could then be evaluated against such hypotheses, thus providing a general 876 

opportunity to advance how we connect hydrologic understanding with large-scale modeling - a 877 

strategy that could also potentially reduce epistemic uncertainty (Beven et al., 2019), and which 878 

may be especially useful for groundwater systems given the data limitations described above. 879 

Developing appropriate and effective hypotheses is crucial and should likely focus on large-880 

scale controlling factors or relationships between controlling factors and output in different 881 

parts of the model domain; hypotheses that are too specific may only be able to be tested by 882 

certain model complexities or in certain regions. To illustrate the type of hypotheses we are 883 

suggesting, we list some examples of hypotheses drawn from current literature: 884 

●       water table depth and lateral flow strongly affect transpiration partitioning 885 

(Famiglietti and Wood, 1994; Salvucci and Entekhabi, 1995; Maxwell & Condon, 886 

2016); 887 
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●       the percentage of inter-basinal regional groundwater flow increases with aridity or 888 

decreases with frequency of perennial streams (Gleeson & Manning, 2008; 889 

Goderniaux et al, 2013; Schaller and Fan, 2008); or 890 

●       human water use systematically redistributes water resources at the continental 891 

scale via non-local atmospheric feedbacks (Al-Yaari et al., 2019; Keune et al., 2018). 892 

Alternatively, it might be helpful to also include hypotheses that have been shown to be 893 

incorrect since models should also not show relationships that have been shown to not exist in 894 

nature. For example of   a hypotheses that has recently been shown to be incorrect is that the 895 

baseflow fraction (baseflow volume/precipitation volume) follows the Budyko curve (Gnann et 896 

al. 2019) . As yet another alternative, hydrologic intuition could form the basis of model 897 

experiments, potentially including extreme model experiments (far from the natural 898 

conditions). For example, an experiment that artificially lowers the water table by decreasing 899 

precipitation (or recharge directly) could hypothesize the spatial variability across a domain 900 

regarding how ‘the drainage flux will increase and evaporation flux will decrease as the water 901 

table is lowered’. These hypotheses are meant only for illustrative purposes and we hope 902 

future community debate will clarify the most appropriate and effective hypotheses. We 903 

believe that the debate around these hypotheses alone will lead to advance our understanding, 904 

or, at least highlight differences in opinion.  905 

  906 
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Formal approaches are available to gather the opinions of experts and to integrate them into a 907 

joint result, often called expert elicitation (Aspinall, 2010; Cooke, 1991; O’Hagan, 2019). Expert 908 

elicitation strategies have been used widely to describe the expected behavior of 909 

environmental or man-made systems for which we have insufficient data or knowledge to build 910 

models directly. Examples include aspects of future sea-level rise (Bamber and Aspinall, 2013), 911 

tipping points in the Earth system (Lenton et al., 2018), or the vulnerability of bridges to scour 912 

due to flooding (Lamb et al., 2017). In the groundwater community, expert opinion is already 913 

widely used to develop system conceptualizations and related model structures (Krueger et al., 914 

2012; Rajabi et al., 2018; Refsgaard et al., 2007), or to define parameter priors (Ross et al., 915 

2009; Doherty and Christensen, 2011; Brunner et al., 2012; Knowling and Werner, 2016; Rajabi 916 

and Ataie-Ashtiani, 2016). The term expert opinion may be preferable to the term expert 917 

knowledge because it emphasizes a preliminary state of knowledge (Krueger et al., 2012). 918 

  919 

A critical benefit of expert elicitation is the opportunity to bring together researchers who have 920 

experienced very different groundwater systems around the world. It is infeasible to expect 921 

that a single person could have gained in-depth experience in modelling groundwater in semi-922 

arid regions, in cold regions, in tropical regions etc. Being able to bring together different 923 

experts who have studied one or a few of these systems to form a group would certainly create 924 

a whole that is bigger than the sum of its parts. If captured, it would be a tremendous source of 925 

knowledge for the evaluation of large-scale groundwater models. Expert elicitation also has a 926 

number of challenges including: 1) formalizing this knowledge in such a way that it is still usable 927 
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by third parties that did not attend the expert workshop itself; and 2) perceived or real 928 

differences in perspectives, priorities and backgrounds between regional-scale and large-scale 929 

modelers. 930 

  931 

So, while expert opinion and judgment play a role in any scientific investigation (O’Hagan, 932 

2019), including that of groundwater systems, we rarely use formal strategies to elicit this 933 

opinion. It is also less common to use expert opinion to develop hypotheses about the dynamic 934 

behavior of groundwater systems, rather than just priors on its physical characteristics. Yet, it is 935 

intuitive that information about system behavior can help in evaluating the plausibility of model 936 

outputs (and thus of the model itself). This is what we call expert-based evaluation herein. 937 

Expert elicitation is typically done in workshops with groups of a dozen or so experts (e.g. Lamb 938 

et al., 2018). Upscaling such expert elicitation in support of global modeling would require some 939 

web-based strategy and a formalized protocol to engage a sufficiently large number of people. 940 

Contributors could potentially be incentivized to contribute to the web platform by publishing a 941 

data paper with all contributors as co-authors and a secondary analysis paper with just the core 942 

team as coauthors. We recommend the community develop expert elicitation strategies to 943 

identify effective hypotheses that directly link to the relevant large-scale hydrologic processes 944 

of interest. 945 

4. CONCLUSIONS: towards a holistic evaluation of groundwater representation in large-scale models 946 
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Ideally, all three strategies (observation-based, model-based, expert-based) should be pursued 947 

simultaneously because the strengths of one strategy might further improve others. For 948 

example, expert- or model-based evaluation may highlight and motivate the need for new 949 

observations in certain regions or at new resolutions. Or observation-based model evaluation 950 

could highlight and motivate further model development or lead to refined or additional 951 

hypotheses. We thus recommend the community significantly strengthens efforts to evaluate 952 

large-scale models using all three strategies. Implementing these three model evaluation 953 

strategies may require a significant effort from the scientific community, so we therefore 954 

conclude with two tangible community-level initiatives that would be excellent first steps that 955 

can be pursued simultaneously with efforts by individual research groups or collaborations of 956 

multiple research groups. 957 

  958 

First, we need to develop a ‘Groundwater Modeling Data Portal’ that would both facilitate and 959 

accelerate the evaluation of groundwater representation in continental to global scale models 960 

(Bierkens, 2015). Existing initiatives such as IGRAC’s Global Groundwater Monitoring Network  961 

(https://www.un-igrac.org/special-project/ggmn-global-groundwater-monitoring-network) and 962 

HydroFrame (www.hydroframe.org), are an important first step but were not designed to 963 

improve the evaluation of large-scale models and the synthesized data remains very 964 

heterogeneous - unfortunately, even groundwater level time series data often remains either 965 

hidden or inaccessible for various reasons. This open and well documented data portal should 966 

include: 967 

https://www.un-igrac.org/special-project/ggmn-global-groundwater-monitoring-network
http://www.hydroframe.org/
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a)      observations for evaluation (Table 2) as well as derived signatures (Section 3.1); 968 

b)     regional-scale models that meet the standards described above and could facilitate 969 

inter-scale comparison (Section 3.2) and be a first step towards linking regional 970 

models (Section 2.2); 971 

c)      Schematizations, conceptual or perceptual models of large-scale models since 972 

these are the basis of computational models; and 973 

d)     Hypothesis and other results derived from expert elicitation (Section 3.3). 974 

Meta-data documentation, data tagging, aggregation and services as well as consistent data 975 

structures using well-known formats (netCDF, .csv, .txt) will be critical to developing a useful, 976 

dynamic and evolving community resource. The data portal should be directly linked to 977 

harmonized input data such as forcings (climate, land and water use etc.) and parameters 978 

(topography, subsurface parameters etc.), model codes, and harmonized output data. Where 979 

possible, the portal should follow established protocols, such as the Dublin Core Standards for 980 

metadata (https://dublincore.org) and ISIMIP protocols for harmonizing data and modeling 981 

approach, and would ideally be linked to or contained within an existing disciplinary repository 982 

such as HydroShare (https://www.hydroshare.org/) to facilitate discovery, maintenance, and 983 

long-term support. Additionally, an emphasis on model objective, uncertainty and regional 984 

differences as highlighted (Section 3) will be important in developing the data portal. Like 985 

expert-elicitation, contribution to the data portal could be incentivized through co-authorship 986 

in data papers and by providing digital object identifiers (DOIs) to submitted data and models 987 

https://dublincore.org/specifications/dublin-core/
https://www.hydroshare.org/
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so that they are citable. By synthesizing and sharing groundwater observations, models, and 988 

hypotheses, this portal would be broadly useful to the hydrogeological community beyond just 989 

improving global model evaluation. 990 

  991 

Second, we suggest ISIMIP, or a similar model intercomparison project, could be harnessed as a 992 

platform to improve the evaluation of groundwater representation in continental to global 993 

scale models. For example, in ISIMIP (Warszawski et al., 2014), modelling protocols have been 994 

developed with an international network of climate-impact modellers across different sectors 995 

(e.g. water, agriculture, energy, forestry, marine ecosystems) and spatial scales. Originally, 996 

ISIMIP started with multi-model comparison (model-based model evaluation), with a focus on 997 

understanding how model projections vary across different sectors and different climate 998 

change scenarios (ISIMIP Fast Track). However, more rigorous model evaluation came to 999 

attention more recently with ISIMIP2a, and various observation data, such as river discharge 1000 

(Global Runoff Data Center), terrestrial water storage (GRACE), and water use (national 1001 

statistics), have been used to evaluate historical model simulation (observation-based model 1002 

evaluation). To better understand model differences and to quantify the associated uncertainty 1003 

sources, ISIMIP2b includes evaluating scenarios (land use, groundwater use, human impacts, 1004 

etc) and key assumptions (no explicit groundwater representation, groundwater availability for 1005 

the future, water allocation between surface water and groundwater), highlighting that 1006 

different types of hypothesis derived as part of the expert-based model evaluation could 1007 

possibly be simulated as part of the ISIMIP process in the future. While there has been a 1008 
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significant amount of research and publications on MIPs including surface water availability, 1009 

limited multi-model assessments for large-scale groundwater studies exist. Important aspects 1010 

of MIPs in general could facilitate all three model evaluation strategies: community-building 1011 

and cooperation with various scientific communities and research groups, and making the 1012 

model input and output publicly available in a standardized format. 1013 

  1014 

Large-scale hydrologic and land surface models increasingly represent groundwater, which we 1015 

envision will lead to a better understanding of large-scale water systems and to more 1016 

sustainable water resource use. We call on various scientific communities to join us in this 1017 

effort to improve the evaluation of groundwater in continental to global models. As described 1018 

by examples above, we have already started this journey and we hope this will lead to better 1019 

outcomes especially for the goals of including groundwater in large-scale models that we 1020 

started with above: improving our understanding of Earth system processes; and informing 1021 

water decisions and policy. Along with the community currently directly involved in large-scale 1022 

groundwater modeling, above we have made pointers to other communities who we hope will 1023 

engage to accelerate model evaluation: 1) regional hydrogeologists, who would be useful 1024 

especially in expert-based model evaluation (Section 3.3); 2) data scientists with expertise in 1025 

machine learning, artificial intelligence etc. whose methods could be useful especially for 1026 

observation- and model-based model evaluation (Sections 3.1 and 3.2); and 3) the multiple 1027 

Earth Science communities that are currently working towards integrating groundwater into a 1028 

diverse range of models so that improved evaluation approaches are built directly into model 1029 
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development. Together we can better understand what has always been beneath our feet, but 1030 

often forgotten or neglected. 1031 
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Table 1. A possible model classification based on three model classes and various model characteristics; see link 1049 

to google doc to view easier (google doc will be migrated to a community github page if article accepted) 1050 

 1051 

  1052 

 1053 
  1054 

https://www.google.com/url?q=https://docs.google.com/spreadsheets/d/1_0QqpI44ldhemvs0COX4jOndpNmJ6fkP6RaKffl1KxA/edit?usp%3Dsharing&sa=D&source=editors&ust=1629134313188581&usg=AOvVaw1J6_RmnAKIfu1ffB-Eu_1b
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 Table 2. Available observations for evaluating the groundwater component of large-scale models 1055 

  1056 

Data type Strengths Limitations Data availability and  spatial 
resolution 

Available observations already used to evaluate large-scale models 

Hydraulic heads or 
water table depth 
(averages or single 
times) 

Direct observation of 
groundwater levels and 
storage 

observations biased 
towards North America and 
Europe; non- 
commensurable with large-
scale models; mixture of 
observation times 

IGRAC Global Groundwater 
Monitoring Network;  USGS; 
Fan et al. (2013) 

Point measurements at 
existing wells 

Hydraulic heads  or 
water table depth 
(transient) 

Direct observation of 
changing groundwater 
levels and storage 

As above time-series available in a few 
regions, especially through 
USGS  and European 
Groundwater Drought 
Initiative 

Point measurements at 
existing wells 

Total water storage 
anomalies (GRACE) 

Globally available and 
regionally integrated 
signal of  water storage 
trends and anomalies 

Groundwater changes are 
uncertain model remainder; 
very coarse spatial 
resolution and limited 
period 

Various mascons gridded with 
resolution of ∼100,000 km2 

which are then processed as 
groundwater storage change; 
Scanlon et al. (2016) 

 

Storage change 
(regional aquifers) 

Regionally integrated 
response of aquifer 
(independent estimates 
derived by various 
methods) 

Bias towards North America 
and Europe 

Konikow (2011); Döll et al. 
(2014a) 

Regional aquifers (10,000s to 
100,000s km2 ) 

Recharge Direct inflow of 
groundwater system 

Challenging to measure and 
upscale 

Döll and Fiedler (2008); 
Hartmann et al. (2017); Mohan 
et al. (2018); Moeck et al. 
(2020) 

https://www.un-igrac.org/special-project/ggmn-global-groundwater-monitoring-network
https://www.un-igrac.org/special-project/ggmn-global-groundwater-monitoring-network
https://www.bgs.ac.uk/research/groundwater/waterResources/groundwaterDroughtInitiative/home.html
https://www.bgs.ac.uk/research/groundwater/waterResources/groundwaterDroughtInitiative/home.html
https://www.bgs.ac.uk/research/groundwater/waterResources/groundwaterDroughtInitiative/home.html
https://www.bgs.ac.uk/research/groundwater/waterResources/groundwaterDroughtInitiative/home.html
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Point to small basin 

Abstractions Crucial for groundwater 
depletion and 
sustainability studies 

National scale data highly 
variable in quality; 
downscaling uncertain 

de Graaf et al. (2014); Döll et 
al. (2014a) 

National-scale data down-
scaled to grid 

Streamflow or 
spring flow 
observations 

Widely available at 
various scales; low flows 
can be related to 
groundwater 

Challenging to quantify the 
flows between 
groundwater and surface 
water from streamflow 

Global Runoff Data Centre 
(GRDC) or other data sources; 
large to small basin; Olarinoye 
et al. (2020)  

point measurements of spring 
flow 

Evapotranspiration Widely available; 
related to groundwater 
recharge or discharge 
(for shallow water 
tables) 

Not a direct groundwater 
observations 

Various datasets; e.g. Miralles 
et al. (2016); 
 
 gridded 

Available observations not being used to evaluate large-scale models 

Baseflow index (BFI) 
or (non-)linear 
baseflow recession 
behavior 

Possible integrator of 
groundwater 
contribution to 
streamflow over a basin 

BFI and k values vary with 
method; baseflow may be 
dominated by upstream 
surface water storage 
rather than groundwater 
inflow; can not identify 
losing river conditions 

Beck et al. (2013) 

Point observations 
extrapolated by machine 
learning 

https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/ELOHA/Pages/Global-Streamflow-Databases.aspx
https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/ELOHA/Pages/Global-Streamflow-Databases.aspx
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Perennial stream 
map 

Ephemeral streams are 
losing streams, whereas 
perennial streams could 
be gaining (or impacted 
by upstream surface 
water storage) 

Mapping perennial streams 
requires arbitrary 
streamflow and duration 
cutoffs;  not all perennial 
stream reaches are 
groundwater-influenced; 
does not provide 
information about 
magnitude of 
inflows/outflows. 

Schneider et al. (2017); 
Cuthbert et al. (2019); 

Spatially continuous along 
stream networks 

Gaining or losing 
stream reaches 

Multiple techniques for 
measurement 
(interpolated head 
measurements, 
streamflow data, water 
chemistry). Constrains 
direction of fluxes at 
groundwater system 
boundaries 

Relevant processes occur at 
sub-grid-cell resolution. 

Not globally available but see 
Bresciani et al. (2018) for a 
regional example; 

Spatially continuous along 
stream networks 

Springs and 
groundwater-
dependent surface 
water bodies 

Constrains direction of 
fluxes at groundwater 
system boundaries 

Relevant processes occur at 
sub-grid-cell resolution. 

Springs available for various 
regions but not globally; 
Springer, & Stevens (2009)  
Point measurements at water 
feature locations 

Tracers (heat, 
isotopes or other 
geochemical) 

Provides information 
about temporal aspects 
of groundwater systems 
(e.g. residence time) 

No large-scale models 
simulate transport 
processes (Table S1) 

Isotopic data compiled but no 
global data for heat or other 
chemistry; Gleeson et al. 
(2016); Jasechko et al. (2017) 

Point measurements at 
existing wells or surface water 
features 

Surface elevation 
data (leveling, GPS, 
radar/lidar) an in 
particular land 
subsidence 
observations 

Provides information 
about changes in 
surface elevation that 
are related to 
groundwater head 
variations or 
groundwater head 
decline 

Provides indirect 
information and needs a 
geomechanical model to 
translate to head. 
Introduces additional 
uncertainty of 
geomechnical properties. 

Leveling data, GPS data and 
lidar observations mostly 
limited to areas of active 
subsidence; Minderhoud et al. 
(2019,2020).  
 
Global data on elevation 
change are available from the 
Sentinel 1 mission. 
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  1061 

Figure 1: Improved large-scale model evaluation rests on three pillars: observation-, model-, 1062 
and expert-based model evaluation. We argue that each pillar is an essential strategy so that 1063 
all three should be simultaneously pursued by the scientific community.  The three pillars of 1064 
model evaluation all rest on three core principles related to 1) model objectives, 2) 1065 
uncertainty and 3) regional differences. 1066 
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  1070 
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