GMD Perspective: the quest to improve the evaluation of groundwater representation in continental to global scale models

4 Tom Gleeson ^{1,2}, Thorsten Wagener ³, Petra Döll ⁴, Samuel C Zipper ^{1,5}, Charles West ³,

5 Yoshihide Wada⁶, Richard Taylor ⁷, Bridget Scanlon ⁸, Rafael Rosolem³, Shams Rahman³,

6 Nurudeen Oshinlaja ⁹, Reed Maxwell ¹⁰, Min-Hui Lo ¹¹, Hyungjun Kim ^{12,13,14}, Mary Hill ¹⁵,

7 Andreas Hartmann ^{16,3}, Graham Fogg ¹⁷, James S. Famiglietti ¹⁸, Agnès Ducharne ¹⁹, Inge de

8 Graaf ^{20,21}, Mark Cuthbert ^{11,22}, Laura Condon ²³, Etienne Bresciani ²⁴, Marc F.P. Bierkens ^{25, 26}

9 ¹ Department of Civil Engineering, University of Victoria, Canada

10 ² School of Earth and Ocean Sciences, University of Victoria, Canada

11 ³ Department of Civil Engineering, University of Bristol, UK & Cabot Institute, University of

Bristol, UK₇ and Institute for Environmental Science and Geography, University of Potsdam,
 Germany

⁴ Institut für Physische Geographie, Goethe-Universität Frankfurt am Main and Senckenberg

15 Leibniz Biodiversity and Climate Research Centre Frankfurt (SBiK-F), Frankfurt am Main,

16 Germany

17 ⁵ Kansas Geological Survey, University of Kansas, USA

- 18 ⁶ International Institute for Applied Systems Analysis, Laxenburg, Austria
- 19 ⁷ Department of Geography, University College London, UK
- 20 ⁸ Bureau of Economic Geology, The University of Texas at Austin, USA
- 21 ⁹ School of Earth and Environmental Sciences & Water Research Institute, Cardiff University, UK
- 22 ¹⁰ Department of Geology and Geological Engineering, Colorado School of Mines, USA
- 23 ¹¹ Department of Atmospheric Sciences, National Taiwan University, Taiwan
- 24 ¹² Moon Soul Graduate School of Future Strategy, Korea Advanced Institute of Science
- 25 Technology, Korea

- ¹³ Department of Civil and Environmental Engineering Korea Advanced Institute of Science
 Technology, Korea
- 28 ¹⁴ Institute of Industrial Science, The University of Tokyo, Japan
- 29 ¹⁵ Department of Geology, University of Kansas, USA
- 30 ¹⁶ Chair of Hydrological Modeling and Water Resources, University of Freiburg, Germany
- ¹⁷ Department of Land, Air and Water Resources and Earth and Planetary Sciences, University of
 California, Davis, USA
- ¹⁸ School of Environment and Sustainability and Global Institute for Water Security, University
 of Saskatchewan, Saskatoon, Canada
- 35 ¹⁹ Sorbonne Université, CNRS, EPHE, IPSL, UMR 7619 METIS, Paris, France
- 36 ²⁰ Chair or Environmental Hydrological Systems, University of Freiburg, Germany
- 37 ²¹ Water Systems and Global Change Group, Wageningen University, Wageningen, Netherlands
- ²² School of Civil and Environmental Engineering, The University of New South Wales, Sydney,
 Australia
- ²³ Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, Arizona,
 USA
- 42 ²⁴ Center for Advanced Studies in Arid Zones (CEAZA), La Serena, Chile
- 43 ²⁵ Physical Geography, Utrecht University, Utrecht, Netherlands
- 44 ²⁶ Deltares, Utrecht, Netherlands
- 45

Abstract

- 47 Continental- to global-scale hydrologic and land surface models increasingly include
- 48 representations of the groundwater system. Such large-scale models are essential for

49	examining, communicating, and understanding the dynamic interactions between the Earth
50	System above and below the land surface as well as the opportunities and limits of
51	groundwater resources. We argue that both large-scale and regional-scale groundwater models
52	have utility, strengths and limitations so continued modeling at both scales is essential and
53	mutually beneficial. A crucial quest is how to evaluate the realism, capabilities and performance
54	of large-scale groundwater models given their modeling purpose of addressing large-scale
55	science or sustainability questions as well as limitations in data availability and
56	commensurability. Evaluation should identify if, when or where large-scale models achieve
57	their purpose or where opportunities for improvements exist so that such models better
58	achieve their purpose. We suggest that reproducing the spatio-temporal details of regional-
59	scale models and matching local data is not a relevant goal. Instead, it is important to decide on
60	reasonable model expectations regarding when a large scale model is performing 'well enough'
61	in the context of its specific purpose. The decision of reasonable expectations is necessarily
62	subjective even if the evaluation criteria are quantitative. Our objective is to provide
63	recommendations for improving the evaluation of groundwater representation in continental-
64	to global-scale models. We describe current modeling strategies and evaluation practices, and
65	subsequently discuss the value of three evaluation strategies: 1) comparing model outputs with
66	available observations of groundwater levels or other state or flux variables (observation-based
67	evaluation); 2) comparing several models with each other with or without reference to actual
68	observations (model-based evaluation); and 3) comparing model behavior with expert
69	expectations of hydrologic behaviors in particular regions or at particular times (expert-based
70	evaluation). Based on evolving practices in model evaluation as well as innovations in

71	observations, machine learning and expert elicitation, we argue that combining observation-,
72	model-, and expert-based model evaluation approaches, while accounting for
73	commensurability issues, may significantly improve the realism of groundwater representation
74	in large-scale models. Thus advancing our ability for quantification, understanding, and
75	prediction of crucial Earth science and sustainability problems. We encourage greater
76	community-level communication and cooperation on this quest, including among global
77	hydrology and land surface modelers, local to regional hydrogeologists, and hydrologists
78	focused on model development and evaluation.
79	1. INTRODUCTION: why and how is groundwater modeled at continental to global scales?
80	Groundwater is the largest human- and ecosystem-accessible freshwater storage component of
81	the hydrologic cycle (UNESCO, 1978; Margat & Van der Gun, 2013; Gleeson et al., 2016).
82	Therefore, better understanding of groundwater dynamics is critical at a time when the 'great
83	acceleration' (Steffen et al., 2015) of many human-induced processes is increasing stress on
84	water resources (Wagener et al., 2010; Montanari et al., 2013; Sivapalan et al., 2014; van Loon
85	et al., 2016), especially in regions with limited data availability and analytical capacity.
86	Groundwater is often considered to be an inherently regional rather than global resource or
87	system. This is partially reasonable because local to regional peculiarities of hydrology, politics
88	and culture are paramount to groundwater resource management (Foster et al. 2013) and
89	groundwater dynamics in different continents are less directly connected and coupled than
90	atmospheric dynamics. Regional-scale analysis and models are essential for addressing local to
91	regional groundwater issues. Generally, regional scale modeling is a mature, well-established

92	field (Hill & Tiedeman, 2007; Kresic, 2009; Zhou & Li, 2011; Hiscock & Bense, 2014; Anderson et
93	al. 2015a) with clear and robust model evaluation guidelines (e.g. ASTM, 2016; Barnett et al.,
94	2012). Regional models have been developed around the world; for example, Rossman &
95	Zlotnik (2014) and Vergnes et al. (2020) synthesize regional-scale groundwater models across
96	the western United States and Europe, respectively.

98	Yet, important global aspects of groundwater both as a resource and as part of the Earth
99	System are emerging (Gleeson et al. 2020). First, our increasingly globalized world trades virtual
100	groundwater and other groundwater-dependent resources in the food-energy-water nexus,
101	and groundwater often crosses borders in transboundary aquifers. A solely regional approach
102	can be insufficient to analysing and managing these complex global interlinkages. Second, from
103	an Earth system perspective, groundwater is part of the hydrological cycle and connected to
104	the atmosphere, oceans and the deeper lithosphere. A solely regional approach is insufficient
105	to uncover and understand the complex interactions of groundwater within the Earth System
106	and teleconnections, which are groundwater levels or flows in one region linked to
107	geographically separated regions via physical or socio-economic processes. Regional
108	approaches generally focus on important aquifers which underlie only a portion of the world's
109	land mass or population and do not include many other parts of the land surface that may be
110	important for processes like surface water-groundwater exchange flows and
111	evapotranspiration. A global approach is also essential to assess the impact of groundwater
112	depletion on sea level rise, since groundwater storage loss rate on all continents of the Earth

113	must be aggregated. Thus, we argue that groundwater is simultaneously a local, regional, and
114	increasingly global resource and system and that examining groundwater problems, solutions,
115	and interactions at all scales is crucial. As a consequence, we urgently require predictive
116	understanding about how groundwater, used by humans and connected with other
117	components of the Earth System, operates at a variety of scales.
118	
119	Based on the arguments above for considering global perspectives on groundwater, we see four
120	specific purposes of representing groundwater in continental- to global-scale hydrological or
121	land surface models and their climate modeling frameworks:
122	(1) To understand and quantify interactions between groundwater and past, present and
123	future climate. Groundwater systems can have far-reaching effects on climate affecting
124	modulation of surface energy and water partitioning with a long-term memory (Anyah
125	et al., 2008; Maxwell and Kollet, 2008; Koirala et al. 2013; Krakauer et al., 2014;
126	Maxwell et al., 2016; Taylor, et al., 2013a; Meixner et et, 2018; Wang et al., 2018;
127	Keune et al., 2018). While there have been significant advances in understanding the
128	role of lateral groundwater flow on evapotranspiration (Maxwell & Condon, 2016;
129	Bresciani et al, 2016), the interactions between climate and groundwater over longer

130 time scales (Cuthbert et al., 2019) as well as between irrigation, groundwater, and

131 climate (Condon and Maxwell, 2019; Condon et al 2020) remain largely unresolved.

132 Additionally, it is well established that old groundwater with slow turnover times are

133 common at depth (Befus et al. 2017; Jasechko et al. 2017). Groundwater connections to

134	the atmosphere are well documented in modeling studies (e.g. Forrester and Maxwell,
135	2020). Previous studies have demonstrated connections between the atmospheric
136	boundary layer and water table depth (e.g. Maxwell et al 2007; Rahman et al, 2015),
137	under land cover disturbance (e.g. Forrester et al 2018), under extremes (e.g. Kuene et
138	al 2016) and due to groundwater pumping (Gilbert et al 2017). While a number of
139	open source platforms have been developed to study these connections (e.g. Maxwell
140	et al 2011; Shrestha et al 2014; Sulis, 2017), these platforms are regional to continental
141	in extent. Recent work has shown global impacts of groundwater on atmospheric
142	circulation (Wang et al 2018), but groundwater is still quite simplified in this study.
143	(2) To understand and quantify two-way interactions between groundwater, the rest of
144	the hydrologic cycle, and the broader Earth System. As the main storage component of
145	the freshwater hydrologic cycle, groundwater systems support baseflow levels in
146	streams and rivers, and thereby ecosystems and agricultural productivity and other
147	ecosystem services in both irrigated and rainfed systems (Scanlon et al., 2012; Qiu et
148	al., 2019; Visser, 1959; Zipper et al., 2015, 2017). When pumped groundwater is
149	transferred to oceans (Konikow 2011; Wada et al., 2012; Döll et al., 2014a; Wada,
150	2016; Caceres et al., 2020; Luijendijk et al. 2020), resulting sea-level rise can impact
151	salinity levels in coastal aquifers, and freshwater and solute inputs to the ocean
152	(Moore, 2010; Sawyer et al., 2016). Difficulties are complicated by international trade
153	of virtual groundwater which causes aquifer stress in disparate regions (Dalin et al.,
154	2017)

155	(3) To inform water decisions and policy for large, often transboundary groundwater
156	systems in an increasingly globalized world (Wada & Heinrich, 2013; Herbert & Döll,
157	2019). For instance, groundwater recharge from large-scale models has been used to
158	quantify groundwater resources in Africa, even though large-scale models do not yet
159	include all recharge processes that are important in this region (Taylor et al., 2013b;
160	Jasechko et al. 2014; Cuthbert et al., 2019; Hartmann et al., 2017).
161	(4) To create visualizations and interactive opportunities that inform citizens and
162	consumers, whose decisions have global-scale impacts, about the state of groundwater
163	all around the world such as the World Resources Institute's Aqueduct website
164	(https://www.wri.org/aqueduct), a decision-support tool to identify and evaluate
165	global water risks.
166	The first two purposes are science-focused while the latter two are sustainability-focused. In
167	sum, continental- to global-scale hydrologic models incorporating groundwater offer a coherent
168	scientific framework to examine the dynamic interactions between the Earth System above and
169	below the land surface, and are compelling tools for conveying the opportunities and limits of
170	groundwater resources to people so that they can better manage the regions they live in, and
171	better understand the world around them. We consider both large-scale and regional-scale
172	models to be useful practices that should both continue to be conducted rather than one
173	replacing another. Ideally large-scale and regional-scale models should benefit from the other
174	since each has strengths and weaknesses and together the two practices enrich our
175	understanding and support the management of groundwater across scales (Section 2).

176	The challenge of incorporating groundwater processes into continental- or global-scale models
177	is formidable and sometimes controversial. Some of the controversy stems from unanswered
178	questions about how best to represent groundwater in the models whereas some comes from
179	skepticism about the feasibility of modelling groundwater at non-traditional scales. We
180	advocate for the representation of groundwater stores and fluxes in continental to global
181	models for the four reasons described above. We do not claim to have all the answers on how
182	best to meet this challenge. We contend, however, that the hydrologic community needs to
183	work deliberately and constructively towards effective representations of groundwater in
184	global models.

186	Driven by the increasing recognition of the purpose of representing groundwater in
187	continental- to global-scale models, many global hydrological models and land surface models
188	have incorporated groundwater to varying levels of complexity depending on the model
189	provenance and purpose. Different from regional-scale groundwater models that generally
190	focus on subsurface dynamics, the focus of these models is on estimating either runoff and
191	streamflow (hydrological models) or land-atmosphere water and energy exchange (land surface
192	models). Simulation of groundwater storages and hydraulic heads mainly serve to quantify
193	baseflow that affects streamflow during low flow periods or capillary rise that increases
194	evapotranspiration. Some land-surface models use approaches based on the topographic index
195	to simulate fast surface and slow subsurface runoff based on the fraction of saturated area in
196	the grid cell (Clark et al., 2015; Fan et al., 2019); groundwater in these models does not

197	explicitly have water storage or hydraulic heads (Famiglietti & Wood, 1994; Koster et al., 2000;
198	Niu et al., 2003; Takata et al., 2003). In many hydrological models, groundwater is represented
199	as a linear reservoir that is fed by groundwater recharge and drains to a river in the same grid
200	cell (Müller Schmied et al., 2014; Gascoin et al., 2009; Ngo-Duc et al., 2007). Time series of
201	groundwater storage but not hydraulic heads are computed. This prevents simulation of lateral
202	groundwater flow between grid cells, capillary rise and two-way exchange flows between
203	surface water bodies and groundwater (Döll et al., 2016). However, representing groundwater
204	as a water storage compartment that is connected to soil and surface water bodies by
205	groundwater recharge and baseflow and is affected by groundwater abstractions and returns,
206	enables global-scale assessment of groundwater resources and stress (Herbert and Döll, 2019)
207	and groundwater depletion (Döll et al., 2014a; Wada et al., 2014; de Graaf et al., 2014). In some
208	land surface models, the location of the groundwater table with respect to the land surface is
209	simulated within each grid cell to enable simulation of capillary rise (Niu et al., 2007) but, as in
210	the case of simulating groundwater as a linear reservoir, lateral groundwater transport or two-
211	way surface water-groundwater exchange cannot be simulated with this approach.

213	Increasingly, models for simulating groundwater flows between all model grid cells in entire
214	countries or globally have been developed, either as stand-alone models or as part of
215	hydrological models (Vergnes & Decharme, 2012; Fan et al., 2013; Lemieux et al. 2008; de Graaf
216	et al., 2017; Kollet et al., 2017; Maxwell et al., 2015; Reinecke et al., 2018, de Graaf et al 2019).
217	The simulation of groundwater in large-scale models is a nascent and rapidly developing field

218	with significant computational and parameterization challenges which have led to significant
219	and important efforts to develop and evaluate individual models. It is important to note that
220	herein 'large-scale models' refer to models that are laterally extensive across multiple regions
221	(hundreds to thousands of kilometers) and generally include the upper tens to hundreds of
222	meters of subsurface and have resolutions sometimes as small as ~1 km. In contrast, 'regional-
223	scale' models (tens to hundreds of kilometers) have long been developed for a specific region
224	or aquifer and can include greater depths and resolutions, more complex hydrostratigraphy and
225	are often developed from conceptual models with significant regional knowledge. Regional-
226	scale models include a diverse range of approaches from stand-alone groundwater models (i.e.,
227	representing surface water and vadose zone processes using boundary conditions such as
228	recharge) to fully integrated groundwater-surface water models. In the future, large-scale
229	models could be developed in a number of different directions which we only briefly introduce
230	here to maintain our primary focus on model evaluation. One important direction is clearer
231	representation of three-dimensional geology and heterogeneity including karst (Condon et al.
232	in review) which should be considered as part of conceptual model development prior to
233	numerical model implementation.

235	Now that a number of models that represent groundwater at continental to global scales have
236	been developed and will continue evolving, it is equally important that we advance how we
237	evaluate these models. To date, large-scale model evaluation has largely focused on individual
238	models, with inconsistent practices between models and little community-level discussion or

239	cooperation, that lack the rigor of regional-scale model evaluation. Overall, we have only a
240	partial and piecemeal understanding of the capabilities and limitations of different approaches
241	to representing groundwater in large-scale models. Our objective is to provide clear
242	recommendations for evaluating groundwater representation in continental and global models.
243	We focus on model evaluation because this is the heart of model trust and reproducibility
244	(Hutton et al., 2016) and improved model evaluation will guide how and where it is most
245	important to focus future model development. We describe current model evaluation practices
246	(Section 2) and consider diverse and uncertain sources of information, including observations,
247	models, and experts to holistically evaluate the simulation of groundwater-related fluxes,
248	stores and hydraulic heads (Section 3). We stress the need for an iterative and open-ended
249	process of model improvement through continuous model evaluation against the different
250	sources of information. We explicitly contrast the terminology used herein of 'evaluation' and
251	'comparison' against terminology such as 'calibration' or 'validation' or 'benchmarking', which
252	suggests a modelling process that is at some point complete. We extend previous
253	commentaries advocating improved hydrologic process representation and evaluation in large-
254	scale hydrologic models (Clark et al. 2015; Melsen et al. 2016) by adding expert-elicitation and
255	machine learning for more holistic evaluation. We also consider model objective and model
256	evaluation across the diverse hydrologic landscapes which can both uncover blindspots in
257	model development. It is important to note that we do not consider water quality or
258	contamination, even though water quality or contamination is important for water resources,
259	management and sustainability, since large-scale water quality models are in their infancy (van
260	Vliet et al., 2019)

262	We bring together somewhat disparate scientific communities as a step towards greater
263	community-level cooperation on these challenges, including global hydrology and land surface
264	modelers, local to regional hydrogeologists, and hydrologists focused on model development
265	and evaluation. We see three audiences beyond those currently directly involved in large-scale
266	groundwater modeling that we seek to engage to accelerate model evaluation: 1) regional
267	hydrogeologists who could be reticent about global models, and yet have crucial knowledge
268	and data that would improve evaluation; 2) data scientists with expertise in machine learning,
269	artificial intelligence etc. whose methods could be useful in a myriad of ways; and 3) the
270	multiple Earth Science communities that are currently working towards integrating
271	groundwater into a diverse range of models so that improved evaluation approaches are built
272	directly into model development.
273	2. CURRENT MODEL EVALUATION PRACTICES

Here we provide a brief overview of current large-scale groundwater models, the synergies and
differences between regional-scale and large-scale model evaluation and development as well
as the imitations of current evaluation practices for large-scale models.

277 2.1 Brief overview of current large-scale groundwater models

- 278 Various large-scale models exist along a spectrum of model complexity, which can make it
- 279 difficult to determine the most appropriate model for a specific application. We developed a
- simple but systematic classification of current large-scale groundwater models (Table 1) to

281	summarize the main characteristics of existing models for the interdisciplinary audience of
282	GMD. This classification builds on other reviews (Bierkens 2015; Condon et al., in review) and is
283	not exhaustive, nor is it the only way to classify large-scale groundwater models. It is meant to
284	be a first classification attempt that should evolve with time. We suggest that groundwater in
285	current large-scale models can be classified functionally by two aspects that are crucial to how
286	groundwater impacts water, energy, and nutrient budgets. First, whether lateral subsurface
287	flow to a river is simulated within each cell independently of other cells, as 2D lateral
288	groundwater flow between all cells or as 3D groundwater flow. Second, we distinguish two
289	types of coupling between groundwater and related compartments (variably saturated soil
290	zone, surface water, atmospheric processes): 'one-way' coupling (for example, recharge is
291	imposed from the surface with no feedback from capillary rise or vegetation uptake, or
292	groundwater flow to the surface does not depend on surface head) from 'two-way' coupling
293	involves feedback loops. We also note atmospheric coupling which involves coupling a
294	groundwater-surface model with an atmospheric model to propagate the influence of
295	groundwater from the surface to the atmosphere, and the resulting feedback onto the surface
296	and groundwater. This classification scheme (which could also be called a model typology) is
297	based on a number of model characteristics such as the fluxes, stores and other features (Table
298	1).

300 2.2 Synergies between regional-scale and large-scales

301	Regional-scale and large-scale groundwater models are both governed by the same physical
302	equations and share many of the same challenges. Like large-scale models, some regional-scale
303	models have challenges with representing important regional hydrologic processes such as
304	mountain block recharge (Markovich et al. 2019), and data availability challenges (such as the
305	lack of reliable subsurface parameterization and hydrologic monitoring data) are common. We
306	propose there are largely untapped potential synergies between regional-scale and large-scale
307	models based on these commonalities and the inherent strengths and limitations of each scale
308	(Section 1).

310	Much can be learned from regional-scale models to inform the development and evaluation of
311	large-scale groundwater models. Regional-scale models are evaluated using a variety of data
312	types, some of which are available and already used at the global scale and some of which are
313	not. In general, the most common data types used for regional-scale groundwater model
314	evaluation match global-scale groundwater models: hydraulic head and either total streamflow
315	or baseflow estimated using hydrograph separation approaches (eg. RRCA, 2003; Woolfenden
316	and Nishikawa, 2014; Tolley et al., 2019). However, numerous data sources unavailable or not
317	currently used at the global scale have also been applied in regional-scale models, such as
318	elevation of surface water features (Hay et al., 2018), existing maps of the potentiometric
319	surface (Meriano and Eyles, 2003), and dendrochronology (Schilling et al., 2014) and stable and
320	radiogenic isotopes for determining water sources and residence times (Sanford, 2011). These
321	and other 'non-classical' observations (Schilling et al. 2019) could be the inspiration for model

322	evaluation of large-scale models in the future but are beyond our scope to discuss. Further,
323	given the smaller domain size of regional-scale models, expert knowledge and local ancillary
324	data sources can be more directly integrated and automated parameter estimation approaches
325	such as PEST are tractable (Leaf et al., 2015; Hunt et al., 2013). We directly build upon this
326	practice of integration of expert knowledge below in Section 3.3.

328	We propose that there may also be potential benefits of large-scale models for the
329	development of regional-scale models. For instance, the boundary conditions of some regional-
330	scale models could be improved with large-scale model results. The boundary conditions of
331	regional-scale models are often assumed, calibrated or derived from other models or data. In a
332	regional-scale model, increasing the model domain (moving the boundary conditions away
333	from region of interests) or incorporating more hydrologic processes (for example, moving the
334	boundary condition from recharge to the land surface incorporating evapotranspiration and
335	infiltration) both can reduce the impact of boundary conditions on the region and problem of
336	interest. Another potential benefit of large-scale models for regional-scale models is fuller
337	inclusion of large-scale hydrologic and human processes that could further enhance the ability
338	of regional-scale models to address both the science-focused and sustainability-focused
339	purposes described in Section 1. For example, the stronger representation of large-scale
340	atmospheric processes means that the downwind impact of groundwater irrigation on
341	evapotranspiration on precipitation and streamflow can be assessed (DeAngelis et al., 2010;
342	Kustu et al., 2011). Or, the effects of climate change and increased water use that affect the

343	inflow of rivers into the regional modelling domain can be taken from global scale analyses
344	(Wada and Bierkens, 2014). Also, regional groundwater depletion might be largely driven by
345	virtual water trade which can be better represented in global analysis and models than
346	regional-scale models (Dalin et al. 2017). Therefore the processes and results of large-scale
347	models could be used to make regional-scale models even more robust and better address key
348	science and sustainability questions.

350	Given the strengths of regional models, a potential alternative to development of large-scale
351	groundwater models would be combining or aggregating multiple regional models in a
352	patchwork approach (as in Zell and Sanford, 2020) to provide global coverage. This would have
353	the advantage of better respecting regional differences but potentially create additional
354	challenges because the regional models would have different conceptual models, governing
355	equations, boundary conditions etc. in different regions. Some challenges of this patchwork
356	approach include 1) the required collaboration of a large number of experts from all over the
357	world over a long period of time; 2) regional groundwater flow models alone are not sufficient,
358	they need to be integrated into a hydrological model so that groundwater-soil water and the
359	surface water-groundwater interactions can be simulated; 3) the extent of regional aquifers
360	does not necessarily coincide with the extent of river basins; and 4) the bias of regional
361	groundwater models towards important aquifers which as described above, underlie only a
362	portion of the world's land mass or population and may bias estimates of fluxes such as surface
363	water-groundwater exchange or evapotranspiration. Given these challenges, we argue that a

364	patchwork approach of integrating multiple regional models is a compelling idea but likely
365	insufficient to achieve the purposes of large-scale groundwater modeling described in Section
366	1. Although this nascent idea of aggregating regional models is beyond the scope of this
367	manuscript, we consider this an important future research avenue, and encourage further
368	exploration and improvement of regional-scale model integration from the groundwater
369	modeling community.

2.3 Differences between regional-scale and large-scales

372	Although there are important similarities and potential synergies across scales, it is important
373	to consider how or if large-scale models are fundamentally different to regional-scale models,
374	especially in ways that could impact evaluation. The primary differences between large-scale
375	and regional-scale models are that large-scale models (by definition) cover larger areas and, as
376	a result, typically include more data-poor areas and are generally built at coarser resolution.
377	These differences impact evaluations in at least five relevant ways:
378	1) <u>Commensurability errors</u> (also called 'representativeness' errors) occur either when
379	modelled grid values are interpolated and compared to an observation 'point' or when
380	aggregation of observed 'point' values are compared to a modelled grid value (Beven,
381	2005; Tustison et al., 2001; Beven, 2016; Pappenberger et al., 2009; Rajabi et al., 2018).
382	For groundwater models in particular, commensurability error will depend on the number
383	and locations of observation points, the variability structure of the variables being

384	compared such as hydraulic head and the interpolation or aggregation scheme applied
385	(Tustison et al., 2001; Pappenberger et al., 2009; Reinecke et al., 2020). Commensurability
386	is a problem for most scales of modelling, but likely more significant the coarser the
387	model. Regional-scale groundwater models typically have fewer (though not insignificant)
388	commensurability issues due to smaller grid cell sizes compared to large-scale models.
389	2) Specificity to region, objective and model evaluation criteria because regional-scale
390	models are developed specifically for a certain region and modeling or management
391	objective whereas large-scale models are often more general and include different
392	regions. As a result, large-scale models often have greater heterogeneity of processes and
393	parameters, may not adopt the same calibration targets and variables, and are not subject
204	to the meltine on little time the terms there a define an electronic burging of an electronic set.
394	to the policy of litigation that sometimes drives model evaluation of regional-scale
394 395	to the policy of litigation that sometimes drives model evaluation of regional-scale models.
395 396	3) <u>Computational requirements</u> can be immense for large-scale models which leads to
394 395 396 397	 to the policy of litigation that sometimes drives model evaluation of regional-scale models. 3) <u>Computational requirements</u> can be immense for large-scale models which leads to challenges with uncertainty and sensitivity analysis. While some regional-scale models
395 396 397 398	 to the policy of litigation that sometimes drives model evaluation of regional-scale models. 3) <u>Computational requirements</u> can be immense for large-scale models which leads to challenges with uncertainty and sensitivity analysis. While some regional-scale models also have large computational demands, large-scale models cover larger domains and are
395 396 397 398 399	 to the policy or litigation that sometimes drives model evaluation of regional-scale models. 3) <u>Computational requirements</u> can be immense for large-scale models which leads to challenges with uncertainty and sensitivity analysis. While some regional-scale models also have large computational demands, large-scale models cover larger domains and are therefore more vulnerable to this potential constraint.
 394 395 396 397 398 399 400 	 to the policy or litigation that sometimes drives model evaluation of regional-scale models. 3) <u>Computational requirements</u> can be immense for large-scale models which leads to challenges with uncertainty and sensitivity analysis. While some regional-scale models also have large computational demands, large-scale models cover larger domains and are therefore more vulnerable to this potential constraint. 4) <u>Data availability</u> for large-scale models can be limited because they typically include data-
 394 395 396 397 398 399 400 401 	 to the policy or litigation that sometimes drives model evaluation of regional-scale models. 3) <u>Computational requirements</u> can be immense for large-scale models which leads to challenges with uncertainty and sensitivity analysis. While some regional-scale models also have large computational demands, large-scale models cover larger domains and are therefore more vulnerable to this potential constraint. 4) <u>Data availability</u> for large-scale models can be limited because they typically include datapoor areas, which leads to challenges when only using observations for model evaluation.
 394 395 396 397 398 399 400 401 402 	 to the policy or litigation that sometimes drives model evaluation of regional-scale models. 3) <u>Computational requirements</u> can be immense for large-scale models which leads to challenges with uncertainty and sensitivity analysis. While some regional-scale models also have large computational demands, large-scale models cover larger domains and are therefore more vulnerable to this potential constraint. 4) <u>Data availability</u> for large-scale models can be limited because they typically include datapoor areas, which leads to challenges when only using observations for model evaluation. While data availability also affects regional-scale models, they are often developed for
 394 395 396 397 398 399 400 401 402 403 	 to the policy of litigation that sometimes drives model evaluation of regional-scale models. 3) <u>Computational requirements</u> can be immense for large-scale models which leads to challenges with uncertainty and sensitivity analysis. While some regional-scale models also have large computational demands, large-scale models cover larger domains and are therefore more vulnerable to this potential constraint. 4) <u>Data availability</u> for large-scale models can be limited because they typically include datapoor areas, which leads to challenges when only using observations for model evaluation. While data availability also affects regional-scale models, they are often developed for regions with known hydrological challenges based on existing data and/or modeling

405	local geological reports) that are not often included in continental to global datasets used
406	for large-scale model parameterization.
407	5) Subsurface detail in regional-scale models routinely include heterogeneous and
408	anisotropic parameterizations which could be improved in future large-scale models. For
409	example, intense vertical anisotropy routinely induces vertical flow dynamics from vertical
410	head gradients that are tens to thousands of times greater than horizontal gradients
411	which profoundly alter the meaning of the deep and shallow groundwater levels, with
412	only the latter remotely resembling the actual water table. In contrast, currently most
413	large-scale models use a single vertically homogeneous value for each grid cell, or at best
414	have two layers (de Graaf et al,. 2017)
415	
416	2.4 Limitations of current evaluation practices for large-scale models

417	Evaluation of large-scale models has often focused on streamflow or evapotranspiration
418	observations but joint evaluation together with groundwater-specific variables is appropriate
419	and necessary (e.g. Maxwell et al. 2015; Maxwell and Condon, 2016). Groundwater-specific
420	variables useful for evaluating the groundwater component of large-scale models include: a)
421	hydraulic head or water table depth; b) groundwater storage and groundwater storage changes
422	which refer to long-term, negative or positive trends in groundwater storage where long-term,
423	negative trends are called groundwater depletion; c) groundwater recharge; d) flows between
424	groundwater and surface water bodies; and e) human groundwater abstractions and return

425	flows to groundwater. It is important to note that groundwater and surface water hydrology
426	communities often have slightly different definitions of terms like recharge and baseflow
427	(Barthel, 2014); we therefore suggest trying to precisely define the meanings of such words
428	using the actual hydrologic fluxes which we do below. Table 2 shows the availability of
429	observational data for these variables but does not evaluate the quality and robustness of
430	observations. Overall there are significant inherent challenges of commensurability and
431	measurability of groundwater observations in the evaluation of large-scale models. We
432	describe the current model evaluation practices for each of these variables here:
433	

434	a)	Simulated hydraulic heads or water table depth in large scale models are
435		frequently compared to well observations, which are often considered the crucial
436		data for groundwater model evaluation. Hydraulic head observations from a large
437		number groundwater wells (>1 million) have been used to evaluate the spatial
438		distribution of steady-state heads (Fan et al., 2013, de Graaf et al., 2015; Maxwell et
439		al., 2015; Reinecke et al., 2019a, 2020). Transient hydraulic heads with seasonal
440		amplitudes (de Graaf et al. 2017), declining heads in aquifers with groundwater
441		depletion (de Graaf et al. 2019) and daily transient heads (Tran et al 2020) have also
442		been compared to well observations. All evaluation with well observations is
443		severely hampered by the incommensurability of point values of observed head with
444		simulated heads that represent averages over cells of a size of tens to hundreds
445		square kilometers; within such a large cell, land surface elevation, which strongly

446		governs hydraulic head, may vary a few hundred meters, and average observed
447		head strongly depends on the number and location of well within the cell (Reinecke
448		et al., 2020). Additional concerns with head observations are the 1) strong sampling
449		bias of wells towards accessible locations, low elevations, shallow water tables, and
450		more transmissive aquifers in wealthy, generally temperate countries (Fan et al.,
451		2019); 2) the impacts of pumping which may or may not be well known; 3)
452		observational errors and uncertainty (Post and von Asmuth, 2013; Fan et al., 2019);
453		and 4) that heads can reflect the poro-elastic effects of mass loading and unloading
454		rather than necessarily aquifer recharge and drainage (Burgess et al, 2017). To date,
455		simulated hydraulic heads have more often been compared to observed heads
456		(rather than water table depth) which results in lower relative errors (Reinecke et
457		al., 2020) because the range of heads (10s to 1000s m head) is much larger than the
458		range of water table depths (<1 m to 100s m).
459		
460	b)	Simulated groundwater storage trends or anomalies in large-scale hydrological
461		models have been evaluated using observations of groundwater well levels
462		combined with estimates of storage parameters, such as specific yield; local-scale
463		groundwater modeling; and translation of regional total water storage trends and
464		anomalies from satellite gravimetry (GRACE: Gravity Recovery And Climate

466 hydrological storages (Döll et al., 2012; 2014a). Groundwater storage changes

465

Experiment) to groundwater storage changes by estimating changes in other

467	volumes and rates have been calculated for numerous aquifers, primarily in the
468	United States, using calibrated groundwater models, analytical approaches, or
469	volumetric budget analyses (Konikow, 2010). Regional-scale models have also been
470	used to simulate groundwater storage trends untangling the impacts of water
471	management during drought (Thatch et al. 2020). Satellite gravimetry (GRACE) is
472	important but has limitations (Alley and Konikow, 2015). First, monthly time series
473	of very coarse-resolution groundwater storage are indirectly estimated from
474	observations of total water storage anomalies by satellite gravimetry (GRACE) but
475	only after model- or observation-based subtraction of water storage changes in
476	glaciers, snow, soil and surface water bodies (Lo et al., 2016; Rodell et al., 2009;
477	Wada, 2016). As soil moisture, river or snow dynamics often dominate total water
478	storage dynamics, the derived groundwater storage dynamics can be so uncertain
479	that severe groundwater drought cannot be detected in this way (Van Loon et al.,
480	2017). Second, GRACE cannot detect the impact of groundwater abstractions on
481	groundwater storage unless groundwater depletion occurs (Döll et al., 2014a,b).
482	Third, the very coarse resolution can lead to incommensurability but in the opposite
483	direction of well observations. It is important to note that the focus is on storage
484	trends or anomalies since total groundwater storage to a specific depth (Gleeson et
485	al., 2016) or in an aquifer (Konikow, 2010) can be estimated but the total
486	groundwater storage in a specific region or cell cannot be simulated or observed
487	unless the depth of interest is specified (Condon et al., 2020).

489	c)	Simulated large-scale groundwater recharge (vertical flux across the water table)
490		has been evaluated using compilations of point estimates of groundwater recharge,
491		results of regional-scale models, baseflow indices, and expert opinion (Döll and
492		Fiedler, 2008; Hartmann et al., 2015) or compared between models (e.g. Wada et al.
493		2010). In general, groundwater recharge is not directly measurable except by meter-
494		scale lysimeters (Scanlon et al., 2002), and many groundwater recharge methods
495		such as water table fluctuations and chloride mass balance also suffer from similar
496		commensurability issues as water table depth data. Although sometimes an input or
497		boundary condition to regional-scale models, recharge in many large-scale
498		groundwater models is simulated and thus can be evaluated.
499		
500	d)	The flows between groundwater and surface water bodies (rivers, lakes, wetlands)
501		are simulated by many models but are generally not evaluated directly against
502		observations of such flows since they are very rare and challenging. Baseflow (the

503slowly varying portion of streamflow originating from groundwater or other delayed504sources) or streamflow 'low flows' (when groundwater or other delayed sources505predominate), generally cannot be used to directly quantify the flows between506groundwater and surface water bodies at large scales. Groundwater discharge to507rivers can be estimated from streamflow observations only in the very dense gauge508network and/or if streamflow during low flow periods is mainly caused by509groundwater discharge and not by water storage in upstream lakes, reservoirs or

510		wetlands. These conditions are rarely met in case of streamflow gauges with large
511		upstream areas that can be used for comparison to large-scale model output. de
512		Graaf et al. (2019) compared the simulated timing of changes in groundwater
513		discharge to observations and regional-scale models, but only compared the fluxes
514		directly between the global- and regional-scale models. Due to the challenges of
515		directly observing the flows between groundwater and surface water bodies at large
516		scales, this is not included in the available data in Table 2; instead in Section 3 we
517		highlight the potential for using baseflow or the spatial distribution of perennial,
518		intermittent and ephemeral streams in the future.
519		
520	e)	Groundwater abstractions have been evaluated by comparison to national, state
521		and county scale statistics in the U.S. (Wada et al. 2010, Döll et al., 2012, 2014a, de
522		Graaf et al. 2014). Irrigation is the dominant groundwater use sector in many
523		regions; however, irrigation pumpage is generally estimated from crop water
524		demand and rarely metered. GRACE and other remote sensing data have been used
525		to estimate the irrigation water abstractions (Anderson et al. 2015b). The lack of
526		records or observations of abstraction introduces significant uncertainties into large-
527		scale models and is simulated and thus can be evaluated. Human groundwater
528		abstractions and return flows as well as groundwater recharge and the flows
529		between groundwater and surface water bodies are necessary to simulate storage
530		trends (described above). But each of these are considered separate observations

531	since they each have different data sources and assumptions. Groundwater
532	abstraction data at the well scale are severely hampered by the incommensurability
533	like hydraulic head and recharge described above.
534	3. HOW TO IMPROVE THE EVALUATION OF LARGE-SCALE GROUNDWATER MODELS
535	Based on Section 2, we argue that the current model evaluation practices are insufficient to
536	robustly evaluate large-scale models. We therefore propose evaluating large-scale models using
537	at least three strategies (pie-shapes in Figure 1): observation-, model-, and expert-driven
538	evaluation which are potentially mutually beneficial because each strategy has its strengths and
539	weaknesses. We are not proposing a brand new evaluation method here but rather separating
540	strategies to consider the problem of large-scale model evaluation from different but highly
541	interconnected perspectives. All three strategies work together for the common goal of
542	'improved model large-scale model evaluation' which is what is the centre of Figure 1.
543	
544	When evaluating large-scale models, it is necessary to first consider reasonable expectations or
545	how to know a model is 'well enough'. Reasonable expectations should be based on the
546	modeling purpose, hydrologic process understanding and the plausibly achievable degree of
547	model realism. First, model evaluation should be clearly linked to the four science- or
548	sustainability-focused purposes of representing groundwater in large-scale models (Section 1)

and second, to our understanding of relevant hydrologic processes. The objective of large-scale

models cannot be to reproduce the spatio-temporal details that regional-scale models can

549

550

551	reproduce. Determining the reasonable expectations is necessarily subjective, but can be
552	approached using observation-, model-, and expert-driven evaluation. As a simple first step in
553	setting realistic expectations, we propose that three physical variables can be used to form
554	more convincing arguments that a large-scale model is well enough: change in groundwater
555	storage, water table depth, and regional fluxes between groundwater and surface water. Below
556	we explore in more detail additional variables and approaches that can support this simple
557	approach.

559	Across all three model evaluation strategies of observation-, model-, and expert-driven
560	evaluation, we advocate three principles underpinning model evaluation (base of Figure 1),
561	none of which we are the first to suggest but we highlight here as a reminder: 1) model
562	objectives, such as the groundwater science or groundwater sustainability objective
563	summarised in Section 1, are important to model evaluation because they provide the context
564	through which relevance of the evaluation outcome is set; 2) all sources of information
565	(observations, models and experts) are uncertain and this uncertainty needs to be quantified
566	for robust evaluation; and 3) regional differences are likely important for large-scale model
567	evaluation - understanding these differences is crucial for the transferability of evaluation
568	outcomes to other places or times.

570	We stress that we see the consideration and quantification of uncertainty as an essential need
571	across all three types of model evaluation we describe below, so we discuss it here rather than
572	with model-driven model evaluation (Section 3.2) where uncertainty analysis more narrowly
573	defined would often be discussed. We further note that large-scale models have only been
574	assessed to a very limited degree with respect to understanding, quantifying, and attributing
575	relevant uncertainties. Expanding computing power, developing computationally frugal
576	methods for sensitivity and uncertainty analysis, and potentially employing surrogate models
577	can enable more robust sensitivity and uncertainty analysis such as used in regional-scale
578	models (Habets et al., 2013; Hill, 2006; Hill & Tiedeman, 2007; Reinecke et al., 2019b). For now,
579	we suggest applying computationally frugal methods such as the elementary effect test or local
580	sensitivity analysis (Hill, 2006; Morris, 1991; Saltelli et al., 2000). Such sensitivity and
581	uncertainty analyses should be applied not only to model parameters and forcings but also to
582	model structural properties (e.g. boundary conditions, grid resolution, process simplification,
583	etc.) (Wagener and Pianosi, 2019). This implies that the (independent) quantification of
584	uncertainty in all model elements (observations, parameters, states, etc.) needs to be improved
585	and better captured in available metadata.

587	We advocate for considering regional differences more explicitly in model evaluation since
588	likely no single model will perform consistently across the diverse hydrologic landscapes of the
589	world (Van Werkhoven et al., 2008). Considering regional differences in large-scale model
590	evaluation is motivated by recent model evaluation results and is already starting to be

591	practiced. Two recent sensitivity analyses of large-scale models reveal how sensitivities to input
592	parameters vary in different regions for both hydraulic heads and flows between groundwater
593	and surface water (de Graaf et al. 2019; Reinecke et al., 2020). In mountain regions, large-scale
594	models tend to underestimate steady-state hydraulic head, possibly due to over-estimated
595	hydraulic conductivity in these regions, which highlights that model performance varies in
596	different hydrologic landscapes. (de Graaf et al., 2015; Reinecke et al. 2019b). Additionally,
597	there are significant regional differences in performance with low flows for a number of large-
598	scale models (Zaherpour et al. 2018) likely because of diverse implementations of groundwater
599	and baseflow schemes. Large-scale model evaluation practice is starting to shift towards
600	highlighting regional differences as exemplified by two different studies that explicitly mapped
601	hydrologic landscapes to enable clearer understanding of regional differences. Reinecke et al.
602	(2019b) identified global hydrological response units which highlighted the spatially distributed
603	parameter sensitivities in a computationally expensive model, whereas Hartmann et al. (2017)
604	developed and evaluated models for karst aquifers in different hydrologic landscapes based on
605	different a priori system conceptualizations. Considering regional differences in model
606	evaluation suggests that global models could in the future consider a patchwork approach of
607	different conceptual models, governing equations, boundary conditions etc. in different
608	regions. Although beyond the scope of this manuscript, we consider this an important future
609	research avenue.

610 3.1 Observation-based model evaluation

611	Observation-based model evaluation is the focus of most current efforts and is important
612	because we want models to be consistent with real-world observations. Section 2 and Table 2
613	highlight both the strengths and limitations of current practices using observations. Despite
614	existing challenges, we foresee significant opportunities for observation-based model
615	evaluation and do not see data scarcity as a reason to exclude groundwater in large-scale
616	models or to avoid evaluating these models. It is important to note that most so-called
617	'observations' are modeled or derived quantities, and often at the wrong scale for evaluating
618	large-scale models (Table 2; Beven, 2019). Given the inherent challenges of direct
619	measurement of groundwater fluxes and stores especially at large scales, herein we consider
620	the word 'observation' loosely as any measurements of physical stores or fluxes that are
621	combined with or filtered through models for an output. For example, GRACE gravity
622	measurements are combined with model-based estimates of water storage changes in glaciers,
623	snow, soil and surface water for 'groundwater storage change observations' or streamflow
624	measurements are filtered through baseflow separation algorithms for 'baseflow observations'.
625	The strengths and limitations as well as the data availability and spatial and temporal attributes
626	of different observations are summarized in Table 2 which we hope will spur more systematic
627	and comprehensive use of observations.

Here we highlight nine important future priorities for improving evaluation using available
observations. The first five priorities focus on current observations (Table 2) whereas the latter
four focus on new methods or approaches:

632	1)	Focus on transient observations of the water table depth rather than
633		hydraulic head observations that are long-term averages or individual times
634		(often following well drilling). Water table depth are likely more robust
635		evaluation metrics than hydraulic head because water table depth reveals
636		great discrepancies and is a complex function of the relationship between
637		hydraulic head and topography that is crucial to predicting system fluxes
638		(including evapotranspiration and baseflow). Comparing transient
639		observations and simulations instead of long-term averages or individual
640		times incorporates more system dynamics of storage and boundary
641		conditions as temporal patterns are more important than absolute values
642		(Heudorfer et al. 2019). For regions with significant groundwater depletion,
643		comparing to declining water tables is a useful strategy (de Graaf et al. 2019),
644		whereas in aquifers without groundwater depletion, seasonally varying
645		water table depths are likely more useful observations (de Graaf et al. 2017).
646	2)	Use baseflow, the slowly varying portion of streamflow originating from
647		groundwater or other delayed sources. Döll and Fiedler (2008) included the
648		baseflow index in evaluating recharge and baseflow has been used to
649		calibrate the groundwater component of a land surface model (Lo et al.
650		2008, 2010). But the baseflow index (BFI), linear and nonlinear baseflow
651		recession behavior or baseflow fraction (Gnann et al., 2019) have not been
652		used to evaluate any large-scale model that simulates groundwater flows
653		between all model grid cells. There are limitations of using BFI and baseflow

654		recession characteristics to evaluate large-scale models (Table 2). Using
655		baseflow only makes sense when the baseflow separation algorithm is better
656		than the large-scale model itself, which may not be the case for some large-
657		scale models and only in time periods that can be assumed to be dominated
658		by groundwater discharge. Similarly, using recession characteristics is
659		dependent on an appropriate choice of recession extraction methods. But
660		this remains available and obvious data derived from streamflow or spring
661		flow observations that has been under-used to date.
662	3)	Use the spatial distribution of perennial, intermittent, and ephemeral
663		streams as an observation, which to our best knowledge has not been done
664		by any large-scale model evaluation. The transition between perennial and
665		ephemeral streams is an important system characteristic in groundwater-
666		surface water interactions (Winter et al. 1998), so we suggest that this might
667		be a revealing evaluation criteria although there are similar limitations to
668		using baseflow. The results of both quantifying baseflow and mapping
669		perennial streams depend on the methods applied, they are not useful for
670		quantifying groundwater-surface water interactions when there is upstream
671		surface water storage, and they do not directly provide information about
672		fluxes between groundwater and surface water.
673	4)	Use data on land subsidence to infer head declines or aquifer properties for

regions where groundwater depletion is the main cause of compaction

675		(Bierkens and Wada, 2019). Lately, remote sensing methods such as GPS,
676		airborne and space borne radar and lidar are frequently used to infer land
677		subsidence rates (Erban et al., 2014). Also, a number of studies combine
678		geomechanical modelling (Ortega-Guerrero et al 1999; Minderhoud et al
679		2017) and geodetic data to explain the main drivers of land subsidence. A
680		few papers (e.g. Zhang and Burbey 2016) use a geomechanical model
681		together with a withdrawal data and geodetic observations to estimate
682		hydraulic and geomechanical subsoil properties.
683	5)	Consider using socio-economic data for improving model input. For
684		example, reported crop yields in areas with predominant groundwater
685		irrigation could be used to evaluate groundwater abstraction rates. Or using
686		well depth data (Perrone and Jasechko, 2019) to assess minimum aquifer
687		depths or in coastal regions and deltas, the presence of deeper fresh
688		groundwater under semi-confining layers.
689	6)	Derive additional new datasets using meta-analysis and/or geospatial
690		analysis such as gaining or losing stream reaches (e.g., from interpolated
691		head measurements close to the streams), springs and groundwater-
692		dependent surface water bodies, or tracers. Each of these new data sources
693		could in principle be developed from available data using methods already
694		applied at regional scales but do not currently have an 'off the shelf' global
695		dataset. For example, some large-scale models have been explicitly

696		compared with residence time and tracer data (Maxwell et al., 2016) which
697		have also been recently compiled globally (Gleeson et al., 2016; Jasechko et
698		al., 2017). This could be an important evaluation tool for large-scale models
699		that are capable of simulating flow paths, or can be modified to do, though a
700		challenge of this approach is the conservativity of tracers. Future meta-
701		analyses data compilations should report on the quality of the data and
702		include possible uncertainty ranges as well as the mean estimates.
703	7)	Use machine learning to identify process representations (e.g. Beven, 2020)
704		or spatiotemporal patterns, for example of perennial streams, water table
705		depths or baseflow fluxes, which might not be obvious in multi-dimensional
706		datasets and could be useful in evaluation. For example, Yang et al. (2019)
707		predicted the state of losing and gaining streams in New Zealand using
708		Random Forest algorithms. A staggering variety of machine learning tools are
709		available and their use is nascent yet rapidly expanding in geoscience and
710		hydrology (Reichstein et al., 2019; Shen, 2018; Shen et al., 2018; Wagener et
711		al., 2020). While large-scale groundwater models are often considered 'data-
712		poor', it may seem strange to propose using data-intensive machine learning
713		methods to improve model evaluation. But some of the data sources are
714		large (e.g over 2 million water level measurements in Fan et al. 2013
715		although biased in distribution) whereas other observations such as
716		evapotranspiration (Jung et al., 2011) and baseflow (Beck et al. 2013) are
717		already interpolated and extrapolated using machine learning. Moving

718		forwards, it is important to consider commensurability while applying
719		machine learning in this context.
720	8)	Consider comparing models against hydrologic signatures - indices that
721		provide insight into the functional behavior of the system under study
722		(Wagener et al., 2007; McMilan, 2020). The direct comparison of simulated
723		and observed variables through statistical error metrics has at least two
724		downsides. One, the above mentioned unresolved problem of
725		commensurability, and two, the issue that such error metrics are rather
726		uninformative in a diagnostic sense - simply knowing the size of an error does
727		not tell the modeller how the model needs to be improved, only that it does
728		(Yilmaz et al., 2009). One way to overcome these issues, is to derive
729		hydrologically meaningful signatures from the original data, such as the
730		signatures derived from transient groundwater levels by Heudorfer et al.
731		(2019). For example, recharge ratio (defined as the ratio of groundwater
732		recharge to precipitation) might be hydrologically more informative than
733		recharge alone (Jasechko et al., 2014) or the water table ratio and
734		groundwater response time (Cuthbert et al. 2019; Opie et al., 2020) which
735		are spatially-distributed signatures of groundwater systems dynamics. Such
736		signatures might be used to assess model consistency (Wagener & Gupta,
737		2005; Hrachowitz et al.2014) by looking at the similarity of patterns or spatial
738		trends rather than the size of the aggregated error, thus reducing the
739		commensurability problem.

740	9)	Understand and quantify commensurability error issues better so that a
741		fairer comparison can be made across scales using existing data. As described
742		above, commensurability errors will depend on the number and locations of
743		observation points, the variability structure of the variables being compared
744		such as hydraulic head and the interpolation or aggregation scheme applied.
745		While to some extent we may appreciate how each of these factors affect
746		commensurability error in theory, in practice their combined effects are
747		poorly understood and methods to quantify and reduce commensurability
748		errors for groundwater model purposes remain largely undeveloped. As
749		such, quantification of commensurability error in (large-scale) groundwater
750		studies is regularly overlooked as a source of uncertainty because it cannot
751		be satisfactorily evaluated (Tregoning et al., 2012). Currently, evaluation of
752		simulated groundwater heads is plagued by, as yet, poorly quantified
753		uncertainties stemming from commensurability errors and we therefore
754		recommend future studies focus on developing solutions to this problem. An
755		additional, subtle but important and unresolved commensurability issue can
756		stem from conceptual models. Different hydrogeologists examining different
757		scales, data or interpreting geology differently can produce quite different
758		conceptual models of the same region (Troldborg et al. 2007).
759	We recommend e	evaluating models with a broader range of currently available data sources

760 (with explicit consideration of data uncertainty and regional differences) while also

761 simultaneously working to derive new data sets. Using data (such as baseflow, land subsidence,
762	or the spatial distribution of perennial, intermittent, and ephemeral streams) that is more
763	consistent with the scale modelled grid resolution will hopefully reduce the commensurability
764	challenges. However, data distribution and commensurability issues will likely still be present,
765	which underscores the importance of the two following strategies.

3.2. Model-based model evaluation

767	Model-based model evaluation, which includes model intercomparison projects (MIP) and
768	model sensitivity and uncertainty analysis, can be done with or without explicitly using
769	observations. We describe both inter-model and inter-scale comparisons which could be
770	leveraged to maximize the strengths of each of these approaches.

772	The original MIP concept offers a framework to consistently evaluate and compare models, and
773	associated model input, structural, and parameter uncertainty under different objectives (e.g.,
774	climate change, model performance, human impacts and developments). Early model
775	intercomparisons of groundwater models focused on nuclear waste disposal (SKI, 1984). Since
776	the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS; Sellers et
777	al., 1993), the first large-scale MIP, the land surface modeling community has used MIPs to
778	deepen understanding of land physical processes and to improve their numerical
779	implementations at various scales from regional (e.g., Rhône-aggregation project; Boone et al.,
780	2004) to global (e.g., Global Soil Wetness Project; Dirmeyer, 2011). Two examples of recent
781	model intercomparison efforts illustrate the general MIP objectives and practice. First, ISIMIP
782	(Schewe et al., 2014; Warszawski et al., 2014) assessed water scarcity at different levels of

783	global warming. Second, IH-MIP2 (Kollet et al., 2017) used both synthetic domains and an
784	actual watershed to assess fully-integrated hydrologic models because these cannot be
785	validated easily by comparison with analytical solutions and uncertainty remains in the
786	attribution of hydrologic responses to model structural errors. Model comparisons have
787	revealed differences, but it is often unclear whether these stem from differences in the model
788	structures, differences in how the parameters were estimated, or from other modelling choices
789	(Duan et al., 2006). Attempts for modular modelling frameworks to enable comparisons
790	(Wagener et al., 2001; Leavesley et al., 2002; Clark et al., 2008; Fenicia et al., 2011; Clark et al.,
791	2015) or at least shared explicit modelling protocols and boundary conditions (Refsgaard et al.,
792	2007; Ceola et al., 2015; Warszawski et al., 2014) have been proposed to reduce these
793	problems.
794	

795	Inter-scale model comparison - for example, comparing a global model to a regional-scale
796	model - is a potentially useful approach which is emerging for surface hydrology models
797	(Hattermann et al., 2017; Huang et al., 2017) and could be applied to large-scale models with
798	groundwater representation. For example, declining heads and decreasing groundwater
799	discharge have been compared between a calibrated regional-scale model (RRCA, 2003) and a
800	global model (de Graaf et al., 2019). A challenge to inter-scale comparisons is that regional-
801	scale models often have more spatially complex subsurface parameterizations because they
802	have access to local data which can complicate model inter-comparison. Another approach
803	which may be useful is running large-scale models over smaller (regional) domains at a higher

804	spatial resolution (same as a regional-scale model) so that model structure influences the
805	comparison less. In the future, various variables that are hard to directly observe at large scales
806	but routinely simulated in regional-scale models such as baseflow or recharge could be used to
807	evaluate large-scale models, although these flux estimates can contain large uncertainty. In this
808	way, the output fluxes and intermediate spatial scale of regional models provide a bridge across
809	the "river of incommensurability" between highly location-specific data such as well
810	observations and the coarse resolution of large-scale models. In such an evaluation, the
811	uncertainty of flux estimates and scale of aggregation are both important to consider. It is
812	important to consider that regional-scale models are not necessarily or inherently more
813	accurate than large-scale models since problems may arise from conceptualization,
814	groundwater-surface water interactions, scaling issues, parameterization etc.
815	

816	In order for a regional-scale model to provide a useful evaluation of a large-scale model, there
817	are several important documentation and quality characteristics it should meet. At a bare
818	minimum, the regional-scale model must be accessible and therefore meet basic replicability
819	requirements including open and transparent input and output data and model code to allow
820	large-scale modelers to run the model and interpret its output. Documentation through peer
821	review, either through a scientific journal or agency such as the US Geological Survey, would be
822	ideal. It is particularly important that the documentation discusses limitations, assumptions and
823	uncertainties in the regional-scale model so that a large-scale modeler can be aware of
824	potential weaknesses and guide their comparison accordingly. Second, the boundary conditions

825	and/or parameters being evaluated need to be reasonably comparable between the regional-
826	and large-scale models. For example, if the regional-scale model includes human impacts
827	through groundwater pumping while the large-scale model does not, a comparison of baseflow
828	between the two models may not be appropriate. Similarly, there needs to be consistency in
829	the time period simulated between the two models. Finally, as with data-driven model
830	evaluation, the purpose of the large-scale model needs to be consistent with the model-based
831	evaluation; matching the hydraulic head of a regional-scale model, for instance, does not
832	indicate that estimates of stream-aquifer exchange are valid. Ideally, we recommend
833	developing a community database of regional-scale models that meet this criteria. It is
834	important to note that Rossman & Zlotnik (2014) review 88 regional-scale models while a good
835	example of such a repository is the California Groundwater Model Archive
836	(https://ca.water.usgs.gov/sustainable-groundwater-management/california-groundwater-
837	modeling.html).
838	

839	In addition to evaluating whether models are similar in terms of their outputs, e.g. whether
840	they simulate similar groundwater head dynamics, it is also relevant to understand whether the
841	influence of controlling parameters are similar across models. This type of analysis provides
842	insights into process controls as well as dominant uncertainties. Sensitivity analysis provides
843	the mathematical tools to perform this type of model evaluation (Saltelli et al., 2008; Pianosi et
844	al., 2016; Borgonovo et al., 2017). Recent applications of sensitivity analysis to understand
845	modelled controls on groundwater related processes include the study by Reinecke et al.

846	(2019b) trying to understand parametric controls on groundwater heads and flows within a
847	global groundwater model. Maples et al. (2020) demonstrated that parametric controls on
848	groundwater recharge can be assessed for complex models, though over a smaller domain. As
849	highlighted by both of these studies, more work is needed to understand how to best use
850	sensitivity analysis methods to assess computationally expensive, spatially distributed and
851	complex groundwater models across large domains (Hill et al., 2016). In the future, it would be
852	useful to go beyond parameter uncertainty analysis (e.g. Reinecke et al. 2019b) to begin to look
853	at all of the modelling decisions holistically such as the forcing data (Weiland et al., 2015) and
854	digital elevation models (Hawker et al., 2018). Addressing this problem requires advancements
855	in statistics (more efficient sensitivity analysis methods), computing (more effective model
856	execution), and access to large-scale models codes (Hutton et al. 2016), but also better
857	utilization of process understanding, for example to create process-based groups of parameters
858	which reduces the complexity of the sensitivity analysis study (e.g. Hartmann et al., 2015;
859	Reinecke et al., 2019b).
860	3.3 Expert-based model evaluation
861	A path much less traveled is expert-based model evaluation which would develop hypotheses
862	of phenomena (and related behaviors, patterns or signatures) we expect to emerge from large-
863	scale groundwater systems based on expert knowledge, intuition, or experience. In essence,
864	this model evaluation approach flips the traditional scientific method around by using
865	hypotheses to test the simulation of emergent processes from large-scale models, rather than
866	using large-scale models to test our hypotheses about environmental phenomena. This might

867	be an important path forward for regions where available data is very sparse or unreliable. The
868	recent discussion by Fan et al. (2019) shows how hypotheses about large-scale behavior might
869	be derived from expert knowledge gained through the study of smaller scale systems such as
870	critical zone observatories. While there has been much effort to improve our ability to make
871	hydrologic predictions in ungauged locations through the regionalization of hydrologic variables
872	or of model parameters (Bloeschl et al., 2013), there has been much less effort to directly
873	derive expectations of hydrologic behavior based on our perception of the systems under
874	study.

876	Large-scale models could then be evaluated against such hypotheses, thus providing a general
877	opportunity to advance how we connect hydrologic understanding with large-scale modeling - a
878	strategy that could also potentially reduce epistemic uncertainty (Beven et al., 2019), and which
879	may be especially useful for groundwater systems given the data limitations described above.
880	Developing appropriate and effective hypotheses is crucial and should likely focus on large-
881	scale controlling factors or relationships between controlling factors and output in different
882	parts of the model domain; hypotheses that are too specific may only be able to be tested by
883	certain model complexities or in certain regions. To illustrate the type of hypotheses we are
884	suggesting, we list some examples of hypotheses drawn from current literature:
885	• water table depth and lateral flow strongly affect transpiration partitioning

886	(Famiglietti and Wood, 1994; Salvucci and Entekhabi, 1995; Maxwell & Condon,
887	2016);

888	• the percentage of inter-basinal regional groundwater flow increases with aridity or
889	decreases with frequency of perennial streams (Gleeson & Manning, 2008;
890	Goderniaux et al, 2013; Schaller and Fan, 2008); or
891	• human water use systematically redistributes water resources at the continental
892	scale via non-local atmospheric feedbacks (Al-Yaari et al., 2019; Keune et al., 2018).
893	Alternatively, it might be helpful to also include hypotheses that have been shown to be
894	incorrect since models should also not show relationships that have been shown to not exist in
895	nature. For example of a hypotheses that has recently been shown to be incorrect is that the
896	baseflow fraction (baseflow volume/precipitation volume) follows the Budyko curve (Gnann et
897	al. 2019) . As yet another alternative, hydrologic intuition could form the basis of model
898	experiments, potentially including extreme model experiments (far from the natural
899	conditions). For example, an experiment that artificially lowers the water table by decreasing
900	precipitation (or recharge directly) could hypothesize the spatial variability across a domain
901	regarding how 'the drainage flux will increase and evaporation flux will decrease as the water
902	table is lowered'. These hypotheses are meant only for illustrative purposes and we hope
903	future community debate will clarify the most appropriate and effective hypotheses. We
904	believe that the debate around these hypotheses alone will lead to advance our understanding,
905	or, at least highlight differences in opinion.

907	Formal approaches are available to gather the opinions of experts and to integrate them into a
908	joint result, often called expert elicitation (Aspinall, 2010; Cooke, 1991; O'Hagan, 2019). Expert
909	elicitation strategies have been used widely to describe the expected behavior of
910	environmental or man-made systems for which we have insufficient data or knowledge to build
911	models directly. Examples include aspects of future sea-level rise (Bamber and Aspinall, 2013),
912	tipping points in the Earth system (Lenton et al., 2018), or the vulnerability of bridges to scour
913	due to flooding (Lamb et al., 2017). In the groundwater community, expert opinion is already
914	widely used to develop system conceptualizations and related model structures (Krueger et al.,
915	2012; Rajabi et al., 2018; Refsgaard et al., 2007), or to define parameter priors (Ross et al.,
916	2009; Doherty and Christensen, 2011; Brunner et al., 2012; Knowling and Werner, 2016; Rajabi
917	and Ataie-Ashtiani, 2016). The term expert opinion may be preferable to the term expert
918	knowledge because it emphasizes a preliminary state of knowledge (Krueger et al., 2012).

920	A critical benefit of expert elicitation is the opportunity to bring together researchers who have
921	experienced very different groundwater systems around the world. It is infeasible to expect
922	that a single person could have gained in-depth experience in modelling groundwater in semi-
923	arid regions, in cold regions, in tropical regions etc. Being able to bring together different
924	experts who have studied one or a few of these systems to form a group would certainly create
925	a whole that is bigger than the sum of its parts. If captured, it would be a tremendous source of
926	knowledge for the evaluation of large-scale groundwater models. Expert elicitation also has a
927	number of challenges including: 1) formalizing this knowledge in such a way that it is still usable

by third parties that did not attend the expert workshop itself; and 2) perceived or real
differences in perspectives, priorities and backgrounds between regional-scale and large-scale
modelers.

931

932 So, while expert opinion and judgment play a role in any scientific investigation (O'Hagan, 933 2019), including that of groundwater systems, we rarely use formal strategies to elicit this 934 opinion. It is also less common to use expert opinion to develop hypotheses about the dynamic 935 behavior of groundwater systems, rather than just priors on its physical characteristics. Yet, it is 936 intuitive that information about system behavior can help in evaluating the plausibility of model 937 outputs (and thus of the model itself). This is what we call expert-based evaluation herein. 938 Expert elicitation is typically done in workshops with groups of a dozen or so experts (e.g. Lamb 939 et al., 2018). Upscaling such expert elicitation in support of global modeling would require some 940 web-based strategy and a formalized protocol to engage a sufficiently large number of people. 941 Contributors could potentially be incentivized to contribute to the web platform by publishing a 942 data paper with all contributors as co-authors and a secondary analysis paper with just the core 943 team as coauthors. We recommend the community develop expert elicitation strategies to 944 identify effective hypotheses that directly link to the relevant large-scale hydrologic processes 945 of interest.

946 4. CONCLUSIONS: towards a holistic evaluation of groundwater representation in large-scale models

947	Ideally, all three strategies (observation-based, model-based, expert-based) should be pursued
948	simultaneously because the strengths of one strategy might further improve others. For
949	example, expert- or model-based evaluation may highlight and motivate the need for new
950	observations in certain regions or at new resolutions. Or observation-based model evaluation
951	could highlight and motivate further model development or lead to refined or additional
952	hypotheses. We thus recommend the community significantly strengthens efforts to evaluate
953	large-scale models using all three strategies. Implementing these three model evaluation
954	strategies may require a significant effort from the scientific community, so we therefore
955	conclude with two tangible community-level initiatives that would be excellent first steps that
956	can be pursued simultaneously with efforts by individual research groups or collaborations of
957	multiple research groups.

959	First, we need to develop a 'Groundwater Modeling Data Portal' that would both facilitate and
960	accelerate the evaluation of groundwater representation in continental to global scale models
961	(Bierkens, 2015). Existing initiatives such as IGRAC's Global Groundwater Monitoring Network
962	(https://www.un-igrac.org/special-project/ggmn-global-groundwater-monitoring-network) and
963	HydroFrame (<u>www.hydroframe.org</u>), are an important first step but were not designed to
964	improve the evaluation of large-scale models and the synthesized data remains very
965	heterogeneous - unfortunately, even groundwater level time series data often remains either
966	hidden or inaccessible for various reasons. This open and well documented data portal should
967	include:

968	a)	observations for evaluation (Table 2) as well as derived signatures (Section 3.1);
969	b)	regional-scale models that meet the standards described above and could facilitate
970		inter-scale comparison (Section 3.2) and be a first step towards linking regional
971		models (Section 2.2);
972	c)	Schematizations, conceptual or perceptual models of large-scale models since
973		these are the basis of computational models; and
974	d)	Hypothesis and other results derived from expert elicitation (Section 3.3).
975	Meta-data	documentation, data tagging, aggregation and services as well as consistent data
976	structures	using well-known formats (netCDF, .csv, .txt) will be critical to developing a useful,
977	dynamic a	nd evolving community resource. The data portal should be directly linked to
978	harmonize	ed input data such as forcings (climate, land and water use etc.) and parameters
979	(topograpł	hy, subsurface parameters etc.), model codes, and harmonized output data. Where
980	possible, tl	he portal should follow established protocols, such as the Dublin Core Standards for
981	metadata	(https://dublincore.org) and ISIMIP protocols for harmonizing data and modeling
982	approach,	and would ideally be linked to or contained within an existing disciplinary repository
983	such as Hy	droShare (<u>https://www.hydroshare.org/</u>) to facilitate discovery, maintenance, and
984	long-term	support. Additionally, an emphasis on model objective, uncertainty and regional
985	difference	s as highlighted (Section 3) will be important in developing the data portal. Like
986	expert-elic	itation, contribution to the data portal could be incentivized through co-authorship
987	in data pap	pers and by providing digital object identifiers (DOIs) to submitted data and models

so that they are citable. By synthesizing and sharing groundwater observations, models, and
hypotheses, this portal would be broadly useful to the hydrogeological community beyond just
improving global model evaluation.

991

992 Second, we suggest ISIMIP, or a similar model intercomparison project, could be harnessed as a 993 platform to improve the evaluation of groundwater representation in continental to global 994 scale models. For example, in ISIMIP (Warszawski et al., 2014), modelling protocols have been 995 developed with an international network of climate-impact modellers across different sectors 996 (e.g. water, agriculture, energy, forestry, marine ecosystems) and spatial scales. Originally, 997 ISIMIP started with multi-model comparison (model-based model evaluation), with a focus on 998 understanding how model projections vary across different sectors and different climate 999 change scenarios (ISIMIP Fast Track). However, more rigorous model evaluation came to 1000 attention more recently with ISIMIP2a, and various observation data, such as river discharge 1001 (Global Runoff Data Center), terrestrial water storage (GRACE), and water use (national 1002 statistics), have been used to evaluate historical model simulation (observation-based model 1003 evaluation). To better understand model differences and to quantify the associated uncertainty 1004 sources, ISIMIP2b includes evaluating scenarios (land use, groundwater use, human impacts, 1005 etc) and key assumptions (no explicit groundwater representation, groundwater availability for 1006 the future, water allocation between surface water and groundwater), highlighting that 1007 different types of hypothesis derived as part of the expert-based model evaluation could 1008 possibly be simulated as part of the ISIMIP process in the future. While there has been a

1009	significant amount of research and publications on MIPs including surface water availability,
1010	limited multi-model assessments for large-scale groundwater studies exist. Important aspects
1011	of MIPs in general could facilitate all three model evaluation strategies: community-building
1012	and cooperation with various scientific communities and research groups, and making the
1013	model input and output publicly available in a standardized format.

1015	Large-scale hydrologic and land surface models increasingly represent groundwater, which we
1016	envision will lead to a better understanding of large-scale water systems and to more
1017	sustainable water resource use. We call on various scientific communities to join us in this
1018	effort to improve the evaluation of groundwater in continental to global models. As described
1019	by examples above, we have already started this journey and we hope this will lead to better
1020	outcomes especially for the goals of including groundwater in large-scale models that we
1021	started with above: improving our understanding of Earth system processes; and informing
1022	water decisions and policy. Along with the community currently directly involved in large-scale
1023	groundwater modeling, above we have made pointers to other communities who we hope will
1024	engage to accelerate model evaluation: 1) regional hydrogeologists, who would be useful
1025	especially in expert-based model evaluation (Section 3.3); 2) data scientists with expertise in
1026	machine learning, artificial intelligence etc. whose methods could be useful especially for
1027	observation- and model-based model evaluation (Sections 3.1 and 3.2); and 3) the multiple
1028	Earth Science communities that are currently working towards integrating groundwater into a
1029	diverse range of models so that improved evaluation approaches are built directly into model

1030 development. Together we can better understand what has always been beneath our feet, but

1031	often forgotten or neglected.
1032	
1033	
1034	
 1035	Competing interests: The authors declare that they have no conflict of interest.
1036	
1037	Acknowledgements:
1038	The commentary is based on a workshop at the University of Bristol and significant debate and
1039	discussion before and after. This community project was directly supported by a Benjamin
1040	Meaker Visiting Professorship at the Bristol University to TG and by funding from the Alexander
1041	von Humboldt Foundation to TW in the framework of the Alexander von Humboldt
1042	Professorship endowed by the German Federal Ministry of Education and Research. We thank
1043	many members of the community who contributed to the discussions, especially at the IGEM
1044	(Impact of Groundwater in Earth System Models) workshop in Taiwan.
1045	
 1046	Author Contributions: (using the <u>CRediT taxonomy</u> which offers standardized descriptions of

1047 author contributions) conceptualization and writing original draft: TG, TW and PD; writing -

1048	review and editing:all co-authors. Authors are ordered by contribution for the first three
1049	coauthors (TG, TW and PD) and then ordered in reverse alphabetical order for all remaining
1050	coauthors.

1052 Code and data availability: This Perspective paper does not present any computational results.

1054

1055 Table 1. A possible model classification based on three model classes and various model characteristics; see link

1056 to google doc to view easier (google doc will be migrated to a community github page if article accepted)

1057

groundwater flow	No GW flow		lateral	groundwater flo	w to a river with	in a cell		20 lateral groundwater flow between all cells				30 groundwater flow		
groundwater-surface coupling (2)		one-way			fac-way			one	way	and the second second	Dard-many			
surface-atmosphere coupling				yes				80						
	1000	100000000	0.82	and the second	10000000	1000000000		WaterGAP2-G3	a state of the	PCRGLOB-W8 -	2	100000000000000000000000000000000000000	1000	
example model (5)	JULES	ORCHIDEE	LMS	VIC-ground	CLMS	TOPLATS	Catchment	м	LEAF hydro	MODFLOW	ISBA-TRIP	HydroGeoSphere	Parflow	
groundwater recharge (diffune)	Pres-drainage	2007wge = P-6-67	Recharge = P-R-ET	Recharge depends on WT head and capillary fluxes	necharge depends on wit head and capillary fluxes	Recharge depends on wit head and capillary fluxes	Recharge depends on withead and capitary flues	currently uncoupled	redwys derived from wow	Recharge depends on wit head and capillary flues	Recharge depends on wit head and capillary fluxes	dretty represented	directly represented	
locured recharge (4)	not represented	optional (via enhanced infibration in ponds)	not represented	not represented	hit represented	fut represented	not represented	represented after coupling	not represented	represented from takes and perental rivers?	not represented	not represented	not representa	
serface water boundary condition or coupling	not represented	nd represented	not renearised	not represented	not represented	not represented	not represented	currently uncoupled with boundary condition using conductance	no head-based interactions with surface water	one-way coupling with three boundary conditions including drainage from linear reservoir	directly represented	dradly represented	directly represented	
variably solurated or partially saturated (1)	LD flichards' in soil layers	LO Richardy' in sol Repers	10 Kichards' in and	10 Richards' in soil Tayers	10 Richards' in soil layers	10 fildrants' in soil layers	sumped 30 Richards	pertially seturated	pertially seturated	vertical fluxes in soils depending on soil saturation and GW/level	LD Richards' in sol layers	variably saturated using 30 tichard's equation	verably saturat using 10 tichan equation	
water table and hydrophy head	Optional WT diagnostic based on TOPMODEL	not represented	represented, parameterised	directly represented	First layer from bedrock where soll moisture < 0.8	represented following TOPMODEL	represented following TOPMODEL	directly represented	drectly represented	directly represented	directly represented	drectly represented	directly represented	
prombester storage	not represented	represented as linear reservoir	represented	represented	represented	represented	represented	directly represented	represented	directly represented	directly represented	dractly represented	directly represented	
laneral flow	not represented	represented	represented through lateral flow divergence	parametrized following Prancini and Pacciani (2001)	parameterised, celibration parameter related to baseflow	represented following TOPMODEL	represented following TOPWOOEL	directly represented but not along flowlines	directly represented	directly represented	directly represented	directly represented	directly represented	
groundwater botton boundary conditon	gravity drainage from soil	function of recention	no flux	no flux	na flux	no flux	noflux	no flue.	na flua	noflux	no flux	no flux	no fue	
provideater and	not represented	not represented	not represented	not represented	not represented	not represented	not represented	to be included in future	not represented	represented	not represented	not represented	not represente	
preferential flow	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represente	
proundwater temperature	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	hot represented	not represente	
proundwater quality	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented.	not represented	not represented	not represented	not represented	not represente	
proundwater density	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represente	
confined conditions	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	represented	not represented	not represented	not represente	
coupling with ocean (and ocean models)		**	**	**	**	**	**	**	ocean boundary condition	ocean boundary condition	999	condition	positive	
sotope enabled	10	10	no	no	10	na-	no-	40	no	10	no	A0	no	
included in current assimilation schemes	yes	202	10	no .	yes	110	no	ND	na	70	10	10	10	
paleo groundwater	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represente	
Reference	beit et al. (2011)	duimbertsau et al.	Milly et al (2014)	Liang et al. (2005	Andre et al. (2018	Partigliett & wood	Komer et al. (2000)	Reinecke et al. (201	Han et al. (2013	de Graaf et al. (2017	vergres et al. (2054	Brunner and Simmo	Manuell et al (20	
Notes														

(1) only an existing of model with a set of model with a set of the set of th

groundwater flow	No GW flow	No GW flow lateral grou one-way		groundwater flo	idwater flow to a river within a cell					later	al groundwater fl	ow between all o	ells :	
groundwater-surface coupling (2)				two-way			0		-way		two-way			
surface-atmosphere coupling (3)				yes						no			yes	
example model (4)	JULES	ORCHIDEE	LM3	VIC-ground	CLMS	TOPLATS	Catchment	MATSIRO	WaterGAP2-G3M	LEAF hydro	PCR-GLOBWB - MODFLOW	ISBA-TRIP	HydroGeoSphere	ParFlow
groundwater recharge (diffuse)	Free-drainage	Recharge = P-R-ET	Recharge – P-R-ET	Recharge depends on WT head and capillary fluxes	Recharge depends on WT head and capillary fluxes	Recharge depends on WT head and capillary fluxes	Recharge depends on WT head and capillary fluxes	Recharge depends on WT head and capillary flaxes	prescribed	prescribed	Recharge depends on WT head and capillary fluxes	Recharge depends on WT head and capillary fluxes	directly represented	directly represented
focused recharge (5)	not represented	optional (via enhanced infiltration in ponds)	not represented	not represented	not represented	not represented	not represented	not represented	represented after coupling	not represented	represented from lakes and perenial rivers	not represented	directly represented	directly represented
surface water boundary condition or coupling	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	currently uncoupled	no head-based interactions with surface water	one-way coupling with three boundary conditions including drainage from linear reservoir	directly represented	directly represented	directly represented
variably saturated or partially saturated (6)	1D Richards' in soil layers	1D Richards' in soil layers	1D Richards' in soil layers	1D Richards' in soil layers	1D Richards' in soil layers	1D Richards' in soll layers	Lumped 3D Richards	1D Richards' in soll layers	partially saturated	partially saturated	Vertical fluxes in soils depend ing on soil saturation and GW level	1D Richards' in soil layers	variably saturated using 3D Richard's equation	variably saturate using 3D Richard equation
water table and hydraulic head	Optional WT diagnostic based on TOPMODEL	not represented	represented, parameterised	directly represented	First layer from bedrock where soll moisture < 0.9	represented following TOPMODEL	represented following TOPMODEL	represented following TOPMODEL	directly represented	directly represented	directly represented	directly represented	directly represented	directly represented
groundwater storage	not represented	represented as linear reservoir	represented	represented	represented	represented	represented	not represented	directly represented	represented	directly represented	directly represented	directly represented	directly represented
lateral flow	not represented	represented	represented through lateral flow divergence	parametrized following Francini and Pacciani (2001)	parameterised, calibration parameter related to baseflow	represented following TOPMODEL	represented following TOPMODEL	represented following TOPMODEL	directly represented	directly represented	directly represented	directly represented	directly represented	directly represented
groundwater bottom boundary conditon	gravity drainage from soil	function of reservior	no flux	no flux	no flux	no flux	no flux	no flux	no flux	no flux	no flux	no flux	no flux	no flux
groundwater use (7)	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	to be included in future	not represented	represented	not represented	not represented	represented
preferential flow	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented
groundwater temperature	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented
groundwater quality	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented
groundwater density	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented
confined conditions	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	represented	not represented	potentially represented	potentially represented
coupling with ocean (and ocean models)	no	no	no	no	no	no	no	no	no	ocean boundary condition	condition	unclear	condition	possible
isotope-enabled	no	no	no	no	no	no	no	no	no	no	no	no	no	no
Included in current assimilation schemes	yes	777	no	no	yes	222	no	no	no	no	no	no	no	no
paleo groundwater	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented	not represented
Reference	Best et al. (2011)	Guimberteau et al.	(Milly et al (2014)	Liang et al. (2003)	Andre et al. (2018	Famiglietti & Wood	Koster et al. (2000)	Takata et al. (2003)	Reinecke et al. (2019a)	Fan et al. (2013	de Graaf et al. (201	Vergnes et al. (2014	Brunner and Simme	Maxwell et al (20)
Notes:														
(1) Only the most RECENT version of	models with pul	blished results at	continental to glo	bal scales are inc	cluded. Analytica	solutions (includ	ing the water tab	le ratio or ground	water response tim	es) are not descr	ibed here.			
(2) one-way coupling means that so	I moisture => rec	harge => groundy	vater system => :	tream flow, but r	no reverse influer	nce; in this case, t	he groundwater i	model is depende	nt on surface simula	itions to provide	recharge, two-wa	y coupling mean	s there is a full co	upling of surfa
(3) surface-atmosphere coupling me	ans that the grou	undwater compor	ient can be coup	led with atmosph	eric or weather r	models								
(4) Other models exist with similar f	atures													
(5) Focused recharge refers to any re	charge that occu	urs beneath water	bodies such as s	treams or lakes: y	whereas preferen	tial flow to mean	recharge that by	passes the soil m	atrix during diffuse i	echarge through	fractures or othe	r macropores		
(6) Variably saturated means that th	e saturation, and	related constitut	ive relations can	vary continuously	v while partially	saturated means	that saturation ca	n only discretely	vary between fully	aturated and up	saturated.			
					a			and a second						

1067 _Table 2. Available observations for evaluating the groundwater component of large-scale models

1068

I

Data type	Strengths	Limitations	Data availability and spatial resolution
Available observation	ns already used to evaluate	large-scale models	
Hydraulic heads or water table depth (averages or single times)	Direct observation of groundwater levels and storage	observations biased towards North America and Europe; non- commensurable with large- scale models; mixture of observation times	IGRAC Global Groundwater Monitoring Network; USGS; Fan et al. (2013) Point measurements at existing wells
Hydraulic heads or water table depth (transient)	Direct observation of changing groundwater levels and storage	As above	time-series available in a few regions, especially through USGS and <u>European</u> <u>Groundwater Drought</u> <u>Initiative</u> Point measurements at existing wells
Total water storage anomalies (GRACE)	Globally available and regionally integrated signal of water storage trends and anomalies	Groundwater changes are uncertain model remainder; very coarse spatial resolution and limited period	Various mascons gridded with resolution of ~100,000 km ² which are then processed as groundwater storage change; Scanlon et al. (2016)
Storage change (regional aquifers)	Regionally integrated response of aquifer (independent estimates derived by various methods)	Bias towards North America and Europe	Konikow (2011); Döll et al. (2014a) Regional aquifers (10,000s to 100,000s km ²)
Recharge	Direct inflow of groundwater system	Challenging to measure and upscale	Döll and Fiedler (2008); Hartmann et al. (2017); Mohan et al. (2018); Moeck et al. (2020)

			Point to small basin
Abstractions	Crucial for groundwater depletion and sustainability studies	National scale data highly variable in quality; downscaling uncertain	de Graaf et al. (2014); Döll et al. (2014a) National-scale data down- scaled to grid
Streamflow or spring flow observations	Widely available at various scales; low flows can be related to groundwater	Challenging to quantify the flows between groundwater and surface water from streamflow	Global Runoff Data Centre (GRDC) or other <u>data sources</u> ; large to small basin; Olarinoye et al. (2020) point measurements of spring flow
Evapotranspiration	Widely available; related to groundwater recharge or discharge (for shallow water tables)	Not a direct groundwater observations	Various datasets; e.g. Miralles et al. (2016); gridded
Available observatior	ns not being used to evalua	te large-scale models	
Baseflow index (BFI) or (non-)linear baseflow recession behavior	Possible integrator of groundwater contribution to streamflow over a basin	BFI and k values vary with method; baseflow may be dominated by upstream surface water storage rather than groundwater inflow; can not identify losing river conditions	Beck et al. (2013) Point observations extrapolated by machine learning

I

Perennial stream map	Ephemeral streams are losing streams, whereas perennial streams could be gaining (or impacted by upstream surface water storage)	Mapping perennial streams requires arbitrary streamflow and duration cutoffs; not all perennial stream reaches are groundwater-influenced; does not provide information about magnitude of inflows/outflows.	Schneider et al. (2017); Cuthbert et al. (2019); Spatially continuous along stream networks
Gaining or losing stream reaches	Multiple techniques for measurement (interpolated head measurements, streamflow data, water chemistry). Constrains direction of fluxes at groundwater system boundaries	Relevant processes occur at sub-grid-cell resolution.	Not globally available but see Bresciani et al. (2018) for a regional example; Spatially continuous along stream networks
Springs and groundwater- dependent surface water bodies	Constrains direction of fluxes at groundwater system boundaries	Relevant processes occur at sub-grid-cell resolution.	Springs available for various regions but not globally; Springer, & Stevens (2009) Point measurements at water feature locations
Tracers (heat, isotopes or other geochemical)	Provides information about temporal aspects of groundwater systems (e.g. residence time)	No large-scale models simulate transport processes (Table S1)	Isotopic data compiled but no global data for heat or other chemistry; Gleeson et al. (2016); Jasechko et al. (2017) Point measurements at existing wells or surface water features
Surface elevation data (leveling, GPS, radar/lidar) an in particular land subsidence observations	Provides information about changes in surface elevation that are related to groundwater head variations or groundwater head decline	Provides indirect information and needs a geomechanical model to translate to head. Introduces additional uncertainty of geomechnical properties.	Leveling data, GPS data and lidar observations mostly limited to areas of active subsidence; Minderhoud et al. (2019,2020). Global data on elevation change are available from the Sentinel 1 mission.

I

- 1074 Figure 1: Improved large-scale model evaluation rests on three pillars: observation-, model-,
- 1075 and expert-based model evaluation. We argue that each pillar is an essential strategy so that
- 1076 all three should be simultaneously pursued by the scientific community. The three pillars of
- 1077 model evaluation all rest on three core principles related to 1) model objectives, 2)
- 1078 uncertainty and 3) regional differences.

1080

1079

1081

1083 References

1084 1085	Addor, N., & Melsen, L. A. (2018). Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models. Water Resources Research, 0(0). <u>https://doi.org/10.1029/2018WR022958</u>
1086	
1087 1088 1089	Al-Yaari, A., Ducharne, A., Cheruy, F., Crow, W.T. & Wigneron, J.P. (2019). Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States. <i>Scientific Reports</i> , 9, article number 1657, doi:10.1038/s41598-018-38309-5
1090	
1091 1092	Anderson, M. P., Woessner, W. W. & Hunt, R. (2015a). <i>Applied groundwater modeling- 2nd Edition</i> . San Diego: Academic Press.
1093 1094 1095 1096	Anderson, R. G., Min-Hui Lo, Swenson, S., Famiglietti, J. S., Tang, Q., Skaggs, T. H., Lin, YH., and Wu, RJ. (2015b), Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models, Geosci. Model Dev., 8, 3021-3031, doi:10.5194/gmd-8-3021-2015.Alley, W.M. and LF Konikow (2015) Bringing GRACE down to earth. Groundwater 53 (6): 826–829
1097 1098 1099	Anyah, R. O., Weaver, C. P., Miguez-Macho, G., Fan, Y., & Robock, A. (2008). Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability. <i>J. Geophys. Res., 113</i> . Retrieved from http://dx.doi.org/10.1029/2007JD009087
1100 1101 1102	Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., McMillan, H., Kiang, J. E., et al. (2015). Accelerating advances in continental domain hydrologic modeling. <i>Water Resources Research, 51</i> (12), 10078–10091. https://doi.org/10.1002/2015WR017498
1103 1104	Aspinall, W. (2010). A route to more tractable expert advice. <i>Nature, 463,</i> 294–295. https://doi.org/10.1038/463294a
1105 1106	ASTM (2016), Standard Guide for Conducting a Sensitivity Analysis for a Groundwater Flow Model Application, ASTM International D5611-94, West Conshohocken, PA, 2016, www.astm.org
1107 1108	Bamber, J.L. and Aspinall, W.P. (2013). An expert judgement assessment of future sea level rise from the ice sheets. Nature Climate Change. 3(4), 424-427.
1109 1110 1111	Barnett, B., Townley, L.R., Post, V.E.A., Evans, R.E., Hunt, R.J., Peeters, L., Richardson, S., Werner, A.D., Knapton, A., Boronkay, A. (2012). Australian groundwater modelling guidelines, National Water Commission, Canberra, 203 pages
1112 1113	Barthel, R. (2014). HESS Opinions "Integration of groundwater and surface water research: an interdisciplinary problem?" <i>Hydrology and Earth System Sciences</i> , 18(7), 2615–2628.
1114	Beck, H. et al (2013). Global patterns in base flow index and recession based on streamflow observations from

1115 3394 catchments. Water Resources Research.

- 1116Befus, K., Jasechko, S., Luijendijk, E., Gleeson, T., Cardenas, M.B. (2017) The rapid yet uneven turnover of Earth's1117groundwater. (2017) Geophysical Research Letters 11: 5511-5520 doi: 10.1002/2017GL073322
- 1118 Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A.,
- 1119 Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., & Harding,
- R. J. (2011). The Joint UK Land Environment Simulator (JULES), model description Part 1: Energy and water fluxes,
 Geosci. Model Dev., 4, 677-699. https://doi.org/10.5194/gmd-4-677-2011
- 1122 Beven, K. (2000). Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth 1123 System Sciences, 4(2), 203–213.
- 1124 Beven, K. (2005). On the concept of model structural error. Water Science & Technology, 52(6), 167–175.
- 1125Beven, K. (2016). Facets of uncertainty: epistemic uncertainty, nonstationarity, likelihood, hypothesis testing, and1126communication. Hydrological Sciences Journal, 61(9), 1652-1665, DOI: 10.1080/02626667.2015.1031761
- 1127Beven, K. (2019) How to make advances in hydrological modelling. In: Hydrology Research. 50, 6, p. 1481-1494. 141128p.
- 1129Beven, K. (2020). Deep learning, hydrological processes and the uniqueness of place. Hydrological Processes,113034(16), 3608–3613. https://doi.org/10.1002/hyp.13805
- Beven, K. J., and H. L. Cloke (2012), Comment on "Hyperresolution global land surface modeling: Meeting a grand
 challenge for monitoring Earth's terrestrial water" by Eric F. Wood et al., Water Resour.Res., 48, W01801,
 doi:10.1029/2011WR010982.
- Beven, K.J., Aspinall, W.P., Bates, P.D., Borgomeo, E., Goda, K., Hall, J.W., Page, T., Phillips, J.C., Simpson, M., Smith,
 P.J., Wagener, T. and Watson, M. 2018. Epistemic uncertainties and natural hazard risk assessment Part 2: What
 should constitute good practice? Natural Hazards and Earth System Sciences, 18, 10.5194/nhess-18-1-2018
- 1137Bierkens, M. F. P. (2015). Global hydrology 2015: State, trends, and directions. Water Resources Research, 51(7),11384923-4947. https://doi.org/10.1002/2015WR017173
- Bierkens, M. F.P. & Wada, Y. (2019). Non-renewable groundwater use and groundwater depletion: A review.
 Environmental Research Letters, 14(6), 063002
- 1141 Boone, A. A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S., Gusev, Y., Haddeland, I., Koster, R., Lohmann,
- 1142 D., Mahanama, S., Mitchell, K., Nasonova, O., Niu, G. Y., Pitman, A., Polcher, J., Shmakin, A. B., Tanaka, K., Van Den
- 1143 Hurk, B., Vérant, S., Verseghy, D., Viterbo, P. and Yang, Z. L.: The Rhône-aggregation land surface scheme
- 1144 intercomparison project: An overview, J. Clim., 17(1), 187–208, doi:10.1175/1520-
- 1145 0442(2004)017<0187:TRLSSI>2.0.CO;2, 2004.
- 1146 Borgonovo, E. Lu, X. Plischke, E. Rakovec, O. and Hill, M. C. (2017). Making the most out of a hydrological model
- 1147 data set: Sensitivity analyses to open the model black-box. Water Resources Research.
- 1148 DOI:10.1002/2017WR020767
- 1149 Bresciani, E., P. Goderniaux, and O. Batelaan (2016), Hydrogeological controls of water table-land surface
- 1150 interactions, Geophysical Research Letters, 43, 9653-9661.

- 1151 Bresciani, E., Cranswick, R. H., Banks, E. W., Batlle-Aguilar, J., et al. (2018). Using hydraulic head, chloride and
- electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers.
 Hydrology and Earth System Sciences, 22(2), 1629–1648.
- Brunner, P., J. Doherty, and C. T. Simmons (2012), Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models, *Water Resources Research, 48*.
- Burgess, W. G., Shamsudduha, M., Taylor, R. G., Zahid, A., Ahmed, K. M., Mukherjee, A., et al. (2017). Terrestrial
 water load and groundwater fluctuation in the Bengal Basin. *Scientific Reports*, 7(1), 3872.
- Caceres, D., Marzeion, B., Malles, J.H., Gutknecht, B., Müller Schmied, H., Döll, P. (2020): Assessing global water
 mass transfers from continents to oceans over the period 1948–2016. Hydrol. Earth Syst. Sci. Discuss.
- 1160 doi:10.5194/hess-2019-664
- 1161Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., et al. (2015). Virtual laboratories: new1162opportunities for collaborative water science. *Hydrology and Earth System Sciences*, 19(4), 2101–2117.
- 1163 Clark, M. P., A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt, H. V. Gupta, T. Wagener, and L. E. Hay (2008)
- Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between
 hydrological models, Water Resour. Res., 44, W00B02, doi:10.1029/2007WR006735.
- 1166Clark, M. P., et al. (2015), A unified approach for process-based hydrologic modeling: 1. Modeling concept,Water1167Resources Research,51, 2498–2514,doi:10.1002/2015WR017198
- 1168Condon, L. E., & Maxwell, R. M. (2019). Simulating the sensitivity of evapotranspiration and streamflow to large-1169scale groundwater depletion. Science Advances, 5(6), eaav4574. https://doi.org/10.1126/sciadv.aav4574
- Condon, LE et al Evapotranspiration depletes groundwater under warming over the contiguous United States
 Nature Comm, 2020, <u>https://doi.org/10.1038/s41467-020-14688-0</u>
- Condon, L. E., Markovich, K. H., Kelleher, C. A., McDonnell, J. J., Ferguson, G., & McIntosh, J. C. (2020). Where Is the
 Bottom of a Watershed? Water Resources Research, 56(3). <u>https://doi.org/10.1029/2019wr026010</u>
- 1174 Condon, L.E., Stefan Kollet, Marc F.P. Bierkens, Reed M. Maxwell, Mary C. Hill, Anne Verhoef, Anne F. Van Loon,
- 1175 Graham E. Fogg, Mauro Sulis , Harrie-Jan Hendricks Fransen ; Corinna Abesser. Global groundwater modeling and 1176 monitoring?: Opportunities and challenges (in review at WRR)
- 1177 Cooke, R. (1991). *Experts in uncertainty: opinion and subjective probability in science*. Oxford University Press on 1178 Demand.
- 1179 Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A., Hartmann, J., & Lehner, B. (2019). Global
- 1180 patterns and dynamics of climate–groundwater interactions. *Nature Climate Change*, 9, 137–141
- 1181 https://doi.org/10.1038/s41558-018-0386-4
- Cuthbert, M. O., et al. (2019) Observed controls on resilience of groundwater to climate variability in sub-Saharan
 Africa. Nature 572: 230–234

- 1184Dalin, C., Wada, Y., Kastner, T., & Puma, M. J. (2017). Groundwater depletion embedded in international food1185trade. Nature, 543(7647), 700–704. https://doi.org/10.1038/nature21403
- 1186 DeAngelis, A., Dominguez, F., Fan, Y., Robock, A., Kustu, M. D., & Robinson, D. (2010). Evidence of enhanced
- precipitation due to irrigation over the Great Plains of the United States. Journal of Geophysical Research:Atmospheres, 115(D15).
- Dirmeyer, P. A.: A History and Review of the Global Soil Wetness Project (GSWP), J. Hydrometeorol., 12(5),
 110404091221083, doi:10.1175/jhm-d-10-05010, 2011
- 1191 Doherty, J., and S. Christensen (2011), Use of paired simple and complex models to reduce predictive bias and 1192 quantify uncertainty, *Water Resources Research*, *47*(12),
- Döll, P., Fiedler, K. (2008): Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci., 12, 863-885,
 doi: 10.5194/hess-12-863-2008
- 1195Döll, P., Douville, H., Güntner, A., Müller Schmied, H., Wada, Y. (2016): Modelling freshwater resources at the1196global scale: Challenges and prospects. Surveys in Geophysics, 37(2), 195-221. doi: 10.1007/s10712-015-9343-1
- 1197 Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., & Eicker, A. (2014a). Global-scale assessment of
- groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information
 from well observations and GRACE satellites. *Water Resources Research*, *50*(7), 5698–5720.
- 1200 https://doi.org/10.1002/2014WR015595
- Döll, P., Fritsche, M., Eicker, A., Müller Schmied, H. (2014b): Seasonal water storage variations as impacted by
 water abstractions: Comparing the output of a global hydrological model with GRACE and GPS observations.
 Surveys in Geophysics, 35(6), 1311-1331, doi: 10.1007/s10712-014-9282-2.
- Döll, P., Hoffmann-Dobrev, H., Portmann, F.T., Siebert, S., Eicker, A., Rodell, M., Strassberg, G., Scanlon, B. (2012):
 Impact of water withdrawals from groundwater and surface water on continental water storage variations. J.
 Geodyn. 59-60, 143-156, doi:10.1016/j.jog.2011.05.001.
- Duan Q., Schaake, J., Andreassian, V., Franks, S., Gupta, H.V., Gusev, Y.M., Habets, F., Hall, A., Hay, L., Hogue, T.S.,
 Huang, M., Leavesley, G., Liang, X., Nasonova, O.N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T. and Wood,
- Huang, M., Leavesley, G., Liang, X., Nasonova, O.N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T. and Wood,
 E.F. (2006). Model Parameter Estimation Experiment (MOPEX): Overview and Summary of the Second and Third
- 1210 Workshop Results. Journal of Hydrology, 320(1-2), 3-17.
- 1211 Enemark, T., Peeters, L. J. M., Mallants, D., & Batelaan, O. (2019). Hydrogeological conceptual model building and 1212 testing: A review. *Journal of Hydrology*, *569*, 310–329. https://doi.org/10.1016/j.jhydrol.2018.12.007
- Erban L E, Gorelick S M and Zebker H A 2014 Groundwater extraction, land subsidence, and sea-level rise in the
 Mekong Delta, Vietnam Environ. Res. Lett. 9 084010
- 1215Famiglietti, J. S., & E. F. Wood (1994). Multiscale modeling of spatially variable water and energy balance1216processes, Water Resour. Res., 30(11), 3061–3078, https://doi.org/10.1029/94WR01498
- Fan, Y. et al., (2019) Hillslope hydrology in global change research and Earth System modeling. *Water Resources Research*, doi.org/10.1029/2018WR023903

- Fan, Y. (2015). Groundwater in the Earth's critical zone: Relevance to large-scale patterns and processes. Water
 Resources Research, *51*(5), 3052–3069. https://doi.org/10.1002/2015WR017037
- Fan, Y., & Miguez-Macho, G. (2011). A simple hydrologic framework for simulating wetlands in climate and earth system models. *Climate Dynamics*, *37*(1–2), 253–278.
- 1223Fan, Y., Li, H., & Miguez-Macho, G. (2013). Global patterns of groundwater table depth. Science, 339(6122), 940–1224943.
- 1225 Fenicia, F., D. Kavetski, and H. H. G. Savenije (2011), Elements of a flexible approach for conceptual hydrological
- 1226 modeling: 1. Motivation and theoretical development, Water Resources Research, 47(11), W11510,
- 1227 10.1029/2010wr010174.
- Forrester, M.M. and Maxwell, R.M. Impact of lateral groundwater flow and subsurface lower boundary conditions
 on atmospheric boundary layer development over complex terrain. Journal of Hydrometeorology,
 doi:10.1176/JUM.D.10.0020.1.2020
- 1230 doi:10.1175/JHM-D-19-0029.1, 2020.
- 1231 Forrester, M.M., Maxwell, R.M., Bearup, L.A., and Gochis, D.J. Forest Disturbance Feedbacks from Bedrock to
- Atmosphere Using Coupled Hydro-Meteorological Simulations Over the Rocky Mountain Headwaters. Journal of
 Geophysical Research-Atmospheres, 123:9026-9046, doi:10.1029/2018JD028380 2018.
- Freeze, R. A., & Witherspoon, P. A. (1966). Theoretical analysis of regional groundwater flow, 1. Analytical and
 numerical solutions to a mathematical model. *Water Resources Research*, 2, 641–656.
- Foster, S., Chilton, J., Nijsten, G.-J., & Richts, A. (2013). Groundwater a global focus on the 'local resource.'
 Current Opinion in Environmental Sustainability, 5(6), 685–695. doi.org/10.1016/j.cosust.2013.10.010
- Garven, G. (1995). Continental-scale groundwater flow and geologic processes. *Annual Review of Earth and Planetary Sciences*, 23, 89–117.
- 1240 Gascoin, S., Ducharne, A., Ribstein, P., Carli, M., Habets, F. (2009). Adaptation of a catchment-based land surface
- model to the hydrogeological setting of the Somme River basin (France). *Journal of Hydrology*, 368(1-4), 105-116.
 https://doi.org/10.1016/j.jhydrol.2009.01.039
- Genereux, D. (1998). Quantifying uncertainty in tracer-based hydrograph separations. *Water Resources Research*,
 34(4), 915–919.
- Gilbert, J.M., Maxwell, R.M. and Gochis, D.J. Effects of water table configuration on the planetary boundary layer
 over the San Joaquin River watershed, California. Journal of Hydrometeorology, 18:1471-1488, doi:10.1175/JHM D-16-0134.1, 2017.
- 1248 Gleeson, T. et al. (2020) HESS Opinions: Improving the evaluation of groundwater representation in continental to 1249 global scale models. <u>https://hess.copernicus.org/preprints/hess-2020-378/</u>
- 1250 Gleeson, T., & Manning, A. H. (2008). Regional groundwater flow in mountainous terrain: Three-dimensional
- 1251 simulations of topographic and hydrogeologic controls. Water Resources Research, 44. Retrieved from
- 1252 http://dx.doi.org/10.1029/2008WR006848

- 1253 Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., & Cardenas, M. B. (2016). The global volume and distribution 1254 of modern groundwater. *Nature Geosci*, *9*(2), 161–167.
- de Graaf, I. E. M., van Beek, L. P. H., Wada, Y., & Bierkens, M. F. P. (2014). Dynamic attribution of global water
- demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges.
 Advances in Water Resources, 64(0), 21–33. https://doi.org/10.1016/j.advwatres.2013.12.002
- de Graaf, I. E. M., Sutanudjaja, E. H., Van Beek, L. P. H., & Bierkens, M. F. P. (2015). A high-resolution global-scale
 groundwater model. Hydrology and Earth System Sciences, 19(2), 823–837.
- 1260 de Graaf, I. E. M., van Beek, L. P. H., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., & Bierkens, M. F. P.
- 1261 (2017). A global-scale two-layer transient groundwater model: Development and application to groundwater
- 1262 depletion. Advances in Water Resources, 102, 53–67. https://doi.org/10.1016/j.advwatres.2017.01.011
- 1263 de Graaf, I. E. M., Gleeson, T., Beek, L. P. H. (Rens) van, Sutanudjaja, E. H., & Bierkens, M. F. P. (2019).
- 1264 Environmental flow limits to global groundwater pumping. Nature, 574(7776), 90–94.
- 1265 https://doi.org/10.1038/s41586-019-1594-4
- Gnann, S. J., Woods, R. A., & Howden, N. J. (2019). Is there a baseflow Budyko curve? *Water Resources Research*,
 55(4), 2838–2855.
- Goderniaux, P., P. Davy, E. Bresciani, J.-R. de Dreuzy, and T. Le Borgne (2013), Partitioning a regional groundwater
 flow system into shallow local and deep regional flow compartments, Water Resources Research, 49(4), 2274 2286.
- Gosling, S. N., Zaherpour, J., Mount, N. J., Hattermann, F. F., Dankers, R., Arheimer, B., et al. (2017). A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C. *Climatic Change*, 141(3), 577–595. https://doi.org/10.1007/s10584-016-1773-3
- Guimberteau, M., Ducharne, A., Ciais, P., Boisier, J. P., Peng, S., De Weirdt, M., & Verbeeck, H. (2014). Testing
 conceptual and physically based soil hydrology schemes against observations for the Amazon Basin, Geosci. Model
 Dev., 7, 1115-1136. https://doi.org/10.5194/gmd-7-1115-2014
- 1277 Habets, F., Boé, J., Déqué, M., Ducharne, A., Gascoin, S., Hachour, A., Martin, E., Pagé, C., Sauquet, E., Terray, L.,
- 1278 Thiéry, D., Oudin, L. & Viennot, P. (2013). Impact of climate change on surface water and ground water of two
- basins in Northern France: analysis of the uncertainties associated with climate and hydrological models, emission
 scenarios and downscaling methods. *Climatic Change*, 121, 771-785. https://doi.org/10.1007/s10584-013-0934-x
- Hartmann, A., Gleeson, T., Rosolem, R., Pianosi, F., Wada, Y., & Wagener, T. (2015). A large-scale simulation model
 to assess karstic groundwater recharge over Europe and the Mediterranean. *Geosci. Model Dev.*, 8(6), 1729–1746.
 https://doi.org/10.5194/gmd-8-1729-2015
- 1284 Hartmann, Andreas, Gleeson, T., Wada, Y., & Wagener, T. (2017). Enhanced groundwater recharge rates and
- 1285 altered recharge sensitivity to climate variability through subsurface heterogeneity. *Proceedings of the National*
- 1286 Academy of Sciences, 114(11), 2842–2847. https://doi.org/10.1073/pnas.1614941114

- Hattermann, F. F., Krysanova, V., Gosling, S. N., Dankers, R., Daggupati, P., Donnelly, C., et al. (2017). Cross-scale
 intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large
 river basins. *Climatic Change*, 141(3), 561–576. https://doi.org/10.1007/s10584-016-1829-4
- 1290 Hay, L., Norton, P., Viger, R., Markstrom, S., Regan, R. S., & Vanderhoof, M. (2018). Modelling surface-water
- depression storage in a Prairie Pothole Region. Hydrological Processes, 32(4), 462–479.

```
1292 <u>https://doi.org/10.1002/hyp.11416</u>
```

- Henderson-Sellers, A., Z. L. Yang, and R. E. Dickinson: The Project for Intercomparison of Land-Surface Schemes
 (PILPS). Bull. Amer. Meteor. Soc., 74, 1335–1349, 1993
- Herbert, C., & Döll, P. (2019). Global assessment of current and future groundwater stress with a focus on
 transboundary aquifers. Water Resources Research, 55, 4760–4784.<u>https://doi.org/10.1029/2018WR023321</u>
- Heudorfer, B., Haaf, E., Stahl, K., & Barthel, R. (2019). Index-based characterization and quantification of
 groundwater dynamics. Water Resources Research, 55, 5575–5592.<u>https://doi.org/10.1029/2018WR024418</u>
- Hill, M. C. (2006). The practical use of simplicity in developing ground water models. *Ground Water*, 44(6), 775–
 781. https://doi.org/10.1111/j.1745-6584.2006.00227.x
- 1301 Hill, M. C., & Tiedeman, C. R. (2007). Effective groundwater model calibration. Wiley.
- Hill, M. C., Kavetski, D. Clark, M. Ye, M. Arabi, M. Lu, D. Foglia, L. & Mehl, S. (2016). Practical use of computationally
 frugal model analysis methods. Groundwater. DOI:10.1111/gwat.12330
- 1304
- 1305 Hiscock, K. M., & Bense, V. F. (2014). *Hydrogeology—principles and practice* (2nd edition). Blackwell.
- Huang, S., Kumar, R., Flörke, M., Yang, T., Hundecha, Y., Kraft, P., et al. (2017). Evaluation of an ensemble of
 regional hydrological models in 12 large-scale river basins worldwide. *Climatic Change*, *141*(3), 381–397.
 https://doi.org/10.1007/s10584-016-1841-8
- Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J., Savenije, H.H.G. and Gascuel-Odoux, C.
 (2014). Process Consistency in Models: the Importance of System Signatures, Expert Knowledge and Process
- 1311 Complexity. Water Resources Research 50:7445-7469.
- 1312 Hunt, R. J., Walker, J. F., Selbig, W. R., Westenbroek, S. M., & Regan, R. S. (2013). Simulation of climate-change
- 1313 effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake
- 1314 Watershed, Wisconsin. USGS Scientific Investigations Report No. 2013–5159. Reston, VA: U.S. Geological Survey.
- Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., & Arheimer, B. (2016). Most computational hydrology is not
 reproducible, so is it really science? *Water Resources Research*, *52*(10), 7548–7555.
- 1317 https://doi.org/10.1002/2016WR019285
- 1318 Jasechko, S., Birks, S.J., Gleeson, T., Wada, Y., Sharp, Z.D., Fawcett, P.J., McDonnell, J.J., Welker, J.M. (2014)
- Pronounced seasonality in the global groundwater recharge. Water Resources Research. 50, 8845–8867 doi:
 10.1002/2014WR015809

1321Jasechko, S., Perrone, D., Befus, K. M., Bayani Cardenas, M., Ferguson, G., Gleeson, T., et al. (2017). Global aquifers1322dominated by fossil groundwaters but wells vulnerable to modern contamination. Nature Geoscience, 10(6), 425–

- 1323 429. https://doi.org/10.1038/ngeo2943
- 1824 Jung, M., et al. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible
- 1325 heatderived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116,
- 1326 G00J07,doi:10.1029/2010JG001566.
- 1327Keune, J., Sulis, M., Kollet, S., Siebert, S., & Wada, Y. (n.d.). Human Water Use Impacts on the Strength of the1328Continental Sink for Atmospheric Water. *Geophysical Research Letters*, 45(9), 4068–4076.
- 1329 https://doi.org/10.1029/2018GL077621
- Keune, J., F. Gasper, K. Goergen, A. Hense, P. Shrestha, M. Sulis, and S. Kollet, 2016, Studying the influence of
 groundwater representations on land surface-atmosphere feedbacks during the European heat wave in 2003, J.
- 1332 Geophys. Res. Atmos., 121, 13, 301–13,325, doi:10.1002/2016JD025426. doi:10.1002/2016JD025426.
- Knowling, M. J., and A. D. Werner (2016), Estimability of recharge through groundwater model calibration: Insights
 from a field-scale steady-state example, *Journal of Hydrology*, *540*, 973-987.
- Koirala et al. (2013) Global-scale land surface hydrologic modeling with the representation of water table
 dynamics, JGR Atmospheres <u>https://doi.org/10.1002/2013JD020398</u>
- Koirala, S., Kim, H., Hirabayashi, Y., Kanae, S. and Oki, T. (2019) Sensitivity of Global Hydrological Simulations to
 Groundwater Capillary Flux Parameterizations, Water Resour. Res., 55(1), 402–425, doi:10.1029/2018WR023434,
- Kollet, S. J., & Maxwell, R. M. (2008). Capturing the influence of groundwater dynamics on land surface processes
 using an integrated, distributed watershed model. *Water Resources Research*, 44(2).
- Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi, G., et al. (2017). The integrated hydrologic
 model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and
 feedbacks. *Water Resources Research*, 53(1), 867–890.
- Konikow, L. F. (2011), Contribution of global groundwater depletion since 1900 to sea-level rise, Geophys. Res.
 Lett., 38, L17401, doi: 10.1029/2011GL048604.
- 1346 Koster, R.D., Suarez, M.J., Ducharne, A., Praveen, K., & Stieglitz, M. (2000). A catchment-based approach to
- modeling land surface processes in a GCM Part 1: Model structure. *Journal of Geophysical Research, 105 (D20),*24809-24822.
- Konikow, L.F. (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysical
 Research Letters <u>https://doi.org/10.1029/2011GL048604</u>
- Krakauer, N. Y., Li, H., & Fan, Y. (2014). Groundwater flow across spatial scales: importance for climate modeling.
 Environmental Research Letters, 9(3), 034003.
- 1353 Kresic, N. (2009). Groundwater resources: sustainability, management and restoration. McGraw-Hill.

Formatted: English (Canada)

Krueger, T., T. Page, K. Hubacek, L. Smith, and K. Hiscock (2012), The role of expert opinion in environmental
 modelling, *Environmental Modelling & Software*, *36*, 4-18.

- Kustu, M. D., Fan, Y., & Rodell, M. (2011). Possible link between irrigation in the US High Plains and increased
 summer streamflow in the Midwest. Water Resources Research, 47(3).
- Lamb, R., Aspinall, W., Odbert, H. and Wagener, T. (2017). Vulnerability of bridges to scour: Insights from an
 international expert elicitation workshop. Natural Hazards and Earth System Sciences. 17(8), 1393-1409.
- Leaf, A. T., Fienen, M. N., Hunt, R. J., & Buchwald, C. A. (2015). Groundwater/surface-water interactions in the Bad
 River Watershed, Wisconsin. USGS Numbered Series No. 2015–5162. Reston, VA: U.S. Geological Survey.
- Leavesley, G. H., S. L. Markstrom, P. J. Restrepo, and R. J. Viger (2002), A modular approach for addressing model
 design, scale, and parameter estimation issues in distributed hydrological modeling, Hydrol. Processes, 16, 173–
- 1365187, doi:10.1002/hyp.344.
- Lemieux, J. M., Sudicky, E. A., Peltier, W. R., & Tarasov, L. (2008). Dynamics of groundwater recharge and seepage
 over the Canadian landscape during the Wisconsinian glaciation. *J. Geophys. Res.*, *113*. Retrieved from
 http://dx.doi.org/10.1029/2007JF000838
- Lenton, T.M. et al. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of
 Sciences 105 (6), 1786-1793.
- Liang, X., Z. Xie, and M. Huang (2003). A new parameterization for surface and groundwater interactions and its
 impact on water budgets with the variable infiltration capacity (VIC) land surface model, *J. Geophys. Res.*, 108,
 8613, D16. https://doi.org/10.1029/2002JD003090
- Lo, M.-H., Famiglietti, J. S., Reager, J. T., Rodell, M., Swenson, S., & Wu, W.-Y. (2016). GRACE-Based Estimates of
 Global Groundwater Depletion. In Q. Tang & T. Oki (Eds.), *Terrestrial Water Cycle and Climate Change* (pp. 135–
 146). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118971772.ch7
- Lo, M.-H., Yeh, P. J.-F., & Famiglietti, J. S. (2008). Constraining water table depth simulations in a land surface
 model using estimated baseflow. *Advances in Water Resources*, *31*(12), 1552–1564.
- Lo, M. and J. S. Famiglietti, (2010) Effect of water table dynamics on land surface hydrologic memory, J. Geophys.
 Res., 115, D22118, doi:10.1029/2010JD014191
- Lo, M.-H., J. S. Famiglietti, P. J.-F. Yeh, and T. H. Syed (2010), Improving Parameter Estimation and Water Table
 Depth Simulation in a Land Surface Model Using GRACE Water Storage and Estimated Baseflow Data, Water
 Resour. Res., 46, W05517, doi:10.1029/2009WR007855.
- Loheide, S. P., Butler Jr, J. J., & Gorelick, S. M. (2005). Estimation of groundwater consumption by phreatophytes
 using diurnal water table fluctuations: A saturated-unsaturated flow assessment. *Water Resources Research*, *41*(7).
- Luijendijk, E., Gleeson, T. and Moosdorf, N. (2020) Fresh groundwater discharge insignificant for the world's oceans but important for coastal ecosystems Nature Communications, 11, 1260 (2020). doi: 10.1038/s41467-020-15064-8

1389 1390 1β91	Maples, S., Foglia, L., Fogg, G.E. and Maxwell, R.M. (2020). Sensitivity of Hydrologic and Geologic Parameters on Recharge Processes in a Highly-Heterogeneous, Semi-Confined Aquifer System. Hydrology and Earth Systems Sciences, in press.[Hydrol. Earth Syst. Sci., 24, 2437–2456, https://doi.org/10.5194/hess-24-2437-2020,	
1392	Margat, J., & Van der Gun, J. (2013). Groundwater around the world: a geographic synopsis. London: CRC Press	Formatted: Spanish (Spain)
 1393 1394	Markovich, KH, AH Manning, LE Condon, JC McIntosh (2019). Mountain-block Recharge: A Review of Current Understanding. Water Resources Research, 55, <u>https://doi.org/10.1029/2019WR025676</u>	
1395 1396 1397	Maxwell, R. M., Condon, L. E., and Kollet, S. J. (2015) A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015.	
1398 1399 1400	Maxwell, R.M., Chow, F.K. and Kollet, S.J., The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Advances in Water Resources 30(12), doi:10.1016/j.advwatres.2007.05.018, 2007.	
1401 1402	Maxwell, R. M., & Condon, L. E. (2016). Connections between groundwater flow and transpiration partitioning. <i>Science</i> , 353(6297), 377–380.	
1403 1404 1405	Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., & Forrester, M. M. (2016). The imprint of climate and geology on the residence times of groundwater. <i>Geophysical Research Letters, 43</i> (2), 701–708. https://doi.org/10.1002/2015GL066916	
1406 1407	McMilan, H. (2020). Linking hydrologic signatures to hydrologic processes: A review. Hydrological Processes. 34, 1393– 1409.	
1408 1409 1410	Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H., Blasch, K. W., et al. (2016). Implications of projected climate change for groundwater recharge in the western United States. <i>Journal of Hydrology</i> , <i>534</i> , 124–138.	
1411 1412 1413	Melsen, L. A., A. J. Teuling, P. J. J. F. Torfs, R. Uijlenhoet, N. Mizukami, and M. P. Clark, 2016a: HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models. Hydrology and Earth System Sciences, doi:10.5194/hess-20-1069-2016.	
1414 1415 1416	Meriano, M., & Eyles, N. (2003). Groundwater flow through Pleistocene glacial deposits in the rapidly urbanizing Rouge River-Highland Creek watershed, City of Scarborough, southern Ontario, Canada. Hydrogeology Journal, 11(2), 288–303. https://doi.org/10.1007/s10040-002-0226-4	
1417 1418 1419	Milly, P.C., S.L. Malyshev, E. Shevliakova, K.A. Dunne, K.L. Findell, T. Gleeson, Z. Liang, P. Phillipps, R.J. Stouffer, & S. Swenson (2014). An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth-System Studies. <i>J.</i> <i>Hydrometeor.</i> , 15, 1739–1761. https://doi.org/10.1175/JHM-D-13-0162.1	
1420 1421	Minderhoud P S J, Erkens G, Pham Van H, Bui Tran V, Erban L E, Kooi, H and Stouthamer E (2017) Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam Environ. Res. Lett. 12 064006	

- 1422 Minderhoud, P.S.J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. (2019). Mekong delta much lower 1423 than previously assumed in sea-level rise impact assessments. Nature Communications 10, 3847.
- Minderhoud, P.S.J., Middelkoop, H., Erkens, G. and Stouthamer, E. Groundwater (2020). extraction may drown
 mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century.
 Environ. Res. Commun. 2, 011005.
- Miralles, D. G., Jimenez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., et al. (2016). The WACMOS-ET project Part 2: Evaluation of global terrestrial evaporation data sets. *Hydrology and Earth System Sciences*, *20*(2), 823-842.
 doi:10.5194/hess-20-823-2016.
- 1430 Moeck, C. Nicolas Grech-Cumbo, Joel Podgorski, Anja Bretzler, Jason J. Gurdak, Michael Berg, Mario Schirmer
- (2020) A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and
 relationships. Science of The Total Environment <u>https://doi.org/10.1016/j.scitotenv.2020.137042</u>
- Mohan, C., Wei, Y., & Saft, M. (2018). Predicting groundwater recharge for varying land cover and climate
 conditions–a global meta-study. *Hydrology and Earth System Sciences*, 22(5), 2689–2703.
- 1435 Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C.,
- Toth, E., Grimaldi, S., et al. (2013). "Panta Rhei—Everything Flows": Change in hydrology and society—The IAHS
 Scientific Decade 2013–2022. Hydrological Sciences Journal 58, 1256–1275.
- Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. *Annual Review of Marine Science*, 2, 59–88.
- Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. *Technometrics*, 33(2),
 161–174.
- Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F.T., Flörke, M., Döll, P. (2014): Sensitivity of
 simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water
 use and calibration. Hydrol. Earth Syst. Sci., 18, 3511-3538, doi: 10.5194/hess-18-3511-2014.
- 1445Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, and L. E. Gulden (2005), A simple TOPMODEL-based runoff parameterization1446(SIMTOP) for use in global climate models. J. Geophys. Res., 110, D21106, doi:10.1029/2005JD006111
- 1447 Niu GY, Yang ZL, Dickinson RE, Gulden LE, Su H (2007) Development of a simple groundwater model for use in
- 1448 climate models and evaluation with Gravity Recovery and Climate Experiment data. J Geophys Res 112:D07103.
 1449 doi:10.1029/2006JD007522
- Ngo-Duc, T., Laval, K. Ramillien, G., Polcher, J. & Cazenave, A. (2007). Validation of the land water storage
 simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and
 Climate Experiment (GRACE) data. *Water Resour. Res.*, 43, W04427. https://doi.org/10.1029/2006WR004941
- O'Hagan, A. (2019). Expert Knowledge Elicitation: Subjective but Scientific. The American Statistician, 73,
 doi.org/10.1080/00031305.2018.1518265
- 1455

1456 Olarinoye, T., et al. (2020): Global karst springs hydrograph dataset for research and management of the world's 1457 fastest-flowing groundwater, Sci. Data, 7(1), doi:10.1038/s41597-019-0346-5. 1458 1459 Opie, S., Taylor, R. G., Brierley, C. M., Shamsudduha, M., & Cuthbert, M. O. (2020). Climate-groundwater dynamics 1460 inferred from GRACE and the role of hydraulic memory. Earth System Dynamics, 11(3), 775-791. 1461 https://doi.org/10.5194/esd-11-775-2020 1462 Ortega-Guerrero A, Rudolph D L and Cherry J A 1999 Analysis of long-term land subsidence near Mexico City: field 1463 investigations and predictive modeling Water Resour. Res. 353327-41 1464 Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., & Wood, F. E. (2012). Multisource estimation of long-1465 term terrestrial water budget for major global river basins. J. Climate, 25, 3191-3206. 1466 https://doi.org/10.1175/JCLI-D-11-00300.1 1467 1468 Pappenberger, F., Ghelli, A., Buizza, R. and Bodis, K. (2009). The Skill of Probabilistic Precipitation Forecasts under 1469 Observational Uncertainties within the Generalized Likelihood Uncertainty Estimation Framework for Hydrological 1470 Applications. Journal of Hydrometeorology, DOI: 10.1175/2008JHM956.1 1471 Pellet, V., Aires, F., Munier, S., Fernández Prieto, D., Jordá, G., Dorigo, W. A., Polcher, J., & Brocca, L. (2019). 1472 Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle – application to 1473 the Mediterranean region. Hydrol. Earth Syst. Sci., 23, 465-491. https://doi.org/10.5194/hess-23-465-2019 1474 Perrone, D. and Jasechko (2019). Deeper well drilling an unsustainable stopgap to groundwater depletion. Nature 1475 Sustain. 2, 773-782. 1476 Person, M. A., Raffensperger, J. P., Ge, S., & Garven, G. (1996). Basin-scale hydrogeologic modeling. Reviews of 1477 Geophysics, 34(1), 61-87. 1478 Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis 1479 of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214–232. 1480 1481 Post, V. E., & von Asmuth, J. R. (2013). Hydraulic head measurements-new technologies, classic pitfalls. 1482 Hydrogeology Journal, 21(4), 737–750. 1483 Qiu J. Q., Zipper, S.C., Motew M., Booth, E.G., Kucharik, C.J., & Loheide, S.P. (2019). Nonlinear groundwater 1484 influence on biophysical indicators of ecosystem services. Nature Sustainability, in pressvolume 2, pages 475-483, 1485 doi: 10.1038/s41893-019-0278-2 1486

1487Rajabi, M. M., and B. Ataie-Ashtiani (2016), Efficient fuzzy Bayesian inference algorithms for incorporating expert1488knowledge in parameter estimation, *Journal of Hydrology, 536*, 255-272.

1490	Rajabi, M. M., B. Ataie-Ashtiani, and C. T. Simmons (2018), Model-data interaction in groundwater studies: Review
1491	of methods, applications and future directions, Journal of Hydrology, 567, 457-477.

- 1492
- Rashid, M., Chien, R.Y., Ducharne, A., Kim, H., Yeh, P.J.F., Peugeot, C., Boone, A., He, X., Séguis, L., Yabu, Y., Boukari,
 M. & Lo, M.H. (2019). Evaluation of groundwater simulations in Benin from the ALMIP2 project. *J. Hydromet.*,
 accepted.
- 1496Refsgaard, J.C., van der Sluijs, J.P., Højberg, A.L., and Vanrolleghem, P.A. (2007). Uncertainty in the environmental1497modelling process–a framework and guidance. Environmental Modelling & Software, 22(11), 1543-1556
- 1498Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning1499and process understanding for data-driven Earth system science. Nature, 566(7743), 195–204.
- Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., & Döll, P. (2019a). Challenges in developing a global
 gradient-based groundwater model. (G³M v1.0) for the integration into a global hydrological model. Geosci. Model
 Dev., 12, 2401-2418. doi: 10.5194/gmd-12-2401-2019
- 1503 Reinecke, R., Foglia, L., Mehl, S., Herman, J., Wachholz, A., Trautmann, T., and Döll, P. (2019b) Spatially distributed 1504 sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge and
- 1505 surface water body parameterization, Hydrology and Earth System Sciences, (23) 4561–4582. 2019.
- 1506Reinecke, R., Wachholz, A., Mehl, S., Foglia, L., Niemann, C., Döll, P. (2020). Importance of spatial resolution in1507global groundwater modeling. Groundwater. doi: 10.1111/gwat.12996
- Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India.
 Nature, 460(7258), 999–1002.
- Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M.-H. (2018).
 Emerging trends in global freshwater availability. *Nature*, 557(7707), 651.
- 1512 Rosolem, R., Hoar, T., Arellano, A., Anderson, J. L., Shuttleworth, W. J., Zeng, X., and Franz, T. E.: Translating
- aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale, Hydrol.
 Earth Syst. Sci., 18, 4363-4379
- 1515Ross, J. L., M. M. Ozbek, and G. F. Pinder (2009), Aleatoric and epistemic uncertainty in groundwater flow and1516transport simulation, Water Resources Research, 45(12).
- 1517
- 1518 Rossman, N., & Zlotnik, V. (2013). Review: Regional groundwater flow modeling in heavily irrigated basins of
- 1519 selected states in the western United States. *Hydrogeology Journal, 21*(6), 1173–1192.
- 1520 https://doi.org/10.1007/s10040-013-1010-3

- 1521
 RRCA. (2003). Republican River Compact Administration Ground Water Model. Retrieved from

 1522
 http://www.republicanrivercompact.org/
- 1523 Saltelli, A., Chan, K., & Scott, E. M. (Eds.). (2000). Sensitivity analysis. Wiley.
- Salvucci, G. D., & Entekhabi, D. (1995). Hillslope and climatic controls on hydrologic fluxes. *Water Resources Research*, *31*(7), 1725–1739.
- 1526
 Sanford, W. Calibration of models using groundwater age. Hydrogeol J 19, 13–16 (2011).

 1527
 https://doi.org/10.1007/s10040-010-0637-6
- Sawyer, A. H., David, C. H., & Famiglietti, J. S. (2016). Continental patterns of submarine groundwater discharge
 reveal coastal vulnerabilities. *Science*, *353*(6300), 705–707.
- Scanlon, B., Healy, R., & Cook, P. (2002). Choosing appropriate techniques for quantifying groundwater recharge.
 Hydrogeology Journal, *10*(1), 18–39.
- Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006). Global
 synthesis of groundwater recharge in semiarid and arid regions. *Hydrological Processes*, 20, 3335–3370.
- Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., & McMahon, P. B. (2012).
 Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. *Proceedings of the National Academy of Sciences*, 109(24), 9320–9325. <u>https://doi.org/10.1073/pnas.1200311109</u>
- Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., et al. (2016). Global evaluation of new
 GRACE mascon products for hydrologic applications. *Water Resources Research*, *52*(12), 9412–9429.
- 1539 Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., van Beek, L. P., et al. (2018). Global models
- underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. *Proceedings* of the National Academy of Sciences, 201704665.
- 1542Schaller, M., and Y. Fan (2009) River basins as groundwater exporters and importers: Implications for water cycle1543and climate modeling. Journal of Geophysical Research-Atm, 114, D04103, doi: 10.1029/2008 JD010636
- Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., et al. (2014). Multimodel assessment of
 water scarcity under climate change. *Proceedings of the National Academy of Sciences*, *111*(9), 3245–3250.
 https://doi.org/10.1073/pnas.1222460110
- 1547 Schilling, O. S., Doherty, J., Kinzelbach, W., Wang, H., Yang, P. N., & Brunner, P. (2014). Using tree ring data as a
- 1548 proxy for transpiration to reduce predictive uncertainty of a model simulating groundwater-surface water-
- 1549 vegetation interactions. Journal of Hydrology, 519, Part B, 2258–2271.
- 1550 https://doi.org/10.1016/j.jhydrol.2014.08.063
- 1551 Schilling, O.S., Cook, P.G., Brunner, P., 2019. Beyond classical observations in hydrogeology: The advantages of
- 1552 including exchange flux, temperature, tracer concentration, residence time, and soil moisture observations in
- 1553 groundwater model calibration. Reviews of Geophysics, 57(1): 146-182.
- Schneider, A.S., Jost, A., Coulon, C., Silvestre, M., Théry, S., & Ducharne, A. (2017). Global scale river network
 extraction based on high-resolution topography, constrained by lithology, climate, slope, and observed drainage
 density. *Geophysical Research Letters*, 44, 2773–2781. https://doi.org/10.1002/2016GL071844
- 1557 Shen, C. (2018). A transdisciplinary review of deep learning research and its relevance for water resources 1558 scientists. *Water Resources Research*, *54*(11), 8558–8593.
- Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., et al. (2018). HESS Opinions: Incubating deep learning-powered hydrologic science advances as a community. *Hydrology and Earth System Sciences*, 22(11).
- 1561
 SKI (1984). Intracoin International Nuclide Transport Code Intercomparison Study (No. SKI--84-3). Swedish

 1562
 Nuclear Power Inspectorate. Retrieved from http://inis.iaea.org/Search/search.aspx?orig q=RN:16046803
- Springer, A., & Stevens, L. (2009). Spheres of discharge of springs. Hydrogeology Journal, 17(1), 83–93.
 https://doi.org/10.1007/s10040-008-0341-y
- 1565Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory of the Anthropocene: the1566great acceleration. The Anthropocene Review, 2(1), 81–98.
- Sutanudjaja, E. H., Beek, R. van, Wanders, N., Wada, Y., Bosmans, J. H., Drost, N., et al. (2018). PCR-GLOBWB 2: a 5
 arcmin global hydrological and water resources model. *Geoscientific Model Development*, 11(6), 2429–2453.
- 1569Takata, K., Emori, S. and Watanabe, T.: Development of the minimal advanced treatments of surface interaction1570and runoff, Glob. Planet. Change, 38(1–2), 209–222, doi:10.1016/S0921-8181(03)00030-4, 2003.
- 1571
 Tallaksen, L. M. (1995). A review of baseflow recession analysis. Journal of Hydrology, 165(1–4), 349–370.

 1572
 https://doi.org/10.1016/0022-1694(94)02540-R
- 1573 Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., & MacDonald, A. M. (2013b). Evidence of
 1574 the dependence of groundwater resources on extreme rainfall in East Africa. *Nature Clim. Change*, *3*(4), 374–378.
 1575 https://doi.org/10.1038/nclimate1731
- 1576Taylor, R. G., Scanlon, B., Doll, P., Rodell, M., van Beek, R., Wada, Y., et al. (2013a). Groundwater and climate1577change. Nature Clim. Change, 3(4), 322–329. https://doi.org/10.1038/nclimate1744
- 1578 Thatch, L. M., Gilbert, J. M., & Maxwell, R. M. (2020). Integrated hydrologic modeling to untangle the impacts of 1579 water management during drought. *Groundwater*, *58*(3), 377–391.
- 1580Thomas, Z., Rousseau-Gueutin, P., Kolbe, T., Abbott, B.W., Marçais, J., Peiffer, S., Frei, S., Bishop, K., Pichelin, P.,1581Pinay, G., de Dreuzy, J.R. (2016). Constitution of a catchment virtual observatory for sharing flow and transport
- 1582 models outputs. Journal of Hydrology, 543, Pages 59-66. https://doi.org/10.1016/j.jhydrol.2016.04.067
- Tolley, D., Foglia, L., & Harter, T. (2019). Sensitivity Analysis and Calibration of an Integrated Hydrologic Model in
 an Irrigated Agricultural Basin with a Groundwater-Dependent Ecosystem. Water Resources Research.
 https://doi.org/10.1029/2018WR024209
- Tóth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. *Journal of Geophysical Research*, 68(16), 4795–4812.

- Tran, H., Jun Zhang, Jean-Martial Cohard, Laura E. Condon, Reed M. Maxwell (20200) Simulating g roundwater Streamflow Connections in the Upper Colorado River Basin Groundwater, 2020
 Streamflow Connections in the Upper Colorado River Basin Groundwater, 2020
- 1590 <u>https://doi.org/10.1111/gwat.13000</u>
- 1591Tregoning, P., McClusky, S., van Dijk, A.I.J.M. and Crosbie, R.S. (2012). Assessment of GRACE satellites for1592groundwater estimation in Australia. Waterlines Report Series No 71, National Water Commission, Canberra
- Troldborg, L., Refsgaard, J. C., Jensen, K. H., & Engesgaard, P. (2007). The importance of
 alternative conceptual models for simulation of concentrations in a multi-aquifer system.
 Hydrogeology Journal, 15(5), 843–860.
- 1596 Tustison, B., Harris, D. and Foufoula-Georgiou, E. (2001). Scale issues in verification of 1597 precipitation forecasts. Journal of geophysical Research, 106(D11), 11775-11784.
- UNESCO. (1978). World water balance and water resources of the earth (Vol. USSR committee for the international
 hydrologic decade). Paris: UNESCO.
- van Vliet, M. T., Flörke, M., Harrison, J. A., Hofstra, N., Keller, V., Ludwig, F., et al. (2019). Model inter-comparison
 design for large-scale water quality models. Current Opinion in Environmental Sustainability, 36, 59–67.
 <u>https://doi.org/10.1016/j.cosust.2018.10.013</u>
- Van Werkhoven, K., Wagener, T., Tang, Y., and Reed, P. 2008. Understanding watershed model behavior across
 hydro-climatic gradients using global sensitivity analysis. Water Resources Research, 44, W01429,
 doi:10.1029/2007WR006271.
- 1606 Van Loon, A.F. et al. (2016) Drought in the Anthropocene. Nature Geoscience 9: 89-91 doi: 10.1038/ngeo2646.

van Loon, Anne F.; Kumar, Rohini; Mishra, Vimal (2017): Testing the use of standardised indices and GRACE
satellite data to estimate the European 2015 groundwater drought in near-real time. In Hydrol. Earth Syst. Sci. 21
(4), pp. 1947–1971. DOI: 10.5194/hess-21-1947-2017.

Vergnes, J.-P., & Decharme, B. (2012). A simple groundwater scheme in the TRIP river routing model: global off-line
evaluation against GRACE terrestrial water storage estimates and observed river discharges. *Hydrol. Earth Syst. Sci.*, 16, 3889-3908. https://doi.org/10.5194/hess-16-3889-2012

Vergnes, J.-P., B. Decharme, & F. Habets (2014). Introduction of groundwater capillary rises using subgrid spatial
variability of topography into the ISBA land surface model, *J. Geophys. Res. Atmos.*, 119, 11,065–11,086.
https://doi.org/10.1002/2014JD021573

- 1010 inteps// doite.8/ 1012002/ 202 is20220/0
- 1616 Vergnes, J.-P., Roux, N., Habets, F., Ackerer, P., Amraoui, N., Besson, F., et al. (2020). The AquiFR

1617 hydrometeorological modelling platform as a tool for improving groundwater resource monitoring over France:

- 1618 evaluation over a 60-year period. Hydrology and Earth System Sciences, 24(2), 633–654.
- 1619 https://doi.org/10.5194/hess-24-633-2020
- Visser, W. C. (1959). Crop growth and availability of moisture. *Journal of the Science of Food and Agriculture*, 10(1),
 1–11.

- Wada, Y., L. P. H. van Beek, C. M. van Kempen, J. W. T. M. Reckman, S. Vasak, M. F. P. Bierkens, (2010) Global
 depletion of groundwater resources. Geophys. Res. Lett. 37, L20402.
- Wada, Y.; Wisser, D.; Bierkens, M. F. P. (2014).Global modeling of withdrawal, allocation and consumptive use of
 surface water and groundwater resources. Earth System Dynamics Discussions, volume 5, issue 1, pp. 15 40
- Wada, Y. (2016). Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future
 Prospects. *Surveys in Geophysics*, *37*(2), 419–451. https://doi.org/10.1007/s10712-015-9347-x
- Wada, Y., & Bierkens, M. F. P. (2014). Sustainability of global water use: past reconstruction and future projections.
 Environmental Research Letters, 9(10), 104003. https://doi.org/10.1088/1748-9326/9/10/104003
- Wada, Y., & Heinrich, L. (2013). Assessment of transboundary aquifers of the world—vulnerability arising from
 human water use. *Environmental Research Letters*, 8(2), 024003.
- 1632 Wagener, T. 2003. Evaluation of catchment models. Hydrological Processes, 17, 3375-3378.
- Wagener, T., & Gupta, H. V. (2005). Model identification for hydrological forecasting under uncertainty. *Stochastic Environmental Research and Risk Assessment*, *19*(6), 378–387.
- Wagener, T., Sivapalan, M., Troch, P. and Woods, R. (2007). Catchment classification and hydrologic similarity.
 Geography Compass, 1(4), 901, doi:10.1111/j.1749-8198.2007.00039.x
- 1637 Wagener, T. and Pianosi, F. (2019) What has Global Sensitivity Analysis ever done for us? A systematic review to 1638 support scientific advancement and to inform policy-making in earth system modelling. Earth-Science Reviews,
- 1639 194, 1-18. <u>doi.org/10.1016/j.earscirev.2019.04.006</u>
- Wagener, T., Boyle, D.P., Lees, M.J., Wheater, H.S., Gupta, H.V. and Sorooshian, S. (2001). A framework for
 development and application of hydrological models. Hydrology and Earth System Sciences, 5(1), 13-26.
- 1642 Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., et al. (2010). The future of 1643 hydrology: An evolving science for a changing world. *Water Resources Research*, *46*(5).
- 1644Wagener, T., Gleeson, T., Coxon, G., Hartmann, A., Howden, N., Pianosi, F., Rahman, M., Rosolem, R., Stein, L., and1645Woods, R. (2021). On doing hydrology with dragons: Realizing the value of perceptual models and knowledge
- accumulation. Wiley Interdisciplinary Reviews: Water, e1550. https://doi.org/10.1002/wat2.1550
- Wang, F., Ducharne, A., Cheruy, F., Lo, M.H., & Grandpeix, J.L. (2018). Impact of a shallow groundwater table on
 the global water cycle in the IPSL land-atmosphere coupled model, *Climate Dynamics, 50*, 3505-3522,
 https://doi.org/10.1007/s00382-017-3820-9
- Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2014). The Inter-Sectoral Impact
 Model Intercomparison Project (ISI–MIP): Project framework. *Proceedings of the National Academy of Sciences*,
 111(9), 3228–3232. https://doi.org/10.1073/pnas.1312330110
- Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). *Ground water and surface water: a single resource*(p. 79). U.S. Geological Survey circular 1139

- Woolfenden, L. R., & Nishikawa, T. (2014). Simulation of groundwater and surface-water resources of the Santa
 Rosa Plain watershed, Sonoma County, California. USGS Scientific Investigations Report 2014–5052). Reston, VA:
 U.S. Geological Survey.
- 1658 Yang, J., Griffiths, J., & Zammit, C. (2019). National classification of surface-groundwater interaction using random
- 1659 forest machine learning technique. *River Research and Applications*, 35(7), 932–943.
- 1660 https://doi.org/10.1002/rra.3449
- Yeh, P. J.-F. and J. Famiglietti, Regional groundwater evapotranspiration in Illinois, J. Hydrometeorology, 10(2),
 464–478, 2010
- Yilmaz, K., Gupta, H.V. and Wagener, T. 2009. Towards improved distributed modeling of watersheds: A process
 based diagnostic approach to model evaluation. Water Resources Research, 44, W09417,
- 1665 doi:10.1029/2007WR006716.
- 1666Young, P., Parkinson, S. and Lees, M. (1996). Simplicity out of complexity in environmental modelling: Occam's1667razor revisited. Journal of Applied Statistics, 23(2-3), 165-210. https://doi.org/10.1080/02664769624206
- 1668 Zell, W. O., & Sanford, W. E. (2020). Calibrated Simulation of the Long-Term Average Surficial Groundwater System
 and Derived Spatial Distributions of its Characteristics for the Contiguous United States. Water Resources
 1670 Research, 56(8), e2019WR026724. https://doi.org/10.1029/2019WR026724
- 1671 Zipper, S. C., Soylu, M. E., Booth, E. G., & Loheide, S. P. (2015). Untangling the effects of shallow groundwater and
- soil texture as drivers of subfield-scale yield variability. *Water Resources Research*, 51(8), 6338–6358.
 Zipper, S. C., Soylu, M. E., Kucharik, C. J., & Loheide, S. P. (2017). Quantifying indirect groundwater-mediated
- 1674 effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone
 1675 model. *Ecological Modelling*, 359, 201-219
- 1676 Zhang, M and Burbey T J 2016 Inverse modelling using PS-InSAR data for improved land subsidence simulation in
 1677 Las Vegas Valley, Nevada Hydrol. Process. 30 4494–516
- 1678 Zhou, Y., Li, W., 2011. A review of regional groundwater flow modeling. Geoscience Frontiers, 2(2): 205-214.
- 1679

1680