
Constraining a land cover map with satellite-based aboveground
biomass estimates over Africa

Guillaume  Marie1,  B.  Sebastiaan  Luysseart2,  Cecile  Dardel3,  Thuy  Le  Toan4,  Alexandre  Bouvet4,
Stéphane Mermoz4, Ludovic Villard4, Vladislav Bastrikov5, Philippe Peylin1.
1Laboratoire  des  Sciences  du  Climat  et  de  l’Environnement  (LSCE/IPSL),  CEA-CNRS-UVSQ,
Université Paris-Saclay, Gif-sur-Yvette, France
2Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
3Laboratoire Géosciences Environnement, Paul Sabatier University, Toulouse III, Toulouse, France
4Centre d’Etudes Spatiales de la Biosphère (CESBIO), Toulouse, France
5Science Partners, Paris, France

Correspondence to: Guillaume Marie (Guillaume.Marie@uantwerpen.be)

Abstract. Most land surface models can either calculate the vegetation distribution and dynamics internally by making use

of biogeographical principles or use vegetation maps to prescribe spatial and temporal changes in vegetation distribution.

Irrespective of whether vegetation dynamics are simulated or prescribed, it is not practical to represent vegetation across the

globe at the species level because of its daunting diversity. This issue can be circumvented by making use of 5 to 20 plant

functional  types  (PFT)  by  assuming  that  all  species  within  a  single  functional  type  show  identical  land–atmosphere

interactions irrespective of their geographical location. In this study, we hypothesize that remote-sensing based assessments

of above-ground biomass can be used to refine discretizing real-world vegetation in PFT maps. Remotely sensed biomass

estimates  for  Africa  were  used  in  a  Bayesian  framework  to  estimate  the  probability  density  distributions  of  woody,

herbaceous, and bare soil fractions for the 15 land cover classes, according to the UN-LCCS typology, present in Africa.

Subsequently,  the 2,5 and 97,5 percentile  of  the probability density distributions were  used to create  2,5% and 97,5%

confidence interval PFT maps. Finally the original and refined PFT maps were used to drive biomass and albedo simulations

with the ORCHIDEE model. This study demonstrates that remotely sensed biomass data can be used to better constrain PFT

maps. Among the advantages of using remotely sensed biomass data were the reduced dependency on expert knowledge and

the ability to report the confident interval  of the PFT maps. Applying this approach at the global scale, would increase

confidence in the PFT maps underlying assessments of present day biomass stocks.

1 Introduction

Degradation, fires and deforestation of tropical forests are responsible for two thirds of the global net deforestation emissions

[Houghton et al.  2012; Le Quéré et al. 2015; Friedlingstein et al. 2020]. Although African tropical rainforests represent only

one third of the global tropical rainforests [Lewis et al. 2009], they were responsible for almost all, i.e. 1,48 PgC in 2015 and
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1,65 PgC in 2016,  of  the  net  C emissions of  pan-tropical  regions,  but  substantial  uncertainty  is  associated  with these

estimates , i.e., 1,15 for 2015 and 1,0 PgC for 2016, mainly driven by fire and land use changes [Palmer et al. 2019]. The

uncertainty of model estimates, such as mentioned above, broadly comes from three sources: (1) the vegetation distribution

in the model, (2) the ability of the model to simulate biomass accumulation of undisturbed vegetation, and (3) the ability of

the model to simulate natural and anthropogenic disturbances of the standing biomass. As this study will focus on improving

the description of the vegetation distribution, the first question that needs to be answered is why vegetation distribution

remains so uncertain? 

Most  land  surface  models  can  either  calculate  the  vegetation  distribution internally  by making use  of  biogeographical

principles [Sitch et al. 2003, Krinner et al. 2005, Clark et al. 2011] or use vegetation maps to prescribe spatial and temporal

changes in vegetation distribution. Where the first approach results in a description of the potential vegetation, the second

approach is more suitable when actual vegetation is to be studied. Irrespective of whether potential or actual vegetation is

studied, it is not practical to represent vegetation across the globe at the species level because there are already over 60,000

tree species [Beech et al. 2017], not to mention the diversity in herbs, forbs and mosses. Land surface models represent this

daunting diversity by making use of 5 to 20 plant functional types (PFT) [Huete et al. 2016]. The underlying assumption of

plant  functional  types  is  that  all  species  within  a  single  functional  type  show  identical  land–atmosphere  interactions

irrespective of their geographical location [Huete et al. 2016, Bonan et al. 2002, Brovkin et al. 1997, Chapin et al. 1996].

Discretizing real-world vegetation in PFTs is a first source of uncertainty. 

When actual  vegetation  is  the  focus  of  a  modelling study,  the  vegetation  distribution will  have  to  be  prescribed.  The

construction of  vegetation  maps  first  requires  real-world observations,  typically  through satellite-based remote sensing.

Current remote sensing technology does not enable distinguishing individual tree species, hence, vegetation is observed as

land  cover  types  [Defourny,  P.,  2019]  which  group  vegetation  with  similar  sensory  characteristics.  Remote  sensing

observations as well as classifying them in land cover types is a second source of uncertainties [Hansen et al. 2013, Mitchard

et al. 2014, Hurtt et al. 2004]. Because the land surface models require the vegetation to be discretized in PFTs, which may

differ between different land surface models, the land cover types will have to be remapped on PFT maps. The rules applied

in remapping satellite-based land cover types in PFT maps is formalized in so-called “cross-walking tables” (CWT) [Poulter

et al. 2011, Poulter et al. 2015] which are a third source of uncertainty [Hartley et al., 2017]. 

Although CWTs have been extensively used to create PFT maps [Wei et al. 2018, Wei et al. 2016, Poulter et al. 2011,

Krinner et al 2005], the process of associating land cover types with specific PFTs remains difficult to reproduce since

several  iterations  of  expert  knowledge  are  required  [Poulter  et  al.  2011,  Poulter  et  al.  2015].  Various  land  cover

classifications exist, in particular the commonly used FAO (Food and Agriculture Organization) Land Cover Classification

System (LCCS, Di Gregorio and Jansen, 2000). Most classes of the LCCS correspond to a mix of PFTs, which fractions are

difficult to assess and likely variable across regions. For example several classes are labeled as a mosaic of vegetation types

(i.e. “Mosaic of natural vegetation (tree, shrubs, herbs)”; see Table 2 in Poulter et al. 2015). Not surprisingly, efforts have

been  made  to  decrease  the  need  of  expert  knowledge  in  favor  of  more  objective  and  reproducible  approaches,  e.g.,
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classification rules based on a suite of improved and standard MODIS products [Wanxiao et al. 2008]. Moreover, producing

PFT maps from satellite-based land cover maps needs to become fully automated when the temporal frequency of satellite-

based land cover and biomass maps increases, i.e., the GEDI [Dubayah et al. 2020] and BIOMASS missions [Le Toan et al.

2011, Quegan et al. 2019].

In this study, we hypothesize that remote-sensing based assessments of above ground biomass (ABG) can decrease the

dependency on expert knowledge when setting up CWTs and as such contribute to the automation of the land cover class

mapping into PFTs for land surface models. The main rationale is that the above-ground biomass content of an ecosystem

provides information on the fraction of tree PFTs of that ecosystem. In this context, the objective of this study are: (1)

construct a framework of data assimilation in which biomass remote sensing products can be routinely used to update an

existing or create a new CWT, (2) refine a cross-walking table used to convert the ESA-CCI Global Land Cover map into a

PFT map, and (3) propagate the confident interval from using a CWT in the production of PFT maps, to the simulation

results of a land surface model. Such a framework will be applied and tested over Africa using the above ground biomass

product derived by [Bouvet et al 2018] for that continent with the ORCHIDEE land surface model [Krinner et al., 2005] and

the version used for the recent Climate Modelling Intercomparison Project - phase 6 (CMIP6) [Boucher et al., 2020]. 

2 Materials and methods

2.1 Overview

Cross-walking tables (CWT) [Poulter et al. 2015] are used to convert the 43 land cover types distinguished on the ESA-CCI

land cover product into generic plant functional types (13 PFTs in Poulter et al., 2015) distinguished by large-scale land

surface models such as the ORCHIDEE model [Krinner et al., 2005] used in this study. These generic PFTs are further

grouped and/or divided to match each model-specific PFT classification, using additional grid-cell information to separate

grassland and crop C3 versus C4 photosynthetic pathway [Still et al., 2003] and to split generic PFT according to bioclimatic

zones (i.e., Koppen Geiger climate classification map) (see more details for the ORCHIDEE model in Lurton et al, 2020). In

this study, we will create a new ORCHIDEE PFT map by combining information from the ESA-CCI land cover product and

the AGB product for Africa [Bouvet et al 2018] to estimate woody, herbaceous and bare soil cover fractions within each land

cover type of the ESA-CCI product. Subsequently, the estimated cover fractions are used to refine the existing CWT and

create a new ORCHIDEE PFT map applicable primarily for Africa (Fig. 1). Finally, the impact of using AGB maps to refine

the PFT maps on the skill of the ORCHIDEE model to simulate the contemporary biomass and its spatial distribution over

Africa is quantified. Note that the approach is tested over Africa but is generic enough to be applied everywhere.
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Figure 1 Approach to assimilate the
information held by AGB maps into
PFT  maps.  Remote  sensing  AGB
and land cover products  are jointly
assimilated  to  obtain  cross-walking
tables that can be used to make PFT
maps.  Owing  to  the  uncertainty
analysis  in  the  data  assimilation
approach,  an  ensemble  of  cross-
walking  tables  and  PFT  cover
fraction  maps  can  be  produced.
Subsequently,  the  land  surface
model  ORCHIDEE can be  run for
different PFT maps to  quantify the
uncertainty  from  propagation  the
uncertainty  from  remote  sensing
products into a model simulation.

2.2 Dataset products

2.2.1 Land cover map

ESA’s Climate Change Initiative for Land Cover (CCI-LC) produced consistent global LC maps at 300 m spatial resolution

on an  annual  basis  from 1992 to 2015 [Defourny,  P.,  2019].  The typology of  CCI-LC maps follows the Land Cover

Classification System (LCCS) developed by the United Nations (UN) Food and Agriculture Organization (FAO), to enhance

compatibility  with  similar  products  such  as  GLC2000,  and  GlobCover  2005  and  2009.  The  UN-LCCS typology  was

designed as a hierarchical classification, which allows adjusting the thematic detail of the legend. The “level 1” legend also

called “global” legend, counts 22 classes and is globally consistent and thus suitable for global applications such as creating

PFT maps for LSM. The “level 2” or “regional” legend counts 43 classes which are not present all over the world and could

be used in this study given its focus on a single continent, i.e., Africa (see section 2.2.3). In addition, the UN-LCCS partly

overlaps with the PFTs used in climate models. 

2.2.2 Aboveground biomass map

This study also makes use of a continental map of AGB of African savannas and woodlands for the year 2010 [Bouvet et al

2018]. The map has a 25 m resolution and is built from the 2010 L-band data of the Phased Array L-band Synthetic Aperture

Radar (PALSAR) on the Advanced Land Observing Satellite (ALOS) satellite. Covering the African continent required

about 180 data strips of which 91% were acquired between May and November 2010. The remaining 9% of the domain was

filled with imagery from 2009 and 2008. The data have been processed by the Japan Aerospace Exploration Agency (JAXA)

using the large-scale mosaicking algorithm described in Shimada and Ohtaki (2010),  including ortho-rectification, slope

correction and radiometric calibration between neighboring strips, and by Bouvet et al. 2018 (multi-image filtering).
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The continental AGB map was derived as follows: (1) stratification into wet/dry season areas in order to account for seasonal

effects in the relationship between PALSAR backscatter and AGB, (2) the development of a statistical model relating the

PALSAR backscatter to observed AGB, (3) Bayesian inversion of the direct model, to obtain AGB and its confident interval

for pixels where no observations are available, and (4) masking out non-vegetated areas using the ESA-CCI Land Cover

dataset (but see section 2.1.1). The resulting AGB map was visually compared with existing AGB maps [Saatchi et al., 2011,

Baccini et al., 2012, Avitabile et al., 2016] and cross-validated with AGB estimates obtained from field measurements and

LiDAR datasets [Naidoo et al., 2015]. Cross-validation revealed a good accuracy of the dataset, with an RMSD between 8

and 17 Mg·ha-1. For more details on the creation and evaluation of the AGB maps see Bouvet et al. 2018.

2.2.3 Pre-processing

One known limitation of the original AGB map [Bouvet et al 2018] is the signal saturation and in some cases the decrease of

the signal [Mermoz et al 2015] occurring in L-band SAR for AGB values higher than 85 t ha -1. In order to overcome this

issue, a second AGB map was created, based on two other ancillary datasets: a map of tree cover [Hansen et al 2013] and a

map of tree height [Simard et al 2011]. Because of a coarser resolution from the tree height map (0,01°x0,01°, 100 ha) than

the original ABG map (0,00025°x0.00025°, 0,0625 ha), the new biomass map has been rescale to 0,01° resolution. The

rescaling will also drastically reduce the noise produced by PALSAR measurement artefacts (personal communication). The

above-ground biomass was estimated by deriving an empirical relationship between biomass, available from airborne Lidar

estimates, and the product of tree cover and tree height. The second version targets dense forest areas such as in the Congo

basin (personal communication) and is used to adjust the AGB values at locations where signal saturation occurred (not

published). The map used in this study is a composite of the two versions of the map by using the following rules:

 For  broadleaved  evergreen  forests  (UN-LCCS land cover  type 50),  flood  forests  (UN-LCCS 160),  and closed

broadleaved deciduous forests (UN-LCCS 61), the map based on tree cover and tree height was used because there

is no AGB estimates in the map based on PALSAR.

 For broadleaved  deciduous forests  (UN-LCCS 60) the maximum between the two maps was used because  its

biomass ranged around the threshold of  85 t ha-1 and may create truncated distribution.

 For the other  land cover types,  which typically  have a biomass well  below 85t ha -1 the AGB value from the

PALSAR map was used because it is considered more reliable than the statistical relationship between biomass,

vegetation cover and vegetation height especially for the lower biomass.

Given the spatial domain of this study, only the 31 land cover types defined on the ESA CCI-LC map and present in Africa

were retained. The complexity of the study was further reduced by removing all land types that cover less than 1% (304,158

km2) of the African surface or that contain less than 1% (i.e. 1,1 Gt) of the total AGB of Africa. Filtering retrained 15 out of
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the 31 land cover types including bare land. These 15 land cover types (Table 1) represent 96% of the surface of Africa and

98% of its AGB.

One additional issue had to be dealt with: the spatial resolution of the land cover map (9 ha) largely differed from the

resolution  of  the  AGB map  (0,01°x0,01°,  100  ha).  As  a  consequence,  each  observational  point  on  the  AGB map  is

represented by 11,11 pixels on the land cover map. In order to simplify the overall data assimilation methodology (see

section 3.2), we chose to use only AGB pixels (100 ha) which have a unique land cover type (i.e. pure pixels, in terms of

LCC) . To this aim, the variety of land cover types across the 11,11 pixels within each AGB pixel (i.e., the number of LCC

present, Vlct) was calculated and only pixels where Vlct=1 were retained. Although this criterion resulted in discarding 99%

of the pixels, each of the 15 land cover types considered could be represented by at least 2000 pixels.

2.3 Data assimilation

2.3.1 Linking land cover fractions and AGB

A linear model was used to relate the satellite-based AGB of a 100 ha pixel to the cover fraction of the satellite-based

vegetation types present at the same location. This relationship can be written as:

                                                                                                           (1)

where Bp, is the AGB at a given pixel p, Fp,i is the cover fraction of the vegetation type i (i.e. the generic plant functional type

(PFT) use for land surface models, see section 2.1 - overview), Brefi is the reference AGB for the vegetation type i and nV is

the number of vegetation types (i.e. number of PFTs) present in the pixel  p. Given the number of unknowns (nV being

usually above 1), equation 1 has many solutions; many of which have no biological meaning. The equifinality of this model

can be reduced by arguing that the large difference in biomass between woody, herbaceous and non-vegetated ecosystems

combined by their respective cover fraction explains the majority of the biomass at pixel level. Following this assumption,

equation 1 can be simplified as:

(2.1)

(2.2)

where Fp,w, Fp,h and Fp,b are the fractions cover for woody vegetation (i.e. woody PFTs), herbaceous vegetation (i.e. grassland

and cropland) and non vegetated areas,  respectively.  Brefw and  Brefh are the reference AGB of woody and herbaceous

vegetation, respectively. Equation 2.1 is constrained by equation 2.2 (i.e. the total area coverage of each pixel), hence, Fp,h in

equation 2.1 can be substituted by equation 2.2 to obtain :

(3)
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Although the model formalized in equation 3 no longer details which vegetation types i (i.e. PFTs) are present on each pixel

p, it still has four unknowns and can, therefore, not be solved analytically. Nevertheless, a statistical solution is within reach

if  Fp,w,  Fp,b,  Brefw and  Brefh are estimated from a population of AGB observations containing a number of independent

repetitions that largely exceeds the number of unknowns. In this study, over 2000 repetitions were available for each of the

15 land cover types that were retained following filtering (section 2.2.3). The statistical solution will thus consist of four

mean parameter values (i.e., Fp,w, Fp,b, Brefw and Brefh) for each of these 15 land cover types.

As described in section 2.2.3, the selection of homogeneous AGB pixels, i.e., which have a unique land cover class across

the 11.11 (i.e. 121) underlying land cover sub-pixels allow us to rewrite the equation 3 as follow :

(4)

where Bpp now is the AGB of a specific land cover type lc and Flc,w,  Flc,b,  Breflc,w,  Breflc,h are the unknowns. The unknown

parameters of the regression model (eq. 4) were estimated by using a Bayesian inference method. This approach has been

chosen because it helps to synthesize various sources of information as well to propagate confident interval in the result of

our land surface model [Ellison 2004]. Bayesian inference requires, however, setting prior probability distributions for each

of  the  unknowns,  i.e.,  the  biomasses  and  land  cover  fractions  for  each  of  the 16 land  cover  types.  Given  these  prior

probability  distributions,  Bayesian  inference  retrieves  the  posterior  probability  distribution  for  each  of  the  unknown

parameters.

2.3.2 Prior value distributions for Breflc,w, Breflc,h and Bpp 

The pure  AGB pixels  were  stratified  according  to  their  land cover  type  and for  each  land cover  type  the  information

contained in the distribution of the satellite-based AGB served to estimate the mean and standard deviation of the prior

values of Breflc,w:

(5)

where, μlc,w is calculated as follow:

(6)

Where Bplc is a vector containing Bpp values that belong to the land cover type lc and Xthper denotes the 95th percentile for

the woody cover types. This choice assumes that with the highest 95 th percentile we select the AGB value of a pixel covered

only by woody vegetation (i.e. woody PFT) for the selected land cover type. In contrast to using in situ observations to
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define μlc,w, such approach offers the advantage to rely on a large ensemble of satellite-derived AGB observations and to be

coherent with the following optimization. 

Figure 2: shows the distribution of the pure land cover pixel for biomass concentration Bpp for 15 selected land cover types + LCT 200.
The blue dashed line represents the 95h percentile used as the prior estimate for the reference biomass concentration for trees Bref lc,w.
The red dashed line represents the 50th percentile also used as the prior estimate for the reference biomass 

Without any information about the variability of Breflc,w , we choose to represent σlc,w as:

(7)

Compared  to  Breflc,w,  Breflc,h is  more difficult  to  assess  from the  satellite-derived  data  because  it  often  shows bimodal

distributions which may stem from biomass degradation or the presence of shrubs which biomass better resembles that of a

grassland than a woody ecosystem (Fig. 2). We found that while the 2,5 th percentile is representing the lowest biomass for

herbaceous ecosystem, the 50th percentile seems to better describe Breflc, following the equation (6). Without any information

about the variability of Breflc,h , we choose to represent σlc,h as in equation (7).

Finally,  Bpp comes  with  a  measurement  uncertainty  that  was  thought  to  follow a  normal  distribution.  Given  that  this

measurement uncertainty is not known at the pixel level, an uninformative prior was set for the standard deviation σblc wich

can varies between 0 and 200 t/ha :

(8)
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2.3.3 Prior value distributions for Flc,w, Flc,b

Flc,w,  Flc,b were defined as fractions of respectively woody vegetation and bare soil within a given land cover type, their

values thus range between zero and one. For this reason, the probability distributions of the cover fractions were described

by pseudo-normal distributions bounded by zero and one. The generalized Beta-distribution can represent a bounded pseudo-

normal distribution and was used to describe the probability distribution of the woody and bare soil cover fraction:

(9)

Where i represent w (woody) or b (bare soil) described in the equation (5), Bup,i and Blw,i represent the expected range (upper

and lower values) of Flc,i. A generalized beta distribution as two properties that can be exploited to estimate its parameters

αlc,i and βlc,i for each land cover type based on the mode (θlc,i), the certainty of a beta distribution, i.e. ωlc,i which is the inverse

of the uncertainty, and the distribution boundaries Bup,i and Blw,i:

(10)

(11)

where  θlc,i is taken from a recent update of the CWT (see ORCHIDAS, with an expert-based update of the original CWT

described in Poulter et al., 2015), Bup,i and Blw,i are estimated based on the definition of the ESA-CCI-CL land cover classes

and ωlc,i was described by an uninformative uniform distribution and represents the trust we have in the current CWT:

(12)

2.4 Confident interval propagation

2.4.1 Propagating the confident interval from the CWT into the PFT map

The posterior estimates of the cover fractions (Flc,w, Flc,b) will be directly used to make up a new cross-walking table. Flc,w,

and Flc,b values are then used to recalculate woody herbaceous fraction of each generic PFT of the CWT. In other words,  we

keep the original split of the different woody PFT defined in prior CWT and only rescale the total woody fraction to Flc,w.

Then we rescale the bare soil fraction based on F lc,b to finally rescale short vegetation PFTs (grass and crop) but using (1-

Flc,w - Flc,b).

Given that these posterior estimates come with a probability distribution, a probability distribution of the CWT could be

made. In this study, the 2,5 and 97,5 percentiles of the posterior estimates were used to create two cross-walking tables that

were then applied on the ESA-CCI-LC product to create two PFT maps that represent the 95% interval confidence of the

ESA-CC-LC  product, the AGB product, and the processing chain described in sections 2.2 and 2.3. The impact of the
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confident interval on the PFT map was quantified for simulated above ground biomass and simulated albedo by running two

simulations that only differed by the PFT map used to initialize the ORCHIDEE land surface model.

2.4.2 Description of the ORCHIDEE land surface model

ORCHIDEE (Krinner et al., 2005; Peylin et al. in prep.) is the land surface model of the IPSL (Institut Pierre Simon Laplace)

Earth  system model.  As  it  is  a  land  surface  model,  ORCHIDEEHence,  by  conception,  it  can  be  coupled  to  a  global

circulation model. In a coupled setup, the atmospheric conditions affect the land surface and the land surface, in turn, affects

the atmospheric conditions. However, when a study focuses just on changes in the land surface ORCHIDEE rather than on

the interaction with the atmosphere, it also can be run as a stand-alone land surface model. The stand-alone configuration

receives  atmospheric  conditions  such  as  temperature,  humidity,  and  wind,  to  mention  a  few,  from  the  so-called

meteorological forcing. The resolution of the meteorological forcing determines the spatial resolution which can cover range

from , and can cover any area ranging from the global domain to a single grid point to the entire globe. ORCHIDEE uses

nested time steps: half-hourly for, e.g., photosynthesis and energy budget, daily, e.g., net primary production, and annual,

e.g., vegetation dynamics.

Although ORCHIDEE does not enforce a spatial or temporal resolution, the model does use a spatial grid and equidistant

time steps. The spatial resolution is an implicit user setting that is determined by the resolution of the meteorological data.

ORCHIDEE  can  run  on  any  temporal  resolution;  however,  this  apparent  flexibility  is  restricted  as  the  processes  are

formalized at given time steps: half-hourly (i.e. photosynthesis and energy budget), daily (i.e. net primary production), and

annual (i.e. vegetation dynamics). Hence, meaningful simulations have a temporal resolution of 1 min to 1 h for the energy

balance, water balance, and photosynthesis calculations. In the land-only configuration used in this study, the default time

step for these processes is 30 minutes.

When an application requires the land surface to be characterised by its In this study the model was run with 15 PFTs, where

the additional PFTs represented tropical and boreal C3 grasslands which both belong to the meta-class of C3 grasslands.

When an application requires the actual vegetation, the vegetation will have to be prescribed by annual land cover maps.

These maps have to follow specific rules for the LSM to be able to read them. In the case of ORCHIDEE the share of each of

the 15 possible plant functional types (PFTs)PFTs needs to range between 0 and 1 and be specified for each pixel. When

satellite-based land cover maps are used as the basis for an ORCHIDEE-specific PFT map, the satellite-based land cover

classification will need to be converted to match the ORCHIDEE specifications. As mentioned already above, this involves

two steps: i) the derivation of generic PFTs from the satellite land cover classes (in our case the ESA-CCI-LC product)

through the CWT discussed in this paper and ii) the final mapping of the generic PFTs into the 15 ORCHIDEE-specific

PFTs  using  additional  information  on  the  bioclimatic  zones  and  the  partition  of  grassland/crops  into  C3  versus  C4

photosynthetic pathway  [Lurton et al., 2020]. 
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Table 1: Description of the 15 plant functional types (PFT) used in ORCHIDEE to represent global vegetation.

PFT Climate Vegetation type Phenology class

1 global NA Bare soil

2 Tropical Woody Broadleaf evergreen

3 Tropical Woody Broadleaf deciduous

4 Temperate Woody Needleleaf Evergreen

5 Temperate Woody Broadleaf Evergreen

6 Temperate Woody Broadleaf Summergreen

7 Boreal Woody Needleleaf Evergreen

8 Boreal Woody Broadleaf Summergreen

9 Boreal Woody Needleleaf Deciduous

10 Temperate Herbaceous Natural (C3)

11 global Herbaceous Natural (C4)

12 global Herbaceous Managed (C3)

13 global Herbaceous Managed (C4)

14 Tropical Herbaceous Natural (C3)

15 Boreal Herbaceous Natural (C3)

2.4.3 Experimental setup

ORCHIDEE tags 2.0 (rev 6592) was used to run tree simulations that only differed by the PFT map used to initialize the

model. Each simulation consisted of  a 110 years long simulation between 1901 to 2010 with climate reconstruction that

matched the simulation years. CO2 concentration was fixed to 299,16 ppm that corresponds to the 2010 concentration, the

CRU-NCEP/v8 was used as the climate forcing. 

Finally, differences in simulated above ground biomass and surface albedo between the 2,5% and 97,5% were compared to

each other as well as to the satellite-based AGB map [Bouvet et al 2018] and satellite-based albedo (REF). Note that in this
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study, the AGB by Bouvet et al (2018) was only used to constrain the cover fractions used by ORCHIDEE. Hence, the

model-based estimate of biomass per unit area is independent from the AGB map as none of the information contained in

that map was used in the ORCHIDEE model to simulate biomass per unit area.

2.4.4 Ecoregions

In  this  study,  we  choose  to  represent  results  related  to  the  LSM simulation  by  subdividing  the  african  continent  into

ecologically homogeneous regions. We choose to follow the rules defined in the works of Olson et al. 2001.

3 Results

3.1 Prior and posterior distributions estimates

3.1.1  Prior distributions estimate for cover fractions and reference biomasses

Prior distributions for the cover fractions and reference biomasses were determined for all 15 land cover classes separately,

nevertheless, three broadly different groups could be distinguished: (1) The 95 th percentile of biomass distribution for each

land cover belonging in the first group was so high, i.e., from 230 to 371 t ha-1, that the land cover types in this group must

come with a substantial tree cover., i.e., a woody cover fractions of 0.75 or more. Examples of this group are land cover

types UN-LCCS 50, 61, and 160 (tree cover broadleaf types, Table 2). (2) Contrary to the first group, the 95 th percentile of

biomass distribution for each land cover type of the second group is so low, i.e., from <15 to 26 t ha -1, that these land cover

types must be dominated by grasses or bare soil, i.e., a woody cover fraction of 0.25 or less and a substantial bare soil cover

fraction i.e. from 0.01 to 0.7. Examples of this group are UN-LCCS 130, 150 and 153 (grassland and sparse vegetation,Table

2). (3) The biomass of the third group falls in between these extremes representing mosaic land cover types like the UN-

LCCS 10, 11, 30, 40, 60, 62, 100, 110 and 120. When taken over the African continent, the biomass distribution of these

land cover types shows bimodal biomass distributions indicating considerable variability within these land cover types (fig.

2). The bimodal biomass distribution is backed by a large variation of woody cover fraction within a land cover type, for

example, 0,15 to 1 for UN-LCCS 60 which represents woodland to dry savanna. 

3.1.2  Posterior distributions for reference biomasses, cover fractions, and certainty  ωlc,i.

Most posterior distributions of  the herbaceous  and woody reference  biomasses  (Breflc,h,  Breflc,w) are close to their  prior

distribution except for land cover types dominated by grassland as UN-LCCS 130 or by forests as UN-LCCS 50, 60 and 160.

In these cases, the posterior woody cover fractions (Flc,w) are approaching the boundaries of their distributions which is close

to 1 for the forests dominated land cover types and close to 0 for the grassland dominated types.

For land cover types dominated by either woody or herbaceous species, the Bayesian optimization was more likely to adjust

the prior reference biomasses rather than the prior cover fractions (given an overall higher sensitivity of the total pixel
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biomass to  Breflc,w than to  Flc,b). For other land cover types, the Bayesian optimization played on both terms to adjust the

prior cover fractions instead of the prior reference biomasses. Except for sparse vegetation land cover types, i.e., UN-LCCS

150 and 153, posterior bare soil cover fractions (Flc,b) were similar to their prior distributions meaning that the proposed use

of the biomass map did not result in knowledge gain concerning the bare soil fractions. For this reason, we did not use the

new bare soil fraction estimate when compiling the cross-walking table as explained in the section 2.4.1.

By comparing, the prior and posterior distribution of the woody cover fraction (Flc,w) and its certainty (ωlc,w), two broadly

different groups emerged (Table 2). In the first group, the posterior values of the first mode, θlc,w, of the distribution of Flc,w

largely agreed  with the value  picked  from the  original  cross-walking table given the woody and herbaceous  reference

biomasses. For these land cover types, θlc,w came with a widely distributed ωlc,w i.e. close to a uniform distribution, suggesting

that the confident interval of the prior did not drive its posterior estimate. In other words, the posterior θlc,w are not sensitive

to a wide range of prior  θlc,w values. This group contains UN-LCCS 60 and 62 (i.e., tree cover broadleaf). In the second

group, posterior values of the first mode,  θlc,w, of the distribution of  Flc,w largely disagree with the value picked from the

original cross-walking table. The certainty shows a narrow distribution suggesting that the posterior θlc,w is strongly driven by

the confident interval of its prior value, reflecting that the most likely value for Flc,w is very different from its prior. This is

the case for UN-LCCS 10, 11, 30, 40, 50, 61, 100, 110, 120, 130, 150, 153, 160.

Owing to the Bayesian approach, the woody and herbaceous fraction within each land cover type is no longer deterministic

(as was the case with the previous generation of cross-walking table such as Poulter et al. 2015) but now comes with a

distribution. This distribution is the outcome of propagating the confident interval on the retrieved parameters (Flc,w, Flc,b)

obtained from the Bayesian approach into the final product, i.e., the PFT cover fraction map. The 95% confidence interval

was studied by comparing the 2,5 and 97,5 percentile of the distribution of woody fractions. Recall that for the construction

of the cross walking tables the bare soil fraction was ignored for all PFTs except PFT 1 (see 3.1.2, Table 1). Hence, the

herbaceous cover fractions mirror the woody cover fractions and are therefore not shown.

The mean change in forest cover fraction between the 2,5 and 97,5 percentile of the distribution of refined PFT maps over

Africa was 4,0% with a standard deviation between pixels of ±4,0%. At the ecoregion scale, the largest confident interval in

forest cover fraction was found in the Congo basin with an average of 13,5% for the six concerned ecoregions e.i. ecoregions

where LCT 50 is dominant, (Fig 3). Because our analysis did not change the ratio between grass and crop into the refined

cross-walking table, there are no differences between crop and grass cover fractions.
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Figure 3: A map of African’s ecoregions showing the absolute change in forest cover fraction percentage (%) between the 2,5 and

97,5  percentile  PFT maps.  It  can be seen as the  uncertainty  of  the newly  developed method.  High values represent a  large

uncertainty in the estimation of the true forest cover fraction. The definition of the ecoregion has been taken from Olson et al.

2001.
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Table 2: Short description, surface area (%), share in the continental biomass (%), prior parameters, and posterior median and
confidence interval values for each of the 16 land cover types considered in this study. The numbering, description and surface
area of each land cover type is based on the ESA-CCI product [Defourny, P., 2019], where its share in the continental biomass is
based on a compilation of Bouvet et al 2018. θlc, Bup Blw, μlc and σlc represent the parameters describing the prior distributions of Flc

and Breflc. Estimation of these parameters is detailed in section 2.3. Posterior distribution characteristics of land cover fractions Flc

distributions  and the  certainty  ωlc.  For each land cover  type and each parameter,  the 2,5,  50  and the 97,5 percentiles  are
computed. The 50 percentile is a good approximation of the posterior θ lc,w, since the posterior distributions of F lc,w are symmetric.
It is not true for bare soil cover fraction posterior distribution Flc,b and both ωlc,w and ωlc,b. * without any information in the short
description, we choose to let the range be as wide as possible, ** the value has been changed from 0,4 to 0,6 to encompass the
actual value used in the original CWT.  
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3.2.1 Comparison between the 2,5 and 97,5 percentile refined and the original PFT maps

The mean change in forest cover fraction between the refined PFT maps and the original PFT map are -11,7% (±14,8%) and

-6% (±14,7%) respectively for the 2,5 and 97,5 percentile maps. Large disagreement between the refined and original maps

was observed over the Somali Acacia-Commiphora Bushlands and Thickets and the Kalahari Xeric Savanna where forest

cover fraction was found to be 32% lower in average for the refined PFT maps (Fig. 4a-b). The guinea forest showed a 6,5 to

12,5% higher  forest  cover  fraction  for  the  refined  PFT maps.  Several  ecoregions  e.g.  easten  guinean,  Somali  Acacia-

Commiphora Bushlands and Thickets, show changes from the original PFT map of the same sign for the 2,5 and 97,5

percentiles which indicates that the Bayesian calibration strongly pushes a correction of the initial CWT into one direction.

Figure 4: Forest cover fraction change in % relative to the original PFT map. Panel a) are for the 2,5 percentile PFT map and b) for
97,5 percentile  PFT map  generated by our new approach.  PFT map generation is  described in the section 2.4.1.  The absolute
difference between panel a) and b) are displayed in fig. 3. An ecoregion which shows the same sign of forest cover fraction change in
both panel, strongly suggest a disagreement between the original and the new cover fractions i.e. woody, bare soil and herbaceous. 

3.3 Effect of the PFT maps on the biomass and albedo estimates

PFT maps are essential boundary conditions of land surface models because they condition the spatial distribution of various

ecosystem states-properties (i.e. carbon content, albedo, water-carbon-energy fluxes, etc). When tested with the ORCHIDEE

tags 2.0 (rev 6592)rev2.1 , the difference in biomass stock between the 2,5 and 97,5 percentile maps was 4,8 t.ha -1 (not

shown). The small differences in biomass between the original simulations (Fig. S2) can be explained by a modest cover

fraction change from -12,2%  to 1,3% in tropical rainforest (UN-LCCS 50 and 160), respectively for the 2,5% and the 97,5%
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PFT maps  compared  to  the  original  PFT map (Fig  4).  When the  PFT maps  are  propagated  through ORCHIDEE,  the

aboveground biomass changes for these ecoregions result in -17 t.ha-1 and 3,9 t.ha-1, respectively from the 2,5% and the

97,5% PFT maps compared to the original PFT map (Fig. 5a-b). The difference in AGB estimates between the original and

refined PFT maps was the largest  over Madagascar  (-52,3 t.ha-1 in 2,5%), the Eastern Guinean Forests (+13,5 t.ha-1 in

97,5%), and the Northwestern Congolian Lowland Forests (-33,9 t.ha-1 in 2,5%)(Fig. 5a-b).

At the ecoregion scale, the largest difference between the albedo simulated with ORCHIDEE tags 2.0 (rev 6592)rev2.1 and

initialized with the 2,5 and 97,5 percentile of the distribution of PFT maps and the simulated albedo for the original PFT map

was  found  in  Madagascar  and  ranged  from  0,014  and  0,010  respectively  from  the  2,5%  and  the  97,5%  (Fig.  5c-d).

Nonetheless, the overall effect of the different PFT maps on the albedo is less than -0,0005.
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Figure 5: Confident interval propagation of the PFTs maps into AGB and albedo simulated by ORCHIDEE. The left panels represent
the difference in AGB or albedo between the 2,5% CI PFT map and the original PFT map. The right panels represent the difference in
the 97,5% CI PFT map and the original PFT map. a) and b) are above ground biomass change in t.ha-1, and c) and  d) are change in
visible Albedo * 100.  
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4 Discussion

4.1 Discretizing vegetation

Irrespective of the data products, the methods, and the model used, discretizing vegetation comes with its own challenges.

Representing transitions of ecosystems by discretizing the vegetation into land cover type classes [Sankaran et al 2005] can

lead to systematic errors since all pixels that belong to the same land cover class will get the same vegetation cover fractions

(see 4.1.3) in the cross walking table. This approach articulates a key assumption underlying the PFT-approach, i.e., that

only one life form survives and thus dominates the vegetation due to competition for nutrients, light and water [Hutchinson

et al. 1961]. However, the Savanna ecosystem, for example, is characterised by the coexistence of trees, shrubs and grasses

which has been explained by interactions between vegetation, rainfall, fire, and browsing regimes [Eigentler and Sherratt.

2020]. This makes savannas one of the most difficult ecosystems to classify in a land cover type and subsequently convert it

into a PFT map.

Over Africa, land cover classes such as shrubland (UN-LCCS 120) represent a wide range of ecosystems, from sparse xeric

shrubland composed of small bushes, e.g., Penzia incana (Thunb.) Kuntze, grasses, e.g., Sip Agrostis spp. such as found in

Karoo desert, to dense thicket composed by succulent, e.g., Portulacaria afra Jacq. and spinescent shrubs (~3m tall) [Mills, et

al. 2005]. Combining land cover types and biomass maps showed that the shrubland pixels in Africa often resemble sparse

xeric shrubland than dense thickets. Improving the ability to simulate land surface properties of shrublands in a changing

world, especially in Africa where shrub encroachment is an important land cover dynamic [Wigley et al. 2010, Buitenwerf et

al. 2012, O'Connor et al. 2014], is likely to benefit from a more detailed representation of shrublands in land surface models.

A first step could be to represent shrubs as small trees, as was tested with the ORCHIDEE model for arctic ecosystems

[Druel et al., 2017], but ultimately shrub density, largely controlled by precipitation [Rietkerk et al., 2002] should also be

modeled.

Another major challenge with discretizing vegetation is how degraded ecosystems should be classified. From a modelling

point of view, they should be classified as the land cover type that occurred prior to the degradation and the cause of the

degradation. e.g., fire, grazing, erosion, should be explicitly accounted for in the land surface. This ideal strongly differs

from the current approach in which the degraded vegetation is classified as if the degraded vegetation is in its natural state.

Even when having the correct PFTs, the current approach will fail to simulate the observed biomass if degradation occurred.

As an alternative, the PFT map could duplicate all PFTs to distinguish between a PFT in its natural state and in its degraded

state. This approach in which degradation is accounted for in the PFT maps would, however, reduce degradation to a binary

problem rather than addressing its continuous nature.

4.2 Knowledge gain from using the AGB map

In the absence of an AGB map, previous efforts to build cross-walking tables [Poulter et al. 2015] had to rely in part on

expert knowledge. That generation of cross-walking tables can be considered as the best-available-knowledge in the absence
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of AGB data or other information on the land surface cover. The method developed and demonstrated in this study mostly

relies on data but comes with its own assumptions and statistical complexities. The key assumptions are that: (1) previous

cross-walking tables [Poulter et al. 2015] are a reliable source to set the prior distribution for PFT cover, (2) the biomass map

[Bouvet et  al  2018] is  a reliable source to set  the prior distribution of the reference biomasses,  and (3) the land cover

classification contains homogeneous land cover types [Defourny, P. et al.  2019]. A key question is thus whether the added

complexity justifies the knowledge gained by jointly assimilating a land cover and a biomass map when producing a CWT? 

Ideally this question should be addressed by assessing the reduction of the confident interval associated to the posterior

distribution of the PFT map when using the AGB map to constrain the CWT (in comparison to a prior when no AGB is

used). However,   the present generation of CWT without AGB information, does not come with a distribution (except the

attempt in Hartley et  al.,  2017),  calling for  an alternative approach  to assess  the knowledge gain.  Given that  the prior

distribution of  the cover  fraction  was  based  on the previous  CWT,  the difference  between the  prior  and the posterior

distributions can be considered as the knowledge gained from using AGB information. Following this reason, the question

we seek to answer is: “Is the cover fraction used by the original cross walking table falling outside the 95% confidence

interval of our posterior estimate?” 

If the answer is no, the biomass map is more likely in agreement with the previous effort to estimate the original cross

walking table. If the answer is yes, adding the information contained in the satellite based biomass maps is most likely in

strong disagreement with the previous effort to estimate the original cross walking table. The original CWT has a global

extent and the refined CWT is only valid for Africa. Therefore, knowledge gains should be carefully interpreted as they may

reflect trade-offs that had to be made previously to construct a global rather than a regional CWT. Knowledge gains were

assessed for:  “croplands”,  “dense evergreen forests”,  “woodlands and savannas”,  and “xeric  shrublands and grasslands”

separately.

4.2.1 Croplands (UN-LCCS 10, 11, 30, 40).

Despite the cover fraction of woody vegetation on croplands being close to none in the original CWT, this study found that

the four land cover types associated with croplands, UN-LCCS 10, 11, 30, 40 are in fact  covered by woody vegetation

ranging from 15% to 30% (range of  median;  Table  2).  This  large  difference  in  the presence  of  woody vegetation on

croplands is also reflected in the biomass data, which suggest two distinct but co-existing agricultural systems in Africa, i.e.,

one system with a low biomass and one around with a higher biomass. 

The agricultural system with the low biomasses likely represents annually-replanted crops such as millet, sorghum, wheat,

sweet potatoes or cassava (FAO), with a maximum reported biomass between 10 and 15 t.ha -1 for high-input cropping

associated with commercial production of cassava and sweet potatoes. These values are in line with values estimated as

reference biomass (see 2.3.2). Nonetheless, 97% of total cropland area Africa is rainfed  [Calzadilla et al. 2009] and most of
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Africa’s agricultural land is used for subsistence or small-scale farming associated with low-input cropping which explains

why the actual average biomass estimate from the CESBIO map for cropland is between 1,98± 0,65 t.ha -1 (Fig. 2) and thus

considerably lower than the potential production.

The high biomass agricultural system which is estimated at 58,6±10,2 t.ha-1 in the CESBIO map (Fig. 2) likely includes

plantations for coffee, rubber, fruits as well as shelter trees and forest remnants (FAO). Permanent croplands do not have

their own land cover type in the UN-LCCS or in ORCHIDEE. In the absence of a dedicated PFT, these agricultural systems

could be better simulated with a woodland fraction ranging from 13% to 34% (see table 2) , than is currently done with the

standard CWT. Although this could be an acceptable solution for biomass and albedo simulations, it will underestimate the

agricultural production in the region. 

 

4.2.2 Tropical rainforest (UN-LCCS 50, 160).

The woody cover fraction of tropical rainforest in the original CWT is close to 90%.  The original woody cover falls inside

the confidence interval of the posterior estimates, possibly because the 95% confidence interval is considerable and ranges

from 80 to 100%. Strictly speaking, using a biomass map in addition to a land cover map did not result in knowledge gain

concerning the cover fraction of tropical rainforest.  Nevertheless,  the considerable range in cover fraction indicates that

many of the pixels classified as tropical rainforest do not all achieve the reference biomass of 371±14 t.ha -1 (Fig. 2). The

reference derived from the biomass map matches the AGB observed at field plots of intact forests in the Congo basin [Lewis

et al. 2013], the large variation in cover fraction for these land cover types may thus reflect wide-spread degradation of the

forests in the region [Tyukavina et al. 2018] or an unrepresentative reference biomass [Kearsley et al. 2013].

4.2.3  Tropical moist deciduous forest/woodland/savanna (UN-LCCS 61, 60 and 62). 

The woody cover  fraction  of  the tropical  moist  deciduous forest  ranged between 55% and 85% in the original  CWT.

Refining the CWT by the use of AGB information narrowed this range to between 55% and 68%. For savanna (UN-LCCs

62) and woodland (UN-LCCS 60) the original cover fractions are within the refined 95% CI. For woody cover, the fraction

of moist deciduous forest (UN-LCCS 61) decreased from 85% to 65%.

Although the reference biomasses used in this study are in line with previously reported values [Carreira et al. 2013], there

are  two ways  to  interpret  the  continuously decreasing  biomass  when moving  from a  forest,  over  a  woodland towards

savanna. The original CWT considered these three land cover types as a single PFT. Differences between potential and

actual biomass are the outcome of land use and are reflected in largely different woody cover fractions between these land

cover types. The AGB map does not contain any evidence in support of this view and rather suggest that each of these land

cover types comes with an own reference biomass, i.e., 197±30 t.ha-1 for dry forest, 62±14 t.ha -1 for woodland and 22±12

t.ha-1 for savanna (Fig. 2). Such a gradient in reference biomass could be justified by a climatological gradient. The large
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range in reference biomasses compensated the range in actual biomass resulting in a relatively small range in woody cover

fractions.  Given  the  considerable  degradation  of  these  land  cover  types  [Mitchard  et  al.  2013],  the  reality  is  likely  a

combination of degradation superimposed on a climate gradient.    

4.2.4 Xeric shrubland (UN-LCCS 100, 110, 120). 

The woody cover fraction of xeric shrublands and grasslands ranged between 40 and 60% in the original CWT. Accounting

for the information contained in AGB map significantly decreased  the woody cover fraction range toward 8 and 19%.

Indeed, shrubs which represent a large part of the xeris shrublands  were originally classified as woody vegetation for the

ORCHIDEE  model  (i.e.  when  moving  from  the  generi  PFTs  to  the  ORCHIDEE-specific  PFTs;  see  section  2  and

ORCHIDAS). This assumption is true from an ecological point of view but in a simplified world like in land surface models,

xeric shrubland have an aboveground biomass that resembles that of cropland and grassland (Fig. 2). By overlaying the land

cover type and aboveground biomass maps, 37% of the African shrublands were found to be degraded with a biomass of

2,7±1.5 t.ha-1, 54% were found to be intact with a biomass of 22±19 t.ha -1 and 9% of the shrublands are thickets with a

biomass of 68±11 t.ha-1. This is in line with other aboveground biomass estimates from remote sensing products [Saatchi et

al., 2011, Mitchard et al., 2013, Avitabile et al., 2016] and in situ measurements where shrublands, degraded thicket, and

intact thicket in south Africa accumulated 3, 24 and 102 t.ha -1 of biomass respectively [Mills, et al. 2005]. These findings

suggest that in the model world, xeric shrubland is best represented by a large fraction of herbaceous plant functional groups,

when the overall objective is to model AGB. 

4.3  Consequences for land surface modelling

4.3.2 Which land cover types affect the biomass estimate?

In Tropical Rainforest (UN-LCCS 50, 160) and Deciduous Moist Forest (UN-LCCS 60, 61 and 62), the AGB obtained by

driving ORCHIDEE with the original PFT map falls inside the confident interval simulated by driving ORCHIDEE with the

refined PFT maps (Fig. 6). This is clearly not the case in the rest of the African ecoregions where the original PFT map

systematically  overestimates  the  95% CI of  simulated AGB obtained  by using the  refined  PFTs maps.  In  general,  the

overestimation with the original PFT map is explained by an overall reduction in the forest cover fraction in the refined PFT

maps. 
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Figure  6: Is  the  original  PFT map  fall  inside  the  95% confidence  interval  of  the  refined  PFT maps  (a)  when used  to  drive
ORCHIDEE to simulate AGB (b) and visible Albedo (c). For ecoregions colored in green, the AGB simulated making use of the
original PFT map falls within the simulated 95% AGB range obtained by driving ORCHIDEE with the refined 2,5% and 97,5% PFT
maps. Blue shows regions where the original PFT maps results in a significantly lower than the refined PFT maps. Red shows regions
where the original PFT maps results in a significantly higher than the refined PFT maps. Grey indicates regions where  the simulated
AGB is less than 1 t.ha-1.

Compared to the original maps the refined maps prescribe a 28,4% to 32,4% lower tree cover for shrubland ecoregions like

Somali Acacia-Commiphora Bushlands and Thickets and the Kalahari Xeric Savanna. Propagating these changes in cover

fraction into simulated AGB, resulted in only small changes in carbon stocks (<1 t.ha-1). This counter-intuitive result is

explained by the growth processes simulated in ORCHIDEE. Under xeric climate conditions ORCHIDEE simulates low tree

biomasses (< 2 t.ha-1) because the low precipitation and subsequent plant water availability results in a continuous high tree

mortality. In the refined maps, about ⅓ of the trees are replaced by grasslands which given the plant available water survive

and even grow up to biomass of ~1,5 t.ha-1.

Humid Mixed  Cropland/Forest  ecoregions  like  the  eastern  Guinean  forests  were  systematically  underestimated  by  the

original PFT map. Indeed, compared to the original PFT map, the refined PFT maps prescribe a higher forest cover fraction

for the cropland land cover type in order to include permanent tree crops like cacao, coffee and rubber plantation. Increasing

the forest cover in humid regions results in a strong increase in the simulated AGB because in ORCHIDEE forests under

these climates reach high (> 100 t.ha-1) biomasses. To conclude, underestimating the forest cover in humid ecoregions will

have a much larger consequence on the simulated AGB than overestimating the forest cover in xeric ecoregions.

4.3.3 Which land cover types affect the albedo estimate?

Overestimating the biomass is likely to come with overestimating the leaf area which in turn will result in underestimating

the albedo because the reflectivity of leaves is often lower than the reflectivity of the soils it covers [Oke 2002]. Hence, Fig.
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6c is expected to mirror Fig.  6b. This is  not the case for  the Somali  Acacia-Commiphora Bushlands and Thickets and

Sahelian ecoregions were replacing the forest by better growing grassland, both the biomass and albedo are decreasing. 

4.4 Outlook

In this study a single biomass map was used as this enabled keeping the focus on the method itself. Nevertheless other

biomass products are available [Saatchi et al., 2011, Baccini et al., 2012, Avitabile et al., 2016, Santoro et al., 2020] and

could have been used. Repeating this study for each of these biomass products would add another source of uncertainty to

the cross walking table. Owing to the method presented in this study, this uncertainty could then be propagated into the PFT

map and all the way up to the simulated biomass, albedo -as done in this study for one biomass product- and other land

surface properties. Considering different biomass products would give an insight of the impact of satellite-based biomass

estimates on the discretisation of the vegetation and by extension surface properties as estimated by land surface models.

Likewise, a single land cover map has been used in our analysis but other products are available as well [Copernicus, UN-

spider, Li et al. 2020]. By using different land cover maps one could quantify the uncertainty in the land cover classification

and propagate it to evaluate its impact on the simulated land surface properties.

Compared to other continents, the Africa vegetation has been documented by relatively few quantitative observations [Mills,

et al. 2005, Saatchi et al., 2011, Asner et al., 2012, Réjou‐Méchain et al., 2015]. Hence, it is the continent where remote

sensing data  could  largely  enhance  our  knowledge  on the  issue.  Recent  high‐resolution  satellite  observations  bear  the

promise to significantly reduce the confident interval around the aboveground carbon stock to estimate the CO2 emissions

from tropical forests [Hansen et al. 2013, Bouvet et al. 2018, Defourny et al. 2019, Buchhorn et al. 2020] but land surface

models will need to be ready to routinely assimilate these data to fully benefit from the information contained in biomass

maps. This study demonstrated one way of how satellite-based biomass data can help modelers to refine the initialization

process  by  means  of  refining  the  cross-walking  tables  that  are  used  to  map land  cover  classes  derived  from satellite

observations into PFT maps. Nevertheless biomass maps could be used for applications other than model initialization (this

study), including model parameterisation and model evaluation. 

The biomass map could be used to optimize model parameters related to growth, turnover and mortality to better simulate

the vegetation biomass for the different PFTs. The evaluation stage could benefit from the biomass maps by benchmarking

the model results against observed relationships between biomass-climate and biomass-land-use to better distinguish and

simulate the difference between actual and potential biomass [Sankaran et al 2005]. Although the availability of several

biomass products makes it possible to use one product to inform the cross walking tables and another product to evaluate the

simulated surface properties, the magnitude of present-day differences between biomass products [Mitchard et al. 2013] is

expected  to  result  in  major  inconsistencies  when  different  biomass  products  are  used  for  different  purposes  (e.g.,

assimilation, parameterization, evaluation) into a single analysis. In this study, less than 0,01% (see 2.3.1) of the information

contained in the biomass map was used to refine the cross-walking table and none was used to optimize model parameters.

The simulated biomass (Fig. S2) remains, therefore, largely independent from the biomass map which implies that a single
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biomass map can be used for land cover optimisation (as in this study), and in a second step for parameter optimization or

model evaluation.

With an increase in resolution of the land cover map comes a decrease in the reliance on the cross walking tables. Cross

walking tables will no longer be required once the resolution will be high enough (around 10 x 10 m) such that each pixel

contains a single vegetation type equivalent to a single PFT classification used by LSM [Li et al. 2020]. No longer having to

rely on cross walking tables would likely reduce the confident interval of the PFT map. As there would no longer be a need

to estimate woody and herbaceous fractions, there would no longer be a need for the information contained in the biomass

map. It will then be feasible to solely use biomass maps to better parameterize the processes that contribute to simulating the

reference biomass. It should be noted, however, that higher resolutions will not solve the basic challenge of discretizing

vegetation. High resolution land cover maps would split structurally complex ecosystems, for example savannas, into a pure

forest fraction and a pure grassland fraction. This would overloop the interactions between the grasses and the trees which

are among the defining ecological characteristics of a savanna.

Finally, we should note that other satellite-derived products than the AGB could be used to refine the mapping of the land

cover classes into model PFTs (i.e., CWT). For instance, the global tree cover fraction map, at 30 meter resolution, from

Hansen et al. (2013) could also be used to refine the fraction of tree PFTs within each land cover class (as it was done in this

paper with the AGB map).  
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6 Data availability

 CESBIO African AGB map.Biomass map of Africa created by CESBIO can be downloaded on demand. It consists

of a GIF file in which Africa is spatially discretized in pixels of 1x1km. The unit is a tonne of dry mass per hectare

(t/ha). Contact person: thuy.letoan@cesbio.cnes.fr

 Land cover map is freely available here :  http://www.esa-landcover-cci.org.

 Ecoregion  map  use  follows  the  work  of  Olson  et  al.  2001.  This  map  is  freely  available  here  :

https://databasin.org/datasets/68635d7c77f1475f9b6c1d1dbe0a4c4c/
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7 Code availability

 All R scripts and ORCHIDEE  tags 2.0 (rev 6592) source code are available at :

 https://zenodo.org/badge/latestdoi/345907299     or D  OI: 10.5281/zenodo.4785328  

 ORCHIDEE tags 2.0 (rev 6592) code also available at : 

https://forge.ipsl.jussieu.fr/orchidee/wiki/GroupActivities/CodeAvalaibilityPublication/

ORCHIDEE_tags_2.0_gmd_2021_Africabrowser/tags/ORCHIDEE_2_1     
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