

1 **GMD Perspective: the quest to improve the**
2 **evaluation of groundwater representation in**
3 **continental to global scale models**

4 **Tom Gleeson ^{1,2}, Thorsten Wagener ³, Petra Döll ⁴, Samuel C Zipper ^{1, 5}, Charles West ³,**
5 **Yoshihide Wada⁶, Richard Taylor ⁷, Bridget Scanlon ⁸, Rafael Rosolem³, Shams Rahman³,**
6 **Nurudeen Oshinlaja ⁹, Reed Maxwell ¹⁰, Min-Hui Lo ¹¹, Hyungjun Kim ^{12,13,14}, Mary Hill ¹⁵,**
7 **Andreas Hartmann ^{16,3}, Graham Fogg ¹⁷, James S. Famiglietti ¹⁸, Agnès Ducharne ¹⁹, Inge de**
8 **Graaf ^{20,21}, Mark Cuthbert ^{11,22}, Laura Condon ²³, Etienne Bresciani ²⁴, Marc F.P. Bierkens ^{25, 26}**

9 ¹ Department of Civil Engineering, University of Victoria, Canada

10 ² School of Earth and Ocean Sciences, University of Victoria, Canada

11 ³ Department of Civil Engineering, University of Bristol, UK & Cabot Institute, University of
12 Bristol, UK.

13 ⁴ Institut für Physische Geographie, Goethe-Universität Frankfurt am Main and Senckenberg
14 Leibniz Biodiversity and Climate Research Centre Frankfurt (SBiK-F), Frankfurt am Main,
15 Germany

16 ⁵ Kansas Geological Survey, University of Kansas, USA

17 ⁶ International Institute for Applied Systems Analysis, Laxenburg, Austria

18 ⁷ Department of Geography, University College London, UK

19 ⁸ Bureau of Economic Geology, The University of Texas at Austin, USA

20 ⁹ School of Earth and Environmental Sciences & Water Research Institute, Cardiff University, UK

21 ¹⁰ Department of Geology and Geological Engineering, Colorado School of Mines, USA

22 ¹¹ Department of Atmospheric Sciences, National Taiwan University, Taiwan

23 ¹² Moon Soul Graduate School of Future Strategy, Korea Advanced Institute of Science
24 Technology, Korea

25 ¹³ Department of Civil and Environmental Engineering Korea Advanced Institute of Science
26 Technology, Korea

27 ¹⁴ Institute of Industrial Science, The University of Tokyo, Japan

28 ¹⁵ Department of Geology, University of Kansas, USA

29 ¹⁶ Chair of Hydrological Modeling and Water Resources, University of Freiburg, Germany

30 ¹⁷ Department of Land, Air and Water Resources and Earth and Planetary Sciences, University of
31 California, Davis, USA

32 ¹⁸ School of Environment and Sustainability and Global Institute for Water Security, University
33 of Saskatchewan, Saskatoon, Canada

34 ¹⁹ Sorbonne Université, CNRS, EPHE, IPSL, UMR 7619 METIS, Paris, France

35 ²⁰ Chair of Environmental Hydrological Systems, University of Freiburg, Germany

36 ²¹ Water Systems and Global Change Group, Wageningen University, Wageningen, Netherlands

37 ²² School of Civil and Environmental Engineering, The University of New South Wales, Sydney,
38 Australia

39 ²³ Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, Arizona,
40 USA

41 ²⁴ Center for Advanced Studies in Arid Zones (CEAZA), La Serena, Chile

42 ²⁵ Physical Geography, Utrecht University, Utrecht, Netherlands

43 ²⁶ Deltares, Utrecht, Netherlands

44

45 **Abstract**

46 Continental- to global-scale hydrologic and land surface models increasingly include
47 representations of the groundwater system. Such large-scale models are essential for

48 examining, communicating, and understanding the dynamic interactions between the Earth
49 System above and below the land surface as well as the opportunities and limits of
50 groundwater resources. We argue that both large-scale and regional-scale groundwater models
51 have utility, strengths and limitations so continued modeling at both scales is essential and
52 mutually beneficial. A crucial quest is how to evaluate the realism, capabilities and performance
53 of large-scale groundwater models given their modeling purpose of addressing large-scale
54 science or sustainability questions as well as limitations in data availability and
55 commensurability. Evaluation should identify if, when or where large-scale models achieve
56 their purpose or where opportunities for improvements exist so that such models better
57 achieve their purpose. We suggest that reproducing the spatio-temporal details of regional-
58 scale models and matching local data is not a relevant goal. Instead, it is important to decide on
59 reasonable model expectations regarding when a large scale model is performing 'well enough'
60 in the context of its specific purpose. The decision of reasonable expectations is necessarily
61 subjective even if the evaluation criteria are quantitative. Our objective is to provide
62 recommendations for improving the evaluation of groundwater representation in continental-
63 to global-scale models. We describe current modeling strategies and evaluation practices, and
64 subsequently discuss the value of three evaluation strategies: 1) comparing model outputs with
65 available observations of groundwater levels or other state or flux variables (observation-based
66 evaluation); 2) comparing several models with each other with or without reference to actual
67 observations (model-based evaluation); and 3) comparing model behavior with expert
68 expectations of hydrologic behaviors in particular regions or at particular times (expert-based
69 evaluation). Based on evolving practices in model evaluation as well as innovations in

70 observations, machine learning and expert elicitation, we argue that combining observation-,
71 model-, and expert-based model evaluation approaches, while accounting for
72 commensurability issues, may significantly improve the realism of groundwater representation
73 in large-scale models. Thus advancing our ability for quantification, understanding, and
74 prediction of crucial Earth science and sustainability problems. We encourage greater
75 community-level communication and cooperation on this quest, including among global
76 hydrology and land surface modelers, local to regional hydrogeologists, and hydrologists
77 focused on model development and evaluation.

78 **1. INTRODUCTION: why and how is groundwater modeled at continental to global scales?**

79 Groundwater is the largest human- and ecosystem-accessible freshwater storage component of
80 the hydrologic cycle (UNESCO, 1978; Margat & Van der Gun, 2013; Gleeson et al., 2016).
81 Therefore, better understanding of groundwater dynamics is critical at a time when the 'great
82 acceleration' (Steffen et al., 2015) of many human-induced processes is increasing stress on
83 water resources (Wagener et al., 2010; Montanari et al., 2013; Sivapalan et al., 2014; van Loon
84 et al., 2016), especially in regions with limited data availability and analytical capacity.
85 Groundwater is often considered to be an inherently regional rather than global resource or
86 system. This is partially reasonable because local to regional peculiarities of hydrology, politics
87 and culture are paramount to groundwater resource management (Foster et al. 2013) and
88 groundwater dynamics in different continents are less directly connected and coupled than
89 atmospheric dynamics. Regional-scale analysis and models are essential for addressing local to
90 regional groundwater issues. Generally, regional scale modeling is a mature, well-established

91 field (Hill & Tiedeman, 2007; Kresic, 2009; Zhou & Li, 2011; Hiscock & Bense, 2014; Anderson et
92 al. 2015a) with clear and robust model evaluation guidelines (e.g. ASTM, 2016; Barnett et al.,
93 2012). Regional models have been developed around the world; for example, Rossman &
94 Zlotnik (2014) and Vergnes et al. (2020) synthesize regional-scale groundwater models across
95 the western United States and Europe, respectively.

96

97 Yet, important global aspects of groundwater both as a resource and as part of the Earth
98 System are emerging (Gleeson et al. 2020). First, our increasingly globalized world trades virtual
99 groundwater and other groundwater-dependent resources in the food-energy-water nexus,
100 and groundwater often crosses borders in transboundary aquifers. A solely regional approach
101 can be insufficient to analysing and managing these complex global interlinkages. Second, from
102 an Earth system perspective, groundwater is part of the hydrological cycle and connected to
103 the atmosphere, oceans and the deeper lithosphere. A solely regional approach is insufficient
104 to uncover and understand the complex interactions of groundwater within the Earth System
105 and teleconnections, which are groundwater levels or flows in one region linked to
106 geographically separated regions via physical or socio-economic processes. Regional
107 approaches generally focus on important aquifers which underlie only a portion of the world's
108 land mass or population and do not include many other parts of the land surface that may be
109 important for processes like surface water-groundwater exchange flows and
110 evapotranspiration. A global approach is also essential to assess the impact of groundwater
111 depletion on sea level rise, since groundwater storage loss rate on all continents of the Earth

112 must be aggregated. Thus, we argue that groundwater is simultaneously a local, regional, and
113 increasingly global resource and system and that examining groundwater problems, solutions,
114 and interactions at all scales is crucial. As a consequence, we urgently require predictive
115 understanding about how groundwater, used by humans and connected with other
116 components of the Earth System, operates at a variety of scales.

117

118 Based on the arguments above for considering global perspectives on groundwater, we see four
119 specific purposes of representing groundwater in continental- to global-scale hydrological or
120 land surface models and their climate modeling frameworks:

121 (1) To understand and quantify interactions between groundwater and past, present and
122 future climate. Groundwater systems can have far-reaching effects on climate affecting
123 modulation of surface energy and water partitioning with a long-term memory (Anyah
124 et al., 2008; Maxwell and Kollet, 2008; Koirala et al. 2013; Krakauer et al., 2014;
125 Maxwell et al., 2016; Taylor, et al., 2013a; Meixner et et, 2018; Wang et al., 2018;
126 Keune et al., 2018). While there have been significant advances in understanding the
127 role of lateral groundwater flow on evapotranspiration (Maxwell & Condon, 2016;
128 Bresciani et al, 2016), the interactions between climate and groundwater over longer
129 time scales (Cuthbert et al., 2019) as well as between irrigation, groundwater, and
130 climate (Condon and Maxwell, 2019; Condon et al 2020) remain largely unresolved.
131 Additionally, it is well established that old groundwater with slow turnover times are
132 common at depth (Befus et al. 2017; Jasechko et al. 2017). Groundwater connections to

133 the atmosphere are well documented in modeling studies (e.g. Forrester and Maxwell,
134 2020). Previous studies have demonstrated connections between the atmospheric
135 boundary layer and water table depth (e.g. Maxwell et al 2007; Rahman et al, 2015),
136 under land cover disturbance (e.g. Forrester et al 2018), under extremes (e.g. Kuene et
137 al 2016) and due to groundwater pumping (Gilbert et al 2017). While a number of
138 open source platforms have been developed to study these connections (e.g. Maxwell
139 et al 2011; Shrestha et al 2014; Sulis, 2017), these platforms are regional to continental
140 in extent. Recent work has shown global impacts of groundwater on atmospheric
141 circulation (Wang et al 2018), but groundwater is still quite simplified in this study.

142 (2) To understand and quantify two-way interactions between groundwater, the rest of
143 the hydrologic cycle, and the broader Earth System. As the main storage component of
144 the freshwater hydrologic cycle, groundwater systems support baseflow levels in
145 streams and rivers, and thereby ecosystems and agricultural productivity and other
146 ecosystem services in both irrigated and rainfed systems (Scanlon et al., 2012; Qiu et
147 al., 2019; Visser, 1959; Zipper et al., 2015, 2017). When pumped groundwater is
148 transferred to oceans (Konikow 2011; Wada et al., 2012; Döll et al., 2014a; Wada,
149 2016; Caceres et al., 2020; Luijendijk et al. 2020), resulting sea-level rise can impact
150 salinity levels in coastal aquifers, and freshwater and solute inputs to the ocean
151 (Moore, 2010; Sawyer et al., 2016). Difficulties are complicated by international trade
152 of virtual groundwater which causes aquifer stress in disparate regions (Dalin et al.,
153 2017)

154 (3) To inform water decisions and policy for large, often transboundary groundwater
155 systems in an increasingly globalized world (Wada & Heinrich, 2013; Herbert & Döll,
156 2019). For instance, groundwater recharge from large-scale models has been used to
157 quantify groundwater resources in Africa, even though large-scale models do not yet
158 include all recharge processes that are important in this region (Taylor et al., 2013b;
159 Jasechko et al. 2014; Cuthbert et al., 2019; Hartmann et al., 2017).

160 (4) To create visualizations and interactive opportunities that inform citizens and
161 consumers, whose decisions have global-scale impacts, about the state of groundwater
162 all around the world such as the World Resources Institute's Aqueduct website
163 (<https://www.wri.org/aqueduct>), a decision-support tool to identify and evaluate
164 global water risks.

165 The first two purposes are science-focused while the latter two are sustainability-focused. In
166 sum, continental- to global-scale hydrologic models incorporating groundwater offer a coherent
167 scientific framework to examine the dynamic interactions between the Earth System above and
168 below the land surface, and are compelling tools for conveying the opportunities and limits of
169 groundwater resources to people so that they can better manage the regions they live in, and
170 better understand the world around them. We consider both large-scale and regional-scale
171 models to be useful practices that should both continue to be conducted rather than one
172 replacing another. Ideally large-scale and regional-scale models should benefit from the other
173 since each has strengths and weaknesses and together the two practices enrich our
174 understanding and support the management of groundwater across scales (Section 2).

175 The challenge of incorporating groundwater processes into continental- or global-scale models
176 is formidable and sometimes controversial. Some of the controversy stems from unanswered
177 questions about how best to represent groundwater in the models whereas some comes from
178 skepticism about the feasibility of modelling groundwater at non-traditional scales. We
179 advocate for the representation of groundwater stores and fluxes in continental to global
180 models for the four reasons described above. We do not claim to have all the answers on how
181 best to meet this challenge. We contend, however, that the hydrologic community needs to
182 work deliberately and constructively towards effective representations of groundwater in
183 global models.

184

185 Driven by the increasing recognition of the purpose of representing groundwater in
186 continental- to global-scale models, many global hydrological models and land surface models
187 have incorporated groundwater to varying levels of complexity depending on the model
188 provenance and purpose. Different from regional-scale groundwater models that generally
189 focus on subsurface dynamics, the focus of these models is on estimating either runoff and
190 streamflow (hydrological models) or land-atmosphere water and energy exchange (land surface
191 models). Simulation of groundwater storages and hydraulic heads mainly serve to quantify
192 baseflow that affects streamflow during low flow periods or capillary rise that increases
193 evapotranspiration. Some land-surface models use approaches based on the topographic index
194 to simulate fast surface and slow subsurface runoff based on the fraction of saturated area in
195 the grid cell (Clark et al., 2015; Fan et al., 2019); groundwater in these models does not

196 explicitly have water storage or hydraulic heads (Famiglietti & Wood, 1994; Koster et al., 2000;
197 Niu et al., 2003; Takata et al., 2003). In many hydrological models, groundwater is represented
198 as a linear reservoir that is fed by groundwater recharge and drains to a river in the same grid
199 cell (Müller Schmied et al., 2014; Gascoin et al., 2009; Ngo-Duc et al., 2007). Time series of
200 groundwater storage but not hydraulic heads are computed. This prevents simulation of lateral
201 groundwater flow between grid cells, capillary rise and two-way exchange flows between
202 surface water bodies and groundwater (Döll et al., 2016). However, representing groundwater
203 as a water storage compartment that is connected to soil and surface water bodies by
204 groundwater recharge and baseflow and is affected by groundwater abstractions and returns,
205 enables global-scale assessment of groundwater resources and stress (Herbert and Döll, 2019)
206 and groundwater depletion (Döll et al., 2014a; Wada et al., 2014; de Graaf et al., 2014). In some
207 land surface models, the location of the groundwater table with respect to the land surface is
208 simulated within each grid cell to enable simulation of capillary rise (Niu et al., 2007) but, as in
209 the case of simulating groundwater as a linear reservoir, lateral groundwater transport or two-
210 way surface water-groundwater exchange cannot be simulated with this approach.

211

212 Increasingly, models for simulating groundwater flows between all model grid cells in entire
213 countries or globally have been developed, either as stand-alone models or as part of
214 hydrological models (Vergnes & Decharme, 2012; Fan et al., 2013; Lemieux et al. 2008; de Graaf
215 et al., 2017; Kollet et al., 2017; Maxwell et al., 2015; Reinecke et al., 2018, de Graaf et al 2019).
216 The simulation of groundwater in large-scale models is a nascent and rapidly developing field

217 with significant computational and parameterization challenges which have led to significant
218 and important efforts to develop and evaluate individual models. It is important to note that
219 herein 'large-scale models' refer to models that are laterally extensive across multiple regions
220 (hundreds to thousands of kilometers) and generally include the upper tens to hundreds of
221 meters of subsurface and have resolutions sometimes as small as ~1 km. In contrast, 'regional-
222 scale' models (tens to hundreds of kilometers) have long been developed for a specific region
223 or aquifer and can include greater depths and resolutions, more complex hydrostratigraphy and
224 are often developed from conceptual models with significant regional knowledge. Regional-
225 scale models include a diverse range of approaches from stand-alone groundwater models (i.e.,
226 representing surface water and vadose zone processes using boundary conditions such as
227 recharge) to fully integrated groundwater-surface water models. In the future, large-scale
228 models could be developed in a number of different directions which we only briefly introduce
229 here to maintain our primary focus on model evaluation. One important direction is clearer
230 representation of three-dimensional geology and heterogeneity including karst (Condon et al.
231 in review) which should be considered as part of conceptual model development prior to
232 numerical model implementation.

233

234 Now that a number of models that represent groundwater at continental to global scales have
235 been developed and will continue evolving, it is equally important that we advance how we
236 evaluate these models. To date, large-scale model evaluation has largely focused on individual
237 models, with inconsistent practices between models and little community-level discussion or

238 cooperation, that lack the rigor of regional-scale model evaluation. Overall, we have only a
239 partial and piecemeal understanding of the capabilities and limitations of different approaches
240 to representing groundwater in large-scale models. Our objective is to provide clear
241 recommendations for evaluating groundwater representation in continental and global models.
242 We focus on model evaluation because this is the heart of model trust and reproducibility
243 (Hutton et al., 2016) and improved model evaluation will guide how and where it is most
244 important to focus future model development. We describe current model evaluation practices
245 (Section 2) and consider diverse and uncertain sources of information, including observations,
246 models, and experts to holistically evaluate the simulation of groundwater-related fluxes,
247 stores and hydraulic heads (Section 3). We stress the need for an iterative and open-ended
248 process of model improvement through continuous model evaluation against the different
249 sources of information. We explicitly contrast the terminology used herein of 'evaluation' and
250 'comparison' against terminology such as 'calibration' or 'validation' or 'benchmarking', which
251 suggests a modelling process that is at some point complete. We extend previous
252 commentaries advocating improved hydrologic process representation and evaluation in large-
253 scale hydrologic models (Clark et al. 2015; Melsen et al. 2016) by adding expert-elicitation and
254 machine learning for more holistic evaluation. We also consider model objective and model
255 evaluation across the diverse hydrologic landscapes which can both uncover blindspots in
256 model development. It is important to note that we do not consider water quality or
257 contamination, even though water quality or contamination is important for water resources,
258 management and sustainability, since large-scale water quality models are in their infancy (van
259 Vliet et al., 2019)

260

261 We bring together somewhat disparate scientific communities as a step towards greater
262 community-level cooperation on these challenges, including global hydrology and land surface
263 modelers, local to regional hydrogeologists, and hydrologists focused on model development
264 and evaluation. We see three audiences beyond those currently directly involved in large-scale
265 groundwater modeling that we seek to engage to accelerate model evaluation: 1) regional
266 hydrogeologists who could be reticent about global models, and yet have crucial knowledge
267 and data that would improve evaluation; 2) data scientists with expertise in machine learning,
268 artificial intelligence etc. whose methods could be useful in a myriad of ways; and 3) the
269 multiple Earth Science communities that are currently working towards integrating
270 groundwater into a diverse range of models so that improved evaluation approaches are built
271 directly into model development.

272 **2. CURRENT MODEL EVALUATION PRACTICES**

273 Here we provide a brief overview of current large-scale groundwater models, the synergies and
274 differences between regional-scale and large-scale model evaluation and development as well
275 as the limitations of current evaluation practices for large-scale models.

276 **2.1 Brief overview of current large-scale groundwater models**

277 Various large-scale models exist along a spectrum of model complexity, which can make it
278 difficult to determine the most appropriate model for a specific application. We developed a
279 simple but systematic classification of current large-scale groundwater models (Table 1) to

280 summarize the main characteristics of existing models for the interdisciplinary audience of
281 GMD. This classification builds on other reviews (Bierkens 2015; Condon et al., in review) and is
282 not exhaustive, nor is it the only way to classify large-scale groundwater models. It is meant to
283 be a first classification attempt that should evolve with time. We suggest that groundwater in
284 current large-scale models can be classified functionally by two aspects that are crucial to how
285 groundwater impacts water, energy, and nutrient budgets. First, whether lateral subsurface
286 flow to a river is simulated within each cell independently of other cells, as 2D lateral
287 groundwater flow between all cells or as 3D groundwater flow. Second, we distinguish two
288 types of coupling between groundwater and related compartments (variably saturated soil
289 zone, surface water, atmospheric processes): 'one-way' coupling (for example, recharge is
290 imposed from the surface with no feedback from capillary rise or vegetation uptake, or
291 groundwater flow to the surface does not depend on surface head) from 'two-way' coupling
292 involves feedback loops. We also note atmospheric coupling which involves coupling a
293 groundwater-surface model with an atmospheric model to propagate the influence of
294 groundwater from the surface to the atmosphere, and the resulting feedback onto the surface
295 and groundwater. This classification scheme (which could also be called a model typology) is
296 based on a number of model characteristics such as the fluxes, stores and other features (Table
297 1).

298

299 **2.2 Synergies between regional-scale and large-scales**

300 Regional-scale and large-scale groundwater models are both governed by the same physical
301 equations and share many of the same challenges. Like large-scale models, some regional-scale
302 models have challenges with representing important regional hydrologic processes such as
303 mountain block recharge (Markovich et al. 2019), and data availability challenges (such as the
304 lack of reliable subsurface parameterization and hydrologic monitoring data) are common. We
305 propose there are largely untapped potential synergies between regional-scale and large-scale
306 models based on these commonalities and the inherent strengths and limitations of each scale
307 (Section 1).

308

309 Much can be learned from regional-scale models to inform the development and evaluation of
310 large-scale groundwater models. Regional-scale models are evaluated using a variety of data
311 types, some of which are available and already used at the global scale and some of which are
312 not. In general, the most common data types used for regional-scale groundwater model
313 evaluation match global-scale groundwater models: hydraulic head and either total streamflow
314 or baseflow estimated using hydrograph separation approaches (eg. RRCA, 2003; Woolfenden
315 and Nishikawa, 2014; Tolley et al., 2019). However, numerous data sources unavailable or not
316 currently used at the global scale have also been applied in regional-scale models, such as
317 elevation of surface water features (Hay et al., 2018), existing maps of the potentiometric
318 surface (Meriano and Eyles, 2003), and dendrochronology (Schilling et al., 2014) and stable and
319 radiogenic isotopes for determining water sources and residence times (Sanford, 2011). These
320 and other ‘non-classical’ observations (Schilling et al. 2019) could be the inspiration for model

321 evaluation of large-scale models in the future but are beyond our scope to discuss. Further,
322 given the smaller domain size of regional-scale models, expert knowledge and local ancillary
323 data sources can be more directly integrated and automated parameter estimation approaches
324 such as PEST are tractable (Leaf et al., 2015; Hunt et al., 2013). We directly build upon this
325 practice of integration of expert knowledge below in Section 3.3.

326

327 We propose that there may also be potential benefits of large-scale models for the
328 development of regional-scale models. For instance, the boundary conditions of some regional-
329 scale models could be improved with large-scale model results. The boundary conditions of
330 regional-scale models are often assumed, calibrated or derived from other models or data. In a
331 regional-scale model, increasing the model domain (moving the boundary conditions away
332 from region of interests) or incorporating more hydrologic processes (for example, moving the
333 boundary condition from recharge to the land surface incorporating evapotranspiration and
334 infiltration) both can reduce the impact of boundary conditions on the region and problem of
335 interest. Another potential benefit of large-scale models for regional-scale models is fuller
336 inclusion of large-scale hydrologic and human processes that could further enhance the ability
337 of regional-scale models to address both the science-focused and sustainability-focused
338 purposes described in Section 1. For example, the stronger representation of large-scale
339 atmospheric processes means that the downwind impact of groundwater irrigation on
340 evapotranspiration on precipitation and streamflow can be assessed (DeAngelis et al., 2010;
341 Kustu et al., 2011). Or, the effects of climate change and increased water use that affect the

342 inflow of rivers into the regional modelling domain can be taken from global scale analyses
343 (Wada and Bierkens, 2014). Also, regional groundwater depletion might be largely driven by
344 virtual water trade which can be better represented in global analysis and models than
345 regional-scale models (Dalin et al. 2017). Therefore the processes and results of large-scale
346 models could be used to make regional-scale models even more robust and better address key
347 science and sustainability questions.

348

349 Given the strengths of regional models, a potential alternative to development of large-scale
350 groundwater models would be combining or aggregating multiple regional models in a
351 patchwork approach (as in Zell and Sanford, 2020) to provide global coverage. This would have
352 the advantage of better respecting regional differences but potentially create additional
353 challenges because the regional models would have different conceptual models, governing
354 equations, boundary conditions etc. in different regions. Some challenges of this patchwork
355 approach include 1) the required collaboration of a large number of experts from all over the
356 world over a long period of time; 2) regional groundwater flow models alone are not sufficient,
357 they need to be integrated into a hydrological model so that groundwater-soil water and the
358 surface water-groundwater interactions can be simulated; 3) the extent of regional aquifers
359 does not necessarily coincide with the extent of river basins; and 4) the bias of regional
360 groundwater models towards important aquifers which as described above, underlie only a
361 portion of the world's land mass or population and may bias estimates of fluxes such as surface
362 water-groundwater exchange or evapotranspiration. Given these challenges, we argue that a

363 patchwork approach of integrating multiple regional models is a compelling idea but likely
364 insufficient to achieve the purposes of large-scale groundwater modeling described in Section
365 1. Although this nascent idea of aggregating regional models is beyond the scope of this
366 manuscript, we consider this an important future research avenue, and encourage further
367 exploration and improvement of regional-scale model integration from the groundwater
368 modeling community.

369

370 **2.3 Differences between regional-scale and large-scales**

371 Although there are important similarities and potential synergies across scales, it is important
372 to consider how or if large-scale models are fundamentally different to regional-scale models,
373 especially in ways that could impact evaluation. The primary differences between large-scale
374 and regional-scale models are that large-scale models (by definition) cover larger areas and, as
375 a result, typically include more data-poor areas and are generally built at coarser resolution.
376 These differences impact evaluations in at least five relevant ways:

377 1) Commensurability errors (also called ‘representativeness’ errors) occur either when
378 modelled grid values are interpolated and compared to an observation ‘point’ or when
379 aggregation of observed ‘point’ values are compared to a modelled grid value (Beven,
380 2005; Tustison et al., 2001; Beven, 2016; Pappenberger et al., 2009; Rajabi et al., 2018).
381 For groundwater models in particular, commensurability error will depend on the number
382 and locations of observation points, the variability structure of the variables being

383 compared such as hydraulic head and the interpolation or aggregation scheme applied
384 (Tustison et al., 2001; Pappenberger et al., 2009; Reinecke et al., 2020). Commensurability
385 is a problem for most scales of modelling, but likely more significant the coarser the
386 model. Regional-scale groundwater models typically have fewer (though not insignificant)
387 commensurability issues due to smaller grid cell sizes compared to large-scale models.

388 2) Specificity to region, objective and model evaluation criteria because regional-scale
389 models are developed specifically for a certain region and modeling or management
390 objective whereas large-scale models are often more general and include different
391 regions. As a result, large-scale models often have greater heterogeneity of processes and
392 parameters, may not adopt the same calibration targets and variables, and are not subject
393 to the policy or litigation that sometimes drives model evaluation of regional-scale
394 models.

395 3) Computational requirements can be immense for large-scale models which leads to
396 challenges with uncertainty and sensitivity analysis. While some regional-scale models
397 also have large computational demands, large-scale models cover larger domains and are
398 therefore more vulnerable to this potential constraint.

399 4) Data availability for large-scale models can be limited because they typically include data-
400 poor areas, which leads to challenges when only using observations for model evaluation.
401 While data availability also affects regional-scale models, they are often developed for
402 regions with known hydrological challenges based on existing data and/or modeling
403 efforts are preceded by significant regional data collection from detailed sources (such as

404 local geological reports) that are not often included in continental to global datasets used
405 for large-scale model parameterization.

406 5) Subsurface detail in regional-scale models routinely include heterogeneous and
407 anisotropic parameterizations which could be improved in future large-scale models. For
408 example, intense vertical anisotropy routinely induces vertical flow dynamics from vertical
409 head gradients that are tens to thousands of times greater than horizontal gradients
410 which profoundly alter the meaning of the deep and shallow groundwater levels, with
411 only the latter remotely resembling the actual water table. In contrast, currently most
412 large-scale models use a single vertically homogeneous value for each grid cell, or at best
413 have two layers (de Graaf et al., 2017)

414

415 **2.4 Limitations of current evaluation practices for large-scale models**

416 Evaluation of large-scale models has often focused on streamflow or evapotranspiration
417 observations but joint evaluation together with groundwater-specific variables is appropriate
418 and necessary (e.g. Maxwell et al. 2015; Maxwell and Condon, 2016). Groundwater-specific
419 variables useful for evaluating the groundwater component of large-scale models include: a)
420 hydraulic head or water table depth; b) groundwater storage and groundwater storage changes
421 which refer to long-term, negative or positive trends in groundwater storage where long-term,
422 negative trends are called groundwater depletion; c) groundwater recharge; d) flows between
423 groundwater and surface water bodies; and e) human groundwater abstractions and return

424 flows to groundwater. It is important to note that groundwater and surface water hydrology
425 communities often have slightly different definitions of terms like recharge and baseflow
426 (Barthel, 2014); we therefore suggest trying to precisely define the meanings of such words
427 using the actual hydrologic fluxes which we do below. Table 2 shows the availability of
428 observational data for these variables but does not evaluate the quality and robustness of
429 observations. Overall there are significant inherent challenges of commensurability and
430 measurability of groundwater observations in the evaluation of large-scale models. We
431 describe the current model evaluation practices for each of these variables here:

432

433 a) Simulated hydraulic heads or water table depth in large scale models are
434 frequently compared to well observations, which are often considered the crucial
435 data for groundwater model evaluation. Hydraulic head observations from a large
436 number groundwater wells (>1 million) have been used to evaluate the spatial
437 distribution of steady-state heads (Fan et al., 2013, de Graaf et al., 2015; Maxwell et
438 al., 2015; Reinecke et al., 2019a, 2020). Transient hydraulic heads with seasonal
439 amplitudes (de Graaf et al. 2017), declining heads in aquifers with groundwater
440 depletion (de Graaf et al. 2019) and daily transient heads (Tran et al 2020) have also
441 been compared to well observations. All evaluation with well observations is
442 severely hampered by the incommensurability of point values of observed head with
443 simulated heads that represent averages over cells of a size of tens to hundreds
444 square kilometers; within such a large cell, land surface elevation, which strongly

445 governs hydraulic head, may vary a few hundred meters, and average observed
446 head strongly depends on the number and location of well within the cell (Reinecke
447 et al., 2020). Additional concerns with head observations are the 1) strong sampling
448 bias of wells towards accessible locations, low elevations, shallow water tables, and
449 more transmissive aquifers in wealthy, generally temperate countries (Fan et al.,
450 2019); 2) the impacts of pumping which may or may not be well known; 3)
451 observational errors and uncertainty (Post and von Asmuth, 2013; Fan et al., 2019);
452 and 4) that heads can reflect the poro-elastic effects of mass loading and unloading
453 rather than necessarily aquifer recharge and drainage (Burgess et al, 2017). To date,
454 simulated hydraulic heads have more often been compared to observed heads
455 (rather than water table depth) which results in lower relative errors (Reinecke et
456 al., 2020) because the range of heads (10s to 1000s m head) is much larger than the
457 range of water table depths (<1 m to 100s m).

458

459 b) Simulated groundwater storage trends or anomalies in large-scale hydrological
460 models have been evaluated using observations of groundwater well levels
461 combined with estimates of storage parameters, such as specific yield; local-scale
462 groundwater modeling; and translation of regional total water storage trends and
463 anomalies from satellite gravimetry (GRACE: Gravity Recovery And Climate
464 Experiment) to groundwater storage changes by estimating changes in other
465 hydrological storages (Döll et al., 2012; 2014a). Groundwater storage changes

466 volumes and rates have been calculated for numerous aquifers, primarily in the
467 United States, using calibrated groundwater models, analytical approaches, or
468 volumetric budget analyses (Konikow, 2010). Regional-scale models have also been
469 used to simulate groundwater storage trends untangling the impacts of water
470 management during drought (Thatch et al. 2020). Satellite gravimetry (GRACE) is
471 important but has limitations (Alley and Konikow, 2015). First, monthly time series
472 of very coarse-resolution groundwater storage are indirectly estimated from
473 observations of total water storage anomalies by satellite gravimetry (GRACE) but
474 only after model- or observation-based subtraction of water storage changes in
475 glaciers, snow, soil and surface water bodies (Lo et al., 2016; Rodell et al., 2009;
476 Wada, 2016). As soil moisture, river or snow dynamics often dominate total water
477 storage dynamics, the derived groundwater storage dynamics can be so uncertain
478 that severe groundwater drought cannot be detected in this way (Van Loon et al.,
479 2017). Second, GRACE cannot detect the impact of groundwater abstractions on
480 groundwater storage unless groundwater depletion occurs (Döll et al., 2014a,b).
481 Third, the very coarse resolution can lead to incommensurability but in the opposite
482 direction of well observations. It is important to note that the focus is on storage
483 trends or anomalies since total groundwater storage to a specific depth (Gleeson et
484 al., 2016) or in an aquifer (Konikow, 2010) can be estimated but the total
485 groundwater storage in a specific region or cell cannot be simulated or observed
486 unless the depth of interest is specified (Condon et al., 2020).

487

488 c) Simulated large-scale groundwater recharge (vertical flux across the water table)
489 has been evaluated using compilations of point estimates of groundwater recharge,
490 results of regional-scale models, baseflow indices, and expert opinion (Döll and
491 Fiedler, 2008; Hartmann et al., 2015) or compared between models (e.g. Wada et al.
492 2010). In general, groundwater recharge is not directly measurable except by meter-
493 scale lysimeters (Scanlon et al., 2002), and many groundwater recharge methods
494 such as water table fluctuations and chloride mass balance also suffer from similar
495 commensurability issues as water table depth data. Although sometimes an input or
496 boundary condition to regional-scale models, recharge in many large-scale
497 groundwater models is simulated and thus can be evaluated.

498

499 d) The flows between groundwater and surface water bodies (rivers, lakes, wetlands)
500 are simulated by many models but are generally not evaluated directly against
501 observations of such flows since they are very rare and challenging. Baseflow (the
502 slowly varying portion of streamflow originating from groundwater or other delayed
503 sources) or streamflow 'low flows' (when groundwater or other delayed sources
504 predominate), generally cannot be used to directly quantify the flows between
505 groundwater and surface water bodies at large scales. Groundwater discharge to
506 rivers can be estimated from streamflow observations only in the very dense gauge
507 network and/or if streamflow during low flow periods is mainly caused by
508 groundwater discharge and not by water storage in upstream lakes, reservoirs or

509 wetlands. These conditions are rarely met in case of streamflow gauges with large
510 upstream areas that can be used for comparison to large-scale model output. de
511 Graaf et al. (2019) compared the simulated timing of changes in groundwater
512 discharge to observations and regional-scale models, but only compared the fluxes
513 directly between the global- and regional-scale models. Due to the challenges of
514 directly observing the flows between groundwater and surface water bodies at large
515 scales, this is not included in the available data in Table 2; instead in Section 3 we
516 highlight the potential for using baseflow or the spatial distribution of perennial,
517 intermittent and ephemeral streams in the future.

518

519 e) Groundwater abstractions have been evaluated by comparison to national, state
520 and county scale statistics in the U.S. (Wada et al. 2010, Döll et al., 2012, 2014a, de
521 Graaf et al. 2014). Irrigation is the dominant groundwater use sector in many
522 regions; however, irrigation pumpage is generally estimated from crop water
523 demand and rarely metered. GRACE and other remote sensing data have been used
524 to estimate the irrigation water abstractions (Anderson et al. 2015b). The lack of
525 records or observations of abstraction introduces significant uncertainties into large-
526 scale models and is simulated and thus can be evaluated. Human groundwater
527 abstractions and return flows as well as groundwater recharge and the flows
528 between groundwater and surface water bodies are necessary to simulate storage
529 trends (described above). But each of these are considered separate observations

530 since they each have different data sources and assumptions. Groundwater
531 abstraction data at the well scale are severely hampered by the incommensurability
532 like hydraulic head and recharge described above.

533 **3. HOW TO IMPROVE THE EVALUATION OF LARGE-SCALE GROUNDWATER MODELS**

534 Based on Section 2, we argue that the current model evaluation practices are insufficient to
535 robustly evaluate large-scale models. We therefore propose evaluating large-scale models using
536 at least three strategies (pie-shapes in Figure 1): observation-, model-, and expert-driven
537 evaluation which are potentially mutually beneficial because each strategy has its strengths and
538 weaknesses. We are not proposing a brand new evaluation method here but rather separating
539 strategies to consider the problem of large-scale model evaluation from different but highly
540 interconnected perspectives. All three strategies work together for the common goal of
541 'improved model large-scale model evaluation' which is what is the centre of Figure 1.

542

543 When evaluating large-scale models, it is necessary to first consider reasonable expectations or
544 how to know a model is 'well enough'. Reasonable expectations should be based on the
545 modeling purpose, hydrologic process understanding and the plausibly achievable degree of
546 model realism. First, model evaluation should be clearly linked to the four science- or
547 sustainability-focused purposes of representing groundwater in large-scale models (Section 1)
548 and second, to our understanding of relevant hydrologic processes. The objective of large-scale
549 models cannot be to reproduce the spatio-temporal details that regional-scale models can

550 reproduce. Determining the reasonable expectations is necessarily subjective, but can be
551 approached using observation-, model-, and expert-driven evaluation. As a simple first step in
552 setting realistic expectations, we propose that three physical variables can be used to form
553 more convincing arguments that a large-scale model is well enough: change in groundwater
554 storage, water table depth, and regional fluxes between groundwater and surface water. Below
555 we explore in more detail additional variables and approaches that can support this simple
556 approach.

557

558 Across all three model evaluation strategies of observation-, model-, and expert-driven
559 evaluation, we advocate three principles underpinning model evaluation (base of Figure 1),
560 none of which we are the first to suggest but we highlight here as a reminder: 1) model
561 objectives, such as the groundwater science or groundwater sustainability objective
562 summarised in Section 1, are important to model evaluation because they provide the context
563 through which relevance of the evaluation outcome is set; 2) all sources of information
564 (observations, models and experts) are uncertain and this uncertainty needs to be quantified
565 for robust evaluation; and 3) regional differences are likely important for large-scale model
566 evaluation - understanding these differences is crucial for the transferability of evaluation
567 outcomes to other places or times.

568

569 We stress that we see the consideration and quantification of uncertainty as an essential need
570 across all three types of model evaluation we describe below, so we discuss it here rather than
571 with model-driven model evaluation (Section 3.2) where uncertainty analysis more narrowly
572 defined would often be discussed. We further note that large-scale models have only been
573 assessed to a very limited degree with respect to understanding, quantifying, and attributing
574 relevant uncertainties. Expanding computing power, developing computationally frugal
575 methods for sensitivity and uncertainty analysis, and potentially employing surrogate models
576 can enable more robust sensitivity and uncertainty analysis such as used in regional-scale
577 models (Habets et al., 2013; Hill, 2006; Hill & Tiedeman, 2007; Reinecke et al., 2019b). For now,
578 we suggest applying computationally frugal methods such as the elementary effect test or local
579 sensitivity analysis (Hill, 2006; Morris, 1991; Saltelli et al., 2000). Such sensitivity and
580 uncertainty analyses should be applied not only to model parameters and forcings but also to
581 model structural properties (e.g. boundary conditions, grid resolution, process simplification,
582 etc.) (Wagener and Pianosi, 2019). This implies that the (independent) quantification of
583 uncertainty in all model elements (observations, parameters, states, etc.) needs to be improved
584 and better captured in available metadata.

585

586 We advocate for considering regional differences more explicitly in model evaluation since
587 likely no single model will perform consistently across the diverse hydrologic landscapes of the
588 world (Van Werkhoven et al., 2008). Considering regional differences in large-scale model
589 evaluation is motivated by recent model evaluation results and is already starting to be

590 practiced. Two recent sensitivity analyses of large-scale models reveal how sensitivities to input
591 parameters vary in different regions for both hydraulic heads and flows between groundwater
592 and surface water (de Graaf et al. 2019; Reinecke et al., 2020). In mountain regions, large-scale
593 models tend to underestimate steady-state hydraulic head, possibly due to over-estimated
594 hydraulic conductivity in these regions, which highlights that model performance varies in
595 different hydrologic landscapes. (de Graaf et al., 2015; Reinecke et al. 2019b). Additionally,
596 there are significant regional differences in performance with low flows for a number of large-
597 scale models (Zaherpour et al. 2018) likely because of diverse implementations of groundwater
598 and baseflow schemes. Large-scale model evaluation practice is starting to shift towards
599 highlighting regional differences as exemplified by two different studies that explicitly mapped
600 hydrologic landscapes to enable clearer understanding of regional differences. Reinecke et al.
601 (2019b) identified global hydrological response units which highlighted the spatially distributed
602 parameter sensitivities in a computationally expensive model, whereas Hartmann et al. (2017)
603 developed and evaluated models for karst aquifers in different hydrologic landscapes based on
604 different a priori system conceptualizations. Considering regional differences in model
605 evaluation suggests that global models could in the future consider a patchwork approach of
606 different conceptual models, governing equations, boundary conditions etc. in different
607 regions. Although beyond the scope of this manuscript, we consider this an important future
608 research avenue.

609 **3.1 Observation-based model evaluation**

610 Observation-based model evaluation is the focus of most current efforts and is important
611 because we want models to be consistent with real-world observations. Section 2 and Table 2
612 highlight both the strengths and limitations of current practices using observations. Despite
613 existing challenges, we foresee significant opportunities for observation-based model
614 evaluation and do not see data scarcity as a reason to exclude groundwater in large-scale
615 models or to avoid evaluating these models. It is important to note that most so-called
616 'observations' are modeled or derived quantities, and often at the wrong scale for evaluating
617 large-scale models (Table 2; Beven, 2019). Given the inherent challenges of direct
618 measurement of groundwater fluxes and stores especially at large scales, herein we consider
619 the word 'observation' loosely as any measurements of physical stores or fluxes that are
620 combined with or filtered through models for an output. For example, GRACE gravity
621 measurements are combined with model-based estimates of water storage changes in glaciers,
622 snow, soil and surface water for 'groundwater storage change observations' or streamflow
623 measurements are filtered through baseflow separation algorithms for 'baseflow observations'.
624 The strengths and limitations as well as the data availability and spatial and temporal attributes
625 of different observations are summarized in Table 2 which we hope will spur more systematic
626 and comprehensive use of observations.

627

628 Here we highlight nine important future priorities for improving evaluation using available
629 observations. The first five priorities focus on current observations (Table 2) whereas the latter
630 four focus on new methods or approaches:

631 1) Focus on transient observations of the water table depth rather than
632 hydraulic head observations that are long-term averages or individual times
633 (often following well drilling). Water table depth are likely more robust
634 evaluation metrics than hydraulic head because water table depth reveals
635 great discrepancies and is a complex function of the relationship between
636 hydraulic head and topography that is crucial to predicting system fluxes
637 (including evapotranspiration and baseflow). Comparing transient
638 observations and simulations instead of long-term averages or individual
639 times incorporates more system dynamics of storage and boundary
640 conditions as temporal patterns are more important than absolute values
641 (Heudorfer et al. 2019). For regions with significant groundwater depletion,
642 comparing to declining water tables is a useful strategy (de Graaf et al. 2019),
643 whereas in aquifers without groundwater depletion, seasonally varying
644 water table depths are likely more useful observations (de Graaf et al. 2017).
645 2) Use baseflow, the slowly varying portion of streamflow originating from
646 groundwater or other delayed sources. Döll and Fiedler (2008) included the
647 baseflow index in evaluating recharge and baseflow has been used to
648 calibrate the groundwater component of a land surface model (Lo et al.
649 2008, 2010). But the baseflow index (BFI), linear and nonlinear baseflow
650 recession behavior or baseflow fraction (Gnann et al., 2019) have not been
651 used to evaluate any large-scale model that simulates groundwater flows
652 between all model grid cells. There are limitations of using BFI and baseflow

653 recession characteristics to evaluate large-scale models (Table 2). Using
654 baseflow only makes sense when the baseflow separation algorithm is better
655 than the large-scale model itself, which may not be the case for some large-
656 scale models and only in time periods that can be assumed to be dominated
657 by groundwater discharge. Similarly, using recession characteristics is
658 dependent on an appropriate choice of recession extraction methods. But
659 this remains available and obvious data derived from streamflow or spring
660 flow observations that has been under-used to date.

661 3) Use the spatial distribution of perennial, intermittent, and ephemeral
662 streams as an observation, which to our best knowledge has not been done
663 by any large-scale model evaluation. The transition between perennial and
664 ephemeral streams is an important system characteristic in groundwater-
665 surface water interactions (Winter et al. 1998), so we suggest that this might
666 be a revealing evaluation criteria although there are similar limitations to
667 using baseflow. The results of both quantifying baseflow and mapping
668 perennial streams depend on the methods applied, they are not useful for
669 quantifying groundwater-surface water interactions when there is upstream
670 surface water storage, and they do not directly provide information about
671 fluxes between groundwater and surface water.

672 4) Use data on land subsidence to infer head declines or aquifer properties for
673 regions where groundwater depletion is the main cause of compaction

674 (Bierkens and Wada, 2019). Lately, remote sensing methods such as GPS,
675 airborne and space borne radar and lidar are frequently used to infer land
676 subsidence rates (Erban et al., 2014). Also, a number of studies combine
677 geomechanical modelling (Ortega-Guerrero et al 1999; Minderhoud et al
678 2017) and geodetic data to explain the main drivers of land subsidence. A
679 few papers (e.g. Zhang and Burbey 2016) use a geomechanical model
680 together with a withdrawal data and geodetic observations to estimate
681 hydraulic and geomechanical subsoil properties.

682 5) Consider using socio-economic data for improving model input. For
683 example, reported crop yields in areas with predominant groundwater
684 irrigation could be used to evaluate groundwater abstraction rates. Or using
685 well depth data (Perrone and Jasechko, 2019) to assess minimum aquifer
686 depths or in coastal regions and deltas, the presence of deeper fresh
687 groundwater under semi-confining layers.

688 6) Derive additional new datasets using meta-analysis and/or geospatial
689 analysis such as gaining or losing stream reaches (e.g., from interpolated
690 head measurements close to the streams), springs and groundwater-
691 dependent surface water bodies, or tracers. Each of these new data sources
692 could in principle be developed from available data using methods already
693 applied at regional scales but do not currently have an 'off the shelf' global
694 dataset. For example, some large-scale models have been explicitly

695 compared with residence time and tracer data (Maxwell et al., 2016) which
696 have also been recently compiled globally (Gleeson et al., 2016; Jasechko et
697 al., 2017). This could be an important evaluation tool for large-scale models
698 that are capable of simulating flow paths, or can be modified to do, though a
699 challenge of this approach is the conservativity of tracers. Future meta-
700 analyses data compilations should report on the quality of the data and
701 include possible uncertainty ranges as well as the mean estimates.

702 7) Use machine learning to identify process representations (e.g. Beven, 2020)
703 or spatiotemporal patterns, for example of perennial streams, water table
704 depths or baseflow fluxes, which might not be obvious in multi-dimensional
705 datasets and could be useful in evaluation. For example, Yang et al. (2019)
706 predicted the state of losing and gaining streams in New Zealand using
707 Random Forest algorithms. A staggering variety of machine learning tools are
708 available and their use is nascent yet rapidly expanding in geoscience and
709 hydrology (Reichstein et al., 2019; Shen, 2018; Shen et al., 2018; Wagener et
710 al., 2020). While large-scale groundwater models are often considered 'data-
711 poor', it may seem strange to propose using data-intensive machine learning
712 methods to improve model evaluation. But some of the data sources are
713 large (e.g over 2 million water level measurements in Fan et al. 2013
714 although biased in distribution) whereas other observations such as
715 evapotranspiration (Jung et al., 2011) and baseflow (Beck et al. 2013) are
716 already interpolated and extrapolated using machine learning. Moving

717 forwards, it is important to consider commensurability while applying
718 machine learning in this context.

719 8) Consider comparing models against hydrologic signatures - indices that
720 provide insight into the functional behavior of the system under study
721 (Wagener et al., 2007; McMilan, 2020). The direct comparison of simulated
722 and observed variables through statistical error metrics has at least two
723 downsides. One, the above mentioned unresolved problem of
724 commensurability, and two, the issue that such error metrics are rather
725 uninformative in a diagnostic sense - simply knowing the size of an error does
726 not tell the modeller how the model needs to be improved, only that it does
727 (Yilmaz et al., 2009). One way to overcome these issues, is to derive
728 hydrologically meaningful signatures from the original data, such as the
729 signatures derived from transient groundwater levels by Heudorfer et al.
730 (2019). For example, recharge ratio (defined as the ratio of groundwater
731 recharge to precipitation) might be hydrologically more informative than
732 recharge alone (Jasechko et al., 2014) or the water table ratio and
733 groundwater response time (Cuthbert et al. 2019; Opie et al., 2020) which
734 are spatially-distributed signatures of groundwater systems dynamics. Such
735 signatures might be used to assess model consistency (Wagener & Gupta,
736 2005; Hrachowitz et al. 2014) by looking at the similarity of patterns or spatial
737 trends rather than the size of the aggregated error, thus reducing the
738 commensurability problem.

739 9) Understand and quantify commensurability error issues better so that a
740 fairer comparison can be made across scales using existing data. As described
741 above, commensurability errors will depend on the number and locations of
742 observation points, the variability structure of the variables being compared
743 such as hydraulic head and the interpolation or aggregation scheme applied.
744 While to some extent we may appreciate how each of these factors affect
745 commensurability error in theory, in practice their combined effects are
746 poorly understood and methods to quantify and reduce commensurability
747 errors for groundwater model purposes remain largely undeveloped. As
748 such, quantification of commensurability error in (large-scale) groundwater
749 studies is regularly overlooked as a source of uncertainty because it cannot
750 be satisfactorily evaluated (Tregoning et al., 2012). Currently, evaluation of
751 simulated groundwater heads is plagued by, as yet, poorly quantified
752 uncertainties stemming from commensurability errors and we therefore
753 recommend future studies focus on developing solutions to this problem. An
754 additional, subtle but important and unresolved commensurability issue can
755 stem from conceptual models. Different hydrogeologists examining different
756 scales, data or interpreting geology differently can produce quite different
757 conceptual models of the same region (Troldborg et al. 2007).
758 We recommend evaluating models with a broader range of currently available data sources
759 (with explicit consideration of data uncertainty and regional differences) while also
760 simultaneously working to derive new data sets. Using data (such as baseflow, land subsidence,

761 or the spatial distribution of perennial, intermittent, and ephemeral streams) that is more
762 consistent with the scale modelled grid resolution will hopefully reduce the commensurability
763 challenges. However, data distribution and commensurability issues will likely still be present,
764 which underscores the importance of the two following strategies.

765 **3.2. Model-based model evaluation**

766 Model-based model evaluation, which includes model intercomparison projects (MIP) and
767 model sensitivity and uncertainty analysis, can be done with or without explicitly using
768 observations. We describe both inter-model and inter-scale comparisons which could be
769 leveraged to maximize the strengths of each of these approaches.

770

771 The original MIP concept offers a framework to consistently evaluate and compare models, and
772 associated model input, structural, and parameter uncertainty under different objectives (e.g.,
773 climate change, model performance, human impacts and developments). Early model
774 intercomparisons of groundwater models focused on nuclear waste disposal (SKI, 1984). Since
775 the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS; Sellers et
776 al., 1993), the first large-scale MIP, the land surface modeling community has used MIPs to
777 deepen understanding of land physical processes and to improve their numerical
778 implementations at various scales from regional (e.g., Rhône-aggregation project; Boone et al.,
779 2004) to global (e.g., Global Soil Wetness Project; Dirmeyer, 2011). Two examples of recent
780 model intercomparison efforts illustrate the general MIP objectives and practice. First, ISIMIP
781 (Schewe et al., 2014; Warszawski et al., 2014) assessed water scarcity at different levels of

782 global warming. Second, IH-MIP2 (Kollet et al., 2017) used both synthetic domains and an
783 actual watershed to assess fully-integrated hydrologic models because these cannot be
784 validated easily by comparison with analytical solutions and uncertainty remains in the
785 attribution of hydrologic responses to model structural errors. Model comparisons have
786 revealed differences, but it is often unclear whether these stem from differences in the model
787 structures, differences in how the parameters were estimated, or from other modelling choices
788 (Duan et al., 2006). Attempts for modular modelling frameworks to enable comparisons
789 (Wagener et al., 2001; Leavesley et al., 2002; Clark et al., 2008; Fenicia et al., 2011; Clark et al.,
790 2015) or at least shared explicit modelling protocols and boundary conditions (Refsgaard et al.,
791 2007; Ceola et al., 2015; Warszawski et al., 2014) have been proposed to reduce these
792 problems.

793

794 Inter-scale model comparison - for example, comparing a global model to a regional-scale
795 model - is a potentially useful approach which is emerging for surface hydrology models
796 (Hattermann et al., 2017; Huang et al., 2017) and could be applied to large-scale models with
797 groundwater representation. For example, declining heads and decreasing groundwater
798 discharge have been compared between a calibrated regional-scale model (RRCA, 2003) and a
799 global model (de Graaf et al., 2019). A challenge to inter-scale comparisons is that regional-
800 scale models often have more spatially complex subsurface parameterizations because they
801 have access to local data which can complicate model inter-comparison. Another approach
802 which may be useful is running large-scale models over smaller (regional) domains at a higher

803 spatial resolution (same as a regional-scale model) so that model structure influences the
804 comparison less. In the future, various variables that are hard to directly observe at large scales
805 but routinely simulated in regional-scale models such as baseflow or recharge could be used to
806 evaluate large-scale models, although these flux estimates can contain large uncertainty. In this
807 way, the output fluxes and intermediate spatial scale of regional models provide a bridge across
808 the “river of incommensurability” between highly location-specific data such as well
809 observations and the coarse resolution of large-scale models. In such an evaluation, the
810 uncertainty of flux estimates and scale of aggregation are both important to consider. It is
811 important to consider that regional-scale models are not necessarily or inherently more
812 accurate than large-scale models since problems may arise from conceptualization,
813 groundwater-surface water interactions, scaling issues, parameterization etc.

814

815 In order for a regional-scale model to provide a useful evaluation of a large-scale model, there
816 are several important documentation and quality characteristics it should meet. At a bare
817 minimum, the regional-scale model must be accessible and therefore meet basic replicability
818 requirements including open and transparent input and output data and model code to allow
819 large-scale modelers to run the model and interpret its output. Documentation through peer
820 review, either through a scientific journal or agency such as the US Geological Survey, would be
821 ideal. It is particularly important that the documentation discusses limitations, assumptions and
822 uncertainties in the regional-scale model so that a large-scale modeler can be aware of
823 potential weaknesses and guide their comparison accordingly. Second, the boundary conditions

824 and/or parameters being evaluated need to be reasonably comparable between the regional-
825 and large-scale models. For example, if the regional-scale model includes human impacts
826 through groundwater pumping while the large-scale model does not, a comparison of baseflow
827 between the two models may not be appropriate. Similarly, there needs to be consistency in
828 the time period simulated between the two models. Finally, as with data-driven model
829 evaluation, the purpose of the large-scale model needs to be consistent with the model-based
830 evaluation; matching the hydraulic head of a regional-scale model, for instance, does not
831 indicate that estimates of stream-aquifer exchange are valid. Ideally, we recommend
832 developing a community database of regional-scale models that meet this criteria. It is
833 important to note that Rossman & Zlotnik (2014) review 88 regional-scale models while a good
834 example of such a repository is the California Groundwater Model Archive
835 ([https://ca.water.usgs.gov/sustainable-groundwater-management/california-groundwater-](https://ca.water.usgs.gov/sustainable-groundwater-management/california-groundwater-modeling.html)
836 [modeling.html](https://ca.water.usgs.gov/sustainable-groundwater-management/california-groundwater-modeling.html)).

837

838 In addition to evaluating whether models are similar in terms of their outputs, e.g. whether
839 they simulate similar groundwater head dynamics, it is also relevant to understand whether the
840 influence of controlling parameters are similar across models. This type of analysis provides
841 insights into process controls as well as dominant uncertainties. Sensitivity analysis provides
842 the mathematical tools to perform this type of model evaluation (Saltelli et al., 2008; Pianosi et
843 al., 2016; Borgonovo et al., 2017). Recent applications of sensitivity analysis to understand
844 modelled controls on groundwater related processes include the study by Reinecke et al.

845 (2019b) trying to understand parametric controls on groundwater heads and flows within a
846 global groundwater model. Maples et al. (2020) demonstrated that parametric controls on
847 groundwater recharge can be assessed for complex models, though over a smaller domain. As
848 highlighted by both of these studies, more work is needed to understand how to best use
849 sensitivity analysis methods to assess computationally expensive, spatially distributed and
850 complex groundwater models across large domains (Hill et al., 2016). In the future, it would be
851 useful to go beyond parameter uncertainty analysis (e.g. Reinecke et al. 2019b) to begin to look
852 at all of the modelling decisions holistically such as the forcing data (Weiland et al., 2015) and
853 digital elevation models (Hawker et al., 2018). Addressing this problem requires advancements
854 in statistics (more efficient sensitivity analysis methods), computing (more effective model
855 execution), and access to large-scale models codes (Hutton et al. 2016), but also better
856 utilization of process understanding, for example to create process-based groups of parameters
857 which reduces the complexity of the sensitivity analysis study (e.g. Hartmann et al., 2015;
858 Reinecke et al., 2019b).

859 **3.3 Expert-based model evaluation**

860 A path much less traveled is expert-based model evaluation which would develop hypotheses
861 of phenomena (and related behaviors, patterns or signatures) we expect to emerge from large-
862 scale groundwater systems based on expert knowledge, intuition, or experience. In essence,
863 this model evaluation approach flips the traditional scientific method around by using
864 hypotheses to test the simulation of emergent processes from large-scale models, rather than
865 using large-scale models to test our hypotheses about environmental phenomena. This might

866 be an important path forward for regions where available data is very sparse or unreliable. The
867 recent discussion by Fan et al. (2019) shows how hypotheses about large-scale behavior might
868 be derived from expert knowledge gained through the study of smaller scale systems such as
869 critical zone observatories. While there has been much effort to improve our ability to make
870 hydrologic predictions in ungauged locations through the regionalization of hydrologic variables
871 or of model parameters (Bloeschl et al., 2013), there has been much less effort to directly
872 derive expectations of hydrologic behavior based on our perception of the systems under
873 study.

874 Large-scale models could then be evaluated against such hypotheses, thus providing a general
875 opportunity to advance how we connect hydrologic understanding with large-scale modeling - a
876 strategy that could also potentially reduce epistemic uncertainty (Beven et al., 2019), and which
877 may be especially useful for groundwater systems given the data limitations described above.
878 Developing appropriate and effective hypotheses is crucial and should likely focus on large-
879 scale controlling factors or relationships between controlling factors and output in different
880 parts of the model domain; hypotheses that are too specific may only be able to be tested by
881 certain model complexities or in certain regions. To illustrate the type of hypotheses we are
882 suggesting, we list some examples of hypotheses drawn from current literature:
883

884 • water table depth and lateral flow strongly affect transpiration partitioning
885 (Famiglietti and Wood, 1994; Salvucci and Entekhabi, 1995; Maxwell & Condon,
886 2016);

887 • the percentage of inter-basinal regional groundwater flow increases with aridity or
888 decreases with frequency of perennial streams (Gleeson & Manning, 2008;
889 Goderniaux et al, 2013; Schaller and Fan, 2008); or
890 • human water use systematically redistributes water resources at the continental
891 scale via non-local atmospheric feedbacks (Al-Yaari et al., 2019; Keune et al., 2018).

892 Alternatively, it might be helpful to also include hypotheses that have been shown to be
893 incorrect since models should also not show relationships that have been shown to not exist in
894 nature. For example of a hypotheses that has recently been shown to be incorrect is that the
895 baseflow fraction (baseflow volume/precipitation volume) follows the Budyko curve (Gnann et
896 al. 2019) . As yet another alternative, hydrologic intuition could form the basis of model
897 experiments, potentially including extreme model experiments (far from the natural
898 conditions). For example, an experiment that artificially lowers the water table by decreasing
899 precipitation (or recharge directly) could hypothesize the spatial variability across a domain
900 regarding how ‘the drainage flux will increase and evaporation flux will decrease as the water
901 table is lowered’. These hypotheses are meant only for illustrative purposes and we hope
902 future community debate will clarify the most appropriate and effective hypotheses. We
903 believe that the debate around these hypotheses alone will lead to advance our understanding,
904 or, at least highlight differences in opinion.

905

906 Formal approaches are available to gather the opinions of experts and to integrate them into a
907 joint result, often called expert elicitation (Aspinall, 2010; Cooke, 1991; O'Hagan, 2019). Expert
908 elicitation strategies have been used widely to describe the expected behavior of
909 environmental or man-made systems for which we have insufficient data or knowledge to build
910 models directly. Examples include aspects of future sea-level rise (Bamber and Aspinall, 2013),
911 tipping points in the Earth system (Lenton et al., 2018), or the vulnerability of bridges to scour
912 due to flooding (Lamb et al., 2017). In the groundwater community, expert opinion is already
913 widely used to develop system conceptualizations and related model structures (Krueger et al.,
914 2012; Rajabi et al., 2018; Refsgaard et al., 2007), or to define parameter priors (Ross et al.,
915 2009; Doherty and Christensen, 2011; Brunner et al., 2012; Knowling and Werner, 2016; Rajabi
916 and Ataie-Ashtiani, 2016). The term expert opinion may be preferable to the term expert
917 knowledge because it emphasizes a preliminary state of knowledge (Krueger et al., 2012).

918

919 A critical benefit of expert elicitation is the opportunity to bring together researchers who have
920 experienced very different groundwater systems around the world. It is infeasible to expect
921 that a single person could have gained in-depth experience in modelling groundwater in semi-
922 arid regions, in cold regions, in tropical regions etc. Being able to bring together different
923 experts who have studied one or a few of these systems to form a group would certainly create
924 a whole that is bigger than the sum of its parts. If captured, it would be a tremendous source of
925 knowledge for the evaluation of large-scale groundwater models. Expert elicitation also has a
926 number of challenges including: 1) formalizing this knowledge in such a way that it is still usable

927 by third parties that did not attend the expert workshop itself; and 2) perceived or real
928 differences in perspectives, priorities and backgrounds between regional-scale and large-scale
929 modelers.

930

931 So, while expert opinion and judgment play a role in any scientific investigation (O'Hagan,
932 2019), including that of groundwater systems, we rarely use formal strategies to elicit this
933 opinion. It is also less common to use expert opinion to develop hypotheses about the dynamic
934 behavior of groundwater systems, rather than just priors on its physical characteristics. Yet, it is
935 intuitive that information about system behavior can help in evaluating the plausibility of model
936 outputs (and thus of the model itself). This is what we call expert-based evaluation herein.

937 Expert elicitation is typically done in workshops with groups of a dozen or so experts (e.g. Lamb
938 et al., 2018). Upscaling such expert elicitation in support of global modeling would require some
939 web-based strategy and a formalized protocol to engage a sufficiently large number of people.
940 Contributors could potentially be incentivized to contribute to the web platform by publishing a
941 data paper with all contributors as co-authors and a secondary analysis paper with just the core
942 team as coauthors. We recommend the community develop expert elicitation strategies to
943 identify effective hypotheses that directly link to the relevant large-scale hydrologic processes
944 of interest.

945 **4. CONCLUSIONS: towards a holistic evaluation of groundwater representation in large-scale models**

946 Ideally, all three strategies (observation-based, model-based, expert-based) should be pursued
947 simultaneously because the strengths of one strategy might further improve others. For
948 example, expert- or model-based evaluation may highlight and motivate the need for new
949 observations in certain regions or at new resolutions. Or observation-based model evaluation
950 could highlight and motivate further model development or lead to refined or additional
951 hypotheses. We thus recommend the community significantly strengthens efforts to evaluate
952 large-scale models using all three strategies. Implementing these three model evaluation
953 strategies may require a significant effort from the scientific community, so we therefore
954 conclude with two tangible community-level initiatives that would be excellent first steps that
955 can be pursued simultaneously with efforts by individual research groups or collaborations of
956 multiple research groups.

957

958 First, we need to develop a 'Groundwater Modeling Data Portal' that would both facilitate and
959 accelerate the evaluation of groundwater representation in continental to global scale models
960 (Bierkens, 2015). Existing initiatives such as IGRAC's Global Groundwater Monitoring Network
961 (<https://www.un-igrac.org/special-project/ggmn-global-groundwater-monitoring-network>) and
962 HydroFrame (www.hydroframe.org), are an important first step but were not designed to
963 improve the evaluation of large-scale models and the synthesized data remains very
964 heterogeneous - unfortunately, even groundwater level time series data often remains either
965 hidden or inaccessible for various reasons. This open and well documented data portal should
966 include:

967 a) observations for evaluation (Table 2) as well as derived signatures (Section 3.1);

968 b) regional-scale models that meet the standards described above and could facilitate

969 inter-scale comparison (Section 3.2) and be a first step towards linking regional

970 models (Section 2.2);

971 c) Schematizations, conceptual or perceptual models of large-scale models since

972 these are the basis of computational models; and

973 d) Hypothesis and other results derived from expert elicitation (Section 3.3).

974 Meta-data documentation, data tagging, aggregation and services as well as consistent data

975 structures using well-known formats (netCDF, .csv, .txt) will be critical to developing a useful,

976 dynamic and evolving community resource. The data portal should be directly linked to

977 harmonized input data such as forcings (climate, land and water use etc.) and parameters

978 (topography, subsurface parameters etc.), model codes, and harmonized output data. Where

979 possible, the portal should follow established protocols, such as the Dublin Core Standards for

980 metadata (<https://dublincore.org>) and ISIMIP protocols for harmonizing data and modeling

981 approach, and would ideally be linked to or contained within an existing disciplinary repository

982 such as HydroShare (<https://www.hydroshare.org/>) to facilitate discovery, maintenance, and

983 long-term support. Additionally, an emphasis on model objective, uncertainty and regional

984 differences as highlighted (Section 3) will be important in developing the data portal. Like

985 expert-elicitation, contribution to the data portal could be incentivized through co-authorship

986 in data papers and by providing digital object identifiers (DOIs) to submitted data and models

987 so that they are citable. By synthesizing and sharing groundwater observations, models, and
988 hypotheses, this portal would be broadly useful to the hydrogeological community beyond just
989 improving global model evaluation.

990

991 Second, we suggest ISIMIP, or a similar model intercomparison project, could be harnessed as a
992 platform to improve the evaluation of groundwater representation in continental to global
993 scale models. For example, in ISIMIP (Warszawski et al., 2014), modelling protocols have been
994 developed with an international network of climate-impact modellers across different sectors
995 (e.g. water, agriculture, energy, forestry, marine ecosystems) and spatial scales. Originally,
996 ISIMIP started with multi-model comparison (model-based model evaluation), with a focus on
997 understanding how model projections vary across different sectors and different climate
998 change scenarios (ISIMIP Fast Track). However, more rigorous model evaluation came to
999 attention more recently with ISIMIP2a, and various observation data, such as river discharge
1000 (Global Runoff Data Center), terrestrial water storage (GRACE), and water use (national
1001 statistics), have been used to evaluate historical model simulation (observation-based model
1002 evaluation). To better understand model differences and to quantify the associated uncertainty
1003 sources, ISIMIP2b includes evaluating scenarios (land use, groundwater use, human impacts,
1004 etc) and key assumptions (no explicit groundwater representation, groundwater availability for
1005 the future, water allocation between surface water and groundwater), highlighting that
1006 different types of hypothesis derived as part of the expert-based model evaluation could
1007 possibly be simulated as part of the ISIMIP process in the future. While there has been a

1008 significant amount of research and publications on MIPs including surface water availability,
1009 limited multi-model assessments for large-scale groundwater studies exist. Important aspects
1010 of MIPs in general could facilitate all three model evaluation strategies: community-building
1011 and cooperation with various scientific communities and research groups, and making the
1012 model input and output publicly available in a standardized format.

1013

1014 Large-scale hydrologic and land surface models increasingly represent groundwater, which we
1015 envision will lead to a better understanding of large-scale water systems and to more
1016 sustainable water resource use. We call on various scientific communities to join us in this
1017 effort to improve the evaluation of groundwater in continental to global models. As described
1018 by examples above, we have already started this journey and we hope this will lead to better
1019 outcomes especially for the goals of including groundwater in large-scale models that we
1020 started with above: improving our understanding of Earth system processes; and informing
1021 water decisions and policy. Along with the community currently directly involved in large-scale
1022 groundwater modeling, above we have made pointers to other communities who we hope will
1023 engage to accelerate model evaluation: 1) regional hydrogeologists, who would be useful
1024 especially in expert-based model evaluation (Section 3.3); 2) data scientists with expertise in
1025 machine learning, artificial intelligence etc. whose methods could be useful especially for
1026 observation- and model-based model evaluation (Sections 3.1 and 3.2); and 3) the multiple
1027 Earth Science communities that are currently working towards integrating groundwater into a
1028 diverse range of models so that improved evaluation approaches are built directly into model

1029 development. Together we can better understand what has always been beneath our feet, but
1030 often forgotten or neglected.

1031

1032

1033

1034 **Competing interests:** The authors declare that they have no conflict of interest.

1035

1036 **Acknowledgements:**

1037 The commentary is based on a workshop at the University of Bristol and significant debate and
1038 discussion before and after. This community project was directly supported by a Benjamin
1039 Meaker Visiting Professorship at the Bristol University to TG and by funding from the Alexander
1040 von Humboldt Foundation to TW in the framework of the Alexander von Humboldt
1041 Professorship endowed by the German Federal Ministry of Education and Research. We thank
1042 many members of the community who contributed to the discussions, especially at the IGEM
1043 (Impact of Groundwater in Earth System Models) workshop in Taiwan.

1044

1045 **Author Contributions:** (using the [CRediT taxonomy](#) which offers standardized descriptions of
1046 author contributions) conceptualization and writing original draft: TG, TW and PD; writing -

1047 review and editing:all co-authors. Authors are ordered by contribution for the first three
 1048 coauthors (TG, TW and PD) and then ordered in reverse alphabetical order for all remaining
 1049 coauthors.

1050

1051 **Code and data availability:** This Perspective paper does not present any computational results.
 1052 There is therefore no code or data associated with this paper.

1053 **Table 1. A possible model classification based on three model classes and various model characteristics; see link**
 1054 [to google doc](#) to view easier (google doc will be migrated to a community github page if article accepted)

1055

groundwater flow	for large-scale models representing groundwater (1)												
	No GW flow		lateral groundwater flow to a river within a cell					2D lateral groundwater flow between all cells				3D groundwater flow	
	one-way	two-way	one-way	two-way	one-way	two-way	one-way	two-way	ISBA-TEIP	HydroGeoSphere	ParFlow		
example model (2)	JULES	ORCHIDEE	UMS	VIC-ground	CLM5	TOPLATS	Catchment	WaterGAP2-G3 M	LEAF hydro	PCRGLOB-WB + MOFLOW	ISBA-TEIP	HydroGeoSphere	ParFlow
groundwater recharge (3) [flow]	Free-drainage	Recharge = P-E-T	Recharge = P-E-T	Recharge depends on soil moisture and capillary fluxes	Recharge depends on soil head and capillary fluxes	Recharge depends on soil head and capillary fluxes	Recharge depends on soil head and capillary fluxes	currently uncoupled	recharge derived from soil	recharge depends on soil head and capillary fluxes	recharge depends on soil head and capillary fluxes	directly represented	directly represented
Recoverd recharge (4)	not represented	optional via enhanced infiltration in ponds	not represented	not represented	not represented	not represented	represented after coupling	not represented	represented from lakes and perennial rivers?	not represented	not represented	not represented	not represented
surface-water boundary condition or coupling	not represented	not represented	not represented	not represented	not represented	not represented	uncoupled with surface water condition using conductance	no head-based interactions with surface water	one-way coupling with three boundary conditions including drainage from linear reservoir	directly represented	directly represented	directly represented	
variable saturated or partially saturated (5)	1D Richards' in soil layers	1D Richards' in soil layers	1D Richards' in soil layers	1D Richards' in soil layers	1D Richards' in soil layers	1D Richards' in soil layers	lumped 3D Richards	partially saturated	variable fluxes in soils depending on saturation and GW level	1D Richards' in soil layers	variable saturated using 1D Richards' equation	variable saturated using 1D Richards' equation	
water table and hydraulic head	optional W-T diagnostic based on TOPMODEL	not represented	represented, parameterized	directly represented	first layer from bedrock where soil moisture < 0.8	represented following TOPMODEL	represented following TOPMODEL	directly represented	directly represented	directly represented	directly represented	directly represented	
groundwater storage	not represented	represented as linear reservoir	represented	represented	represented	represented	represented	directly represented	directly represented	directly represented	directly represented	directly represented	
lateral flow	not represented	represented	represented through lateral flow divergence	parameterized, calibration	parameterized, calibration, parameter related to baseflow	represented following TOPMODEL	represented following TOPMODEL	directly represented but not along flowlines	directly represented	directly represented	directly represented	directly represented	
groundwater bottom boundary condition	gravity drainage from soil	function of reservoir	no flux	no flux	no flux	no flux	no flux	no flux	no flux	no flux	no flux	no flux	
groundwater use	not represented	not represented	not represented	not represented	not represented	not represented	to be included in future	not represented	represented	not represented	not represented	not represented	
preferential flow	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	
groundwater temperature	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	
groundwater quality	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	
groundwater density	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	
confined conditions	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	
coupling with ocean (and ocean models)	no	no	no	no	no	no	no	ocean boundary condition	ocean boundary condition	no	ocean boundary condition	possible	
isotope-enabled	no	no	no	no	no	no	no	no	no	no	no	no	
included in current assimilation schemes	yes	???	no	no	yes	???	no	no	no	no	no	no	
saline groundwater	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	
Reference	Teat et al. (2011)	Gumbeau et al. (2014)	Milly et al. (2014)	Lang et al. (2005)	Andre et al. (2008)	Parhaghem & Wood (2000)	Koster et al. (2000)	Harrada et al. (2001)	Pen et al. (2013)	de Groot et al. (2011)	vergne et al. (2014)	brunner and Simon-Morawietz et al. (2011)	
Notes:													
(1) Only the most RECENT version of models with published results at continental to global scales are included. Analytical solutions (including the water table ratio or groundwater response time) are not described here.													
(2) one-way coupling means that $S \rightarrow \text{recharge} \rightarrow \text{GW} \rightarrow \text{stream flow}$, but no reverse influence; in this case, the GW model is dependent on surface simulations to provide recharge. Two-way coupling means there is a fully coupling of surf													
(3) Other models exist with similar features													
(4) Focused recharge refers to any recharge that occurs beneath water bodies such as streams or lakes where a preferential flow to mean recharge that bypasses the soil matrix during diffuse recharge through fractures or other macropores													
(5) Variable saturated means that the saturation, and related constitutive relations can vary continuously, while partially saturated means that saturation can only discretely vary between fully saturated and unsaturated.													

1056

1057

1058

1059

1060

1061 **Table 2. Available observations for evaluating the groundwater component of large-scale models**

1062

Available observations already used to evaluate large-scale models			
Data type	Strengths	Limitations	Data availability and spatial resolution
Hydraulic heads or water table depth (averages or single times)	Direct observation of groundwater levels and storage	observations biased towards North America and Europe; non-commensurable with large-scale models; mixture of observation times	IGRAC Global Groundwater Monitoring Network ; USGS; Fan et al. (2013) Point measurements at existing wells
Hydraulic heads or water table depth (transient)	Direct observation of changing groundwater levels and storage	As above	time-series available in a few regions, especially through USGS and European Groundwater Drought Initiative Point measurements at existing wells
Total water storage anomalies (GRACE)	Globally available and regionally integrated signal of water storage trends and anomalies	Groundwater changes are uncertain model remainder; very coarse spatial resolution and limited period	Various mascons gridded with resolution of ~100,000 km ² which are then processed as groundwater storage change; Scanlon et al. (2016)
Storage change (regional aquifers)	Regionally integrated response of aquifer (independent estimates derived by various methods)	Bias towards North America and Europe	Konikow (2011); Döll et al. (2014a) Regional aquifers (10,000s to 100,000s km ²)
Recharge	Direct inflow of groundwater system	Challenging to measure and upscale	Döll and Fiedler (2008); Hartmann et al. (2017); Mohan et al. (2018); Moeck et al. (2020)

			Point to small basin
Abstractions	Crucial for groundwater depletion and sustainability studies	National scale data highly variable in quality; downscaling uncertain	de Graaf et al. (2014); Döll et al. (2014a) National-scale data down-scaled to grid
Streamflow or spring flow observations	Widely available at various scales; low flows can be related to groundwater	Challenging to quantify the flows between groundwater and surface water from streamflow	Global Runoff Data Centre (GRDC) or other data sources ; large to small basin; Olarinoye et al. (2020) point measurements of spring flow
Evapotranspiration	Widely available; related to groundwater recharge or discharge (for shallow water tables)	Not a direct groundwater observations	Various datasets; e.g. Miralles et al. (2016); gridded
Available observations not being used to evaluate large-scale models			
Baseflow index (BFI) or (non-)linear baseflow recession behavior	Possible integrator of groundwater contribution to streamflow over a basin	BFI and k values vary with method; baseflow may be dominated by upstream surface water storage rather than groundwater inflow; can not identify losing river conditions	Beck et al. (2013) Point observations extrapolated by machine learning

Perennial stream map	Ephemeral streams are losing streams, whereas perennial streams could be gaining (or impacted by upstream surface water storage)	Mapping perennial streams requires arbitrary streamflow and duration cutoffs; not all perennial stream reaches are groundwater-influenced; does not provide information about magnitude of inflows/outflows.	Schneider et al. (2017); Cuthbert et al. (2019); Spatially continuous along stream networks
Gaining or losing stream reaches	Multiple techniques for measurement (interpolated head measurements, streamflow data, water chemistry). Constrains direction of fluxes at groundwater system boundaries	Relevant processes occur at sub-grid-cell resolution.	Not globally available but see Bresciani et al. (2018) for a regional example; Spatially continuous along stream networks
Springs and groundwater-dependent surface water bodies	Constrains direction of fluxes at groundwater system boundaries	Relevant processes occur at sub-grid-cell resolution.	Springs available for various regions but not globally; Springer, & Stevens (2009) Point measurements at water feature locations
Tracers (heat, isotopes or other geochemical)	Provides information about temporal aspects of groundwater systems (e.g. residence time)	No large-scale models simulate transport processes (Table S1)	Isotopic data compiled but no global data for heat or other chemistry; Gleeson et al. (2016); Jasechko et al. (2017) Point measurements at existing wells or surface water features
Surface elevation data (leveling, GPS, radar/lidar) an in particular land subsidence observations	Provides information about changes in surface elevation that are related to groundwater head variations or groundwater head decline	Provides indirect information and needs a geomechanical model to translate to head. Introduces additional uncertainty of geomechanical properties.	Leveling data, GPS data and lidar observations mostly limited to areas of active subsidence; Minderhoud et al. (2019,2020). Global data on elevation change are available from the Sentinel 1 mission.

1063

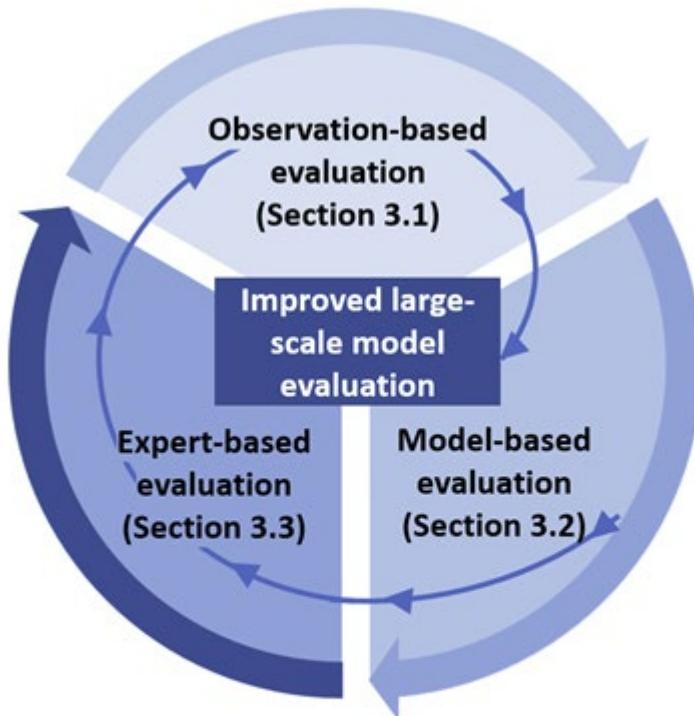
1064

1065

1066

1067

1068 **Figure 1: Improved large-scale model evaluation rests on three pillars: observation-, model-,**
1069 **and expert-based model evaluation. We argue that each pillar is an essential strategy so that**
1070 **all three should be simultaneously pursued by the scientific community. The three pillars of**
1071 **model evaluation all rest on three core principles related to 1) model objectives, 2)**
1072 **uncertainty and 3) regional differences.**



Improved model evaluation rests of three core principles:

- 1) Modelling purpose or objective are paramount
- 2) All sources of information are uncertain
- 3) Regional differences are important

1073

1074

1075

1076

1077 **References**

1078 Addor, N., & Melsen, L. A. (2018). Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models.
1079 *Water Resources Research*, 0(0). <https://doi.org/10.1029/2018WR022958>

1080

1081 Al-Yaari, A., Ducharme, A., Cheruy, F., Crow, W.T. & Wigneron, J.P. (2019). Satellite-based soil moisture provides
1082 missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over
1083 conterminous United States. *Scientific Reports*, 9, article number 1657, doi:10.1038/s41598-018-38309-5

1084

1085 Anderson, M. P., Woessner, W. W. & Hunt, R. (2015a). *Applied groundwater modeling- 2nd Edition*. San Diego:
1086 Academic Press.

1087 Anderson, R. G., Min-Hui Lo, Swenson, S., Famiglietti, J. S., Tang, Q., Skaggs, T. H., Lin, Y.-H., and Wu, R.-J. (2015b),
1088 Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic
1089 water fluxes in land surface models, *Geosci. Model Dev.*, 8, 3021-3031, doi:10.5194/gmd-8-3021-2015.Alley, W.M.
1090 and LF Konikow (2015) Bringing GRACE down to earth. *Groundwater* 53 (6): 826–829

1091 Anyah, R. O., Weaver, C. P., Miguez-Macho, G., Fan, Y., & Robock, A. (2008). Incorporating water table dynamics in
1092 climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability. *J. Geophys. Res.*,
1093 113. Retrieved from <http://dx.doi.org/10.1029/2007JD009087>

1094 Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., McMillan, H., Kiang, J. E., et al. (2015). Accelerating advances in
1095 continental domain hydrologic modeling. *Water Resources Research*, 51(12), 10078–10091.
1096 <https://doi.org/10.1002/2015WR017498>

1097 Aspinall, W. (2010). A route to more tractable expert advice. *Nature*, 463, 294–295.
1098 <https://doi.org/10.1038/463294a>

1099 ASTM (2016), Standard Guide for Conducting a Sensitivity Analysis for a Groundwater Flow Model Application,
1100 ASTM International D5611-94, West Conshohocken, PA, 2016, www.astm.org

1101 Bamber, J.L. and Aspinall, W.P. (2013). An expert judgement assessment of future sea level rise from the ice
1102 sheets. *Nature Climate Change*. 3(4), 424-427.

1103 Barnett, B., Townley, L.R., Post, V.E.A., Evans, R.E., Hunt, R.J., Peeters, L., Richardson, S., Werner, A.D., Knapton, A.,
1104 Boronkay, A. (2012). Australian groundwater modelling guidelines, National Water Commission, Canberra, 203
1105 pages

1106 Barthel, R. (2014). HESS Opinions “Integration of groundwater and surface water research: an interdisciplinary
1107 problem?” *Hydrology and Earth System Sciences*, 18(7), 2615–2628.

1108 Beck, H. et al (2013). Global patterns in base flow index and recession based on streamflow observations from
1109 3394 catchments. *Water Resources Research*.

1110 Befus, K., Jasechko, S., Luijendijk, E., Gleeson, T., Cardenas, M.B. (2017) The rapid yet uneven turnover of Earth's
1111 groundwater. (2017) *Geophysical Research Letters* 11: 5511-5520 doi: 10.1002/2017GL073322

1112 Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A.,
1113 Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., & Harding,
1114 R. J. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes,
1115 *Geosci. Model Dev.*, 4, 677-699. <https://doi.org/10.5194/gmd-4-677-2011>

1116 Beven, K. (2000). Uniqueness of place and process representations in hydrological modelling. *Hydrology and Earth
1117 System Sciences*, 4(2), 203–213.

1118 Beven, K. (2005). On the concept of model structural error. *Water Science & Technology*, 52(6), 167–175.

1119 Beven, K. (2016). Facets of uncertainty: epistemic uncertainty, nonstationarity, likelihood, hypothesis testing, and
1120 communication. *Hydrological Sciences Journal*, 61(9), 1652-1665, DOI: 10.1080/02626667.2015.1031761

1121 Beven, K. (2019) How to make advances in hydrological modelling. In: *Hydrology Research*. 50, 6, p. 1481-1494. 14
1122 p.

1123 Beven, K. (2020). Deep learning, hydrological processes and the uniqueness of place. *Hydrological Processes*,
1124 34(16), 3608–3613. <https://doi.org/10.1002/hyp.13805>

1125 Beven, K. J., and H. L. Cloke (2012), Comment on “Hyperresolution global land surface modeling: Meeting a grand
1126 challenge for monitoring Earth’s terrestrial water” by Eric F. Wood et al., *Water Resour.Res.*, 48, W01801,
1127 doi:10.1029/2011WR010982.

1128 Beven, K.J., Aspinall, W.P., Bates, P.D., Borgomeo, E., Goda, K., Hall, J.W., Page, T., Phillips, J.C., Simpson, M., Smith,
1129 P.J., Wagener, T. and Watson, M. 2018. Epistemic uncertainties and natural hazard risk assessment – Part 2: What
1130 should constitute good practice? *Natural Hazards and Earth System Sciences*, 18, 10.5194/nhess-18-1-2018

1131 Bierkens, M. F. P. (2015). Global hydrology 2015: State, trends, and directions. *Water Resources Research*, 51(7),
1132 4923–4947. <https://doi.org/10.1002/2015WR017173>

1133 Bierkens, M. F.P. & Wada, Y. (2019). Non-renewable groundwater use and groundwater depletion: A review.
1134 *Environmental Research Letters*, 14(6), 063002

1135 Boone, A. A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S., Gusev, Y., Haddeland, I., Koster, R., Lohmann,
1136 D., Mahanama, S., Mitchell, K., Nasonova, O., Niu, G. Y., Pitman, A., Polcher, J., Shmakin, A. B., Tanaka, K., Van Den
1137 Hurk, B., Vérant, S., Verseghy, D., Viterbo, P. and Yang, Z. L.: The Rhône-aggregation land surface scheme
1138 intercomparison project: An overview, *J. Clim.*, 17(1), 187–208, doi:10.1175/1520-
1139 0442(2004)017<0187:TRLSSI>2.0.CO;2, 2004.

1140 Borgonovo, E. Lu, X. Plischke, E. Rakovec, O. and Hill, M. C. (2017). Making the most out of a hydrological model
1141 data set: Sensitivity analyses to open the model black-box. *Water Resources Research*.
1142 DOI:10.1002/2017WR020767

1143 Bresciani, E., P. Goderniaux, and O. Batelaan (2016), Hydrogeological controls of water table-land surface
1144 interactions, *Geophysical Research Letters*, 43, 9653-9661.

1145 Bresciani, E., Cranswick, R. H., Banks, E. W., Batlle-Aguilar, J., et al. (2018). Using hydraulic head, chloride and
1146 electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers.
1147 *Hydrology and Earth System Sciences*, 22(2), 1629–1648.

1148 Brunner, P., J. Doherty, and C. T. Simmons (2012), Uncertainty assessment and implications for data acquisition in
1149 support of integrated hydrologic models, *Water Resources Research*, 48.

1150 Burgess, W. G., Shamsuddoha, M., Taylor, R. G., Zahid, A., Ahmed, K. M., Mukherjee, A., et al. (2017). Terrestrial
1151 water load and groundwater fluctuation in the Bengal Basin. *Scientific Reports*, 7(1), 3872.

1152 Caceres, D., Marzeion, B., Malles, J.H., Gutknecht, B., Müller Schmied, H., Döll, P. (2020): Assessing global water
1153 mass transfers from continents to oceans over the period 1948–2016. *Hydrol. Earth Syst. Sci. Discuss.*
1154 doi:10.5194/hess-2019-664

1155 Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., et al. (2015). Virtual laboratories: new
1156 opportunities for collaborative water science. *Hydrology and Earth System Sciences*, 19(4), 2101–2117.

1157 Clark, M. P., A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt, H. V. Gupta, T. Wagener, and L. E. Hay (2008)
1158 Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between
1159 hydrological models, *Water Resour. Res.*, 44, W00B02, doi:10.1029/2007WR006735.

1160 Clark, M. P., et al. (2015), A unified approach for process-based hydrologic modeling: 1. Modeling concept, *Water
1161 Resources Research*, 51, 2498–2514, doi:10.1002/2015WR017198

1162 Condon, L. E., & Maxwell, R. M. (2019). Simulating the sensitivity of evapotranspiration and streamflow to large-
1163 scale groundwater depletion. *Science Advances*, 5(6), eaav4574. <https://doi.org/10.1126/sciadv.aav4574>

1164 Condon, LE et al Evapotranspiration depletes groundwater under warming over the contiguous United States
1165 *Nature Comm*, 2020, <https://doi.org/10.1038/s41467-020-14688-0>

1166 Condon, L. E., Markovich, K. H., Kelleher, C. A., McDonnell, J. J., Ferguson, G., & McIntosh, J. C. (2020). Where Is the
1167 Bottom of a Watershed? *Water Resources Research*, 56(3). <https://doi.org/10.1029/2019wr026010>

1168 Condon, L.E., Stefan Kollet, Marc F.P. Bierkens, Reed M. Maxwell, Mary C. Hill, Anne Verhoef, Anne F. Van Loon,
1169 Graham E. Fogg, Mauro Sulis , Harrie-Jan Hendricks Fransen ; Corinna Abesser. Global groundwater modeling and
1170 monitoring?: Opportunities and challenges (in review at WRR)

1171 Cooke, R. (1991). *Experts in uncertainty: opinion and subjective probability in science*. Oxford University Press on
1172 Demand.

1173 Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A., Hartmann, J., & Lehner, B. (2019). Global
1174 patterns and dynamics of climate–groundwater interactions. *Nature Climate Change*, 9, 137–141
1175 <https://doi.org/10.1038/s41558-018-0386-4>

1176 Cuthbert, M. O., et al. (2019) Observed controls on resilience of groundwater to climate variability in sub-Saharan
1177 Africa. *Nature* 572: 230–234

1178 Dalin, C., Wada, Y., Kastner, T., & Puma, M. J. (2017). Groundwater depletion embedded in international food
1179 trade. *Nature*, 543(7647), 700–704. <https://doi.org/10.1038/nature21403>

1180 DeAngelis, A., Dominguez, F., Fan, Y., Robock, A., Kustu, M. D., & Robinson, D. (2010). Evidence of enhanced
1181 precipitation due to irrigation over the Great Plains of the United States. *Journal of Geophysical Research: Atmospheres*, 115(D15).

1183 Dirmeyer, P. A.: A History and Review of the Global Soil Wetness Project (GSWP), *J. Hydrometeorol.*, 12(5),
1184 110404091221083, doi:10.1175/jhm-d-10-05010, 2011

1185 Doherty, J., and S. Christensen (2011), Use of paired simple and complex models to reduce predictive bias and
1186 quantify uncertainty, *Water Resources Research*, 47(12),

1187 Döll, P., Fiedler, K. (2008): Global-scale modeling of groundwater recharge. *Hydrol. Earth Syst. Sci.*, 12, 863-885,
1188 doi: 10.5194/hess-12-863-2008

1189 Döll, P., Douville, H., Guntner, A., Müller Schmied, H., Wada, Y. (2016): Modelling freshwater resources at the
1190 global scale: Challenges and prospects. *Surveys in Geophysics*, 37(2), 195-221. doi: 10.1007/s10712-015-9343-1

1191 Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., & Eicker, A. (2014a). Global-scale assessment of
1192 groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information
1193 from well observations and GRACE satellites. *Water Resources Research*, 50(7), 5698–5720.
1194 <https://doi.org/10.1002/2014WR015595>

1195 Döll, P., Fritsche, M., Eicker, A., Müller Schmied, H. (2014b): Seasonal water storage variations as impacted by
1196 water abstractions: Comparing the output of a global hydrological model with GRACE and GPS observations.
1197 *Surveys in Geophysics*, 35(6), 1311-1331, doi: 10.1007/s10712-014-9282-2.

1198 Döll, P., Hoffmann-Dobrev, H., Portmann, F.T., Siebert, S., Eicker, A., Rodell, M., Strassberg, G., Scanlon, B. (2012):
1199 Impact of water withdrawals from groundwater and surface water on continental water storage variations. *J.
1200 Geodyn.* 59-60, 143-156, doi:10.1016/j.jog.2011.05.001.

1201 Duan Q., Schaake, J., Andreassian, V., Franks, S., Gupta, H.V., Gusev, Y.M., Habets, F., Hall, A., Hay, L., Hogue, T.S.,
1202 Huang, M., Leavesley, G., Liang, X., Nasonova, O.N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T. and Wood,
1203 E.F. (2006). Model Parameter Estimation Experiment (MOPEX): Overview and Summary of the Second and Third
1204 Workshop Results. *Journal of Hydrology*, 320(1-2), 3-17.

1205 Enemark, T., Peeters, L. J. M., Mallants, D., & Batelaan, O. (2019). Hydrogeological conceptual model building and
1206 testing: A review. *Journal of Hydrology*, 569, 310–329. <https://doi.org/10.1016/j.jhydrol.2018.12.007>

1207 Erban L E, Gorelick S M and Zebker H A 2014 Groundwater extraction, land subsidence, and sea-level rise in the
1208 Mekong Delta, *Vietnam Environ. Res. Lett.* 9 084010

1209 Famiglietti, J. S., & E. F. Wood (1994). Multiscale modeling of spatially variable water and energy balance
1210 processes, *Water Resour. Res.*, 30(11), 3061–3078, <https://doi.org/10.1029/94WR01498>

1211 Fan, Y. et al., (2019) Hillslope hydrology in global change research and Earth System modeling. *Water Resources
1212 Research*, doi.org/10.1029/2018WR023903

1213 Fan, Y. (2015). Groundwater in the Earth's critical zone: Relevance to large-scale patterns and processes. *Water*
1214 *Resources Research*, 51(5), 3052–3069. <https://doi.org/10.1002/2015WR017037>

1215 Fan, Y., & Miguez-Macho, G. (2011). A simple hydrologic framework for simulating wetlands in climate and earth
1216 system models. *Climate Dynamics*, 37(1–2), 253–278.

1217 Fan, Y., Li, H., & Miguez-Macho, G. (2013). Global patterns of groundwater table depth. *Science*, 339(6122), 940–
1218 943.

1219 Fenicia, F., D. Kavetski, and H. H. G. Savenije (2011), Elements of a flexible approach for conceptual hydrological
1220 modeling: 1. Motivation and theoretical development, *Water Resources Research*, 47(11), W11510,
1221 10.1029/2010wr010174.

1222 Forrester, M.M. and Maxwell, R.M. Impact of lateral groundwater flow and subsurface lower boundary conditions
1223 on atmospheric boundary layer development over complex terrain. *Journal of Hydrometeorology*,
1224 doi:10.1175/JHM-D-19-0029.1, 2020.

1225 Forrester, M.M., Maxwell, R.M., Bearup, L.A., and Gochis, D.J. Forest Disturbance Feedbacks from Bedrock to
1226 Atmosphere Using Coupled Hydro-Meteorological Simulations Over the Rocky Mountain Headwaters. *Journal of*
1227 *Geophysical Research-Atmospheres*, 123:9026-9046, doi:10.1029/2018JD028380 2018.

1228 Freeze, R. A., & Witherspoon, P. A. (1966). Theoretical analysis of regional groundwater flow, 1. Analytical and
1229 numerical solutions to a mathematical model. *Water Resources Research*, 2, 641–656.

1230 Foster, S., Chilton, J., Nijsten, G.-J., & Richts, A. (2013). Groundwater — a global focus on the 'local resource.'
1231 *Current Opinion in Environmental Sustainability*, 5(6), 685–695. doi.org/10.1016/j.cosust.2013.10.010

1232 Garven, G. (1995). Continental-scale groundwater flow and geologic processes. *Annual Review of Earth and*
1233 *Planetary Sciences*, 23, 89–117.

1234 Gascoin, S., Ducharne, A., Ribstein, P., Carli, M., Habets, F. (2009). Adaptation of a catchment-based land surface
1235 model to the hydrogeological setting of the Somme River basin (France). *Journal of Hydrology*, 368(1-4), 105-116.
1236 <https://doi.org/10.1016/j.jhydrol.2009.01.039>

1237 Genereux, D. (1998). Quantifying uncertainty in tracer-based hydrograph separations. *Water Resources Research*,
1238 34(4), 915–919.

1239 Gilbert, J.M., Maxwell, R.M. and Gochis, D.J. Effects of water table configuration on the planetary boundary layer
1240 over the San Joaquin River watershed, California. *Journal of Hydrometeorology*, 18:1471-1488, doi:10.1175/JHM-
1241 D-16-0134.1, 2017.

1242 Gleeson, T. et al. (2020) HESS Opinions: Improving the evaluation of groundwater representation in continental to
1243 global scale models. <https://hess.copernicus.org/preprints/hess-2020-378/>

1244 Gleeson, T., & Manning, A. H. (2008). Regional groundwater flow in mountainous terrain: Three-dimensional
1245 simulations of topographic and hydrogeologic controls. *Water Resources Research*, 44. Retrieved from
1246 <http://dx.doi.org/10.1029/2008WR006848>

1247 Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., & Cardenas, M. B. (2016). The global volume and distribution
1248 of modern groundwater. *Nature Geosci*, 9(2), 161–167.

1249 de Graaf, I. E. M., van Beek, L. P. H., Wada, Y., & Bierkens, M. F. P. (2014). Dynamic attribution of global water
1250 demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges.
1251 *Advances in Water Resources*, 64(0), 21–33. <https://doi.org/10.1016/j.advwatres.2013.12.002>

1252 de Graaf, I. E. M., Sutanudjaja, E. H., Van Beek, L. P. H., & Bierkens, M. F. P. (2015). A high-resolution global-scale
1253 groundwater model. *Hydrology and Earth System Sciences*, 19(2), 823–837.

1254 de Graaf, I. E. M., van Beek, L. P. H., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., & Bierkens, M. F. P.
1255 (2017). A global-scale two-layer transient groundwater model: Development and application to groundwater
1256 depletion. *Advances in Water Resources*, 102, 53–67. <https://doi.org/10.1016/j.advwatres.2017.01.011>

1257 de Graaf, I. E. M., Gleeson, T., Beek, L. P. H. (Rens) van, Sutanudjaja, E. H., & Bierkens, M. F. P. (2019).
1258 Environmental flow limits to global groundwater pumping. *Nature*, 574(7776), 90–94.
1259 <https://doi.org/10.1038/s41586-019-1594-4>

1260 Gnann, S. J., Woods, R. A., & Howden, N. J. (2019). Is there a baseflow Budyko curve? *Water Resources Research*,
1261 55(4), 2838–2855.

1262 Goderniaux, P., P. Davy, E. Bresciani, J.-R. de Dreuz, and T. Le Borgne (2013), Partitioning a regional groundwater
1263 flow system into shallow local and deep regional flow compartments, *Water Resources Research*, 49(4), 2274-
1264 2286.

1265 Gosling, S. N., Zaherpour, J., Mount, N. J., Hattermann, F. F., Dankers, R., Arheimer, B., et al. (2017). A comparison
1266 of changes in river runoff from multiple global and catchment-scale hydrological models under global warming
1267 scenarios of 1 °C, 2 °C and 3 °C. *Climatic Change*, 141(3), 577–595. <https://doi.org/10.1007/s10584-016-1773-3>

1268 Guimberteau, M., Ducharne, A., Ciais, P., Boisier, J. P., Peng, S., De Weirdt, M., & Verbeeck, H. (2014). Testing
1269 conceptual and physically based soil hydrology schemes against observations for the Amazon Basin, *Geosci. Model
1270 Dev.*, 7, 1115-1136. <https://doi.org/10.5194/gmd-7-1115-2014>

1271 Habets, F., Boé, J., Déqué, M., Ducharne, A., Gascoin, S., Hachour, A., Martin, E., Pagé, C., Sauquet, E., Terray, L.,
1272 Thiéry, D., Oudin, L. & Viennot, P. (2013). Impact of climate change on surface water and ground water of two
1273 basins in Northern France: analysis of the uncertainties associated with climate and hydrological models, emission
1274 scenarios and downscaling methods. *Climatic Change*, 121, 771-785. <https://doi.org/10.1007/s10584-013-0934-x>

1275 Hartmann, A., Gleeson, T., Rosolem, R., Pianosi, F., Wada, Y., & Wagener, T. (2015). A large-scale simulation model
1276 to assess karstic groundwater recharge over Europe and the Mediterranean. *Geosci. Model Dev.*, 8(6), 1729–1746.
1277 <https://doi.org/10.5194/gmd-8-1729-2015>

1278 Hartmann, Andreas, Gleeson, T., Wada, Y., & Wagener, T. (2017). Enhanced groundwater recharge rates and
1279 altered recharge sensitivity to climate variability through subsurface heterogeneity. *Proceedings of the National
1280 Academy of Sciences*, 114(11), 2842–2847. <https://doi.org/10.1073/pnas.1614941114>

1281 Hattermann, F. F., Krysanova, V., Gosling, S. N., Dankers, R., Daggupati, P., Donnelly, C., et al. (2017). Cross-scale
1282 intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large
1283 river basins. *Climatic Change*, 141(3), 561–576. <https://doi.org/10.1007/s10584-016-1829-4>

1284 Hay, L., Norton, P., Viger, R., Markstrom, S., Regan, R. S., & Vanderhoof, M. (2018). Modelling surface-water
1285 depression storage in a Prairie Pothole Region. *Hydrological Processes*, 32(4), 462–479.
1286 <https://doi.org/10.1002/hyp.11416>

1287 Henderson-Sellers, A., Z. L. Yang, and R. E. Dickinson: The Project for Intercomparison of Land-Surface Schemes
1288 (PILPS). *Bull. Amer. Meteor. Soc.*, 74, 1335–1349, 1993

1289 Herbert, C., & Döll, P. (2019). Global assessment of current and future groundwater stress with a focus on
1290 transboundary aquifers. *Water Resources Research*, 55, 4760–4784. <https://doi.org/10.1029/2018WR023321>

1291 Heudorfer, B., Haaf, E., Stahl, K., & Barthel, R. (2019). Index-based characterization and quantification of
1292 groundwater dynamics. *Water Resources Research*, 55, 5575–5592. <https://doi.org/10.1029/2018WR024418>

1293 Hill, M. C. (2006). The practical use of simplicity in developing ground water models. *Ground Water*, 44(6), 775–
1294 781. <https://doi.org/10.1111/j.1745-6584.2006.00227.x>

1295 Hill, M. C., & Tiedeman, C. R. (2007). *Effective groundwater model calibration*. Wiley.

1296 Hill, M. C., Kavetski, D. Clark, M. Ye, M. Arabi, M. Lu, D. Foglia, L. & Mehl, S. (2016). Practical use of computationally
1297 frugal model analysis methods. *Groundwater*. DOI:10.1111/gwat.12330

1298

1299 Hiscock, K. M., & Bense, V. F. (2014). *Hydrogeology—principles and practice* (2nd edition). Blackwell.

1300 Huang, S., Kumar, R., Flörke, M., Yang, T., Hundecha, Y., Kraft, P., et al. (2017). Evaluation of an ensemble of
1301 regional hydrological models in 12 large-scale river basins worldwide. *Climatic Change*, 141(3), 381–397.
1302 <https://doi.org/10.1007/s10584-016-1841-8>

1303 Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J., Savenije, H.H.G. and Gascuel-Odoux, C.
1304 (2014). Process Consistency in Models: the Importance of System Signatures, Expert Knowledge and Process
1305 Complexity. *Water Resources Research* 50:7445–7469.

1306 Hunt, R. J., Walker, J. F., Selbig, W. R., Westenbroek, S. M., & Regan, R. S. (2013). Simulation of climate-change
1307 effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake
1308 Watershed, Wisconsin. USGS Scientific Investigations Report No. 2013–5159. Reston, VA: U.S. Geological Survey.

1309 Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., & Arheimer, B. (2016). Most computational hydrology is not
1310 reproducible, so is it really science? *Water Resources Research*, 52(10), 7548–7555.
1311 <https://doi.org/10.1002/2016WR019285>

1312 Jasechko, S., Birks, S.J., Gleeson, T., Wada, Y., Sharp, Z.D., Fawcett, P.J., McDonnell, J.J., Welker, J.M. (2014)
1313 Pronounced seasonality in the global groundwater recharge. *Water Resources Research*. 50, 8845–8867 doi:
1314 10.1002/2014WR015809

1315 Jasechko, S., Perrone, D., Befus, K. M., Bayani Cardenas, M., Ferguson, G., Gleeson, T., et al. (2017). Global aquifers
1316 dominated by fossil groundwaters but wells vulnerable to modern contamination. *Nature Geoscience*, 10(6), 425–
1317 429. <https://doi.org/10.1038/ngeo2943>

1318 Jung, M., et al. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible
1319 heat derived from eddy covariance, satellite, and meteorological observations. *J. Geophys. Res.*, 116,
1320 G00J07, doi:10.1029/2010JG001566.

1321 Keune, J., Sulis, M., Kollet, S., Siebert, S., & Wada, Y. (n.d.). Human Water Use Impacts on the Strength of the
1322 Continental Sink for Atmospheric Water. *Geophysical Research Letters*, 45(9), 4068–4076.
1323 <https://doi.org/10.1029/2018GL077621>

1324 Keune, J., F. Gasper, K. Goergen, A. Hense, P. Shrestha, M. Sulis, and S. Kollet, 2016, Studying the influence of
1325 groundwater representations on land surface-atmosphere feedbacks during the European heat wave in 2003, *J.*
1326 *Geophys. Res. Atmos.*, 121, 13, 301–13,325, doi:10.1002/2016JD025426. doi:10.1002/2016JD025426.

1327 Knowling, M. J., and A. D. Werner (2016), Estimability of recharge through groundwater model calibration: Insights
1328 from a field-scale steady-state example, *Journal of Hydrology*, 540, 973–987.

1329 Koirala et al. (2013) Global-scale land surface hydrologic modeling with the representation of water table
1330 dynamics, *JGR Atmospheres* <https://doi.org/10.1002/2013JD020398>

1331 Koirala, S., Kim, H., Hirabayashi, Y., Kanae, S. and Oki, T. (2019) Sensitivity of Global Hydrological Simulations to
1332 Groundwater Capillary Flux Parameterizations, *Water Resour. Res.*, 55(1), 402–425, doi:10.1029/2018WR023434,

1333 Kollet, S. J., & Maxwell, R. M. (2008). Capturing the influence of groundwater dynamics on land surface processes
1334 using an integrated, distributed watershed model. *Water Resources Research*, 44(2).

1335 Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi, G., et al. (2017). The integrated hydrologic
1336 model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and
1337 feedbacks. *Water Resources Research*, 53(1), 867–890.

1338 Konikow, L. F. (2011), Contribution of global groundwater depletion since 1900 to sea-level rise, *Geophys. Res.*
1339 Lett., 38, L17401, doi: 10.1029/2011GL048604.

1340 Koster, R.D., Suarez, M.J., Ducharne, A., Praveen, K., & Stieglitz, M. (2000). A catchment-based approach to
1341 modeling land surface processes in a GCM - Part 1: Model structure. *Journal of Geophysical Research*, 105 (D20),
1342 24809-24822.

1343 Konikow, L.F. (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. *Geophysical*
1344 *Research Letters* <https://doi.org/10.1029/2011GL048604>

1345 Krakauer, N. Y., Li, H., & Fan, Y. (2014). Groundwater flow across spatial scales: importance for climate modeling.
1346 *Environmental Research Letters*, 9(3), 034003.

1347 Kresic, N. (2009). *Groundwater resources: sustainability, management and restoration*. McGraw-Hill.

1348 Krueger, T., T. Page, K. Hubacek, L. Smith, and K. Hiscock (2012), The role of expert opinion in environmental
1349 modelling, *Environmental Modelling & Software*, 36, 4-18.

1350

1351 Kustu, M. D., Fan, Y., & Rodell, M. (2011). Possible link between irrigation in the US High Plains and increased
1352 summer streamflow in the Midwest. *Water Resources Research*, 47(3).

1353 Lamb, R., Aspinall, W., Odber, H. and Wagener, T. (2017). Vulnerability of bridges to scour: Insights from an
1354 international expert elicitation workshop. *Natural Hazards and Earth System Sciences*. 17(8), 1393-1409.

1355 Leaf, A. T., Fienen, M. N., Hunt, R. J., & Buchwald, C. A. (2015). Groundwater/surface-water interactions in the Bad
1356 River Watershed, Wisconsin. USGS Numbered Series No. 2015-5162. Reston, VA: U.S. Geological Survey.

1357 Leavesley, G. H., S. L. Markstrom, P. J. Restrepo, and R. J. Viger (2002), A modular approach for addressing model
1358 design, scale, and parameter estimation issues in distributed hydrological modeling, *Hydrol. Processes*, 16, 173–
1359 187, doi:10.1002/hyp.344.

1360 Lemieux, J. M., Sudicky, E. A., Peltier, W. R., & Tarasov, L. (2008). Dynamics of groundwater recharge and seepage
1361 over the Canadian landscape during the Wisconsinian glaciation. *J. Geophys. Res.*, 113. Retrieved from
1362 <http://dx.doi.org/10.1029/2007JF000838>

1363 Lenton, T.M. et al. (2008). Tipping elements in the Earth's climate system. *Proceedings of the National Academy of
1364 Sciences* 105 (6), 1786-1793.

1365 Liang, X., Z. Xie, and M. Huang (2003). A new parameterization for surface and groundwater interactions and its
1366 impact on water budgets with the variable infiltration capacity (VIC) land surface model, *J. Geophys. Res.*, 108,
1367 8613, D16. <https://doi.org/10.1029/2002JD003090>

1368 Lo, M.-H., Famiglietti, J. S., Reager, J. T., Rodell, M., Swenson, S., & Wu, W.-Y. (2016). GRACE-Based Estimates of
1369 Global Groundwater Depletion. In Q. Tang & T. Oki (Eds.), *Terrestrial Water Cycle and Climate Change* (pp. 135–
1370 146). John Wiley & Sons, Inc. <https://doi.org/10.1002/9781118971772.ch7>

1371 Lo, M.-H., Yeh, P. J.-F., & Famiglietti, J. S. (2008). Constraining water table depth simulations in a land surface
1372 model using estimated baseflow. *Advances in Water Resources*, 31(12), 1552–1564.

1373 Lo, M. and J. S. Famiglietti, (2010) Effect of water table dynamics on land surface hydrologic memory, *J. Geophys.
1374 Res.*, 115, D22118, doi:10.1029/2010JD014191

1375 Lo, M.-H., J. S. Famiglietti, P. J.-F. Yeh, and T. H. Syed (2010), Improving Parameter Estimation and Water Table
1376 Depth Simulation in a Land Surface Model Using GRACE Water Storage and Estimated Baseflow Data, *Water
1377 Resour. Res.*, 46, W05517, doi:10.1029/2009WR007855.

1378 Loheide, S. P., Butler Jr, J. J., & Gorelick, S. M. (2005). Estimation of groundwater consumption by phreatophytes
1379 using diurnal water table fluctuations: A saturated-unsaturated flow assessment. *Water Resources Research*, 41(7).

1380 Luijendijk, E., Gleeson, T. and Moosdorf, N. (2020) Fresh groundwater discharge insignificant for the world's oceans
1381 but important for coastal ecosystems *Nature Communications*, 11, 1260 (2020). doi: 10.1038/s41467-020-15064-8

1382

1383 Maples, S., Foglia, L., Fogg, G.E. and Maxwell, R.M. (2020). Sensitivity of Hydrologic and Geologic Parameters on
1384 Recharge Processes in a Highly-Heterogeneous, Semi-Confined Aquifer System. *Hydrology and Earth Systems*
1385 Sciences, in press.

1386 Margat, J., & Van der Gun, J. (2013). *Groundwater around the world: a geographic synopsis*. London: CRC Press

1387 Markovich, KH, AH Manning, LE Condon, JC McIntosh (2019). Mountain-block Recharge: A Review of Current
1388 Understanding. *Water Resources Research*, 55, <https://doi.org/10.1029/2019WR025676>

1389 Maxwell, R. M., Condon, L. E., and Kollet, S. J. (2015) A high-resolution simulation of groundwater and surface
1390 water over most of the continental US with the integrated hydrologic model ParFlow v3, *Geosci. Model Dev.*, 8,
1391 923–937, <https://doi.org/10.5194/gmd-8-923-2015>.

1392 Maxwell, R.M., Chow, F.K. and Kollet, S.J., The groundwater-land-surface-atmosphere connection: soil moisture
1393 effects on the atmospheric boundary layer in fully-coupled simulations. *Advances in Water Resources* 30(12),
1394 doi:10.1016/j.advwatres.2007.05.018, 2007.

1395 Maxwell, R. M., & Condon, L. E. (2016). Connections between groundwater flow and transpiration partitioning.
1396 *Science*, 353(6297), 377–380.

1397 Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., & Forrester, M. M. (2016). The imprint of
1398 climate and geology on the residence times of groundwater. *Geophysical Research Letters*, 43(2), 701–708.
1399 <https://doi.org/10.1002/2015GL066916>

1400 McMilan, H. (2020). Linking hydrologic signatures to hydrologic processes: A review. *Hydrological Processes*. 34,
1401 1393– 1409.

1402 Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H., Blasch, K. W., et al. (2016). Implications of
1403 projected climate change for groundwater recharge in the western United States. *Journal of Hydrology*, 534, 124–
1404 138.

1405 Melsen, L. A., A. J. Teuling, P. J. J. F. Torfs, R. Uijlenhoet, N. Mizukami, and M. P. Clark, 2016a: HESS Opinions: The
1406 need for process-based evaluation of large-domain hyper-resolution models. *Hydrology and Earth System*
1407 Sciences, doi:10.5194/hess-20-1069-2016.

1408 Meriano, M., & Eyles, N. (2003). Groundwater flow through Pleistocene glacial deposits in the rapidly urbanizing
1409 Rouge River-Highland Creek watershed, City of Scarborough, southern Ontario, Canada. *Hydrogeology Journal*,
1410 11(2), 288–303. <https://doi.org/10.1007/s10040-002-0226-4>

1411 Milly, P.C., S.L. Malyshev, E. Shevliakova, K.A. Dunne, K.L. Findell, T. Gleeson, Z. Liang, P. Phillipps, R.J. Stouffer, & S.
1412 Swenson (2014). An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth-System Studies. *J.*
1413 *Hydrometeor.*, 15, 1739–1761. <https://doi.org/10.1175/JHM-D-13-0162.1>

1414 Minderhoud P S J, Erkens G, Pham Van H, Bui Tran V, Erban L E, Kooi, H and Stouthamer E (2017) Impacts of 25
1415 years of groundwater extraction on subsidence in the Mekong delta, Vietnam *Environ. Res. Lett.* 12 064006

1416 Minderhoud, P.S.J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. (2019). Mekong delta much lower
1417 than previously assumed in sea-level rise impact assessments. *Nature Communications* 10, 3847.

1418 Minderhoud, P.S.J., Middelkoop, H., Erkens, G. and Stouthamer, E. Groundwater (2020). extraction may drown
1419 mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century.
1420 *Environ. Res. Commun.* 2, 011005.

1421 Miralles, D. G., Jimenez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., et al. (2016). The WACMOS-ET project -
1422 Part 2: Evaluation of global terrestrial evaporation data sets. *Hydrology and Earth System Sciences*, 20(2), 823-842.
1423 doi:10.5194/hess-20-823-2016.

1424 Moeck, C. Nicolas Grech-Cumbo, Joel Podgorski, Anja Bretzler, Jason J. Gurdak ,Michael Berg, Mario Schirmer
1425 (2020) A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and
1426 relationships. *Science of The Total Environment* <https://doi.org/10.1016/j.scitotenv.2020.137042>

1427 Mohan, C., Wei, Y., & Saft, M. (2018). Predicting groundwater recharge for varying land cover and climate
1428 conditions—a global meta-study. *Hydrology and Earth System Sciences*, 22(5), 2689–2703.

1429 Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C.,
1430 Toth, E., Grimaldi, S., et al. (2013). “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS
1431 Scientific Decade 2013–2022. *Hydrological Sciences Journal* 58, 1256–1275.

1432 Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. *Annual Review of Marine
1433 Science*, 2, 59–88.

1434 Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. *Technometrics*, 33(2),
1435 161–174.

1436 Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F.T., Flörke, M., Döll, P. (2014): Sensitivity of
1437 simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water
1438 use and calibration. *Hydrol. Earth Syst. Sci.*, 18, 3511-3538, doi: 10.5194/hess-18-3511-2014.

1439 Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, and L. E. Gulden (2005), A simple TOPMODEL-based runoff parameterization
1440 (SIMTOP) for use in global climate models. *J. Geophys. Res.*, 110, D21106, doi:10.1029/2005JD006111

1441 Niu GY, Yang ZL, Dickinson RE, Gulden LE, Su H (2007) Development of a simple groundwater model for use in
1442 climate models and evaluation with Gravity Recovery and Climate Experiment data. *J Geophys Res* 112:D07103.
1443 doi:10.1029/2006JD007522

1444 Ngo-Duc, T., Laval, K. Ramillien, G., Polcher, J. & Cazenave, A. (2007). Validation of the land water storage
1445 simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and
1446 Climate Experiment (GRACE) data. *Water Resour. Res.*, 43, W04427. <https://doi.org/10.1029/2006WR004941>

1447 O'Hagan, A. (2019). Expert Knowledge Elicitation: Subjective but Scientific. *The American Statistician*, 73,
1448 doi.org/10.1080/00031305.2018.1518265

1449

1450 Olarinoye, T., et al. (2020): Global karst springs hydrograph dataset for research and management of the world's
1451 fastest-flowing groundwater, *Sci. Data*, 7(1), doi:10.1038/s41597-019-0346-5.

1452

1453 Opie, S., Taylor, R. G., Brierley, C. M., Shamsuddoha, M., & Cuthbert, M. O. (2020). Climate–groundwater dynamics
1454 inferred from GRACE and the role of hydraulic memory. *Earth System Dynamics*, 11(3), 775–791.
1455 <https://doi.org/10.5194/esd-11-775-2020>

1456 Ortega-Guerrero A, Rudolph D L and Cherry J A 1999 Analysis of long-term land subsidence near Mexico City: field
1457 investigations and predictive modeling *Water Resour. Res.* 353327–41

1458 Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., & Wood, F. E. (2012). Multisource estimation of long-
1459 term terrestrial water budget for major global river basins. *J. Climate*, 25, 3191–3206.
1460 <https://doi.org/10.1175/JCLI-D-11-00300.1>

1461

1462 Pappenberger, F., Ghelli, A., Buizza, R. and Bodis, K. (2009). The Skill of Probabilistic Precipitation Forecasts under
1463 Observational Uncertainties within the Generalized Likelihood Uncertainty Estimation Framework for Hydrological
1464 Applications. *Journal of Hydrometeorology*, DOI: 10.1175/2008JHM956.1

1465 Pellet, V., Aires, F., Munier, S., Fernández Prieto, D., Jordá, G., Dorigo, W. A., Polcher, J., & Brocca, L. (2019).
1466 Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle – application to
1467 the Mediterranean region. *Hydrol. Earth Syst. Sci.*, 23, 465–491. <https://doi.org/10.5194/hess-23-465-2019>

1468 Perrone, D. and Jasechko (2019). Deeper well drilling an unsustainable stopgap to groundwater depletion. *Nature
1469 Sustain.* 2, 773–782.

1470 Person, M. A., Raffensperger, J. P., Ge, S., & Garven, G. (1996). Basin-scale hydrogeologic modeling. *Reviews of
1471 Geophysics*, 34(1), 61–87.

1472 Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis
1473 of environmental models: A systematic review with practical workflow. *Environmental Modelling & Software*, 79,
1474 214–232.

1475 Post, V. E., & von Asmuth, J. R. (2013). Hydraulic head measurements—new technologies, classic pitfalls.
1476 *Hydrogeology Journal*, 21(4), 737–750.

1477 Qiu J. Q., Zipper, S.C., Motew M., Booth, E.G., Kucharik, C.J., & Loheide, S.P. (2019). Nonlinear groundwater
1478 influence on biophysical indicators of ecosystem services. *Nature Sustainability*, in press, doi: 10.1038/s41893-019-
1479 0278-2

1480

1481 Rajabi, M. M., and B. Ataie-Ashtiani (2016), Efficient fuzzy Bayesian inference algorithms for incorporating expert
1482 knowledge in parameter estimation, *Journal of Hydrology*, 536, 255–272.

1483

1484 Rajabi, M. M., B. Ataie-Ashtiani, and C. T. Simmons (2018), Model-data interaction in groundwater studies: Review
1485 of methods, applications and future directions, *Journal of Hydrology*, 567, 457-477.

1486

1487 Rashid, M., Chien, R.Y., Ducharne, A., Kim, H., Yeh, P.J.F., Peugeot, C., Boone, A., He, X., Séguis, L., Yabu, Y., Boukari,
1488 M. & Lo, M.H. (2019). Evaluation of groundwater simulations in Benin from the ALMIP2 project. *J. Hydromet.*,
1489 accepted.

1490 Refsgaard, J.C., van der Sluijs, J.P., Højberg, A.L., and Vanrolleghem, P.A. (2007). Uncertainty in the environmental
1491 modelling process—a framework and guidance. *Environmental Modelling & Software*, 22(11), 1543-1556

1492 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning
1493 and process understanding for data-driven Earth system science. *Nature*, 566(7743), 195–204.

1494 Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., & Döll, P. (2019a). Challenges in developing a global
1495 gradient-based groundwater model. (G³M v1.0) for the integration into a global hydrological model. *Geosci. Model
1496 Dev.*, 12, 2401-2418. doi: 10.5194/gmd-12-2401-2019

1497 Reinecke, R., Foglia, L., Mehl, S., Herman, J., Wachholz, A., Trautmann, T., and Döll, P. (2019b) Spatially distributed
1498 sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge and
1499 surface water body parameterization, *Hydrology and Earth System Sciences*, (23) 4561–4582. 2019.

1500 Reinecke, R., Wachholz, A., Mehl, S., Foglia, L., Niemann, C., Döll, P. (2020). Importance of spatial resolution in
1501 global groundwater modeling. *Groundwater*. doi: 10.1111/gwat.12996

1502 Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India.
1503 *Nature*, 460(7258), 999–1002.

1504 Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoin, H. K., Landerer, F. W., & Lo, M.-H. (2018).
1505 Emerging trends in global freshwater availability. *Nature*, 557(7707), 651.

1506 Rosolem, R., Hoar, T., Arellano, A., Anderson, J. L., Shuttleworth, W. J., Zeng, X., and Franz, T. E.: Translating
1507 aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale, *Hydrol.
1508 Earth Syst. Sci.*, 18, 4363-4379

1509 Ross, J. L., M. M. Ozbek, and G. F. Pinder (2009), Aleatoric and epistemic uncertainty in groundwater flow and
1510 transport simulation, *Water Resources Research*, 45(12).

1511

1512 Rossman, N., & Zlotnik, V. (2013). Review: Regional groundwater flow modeling in heavily irrigated basins of
1513 selected states in the western United States. *Hydrogeology Journal*, 21(6), 1173–1192.
1514 <https://doi.org/10.1007/s10040-013-1010-3>

1515 RRCA. (2003). Republican River Compact Administration Ground Water Model. Retrieved from
1516 <http://www.republicanrivercompact.org/>

1517 Saltelli, A., Chan, K., & Scott, E. M. (Eds.). (2000). *Sensitivity analysis*. Wiley.

1518 Salvucci, G. D., & Entekhabi, D. (1995). Hillslope and climatic controls on hydrologic fluxes. *Water Resources*
1519 *Research*, 31(7), 1725–1739.

1520 Sanford, W. Calibration of models using groundwater age. *Hydrogeol J* 19, 13–16 (2011).
1521 <https://doi.org/10.1007/s10040-010-0637-6>

1522 Sawyer, A. H., David, C. H., & Famiglietti, J. S. (2016). Continental patterns of submarine groundwater discharge
1523 reveal coastal vulnerabilities. *Science*, 353(6300), 705–707.

1524 Scanlon, B., Healy, R., & Cook, P. (2002). Choosing appropriate techniques for quantifying groundwater recharge.
1525 *Hydrogeology Journal*, 10(1), 18–39.

1526 Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006). Global
1527 synthesis of groundwater recharge in semiarid and arid regions. *Hydrological Processes*, 20, 3335–3370.

1528 Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., & McMahon, P. B. (2012).
1529 Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. *Proceedings of the*
1530 *National Academy of Sciences*, 109(24), 9320–9325. <https://doi.org/10.1073/pnas.1200311109>

1531 Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., et al. (2016). Global evaluation of new
1532 GRACE mascon products for hydrologic applications. *Water Resources Research*, 52(12), 9412–9429.

1533 Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., van Beek, L. P., et al. (2018). Global models
1534 underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. *Proceedings*
1535 *of the National Academy of Sciences*, 201704665.

1536 Schaller, M., and Y. Fan (2009) River basins as groundwater exporters and importers: Implications for water cycle
1537 and climate modeling. *Journal of Geophysical Research-Atm*, 114, D04103, doi: 10.1029/2008 JD010636

1538 Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., et al. (2014). Multimodel assessment of
1539 water scarcity under climate change. *Proceedings of the National Academy of Sciences*, 111(9), 3245–3250.
1540 <https://doi.org/10.1073/pnas.1222460110>

1541 Schilling, O. S., Doherty, J., Kinzelbach, W., Wang, H., Yang, P. N., & Brunner, P. (2014). Using tree ring data as a
1542 proxy for transpiration to reduce predictive uncertainty of a model simulating groundwater–surface water–
1543 vegetation interactions. *Journal of Hydrology*, 519, Part B, 2258–2271.
1544 <https://doi.org/10.1016/j.jhydrol.2014.08.063>

1545 Schilling, O.S., Cook, P.G., Brunner, P., 2019. Beyond classical observations in hydrogeology: The advantages of
1546 including exchange flux, temperature, tracer concentration, residence time, and soil moisture observations in
1547 groundwater model calibration. *Reviews of Geophysics*, 57(1): 146-182.

1548 Schneider, A.S., Jost, A., Coulon, C., Silvestre, M., Théry, S., & Ducharme, A. (2017). Global scale river network
1549 extraction based on high-resolution topography, constrained by lithology, climate, slope, and observed drainage
1550 density. *Geophysical Research Letters*, 44, 2773–2781. <https://doi.org/10.1002/2016GL071844>

1551 Shen, C. (2018). A transdisciplinary review of deep learning research and its relevance for water resources
1552 scientists. *Water Resources Research*, 54(11), 8558–8593.

1553 Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., et al. (2018). HESS Opinions: Incubating deep-
1554 learning-powered hydrologic science advances as a community. *Hydrology and Earth System Sciences*, 22(11).

1555 SKI (1984). Intracoin - International Nuclide Transport Code Intercomparison Study (No. SKI--84-3). Swedish
1556 Nuclear Power Inspectorate. Retrieved from http://inis.iaea.org/Search/search.aspx?orig_q=RN:16046803

1557 Springer, A., & Stevens, L. (2009). Spheres of discharge of springs. *Hydrogeology Journal*, 17(1), 83–93.
1558 <https://doi.org/10.1007/s10040-008-0341-y>

1559 Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory of the Anthropocene: the
1560 great acceleration. *The Anthropocene Review*, 2(1), 81–98.

1561 Sutanudjaja, E. H., Beek, R. van, Wanders, N., Wada, Y., Bosmans, J. H., Drost, N., et al. (2018). PCR-GLOBWB 2: a 5
1562 arcmin global hydrological and water resources model. *Geoscientific Model Development*, 11(6), 2429–2453.

1563 Takata, K., Emori, S. and Watanabe, T.: Development of the minimal advanced treatments of surface interaction
1564 and runoff, *Glob. Planet. Change*, 38(1–2), 209–222, doi:10.1016/S0921-8181(03)00030-4, 2003.

1565 Tallaksen, L. M. (1995). A review of baseflow recession analysis. *Journal of Hydrology*, 165(1–4), 349–370.
1566 [https://doi.org/10.1016/0022-1694\(94\)02540-R](https://doi.org/10.1016/0022-1694(94)02540-R)

1567 Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., & MacDonald, A. M. (2013b). Evidence of
1568 the dependence of groundwater resources on extreme rainfall in East Africa. *Nature Clim. Change*, 3(4), 374–378.
1569 <https://doi.org/10.1038/nclimate1731>

1570 Taylor, R. G., Scanlon, B., Doll, P., Rodell, M., van Beek, R., Wada, Y., et al. (2013a). Groundwater and climate
1571 change. *Nature Clim. Change*, 3(4), 322–329. <https://doi.org/10.1038/nclimate1744>

1572 Thatch, L. M., Gilbert, J. M., & Maxwell, R. M. (2020). Integrated hydrologic modeling to untangle the impacts of
1573 water management during drought. *Groundwater*, 58(3), 377–391.

1574 Thomas, Z., Rousseau-Gueutin, P., Kolbe, T., Abbott, B.W., Marçais, J., Peiffer, S., Frei, S., Bishop, K., Pichelin, P.,
1575 Pinay, G., de Dreuzy, J.R. (2016). Constitution of a catchment virtual observatory for sharing flow and transport
1576 models outputs. *Journal of Hydrology*, 543, Pages 59-66. <https://doi.org/10.1016/j.jhydrol.2016.04.067>

1577 Tolley, D., Foglia, L., & Harter, T. (2019). Sensitivity Analysis and Calibration of an Integrated Hydrologic Model in
1578 an Irrigated Agricultural Basin with a Groundwater-Dependent Ecosystem. *Water Resources Research*.
1579 <https://doi.org/10.1029/2018WR024209>

1580 Tóth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. *Journal of Geophysical
1581 Research*, 68(16), 4795–4812.

1582 Tran, H., Jun Zhang, Jean-Martial Cohard, Laura E. Condon, Reed M. Maxwell (2020) Simulating groundwater-
1583 Streamflow Connections in the Upper Colorado River Basin Groundwater, 2020
1584 <https://doi.org/10.1111/gwat.13000>

1585 Tregoning, P., McClusky, S., van Dijk, A.I.J.M. and Crosbie, R.S. (2012). Assessment of GRACE satellites for
1586 groundwater estimation in Australia. Waterlines Report Series No 71, National Water Commission, Canberra

1587 Troldborg, L., Refsgaard, J. C., Jensen, K. H., & Engesgaard, P. (2007). The importance of
1588 alternative conceptual models for simulation of concentrations in a multi-aquifer system.
1589 *Hydrogeology Journal*, 15(5), 843–860.

1590 Tustison, B., Harris, D. and Foufoula-Georgiou, E. (2001). Scale issues in verification of
1591 precipitation forecasts. *Journal of geophysical Research*, 106(D11), 11775-11784.

1592 UNESCO. (1978). *World water balance and water resources of the earth* (Vol. USSR committee for the international
1593 hydrologic decade). Paris: UNESCO.

1594 van Vliet, M. T., Flörke, M., Harrison, J. A., Hofstra, N., Keller, V., Ludwig, F., et al. (2019). Model inter-comparison
1595 design for large-scale water quality models. *Current Opinion in Environmental Sustainability*, 36, 59–67.
1596 <https://doi.org/10.1016/j.cosust.2018.10.013>

1597 Van Werkhoven, K., Wagener, T., Tang, Y., and Reed, P. 2008. Understanding watershed model behavior across
1598 hydro-climatic gradients using global sensitivity analysis. *Water Resources Research*, 44, W01429,
1599 doi:10.1029/2007WR006271.

1600 Van Loon, A.F. et al. (2016) Drought in the Anthropocene. *Nature Geoscience* 9: 89-91 doi: 10.1038/ngeo2646.

1601 van Loon, Anne F.; Kumar, Rohini; Mishra, Vimal (2017): Testing the use of standardised indices and GRACE
1602 satellite data to estimate the European 2015 groundwater drought in near-real time. In *Hydrol. Earth Syst. Sci.* 21
1603 (4), pp. 1947–1971. DOI: 10.5194/hess-21-1947-2017.

1604 Vergnes, J.-P., & Decharme, B. (2012). A simple groundwater scheme in the TRIP river routing model: global off-line
1605 evaluation against GRACE terrestrial water storage estimates and observed river discharges. *Hydrol. Earth Syst.
1606 Sci.*, 16, 3889-3908. <https://doi.org/10.5194/hess-16-3889-2012>

1607 Vergnes, J.-P., B. Decharme, & F. Habets (2014). Introduction of groundwater capillary rises using subgrid spatial
1608 variability of topography into the ISBA land surface model, *J. Geophys. Res. Atmos.*, 119, 11,065–11,086.
1609 <https://doi.org/10.1002/2014JD021573>

1610 Vergnes, J.-P., Roux, N., Habets, F., Ackerer, P., Amraoui, N., Besson, F., et al. (2020). The AquiFR
1611 hydrometeorological modelling platform as a tool for improving groundwater resource monitoring over France:
1612 evaluation over a 60-year period. *Hydrology and Earth System Sciences*, 24(2), 633–654.
1613 <https://doi.org/10.5194/hess-24-633-2020>

1614 Visser, W. C. (1959). Crop growth and availability of moisture. *Journal of the Science of Food and Agriculture*, 10(1),
1615 1–11.

1616 Wada, Y., L. P. H. van Beek, C. M. van Kempen, J. W. T. M. Reckman, S. Vasak, M. F. P. Bierkens, (2010) Global
1617 depletion of groundwater resources. *Geophys. Res. Lett.* 37, L20402.

1618 Wada, Y.; Wisser, D.; Bierkens, M. F. P. (2014). Global modeling of withdrawal, allocation and consumptive use of
1619 surface water and groundwater resources. *Earth System Dynamics Discussions*, volume 5, issue 1, pp. 15 - 40

1620 Wada, Y. (2016). Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future
1621 Prospects. *Surveys in Geophysics*, 37(2), 419–451. <https://doi.org/10.1007/s10712-015-9347-x>

1622 Wada, Y., & Bierkens, M. F. P. (2014). Sustainability of global water use: past reconstruction and future projections.
1623 *Environmental Research Letters*, 9(10), 104003. <https://doi.org/10.1088/1748-9326/9/10/104003>

1624 Wada, Y., & Heinrich, L. (2013). Assessment of transboundary aquifers of the world—vulnerability arising from
1625 human water use. *Environmental Research Letters*, 8(2), 024003.

1626 Wagener, T. 2003. Evaluation of catchment models. *Hydrological Processes*, 17, 3375-3378.

1627 Wagener, T., & Gupta, H. V. (2005). Model identification for hydrological forecasting under uncertainty. *Stochastic
1628 Environmental Research and Risk Assessment*, 19(6), 378–387.

1629 Wagener, T., Sivapalan, M., Troch, P. and Woods, R. (2007). Catchment classification and hydrologic similarity.
1630 *Geography Compass*, 1(4), 901, doi:10.1111/j.1749-8198.2007.00039.x

1631 Wagener, T. and Pianosi, F. (2019) What has Global Sensitivity Analysis ever done for us? A systematic review to
1632 support scientific advancement and to inform policy-making in earth system modelling. *Earth-Science Reviews*,
1633 194, 1-18. doi.org/10.1016/j.earscirev.2019.04.006

1634 Wagener, T., Boyle, D.P., Lees, M.J., Wheater, H.S., Gupta, H.V. and Sorooshian, S. (2001). A framework for
1635 development and application of hydrological models. *Hydrology and Earth System Sciences*, 5(1), 13-26.

1636 Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., et al. (2010). The future of
1637 hydrology: An evolving science for a changing world. *Water Resources Research*, 46(5).

1638 Wagener, T., Gleeson, T., Coxon, G., Hartmann, A., Howden, N., Pianosi, F., Rahman, M., Rosolem, R., Stein, L., and
1639 Woods, R. (2021). On doing hydrology with dragons: Realizing the value of perceptual models and knowledge
1640 accumulation. *Wiley Interdisciplinary Reviews: Water*, e1550. <https://doi.org/10.1002/wat2.1550>

1641 Wang, F., Ducharne, A., Cheruy, F., Lo, M.H., & Grandpeix, J.L. (2018). Impact of a shallow groundwater table on
1642 the global water cycle in the IPSL land-atmosphere coupled model, *Climate Dynamics*, 50, 3505-3522,
1643 <https://doi.org/10.1007/s00382-017-3820-9>

1644 Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2014). The Inter-Sectoral Impact
1645 Model Intercomparison Project (ISI-MIP): Project framework. *Proceedings of the National Academy of Sciences*,
1646 111(9), 3228–3232. <https://doi.org/10.1073/pnas.1312330110>

1647 Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). *Ground water and surface water: a single resource*
1648 (p. 79). U.S. Geological Survey circular 1139

1649 Woolfenden, L. R., & Nishikawa, T. (2014). Simulation of groundwater and surface-water resources of the Santa
1650 Rosa Plain watershed, Sonoma County, California. USGS Scientific Investigations Report 2014-5052). Reston, VA:
1651 U.S. Geological Survey.

1652 Yang, J., Griffiths, J., & Zammit, C. (2019). National classification of surface-groundwater interaction using random
1653 forest machine learning technique. *River Research and Applications*, 35(7), 932–943.
1654 <https://doi.org/10.1002/rra.3449>

1655 Yeh, P. J.-F. and J. Famiglietti, Regional groundwater evapotranspiration in Illinois, *J. Hydrometeorology*, 10(2),
1656 464–478, 2010

1657 Yilmaz, K., Gupta, H.V. and Wagener, T. 2009. Towards improved distributed modeling of watersheds: A process
1658 based diagnostic approach to model evaluation. *Water Resources Research*, 44, W09417,
1659 doi:10.1029/2007WR006716.

1660 Young, P., Parkinson, S. and Lees, M. (1996). Simplicity out of complexity in environmental modelling: Occam's
1661 razor revisited. *Journal of Applied Statistics*, 23(2-3), 165-210. <https://doi.org/10.1080/02664769624206>

1662 Zell, W. O., & Sanford, W. E. (2020). Calibrated Simulation of the Long-Term Average Surficial Groundwater System
1663 and Derived Spatial Distributions of its Characteristics for the Contiguous United States. *Water Resources
1664 Research*, 56(8), e2019WR026724. <https://doi.org/10.1029/2019WR026724>

1665 Zipper, S. C., Soylu, M. E., Booth, E. G., & Loheide, S. P. (2015). Untangling the effects of shallow groundwater and
1666 soil texture as drivers of subfield-scale yield variability. *Water Resources Research*, 51(8), 6338–6358.

1667 Zipper, S. C., Soylu, M. E., Kucharik, C. J., & Loheide, S. P. (2017). Quantifying indirect groundwater-mediated
1668 effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone
1669 model. *Ecological Modelling*, 359, 201-219

1670 Zhang, M and Burbey T J 2016 Inverse modelling using PS-InSAR data for improved land subsidence simulation in
1671 Las Vegas Valley, *Nevada Hydrol. Process.* 30 4494–516

1672 Zhou, Y., Li, W., 2011. A review of regional groundwater flow modeling. *Geoscience Frontiers*, 2(2): 205-214.

1673

1674