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 15 

Abstract. Most land surface models can, depending on the simulation experiment, calculate the vegetation distribution and 16 

dynamics internally by making use of biogeographical principles or use vegetation maps to prescribe spatial and temporal 17 

changes in vegetation distribution. Irrespective of whether vegetation dynamics are simulated or prescribed, it is not practical 18 

to represent vegetation across the globe at the species level because of its daunting diversity. This issue can be circumvented 19 

by making use of 5 to 20 plant functional types (PFT) by assuming that all species within a single functional type show identical 20 

land–atmosphere interactions irrespective of their geographical location. In this study, we hypothesize that remote-sensing 21 

based assessments of above-ground biomass can be used to constrain the process in which real-world vegetation is discretized 22 

in PFT maps. Remotely sensed biomass estimates for Africa were used in a Bayesian framework to estimate the probability 23 

density distributions of woody, herbaceous, and bare soil fractions for the 15 land cover classes, according to the UN-LCCS 24 

typology, present in Africa. Subsequently, the 2,5th and 97,5th percentile of the probability density distributions were used to 25 

create 2,5% and 97,5% credible interval PFT maps. Finally, the original and constrained PFT maps were used to drive biomass 26 

and albedo simulations with the ORCHIDEE model. This study demonstrates that remotely sensed biomass data can be used 27 

to better constrain the share of dense forest PFTs but that additional information on bare soil fraction is required to constrain 28 

the share of herbaceous PFTs.  Even though considerable uncertainties remain, using remotely sensed biomass data enhances 29 

the objectivity and reproducibility of the process by reducing the dependency on expert knowledge and allows assessing and 30 

reporting the credible interval of the PFT maps which could be used to benchmark future developments. 31 

1 Introduction 32 

Degradation, fires and deforestation of tropical forests are responsible for two thirds of the global net deforestation emissions 33 

(Houghton et al., 2012; Le Quéré et al., 2015; Friedlingstein et al., 2020). Although African tropical rainforests represent only 34 

one third of the global tropical rainforests (Lewis et al., 2009), they were responsible for almost all, i.e., 1,48 PgC in 2015 and 35 

1,65 PgC in 2016, of the net carbon (C) emissions of pan-tropical regions, but substantial uncertainty is associated with these 36 

estimates, i.e., 1,15 for 2015 and 1,0 PgC for 2016, mainly driven by fire and land use changes (Palmer et al., 2019). The 37 

uncertainty of model estimates, such as mentioned above, broadly comes from three sources: (1) the vegetation distribution in 38 

the model, (2) the ability of the model to simulate biomass accumulation of undisturbed vegetation, and (3) the ability of the 39 

model to simulate natural and anthropogenic disturbances of the standing biomass. As this study will focus on improving the 40 

description of the vegetation distribution, the first question that needs to be answered is why vegetation distribution remains 41 

so uncertain?  42 

Most land surface models can either calculate the vegetation distribution internally by making use of biogeographical principles 43 

(Sitch et al., 2003; Krinner et al., 2005; Clark et al., 2011) or use vegetation maps to prescribe spatial and temporal changes in 44 

vegetation distribution. Where the first approach results in a description of the potential vegetation, the second approach is 45 
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more suitable when actual vegetation is to be studied. Irrespective of whether potential or actual vegetation is studied, it is not 46 

practical to represent vegetation across the globe at the species level because there are already over 60,000 tree species (Beech 47 

et al., 2017), not to mention the diversity in herbs, forbs and mosses. Land surface models represent this daunting diversity by 48 

making use of 5 to 20 plant functional types (PFT) (Huete et al., 2016). The underlying assumption of plant functional types 49 

is that all species within a single functional type show identical land–atmosphere interactions irrespective of their geographical 50 

location (Huete et al., 2016; Bonan et al., 2002; Brovkin et al., 1997; Chapin et al., 1996). Discretizing real-world vegetation 51 

in PFTs is a first source of uncertainty.  52 

When actual vegetation is the focus of a modelling study, the vegetation distribution will have to be prescribed. The 53 

construction of vegetation maps first requires real-world observations, typically through satellite-based remote sensing. 54 

Current remote sensing technology does not enable distinguishing individual tree species; hence, vegetation is observed as 55 

land cover types (Defourny, P., 2019) which group vegetation with similar sensory characteristics. The remote sensing 56 

observations themselves as well as classifying them in land cover types are the second and third source of uncertainties (Hansen 57 

et al., 2013, Mitchard et al., 2014, Hurtt et al., 2004). Because the land surface models require the vegetation to be discretized 58 

in PFTs, which may differ between different land surface models, the land cover types will have to be remapped on PFT maps. 59 

The rules applied in remapping satellite-based land cover types in PFT maps is formalized in so-called “cross-walking tables” 60 

(CWT) (Poulter et al., 2011; Poulter et al., 2015) which are a fourth source of uncertainty (Hartley et al., 2017).  61 

Although CWTs have been extensively used to create PFT maps (Wei et al., 2018; Wei et al., 2016; Poulter et al., 2011; 62 

Krinner et al 2005), the process of associating land cover types with specific PFTs remains difficult to reproduce since several 63 

iterations of expert knowledge are required (Poulter et al., 2011; Poulter et al., 2015). Various land cover classifications exist, 64 

the commonly used FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS; Di Gregorio and 65 

Jansen, 2000). Most classes of the LCCS correspond to a mix of PFTs, which fractions are difficult to assess and likely variable 66 

across regions. For example, several classes are labelled as a mosaic of vegetation types (i.e., “Mosaic of natural vegetation 67 

(tree, shrubs, herbs)”; see Table 2 in Poulter et al., 2015). Not surprisingly, efforts have been made to decrease the need of 68 

expert knowledge in favour of more objective and reproducible approaches, e.g., classification rules based on a suite of 69 

improved and standard MODIS products (Wanxiao et al., 2008). Moreover, producing PFT maps from satellite-based land 70 

cover maps needs to become fully automated when the temporal frequency of satellite-based land cover and biomass maps 71 

will increase thanks to the recent GEDI Lidar data (Dubayah et al., 2020) or future SAR missions like the NASA-ISRO 72 

Synthetic Aperture Radar (NiSAR) or BIOMASS missions (Le Toan et al., 2011; Quegan et al., 2019). 73 

In this study, we hypothesize that remote sensing-based assessments of above ground biomass (ABG) can decrease the 74 

dependency on expert knowledge when setting up CWTs and as such contribute to the automation of the land cover class 75 

mapping into PFTs for land surface models. The main rationale is that the above-ground biomass content of an ecosystem 76 

provides information on the fraction of tree PFTs of that ecosystem. In this context, the objective of this study are: (1) construct 77 

a framework of data assimilation in which biomass remote sensing products can be routinely used to update an existing or 78 

create a new CWT, (2) constrained a cross-walking table used to convert the ESA-CCI Global Land Cover map into a PFT 79 
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map, and (3) propagate the credible interval from using a CWT in the production of PFT maps, to the simulation results of 80 

biomass and albedo maps derived from a land surface model. Such a framework will be applied and tested over Africa using 81 

the above ground biomass product derived by (Bouvet et al., 2018) for that continent with the ORCHIDEE land surface model 82 

(Krinner et al., 2005) more specifically tag 2.0 revision 6592 close tag 2.2 used for the recent Climate Modelling 83 

Intercomparison Project - phase 6 (CMIP6) (Boucher et al., 2020).  84 

2 Materials and methods 85 

2.1 Overview 86 

Cross-walking tables (CWT) (Poulter et al., 2015) are used to convert the 43 land cover types distinguished on the ESA-CCI 87 

land cover product into generic plant functional types (13 PFTs in (Poulter et al., 2015)) distinguished by large-scale land 88 

surface models such as the ORCHIDEE model (Krinner et al., 2005) used in this study. These generic PFTs are further grouped 89 

and/or divided to match each model-specific PFT classification, using additional grid-cell information to separate grassland 90 

and crop C3 versus C4 photosynthetic pathway (Still et al., 2003) and to split generic PFT according to bioclimatic zones (i.e., 91 

Koppen Geiger climate classification map) (see more details for the ORCHIDEE model in (Lurton et al., 2020)). In this study, 92 

we provide a proof of concept by creating a new ORCHIDEE PFT map by combining information from the ESA-CCI land 93 

cover product and the AGB product for Africa (Bouvet et al., 2018) to estimate woody, herbaceous and bare soil cover fractions 94 

within each land cover type of the ESA-CCI product. Subsequently, the estimated cover fractions are used to constrain the 95 

existing CWT and create a new ORCHIDEE PFT map applicable primarily for Africa (Fig. 1). Finally, the impact of using 96 

AGB maps to constrain the PFT maps on the skill of the ORCHIDEE model to simulate the contemporary biomass and its 97 

spatial distribution over Africa is quantified. Note that the approach is tested over Africa but is generic enough to be applied 98 

everywhere. 99 

 100 

 101 

 102 

 103 
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104 
Figure 1: Approach to assimilate the information held by aboveground biomass (AGB) maps into plant functional type (PFT) maps. 105 
Remote sensing AGB and land cover products are jointly assimilated to obtain cross-walking tables that can be used to make PFT maps. 106 
Owing to the uncertainty analysis in the data assimilation approach, an ensemble of cross-walking tables and PFT cover fraction maps 107 
can be produced. Subsequently, the land surface model ORCHIDEE can be run for different PFT maps to quantify the uncertainty from 108 
propagation of the uncertainty from remote sensing products into a model simulation. 109 

 110 

2.2 Dataset products 111 

2.2.1 Land cover map 112 

ESA’s Climate Change Initiative for Land Cover (CCI-LC) produced consistent global LC maps at 300 m spatial resolution 113 

on an annual basis for the year 2015 (Defourny, P., 2019). Only one year (2015) has been used to estimate the new vegetation 114 

cover cross-walking table. The typology of CCI-LC maps follows the Land Cover Classification System (LCCS) developed 115 

by the United Nations (UN) Food and Agriculture Organization (FAO), to enhance compatibility with similar products such 116 

as GLC2000, and GlobCover 2005 and 2009. The UN-LCCS typology was designed as a hierarchical classification, which 117 

allows adjusting the thematic detail of the legend. The “level 1” legend, also called “global” legend, counts 22 classes and is 118 

globally consistent and thus suitable for global applications such as creating PFT maps for land surface models. The “level 2” 119 

or “regional” legend counts 43 classes which are not present all over the world and could be used in this study given its focus 120 

on a single continent, i.e., Africa (see section 2.2.3). In addition, the UN-LCCS partly overlaps with the PFTs used in climate 121 

models.  122 
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2.2.2 Aboveground biomass map 123 

This study also makes use of a continental map of AGB of African savannas and woodlands for the year 2010 (Bouvet et al., 124 

2018). The map has a 25 m resolution and is built from the 2010 L-band data of the Phased Array L-band Synthetic Aperture 125 

Radar (PALSAR) on the Advanced Land Observing Satellite (ALOS) satellite. Covering the African continent required about 126 

180 data strips of which 91% were acquired between May and November 2010. The remaining 9% of the domain was filled 127 

with imagery from 2009 and 2008. The data have been processed by the Japan Aerospace Exploration Agency (JAXA) using 128 

the large-scale mosaicking algorithm described in Shimada and Ohtaki (2010), including ortho-rectification, slope correction 129 

and radiometric calibration between neighbouring strips, and multi-image filtering described in Bouvet et al., 2018. 130 

The continental AGB map was derived as follows: (1) stratification into wet/dry season areas in order to account for seasonal 131 

effects in the relationship between PALSAR backscatter and AGB, (2) the development of a statistical model relating the 132 

PALSAR backscatter to observed AGB, (3) Bayesian inversion of the direct model, to obtain AGB and its credible interval 133 

for pixels where no observations are available, and (4) masking out non-vegetated areas using the ESA-CCI Land Cover dataset 134 

(but see section 2.1.1). The resulting AGB map was visually compared with existing AGB maps (Saatchi et al., 2011; Baccini 135 

et al., 2012; Avitabile et al., 2016) and cross-validated with AGB estimates obtained from field measurements and LiDAR 136 

datasets (Naidoo et al., 2015). Cross-validation revealed a good accuracy of the dataset, with an RMSD between 8 and 17 t/ha. 137 

For more details on the creation and evaluation of the AGB maps see Bouvet et al., 2018. 138 

2.2.3 Pre-processing 139 

One known limitation of the original AGB map (Bouvet et al., 2018) is the signal saturation and in some cases the decrease of 140 

the signal (Mermoz et al., 2015) occurring in L-band SAR for AGB values higher than 85 t/ha. In order to overcome this issue, 141 

a second AGB map was created, based on two other ancillary datasets: a map of tree cover (Hansen et al., 2013) and a map of 142 

tree height (Simard et al., 2011). The AGB was estimated by deriving an empirical relationship between biomass, available 143 

from airborne Lidar estimates, and the product of tree cover and tree height. The second version targets dense forest areas such 144 

as in the Congo basin and is used to adjust the AGB values at locations where signal saturation occurred. Because of a coarser 145 

resolution from the tree height map (0,01°x0,01°, 100 ha) than the original AGB map (0,00025°x0,00025°, 0,0625 ha), the 146 

new biomass map has been rescaled to 0,01° resolution. The rescaling drastically reduced the noise produced by PALSAR 147 

measurement artefacts (personal communication Thuy Le Toan). The original AGB map was downscaled by an average 148 

resampling method, i.e., computing the weighted average of all contributing pixels. To do so, we used the Gdalwarp function 149 

from GDAL (GDAL/OGR). The map used in this study is a composite of the two versions of the biomass map by using the 150 

following rules: 151 

▪ For broadleaved evergreen forests (UN-LCCS land cover type 50), flood forests (UN-LCCS 160), and closed 152 

broadleaved deciduous forests (UN-LCCS 61), the map based on tree cover and tree height was used because there 153 

is no AGB estimates in the map based on PALSAR. 154 
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▪ For broadleaved deciduous forests (UN-LCCS 60) the maximum between the two maps was used because its biomass 155 

ranged around the threshold of 85 t ha-1 and may create truncated distribution. 156 

▪ For the other land cover types, which typically have a biomass well below 85t ha-1 the AGB value from the PALSAR 157 

map was used because it is considered more reliable than the statistical relationship between biomass, vegetation 158 

cover and vegetation height especially for the lower biomass. 159 

 160 

Given the spatial domain of this study, only the 31 land cover types defined on the ESA CCI-LC map and present in Africa 161 

were retained. The complexity of the study was further reduced by removing all land types that cover less than 1,0% (304,158 162 

km2) of the African surface or that contain less than 1% (i.e., 1,1 Gt) of the total AGB of Africa. Filtering retrained 15 out of 163 

the 31 land cover types including bare land. These 15 land cover types (Table 1) represent 96% of the surface of Africa and 164 

98% of its AGB. 165 

One additional issue had to be dealt with: the spatial resolution of the land cover map (9 ha) largely differed from the resolution 166 

of the AGB map (0,01°x0,01°, 100 ha). Therefore, each observational point on the AGB map is represented by 11x11 pixels 167 

on the land cover map. To simplify the overall data assimilation methodology (see section 3.2), we chose to use only AGB 168 

pixels (100 ha) which have a unique land cover type (i.e., pure pixels, in terms of land cover type). To this aim, the variety of 169 

land cover types across the 11x11 pixels within each AGB pixel (i.e., the number of present, Vlct) was calculated and only 170 

pixels where Vlct=1 was retained. Although this criterion resulted in discarding 99% of the pixels, each of the 15 land cover 171 

types considered could be represented by at least 2000 pixels. To remove outlier pixels, we choose to pick up the 2000 pixels 172 

strictly below the biomass value representing the 97.5th percentile of each LCT biomass distribution shown is the figure 2. 173 

2.3 Data assimilation 174 

2.3.1 Linking land cover fractions and AGB 175 

A linear model was used to relate the satellite-based AGB of a 100-ha pixel to the cover fraction of the satellite-based 176 

vegetation types present at the same location. This relationship can be written as: 177 

 178 

𝐵𝑝 = ∑ 𝐹𝑝,𝑖
𝑛𝑉
𝑖=1 ⋅ 𝐵𝑟𝑒𝑓𝑖                                                                                                               (1) 179 

 180 

where Bp, is the AGB at a given pixel p, Fp, i is the cover fraction of the vegetation type i (i.e., the generic plant functional type 181 

(PFT) used for land surface models, see section 2.1 - overview), Brefi is the reference AGB for the vegetation type i and nV is 182 

the number of vegetation types (i.e., number of PFTs) present in the pixel p. Given the number of unknowns (nV being usually 183 

above 1), equation 1 has many solutions; many of which have no biological meaning. The equifinality of this model can be 184 

reduced by arguing that the large difference in biomass between woody, herbaceous and non-vegetated ecosystems combined 185 
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by their respective cover fraction explains most of the biomass at pixel level. Following this assumption, equation 1 can be 186 

simplified as: 187 

 188 

𝐵𝑝 = 𝐹𝑝,𝑤 ⋅ 𝐵𝑟𝑒𝑓𝑤 + 〖(1 + 𝐹〗𝑝,ℎ − 𝐹𝑝,𝑏) ⋅ 𝐵𝑟𝑒𝑓ℎ               (2) 189 

 190 

where Fp, w, Fp, h and Fp, b are the fractions cover for woody vegetation (i.e., woody PFTs), herbaceous vegetation (i.e., grassland 191 

and cropland) and non-vegetated areas, respectively. Brefw and Brefh are the reference AGB of woody and herbaceous 192 

vegetation, respectively. Equation 2.1 is constrained by equation 2.2 (i.e., the total area coverage of each pixel), hence, Fp, h in 193 

equation 2 can be substituted according to Fp, w+ Fp, h + Fp, b=1 to obtain: 194 

 195 

𝐵𝑝 = 𝐹𝑝,𝑤 ⋅ 𝐵𝑟𝑒𝑓𝑤 + 𝐹𝑝,ℎ ⋅ 𝐵𝑟𝑒𝑓ℎ                 (3) 196 

 197 

Although equation 3 no longer details which vegetation types i (i.e., PFTs) are present on each pixel p, it still has four unknowns 198 

and can, therefore, not be solved analytically. Nevertheless, a statistical solution is within reach if Fp, w, Fp, h, Brefw and Brefh 199 

are estimated from a population of AGB observations containing several independent repetitions that largely exceeds the 200 

number of unknowns. In this study, over 2000 repetitions were available for each of the 15 land cover types that were retained 201 

following filtering (section 2.2.3). The statistical solution will thus consist of four mean parameter values (i.e., Fp, w, Fp, h, Brefw 202 

and Brefh) for each of these 15 land cover types. 203 

As described in section 2.2.3, the selection of homogeneous AGB pixels, i.e., which have a unique land cover class across the 204 

11,11 underlying land cover sub-pixels allow us to rewrite the equation 3 as follow: 205 

 206 

𝐵𝑝𝑝 = 𝐹𝑙𝑐,𝑤 ⋅ 𝐵𝑟𝑒𝑓𝑙𝑐,𝑤 + 𝐹𝑙𝑐,ℎ ⋅ 𝐵𝑟𝑒𝑓𝑙𝑐,ℎ         (4) 207 

 208 

where 𝐵𝑝𝑝  is the average AGB of a specific land cover type lc and Flc, w, Flc, h, Breflc, w, Breflc, h are the unknowns. The unknown 209 

parameters of the regression model (eq. 4) were estimated by using a Bayesian inference method. This approach has been 210 

chosen because it helps to synthesize various sources of information as well as to propagate credible intervals in the result of 211 

our land surface model (Ellison 2004). Bayesian inference requires, however, setting prior probability distributions for each 212 

of the unknowns, i.e., the biomasses and land cover fractions for each of the 16 land cover types. Given these prior probability 213 

distributions, Bayesian inference retrieves the posterior probability distribution for each of the unknown parameters. 214 

2.3.2 Prior value distributions for Breflc, w, Breflc, h and Bpp  215 

The AGB pixels were stratified according to their land cover type and for each land cover type the information contained in 216 

the distribution of the satellite based AGB served to estimate the mean and standard deviation of the prior values of Breflc, w. 217 
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To avoid negative Bref values we used a normal truncated distribution with 0 < 𝑎, 𝑏 < +∞ where (a, b) are the truncated 218 

range: 219 

 220 

𝐵𝑟𝑒𝑓𝑙𝑐,𝑤 ∼ 𝑁(𝜇𝑙𝑐,𝑤, 𝜎𝑙𝑐,𝑤 , 𝑎, 𝑏)                   (5) 221 

 222 

where, μlc, w is calculated as follow: 223 

 224 

𝜇𝑙𝑐,𝑤 = 𝑋𝑡ℎ 𝑝𝑒𝑟. (𝐵𝑝𝑙𝑐)                    (6) 225 

 226 

Where Bplc is a vector containing Bpp values that belong to the land cover type lc and Xthper denotes the 97,5th percentile for 227 

the woody cover types. This choice assumes that with the 97,5th percentile we select the AGB value of a pixel covered only 228 

by woody vegetation (i.e., woody PFT) for the selected land cover type. In contrast to using a few in-situ observations to define 229 

μlc, w, our approach offers the advantage to rely on a large ensemble of satellite-derived AGB observations and to be coherent 230 

with the following optimization.  231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 
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 241 

Figure 2: Probability density distribution of the pure land cover pixel for biomass concentration Bpp for 15 selected land cover types. 242 
The dashed line represents the 97,5th percentile used as the prior estimate for the reference biomass concentration for trees Breflc, w. The 243 
dashed line represents the 50th percentile also used as the prior estimate for the reference biomass for herbaceous cover 244 

 245 

 246 

Without any information about the variability of Breflc, w, we choose to represent σlc, w as: 247 

 248 

𝜎𝑙𝑐,𝑤 = 𝜇𝑙𝑐,𝑤. 0,0375           (7) 249 

 250 

Where 0,0375 accounts for a 30% uncertainty encompassed between the interquartile range of the normally distributed Breflc, 251 

w. Compared to Breflc, w, Breflc, h is more difficult to assess from the satellite-derived data because it often shows bimodal 252 

distributions which may stem from biomass degradation or the presence of shrubs which biomass better resembles that of a 253 

grassland than a woody ecosystem (Fig. 2). We found that while the 2,5th percentile is representing the lowest biomass for 254 

herbaceous ecosystem, the 50th percentile seems to better describe Breflc, h, following equation 6. Having no information about 255 

the variability of Breflc, h, σlc, w followed equation 7. 256 

Finally, Bpp which was the 97,5th for woody cover types or the 50th percentile for herbaceous cover types, comes with a 257 

measurement uncertainty that was thought to follow a normal truncated distribution with 0 < 𝑎, 𝑏 < 𝐵𝑟𝑒𝑓𝑙𝑐,𝑤where (a, b) are 258 

the truncated range. Given that this uncertainty is not known at the pixel level, an uninformative prior was set for the standard 259 
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deviation σblc which can vary between 0 and 200 t/ha. We deliberately took a large uncertainty to cover the observation that 260 

considerable uncertainty remains in satellite-based biomass estimates (bouvet et al., 2018): 261 

 262 

𝐵𝑝𝑝 ∼ 𝑁(𝜇, 𝜎𝑏𝑙𝑐
2 , 𝑎, 𝑏) with 𝜎𝑏𝑙𝑐 ∼ 𝑈(0,200) and 𝜇 = 𝐵𝑝𝑝                                                                                  (8) 263 

 264 

2.3.3 Prior value distributions for Flc, w, Flc, b and Flc, h 265 

Flc, w, Flc, b and Flc, h were defined as fractions of respectively woody vegetation, bare soil and herbaceous vegetation within a 266 

given land cover type, their values thus range between zero and one and their sum is equal to 1. For this reason, a Dirichlet 267 

distribution was used to describe the probability distribution of the woody, bare soil and herbaceous cover fractions:  268 

 269 

(𝐹𝑙𝑐,𝑤 , 𝐹𝑙𝑐,𝑏 , 𝐹𝑙𝑐,ℎ) ∼ 𝐷𝑖(𝜃𝑙𝑐,𝑡 , 𝜃𝑙𝑐,𝑏 , 𝜃𝑙𝑐,ℎ)                            (9) 270 

 271 

OpenBUGS (Thomas, 2010), the software that was used in this study, cannot use a Dirichlet distribution as a stochastic node. 272 

This constraint can be overcome by making the cover fractions dependent on each other: 273 

 274 

𝐹𝑙𝑐,𝑤 = 𝑞𝑙𝑐,1             (10) 275 

𝐹𝑙𝑐,𝑏 = 𝑞𝑙𝑐,2 ⋅ (1 − 𝑞𝑙𝑐,1)            (11) 276 

𝐹𝑙𝑐,ℎ = (1 − 𝑞𝑙𝑐,1) ⋅ (1 − 𝑞𝑙𝑐,2)           (12) 277 

 278 

Let qlc,i with i = 1, ..., K − 1 and K the number of fractions, be a series of independent beta distributions, Be (αi , βi). 279 

 280 

𝑞𝑙𝑐,𝑖 ∼ 𝐵𝑒(𝛼𝑙𝑐,𝑖 , 𝛽𝑙𝑐,𝑖)               (13) 281 

 282 

The parameters of the beta distribution of the cover fraction of bare soil, woody vegetation and herbaceous vegetation (eq. 9) 283 

can then be estimated as follows: 284 

 285 

𝛼𝑙𝑐,𝑖 = 𝜃𝑙𝑐,𝑖 ⋅ (𝜔𝑙𝑐,𝑖 − 2) + 1             (14) 286 

𝜔𝑙𝑐,𝑖 ∼ 𝑈(0,1000)             (15) 287 

 288 

where θlc, i which represents the fraction of each land cover type taken from expert knowledge used to define the so-called 289 

cross walking table (CWT) and taken from a recent update of the CWT. ωlc, i was described by an uninformative uniform 290 
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distribution and thus reflects the relatively low trust we have in the current CWT. The dependencies between the beta 291 

distributions comes from βlc, i that is estimated as: 292 

𝛽𝑙𝑐,𝑖 = ∑ 𝛼𝑙𝑐,𝑢
𝐾
𝑢=𝑖+1                 (16) 293 

 294 

 295 

2.4 Confident interval propagation 296 

2.4.1 Propagating the credible interval from the CWT into the PFT map 297 

The posterior estimates of the cover fractions (Flc, w, Flc, b, Flc, h) will be directly used to make up a new cross-walking table. 298 

The posterior estimates of the cover fractions values are then used to recalculate woody and herbaceous fraction of each generic 299 

PFT of the CWT. In other words, we keep the original split of the different woody PFT defined in the prior CWT and only 300 

rescale the total woody fraction to Flc, w. Then we rescale the bare soil fraction based on Flc, b to finally rescale short vegetation 301 

PFTs (grass and crop). 302 

Given that these posterior estimates come with a probability distribution, a probability distribution of the CWT could be made. 303 

In this study, the 2,5 and 97,5 percentiles and the mode, i.e., the most common value, of the posterior estimates were used to 304 

create three cross-walking tables that were then applied on the ESA-CCI-LC product to create two PFT maps that represent 305 

the 95% interval confidence of the ESA-CC-LC product and one PFT map which represents the one that is used in an 306 

ORCHIDEE simulation. The impact of the various PFT map was quantified for simulated above ground biomass and simulated 307 

surface albedo by running three simulations that only differed by the PFT map used to initialize the ORCHIDEE land surface 308 

model. 309 

In the study, the uncertainty propagation index aimed to identify the ecoregions where the AGB and surface albedo estimates 310 

are most sensitive to uncertainties from the PFT map.  This sensitivity was calculated as: 311 

 𝑆𝑒𝑐𝑜,𝑏 =
𝐴𝐵𝑆 (𝑋97,5−𝑋2,5)

𝐴𝐵𝑆(𝐹𝑒𝑐𝑜,𝑏
97,5 −𝐹𝑒𝑐𝑜,ℎ

2,5 )×100
                (17) 312 

Where X stands for AGB (t/ha) or surface albedo (unitless), Seco, b is expressed in the unit of X for a 1% change in bare soil 313 

fraction.  314 

 315 

2.4.2 Description of the ORCHIDEE land surface model 316 

ORCHIDEE (Krinner et al., 2005; Boucher et al 2020) is the land surface model of the IPSL (Institut Pierre Simon Laplace) 317 

Earth system model. Hence, by conception, it can be coupled to a global circulation model. In a coupled setup, the atmospheric 318 

conditions affect the land surface and the land surface, in turn, affects the atmospheric conditions. However, when a study 319 

focuses just on changes in the land surface ORCHIDEE rather than on the interaction with the atmosphere, it also can be run 320 



13 

 

as a stand-alone land surface model. The stand-alone configuration receives atmospheric conditions such as temperature, 321 

humidity, and wind, to mention a few, from the so-called meteorological forcing. The resolution of the meteorological forcing 322 

determines the spatial resolution and can cover any area ranging from a single grid point to the entire globe.  323 

Although ORCHIDEE does not enforce a spatial or temporal resolution, the model does use a spatial grid and equidistant time 324 

steps. The spatial resolution is an implicit user setting that is determined by the resolution of the meteorological data. 325 

ORCHIDEE can run on any temporal resolution; however, this apparent flexibility is restricted as the processes are nested and 326 

formalised at given time steps: half-hourly (i.e., photosynthesis and energy budget), daily (i.e., net primary production), and 327 

annual (i.e., vegetation dynamics). Hence, meaningful simulations have a temporal resolution of 1 min to 1 h for the energy 328 

balance, water balance, and photosynthesis calculations. In the land-only configuration used in this study, the default time step 329 

for these processes is 30 minutes. 330 

When an application requires the land surface to be characterised by its actual vegetation, the vegetation will have to be 331 

prescribed by annual land cover maps. These maps must follow specific rules for the land surface models to be able to read 332 

them. In the case of ORCHIDEE the share of each of the 15 possible plant functional types needs to range between 0 and 1 333 

and be specified for each pixel. When satellite-based land cover maps are used as the basis for an ORCHIDEE-specific PFT 334 

map, the satellite-based land cover classification will need to be converted to match the ORCHIDEE specifications. As 335 

mentioned already above, this involves two steps: i) the derivation of generic PFTs from the satellite land cover classes (in our 336 

case the ESA-CCI-LC product) through the CWT discussed in this paper and ii) the final mapping of the generic PFTs into 337 

the 15 ORCHIDEE-specific PFTs using additional information on the bioclimatic zones and the partition of grassland/crops 338 

into C3 versus C4 photosynthetic pathway (Lurton et al., 2020). 339 

In this study, AGB was defined as the sum of leaf biomass, fruit biomass, aboveground sapwood biomass, and aboveground 340 

heartwood biomass which are default output variables of ORCHIDEE. Surface albedo was defined as the albedo in the visible 341 

wavelengths and is a default output variable of ORCHIDEE.  342 

  343 

Table 1: Description of the 15 plant functional types (PFT) used in ORCHIDEE to represent global vegetation. 344 

PFT Climate Vegetation type Phenology class 

1 global NA Bare soil 

2 Tropical Woody Broadleaf evergreen 

3 Tropical Woody Broadleaf deciduous 

4 Temperate Woody Needleleaf Evergreen 

5 Temperate Woody Broadleaf Evergreen 

6 Temperate Woody Broadleaf Summer green 

7 Boreal Woody Needleleaf Evergreen 
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8 Boreal Woody Broadleaf Summer green 

9 Boreal Woody Needleleaf Deciduous 

10 Temperate Herbaceous Natural (C3) 

11 global Herbaceous Natural (C4) 

12 global Herbaceous Managed (C3) 

13 global Herbaceous Managed (C4) 

14 Tropical Herbaceous Natural (C3) 

15 Boreal Herbaceous Natural (C3) 

 345 

2.4.3 Experimental setup 346 

ORCHIDEE tag 2.0 (rev 6592) was used to run tree simulations that only differed by the PFT map used. Following a 340-347 

yearlong spinup to initialise the carbon pools in the model, each simulation consisted of a 110years long simulation between 348 

1901 to 2010 with the CRU-NCEP v8 climate reconstruction (Viovy, 2017) that matched the simulation years. CO2 349 

concentration was fixed to 299,16 ppm and thus corresponds to the 2010 concentration.  350 

2.4.4 Ecoregions 351 

Results related to the land surface model simulation were presented by subdividing the African continent into ecologically 352 

homogeneous regions, so-called ecoregions, as defined by Olson et al., (2001). 353 

3 Results 354 

3.1 Prior and posterior distributions estimates 355 

3.1.1 Vegetation cover fraction: prior and reference biomass distributions  356 

Prior distributions for the cover fractions and reference biomasses were determined for all 15 land cover classes separately, 357 

nevertheless, four broadly different groups could be distinguished: (1) The 97,5 th percentile of biomass distribution for each 358 

land cover belonging in the first group was so high, i.e., from 245 to 416 t/ha, that the land cover types in this group must 359 

correspond to a substantial tree cover., i.e., a woody cover fractions of 0,58 to 0,75. Examples of this group are land cover 360 

types UN-LCCS 50, 61, and 160 (tree cover broadleaf types in Table 2). (2) Contrary to the first group, the 97,5th percentile 361 

of biomass distribution for each land cover type of the second group is so low, i.e., from <12 to 42 t/ha, that these land cover 362 

types must be dominated by grasses or bare soil, i.e., a woody cover fraction of 0.1 or less and a substantial bare soil cover 363 

fraction up to 0,71. Examples of this group are UN-LCCS 130, 150 and 153 (grassland and sparse vegetation in Table 2). (3) 364 
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The biomass of the third group falls in between these extremes representing mosaic land cover types like the UN-LCCS 10, 365 

11, 30, 40, 100, 110 and 120 (mosaic landscape in Table 2). When taken over the African continent, the biomass distribution 366 

of these land cover types shows bimodal biomass distributions indicating considerable variability within these land cover types 367 

(Fig. 2). (4) The bimodal biomass distribution of the fourth group is backed by a rather high woody reference biomass 368 

associated with a low woody cover fraction which may represent an ecosystem highly disturbed by either silvicultural practice 369 

or a fire regime. UN-LCCS 60, 62 fall into this group which represents the woodland to dry savanna continuum.  370 

3.1.2 Vegetation cover fraction: posterior distributions 371 

Owing to the Bayesian approach, the woody and herbaceous fraction within each land cover type is no longer deterministic 372 

(as was the case with the previous generation of cross-walking table such as in Poulter et al., 2015) but now comes with a 373 

distribution. This distribution is the outcome of propagating the credible interval on the retrieved parameters obtained from 374 

the Bayesian approach into the final product, i.e., the PFT cover fraction map. The 95% credible interval was studied by 375 

comparing the 2,5 and 97,5 percentiles of the distribution of woody, herbaceous and bare soil fractions (Flc, w, Flc, h, Flc, b). 376 

The mean change in forest cover fraction between the 2,5 and 97,5 percentiles of the distribution of constrained PFT maps 377 

over Africa was 1,6±2,6%. At the ecoregion scale (when averaging the cover fraction over the ecoregion), the largest 378 

uncertainty in forest cover fraction was found in the Congo basin with an average of -6,3±0,5% for the six ecoregions where 379 

LCT 50 is dominant (Fig 3A).          380 

The 95% uncertainty interval for bare soil cover fraction is 13±8% mainly due to the large uncertainty of the cropland and 381 

mosaic cropland (UN-LCCS 10, 11, 30,40). In ecoregions where these LCTs are dominant, this credible interval increases to 382 

24±7% (Fig. 3B). Moreover, dense forest land cover type i.e., LCT 50, 160 also come with 15±4% uncertainty in their bare 383 

soil fraction estimates (Fig. 3B).   384 

  385 
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386 
Figure 3: Uncertainty in CWT constrained by an AGB map. Absolute change in forest (A) and bare soil (B) cover fraction (%) between 387 
the 2,5 and 97,5 percentile PFT maps. High values represent a large uncertainty in the estimation of the true cover fraction. C and D 388 
represent disagreement estimated as the difference between the CWT based on expert knowledge and the CWT constrained by an AGB 389 
map. Disagreement in forest (C) and bare soil (D) is expressed as absolute change (%).  High values represent a strong disagreement 390 
between the two methods. Black lines delimit the different ecoregion according to Olson et al., 2001.  391 
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Table 2: Surface area (%), share in the continental biomass (%), prior parameters, and posterior median and credible interval values 392 
for each of the 15 land cover types considered in this study. The numbering, description and surface area of each land cover type is 393 
based on the ESA-CCI product (Defourny, P., 2019), where its share in the continental biomass is based on a compilation of Bouvet et 394 
al 2018. θlc, μlc and σlc represent the parameters describing the prior distributions of Flc and Breflc. Estimation of these parameters is 395 
detailed in section 2.3. For each land cover type and each parameter, the 2,5, the constrained and the 97,5 percentiles are computed. 396 
We use the mode for the constrained CWT as an approximation of the posterior θlc, w, since the posterior distributions of Flc, i may be 397 
asymmetric.398 

 399 

Nonetheless, in a classic simulation experiment the most common values of Flc, w, Flc, h, Flc, b will be used. The most common 400 

values of Flc, w, Flc, h, Flc, b are given by the mode of the posterior distribution (“constrained CWT” in Table 2.a). The mode was 401 

used to show the difference between the original and the constrained PFT maps (Fig. 3C-D). The mean difference in forest 402 

cover fraction between the prior (original) and the constrained PFT maps is -15±12% (Fig. 3C). Largest disagreement between 403 

was observed over the Somali Acacia-Commiphora Bushlands and Thickets and the Kalahari Xeric Savanna where forest 404 

cover fraction was found to be on average 32±1% lower in the constrained PFT maps (Fig. 3C). The Bare soil cover fraction 405 
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changes on average by 3,1±0,5% (Fig. 3D). The constrained PFT map has on average 16±4% more bare soil cover fraction 406 

over the Congo Basin than the original map (Fig. 3C). 407 

 408 

3.3 Uncertainty propagation of the PFT maps on the aboveground biomass and visible albedo estimates from 409 

ORCHIDEE simulations 410 

PFT maps are essential boundary conditions of land surface models because they condition the spatial distribution of various 411 

ecosystem states-properties (i.e., carbon content, albedo, water-carbon-energy fluxes, etc). When tested with ORCHIDEE tags 412 

2.0 (rev 6592), the absolute difference in biomass stock between the 2,5 and 97,5 percentile maps was 0,5±5,7 t/ha (Fig. 4A) 413 

representing 0.2 t/ha/% of cover faction (Fig 4C). Notable exception is the Congo basin where different PFT maps could result 414 

in AGB estimates that differ by 18 t/ha (Fig. 4A) for a 6,5% difference in the forest cover (Fig 3A). Different PFT maps make 415 

the average visible albedo range from 0,081±0,055 to 0,083±0,055. The largest uncertainty for the visible albedo simulated 416 

with ORCHIDEE was found over the Nigerian lowland forest (0,158) and West Sudanian Savanna (0,107) (Fig. 4B) which 417 

represent a 24% to 11% change in forest cover respectively. The sensitivity is the highest in the western Congo basin with 418 

1,4% of albedo/% of cover faction. In contrast, West Sudanian Savanna possesses a low sensitivity with 0.5%. To summarise, 419 

we found that a smaller forest to bare soil transition uncertainty can drastically change the albedo of an ecoregion than a larger 420 

uncertainty in the grassland/cropland to bare soil transition.   421 
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422 

Figure 4: Confident interval propagation of the PFTs maps into AGB and visible albedo simulated by ORCHIDEE. (A) uncertainty 423 

propagation into AGB and (B) uncertainty propagation into visible albedo from the difference between the 2,5% and the 97,5% PFT 424 

map defined by the optimisation procedure. uncertainty propagation index (eq. 16) for AGB (C) and visible albedo (D). 425 
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4 Discussion 426 

4.1 Discretizing vegetation 427 

Irrespective of the data products, the methods, and the model used, discretizing vegetation comes with its own challenges. 428 

Discretizing transitions of ecosystems into land cover type classes (Sankaran et al., 2005), for example, can lead to systematic 429 

uncertainties since all pixels that belong to the same land cover class will get the same vegetation cover fractions in the cross-430 

walking table (see 4.1.3). This approach articulates a key assumption underlying the PFT-approach, i.e., that only one life form 431 

survives and thus dominates the vegetation due to competition for nutrients, light and water (Hutchinson et al., 1961). However, 432 

the Savanna ecosystem, for example, is characterised by the coexistence of trees, shrubs and grasses which has been explained 433 

by interactions between vegetation, rainfall, fire, and browsing regimes (Eigentler and Sherratt., 2020). This makes savannas 434 

one of the most difficult ecosystems to classify in a land cover type and subsequently convert it into a PFT map.    435 

Over Africa, land cover classes such as shrubland (UN-LCCS 120) represent a wide range of ecosystems, from sparse xeric 436 

shrubland composed of small bushes, e.g., Penzia incana (Thunb.) Kuntze, grasses, e.g., Sip agrostis spp. such as found in 437 

Karoo desert, to dense thicket composed by succulent, e.g., Portulacaria afra Jacq. and spinescent shrubs (~3m tall) (Mills, et 438 

al., 2005). Combining land cover types and biomass maps showed that the shrubland pixels in Africa more often resemble 439 

sparse xeric shrubland than dense thickets. Improving the ability to simulate land surface properties of shrublands in a changing 440 

world, especially in Africa where shrub encroachment is an important land cover dynamic (Wigley et al., 2010, Buitenwerf et 441 

al., 2012, O'Connor et al., 2014), is likely to benefit from a more detailed representation of shrublands in land surface models. 442 

A first step could be to represent shrubs as small trees, as was tested with the ORCHIDEE model for arctic ecosystems (Druel 443 

et al., 2017), but ultimately the control of precipitation on plant density (Rietkerk et al., 2002) should also be modelled. 444 

Another major challenge with discretizing vegetation is how degraded ecosystems should be classified. From a modelling 445 

point of view, they should be classified as the land cover type that occurred prior to the degradation and the cause of the 446 

degradation. e.g., fire, grazing, erosion, should be explicitly accounted for in the land surface model. This ideal strongly differs 447 

from the current approach in which the degraded vegetation is classified as if it is in its natural state. Even when having the 448 

correct PFTs, the current approach would fail to simulate the observed biomass if degradation occurred. As an alternative, the 449 

PFT map could duplicate all PFTs to distinguish between a PFT in its natural state and in its degraded state. This approach in 450 

which degradation is accounted for in the PFT maps would, however, reduce degradation to a binary problem rather than 451 

addressing its continuous nature. 452 

4.2 Knowledge gain from using the AGB map 453 

In the absence of an AGB map, previous efforts to build cross-walking tables (Poulter et al., 2015) had to rely in part on expert 454 

knowledge. That generation of cross-walking tables can be considered as the best-available-knowledge in the absence of AGB 455 

data or other information on the land surface cover. The method developed and demonstrated in this study mostly relies on 456 

data but comes with its own assumptions and statistical complexities. The key assumptions are that: (1) previous cross-walking 457 
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tables (Poulter et al., 2015) are a reliable source to set the prior distribution for PFT cover, (2) the biomass map (Bouvet et al., 458 

2018) is a reliable source to set the prior distribution of the reference biomasses, and (3) the land cover classification contains 459 

homogeneous land cover types (Defourny, P. et al., 2019). A key question is thus whether the added complexity justifies the 460 

knowledge gained by jointly assimilating a land cover and a biomass map when producing a CWT?  461 

Ideally this question should be addressed by assessing the reduction of the credible interval associated to the posterior 462 

distribution of the PFT map when using the AGB map to constrain the CWT (in comparison to a prior when no AGB is used). 463 

However, the present generation of CWT without AGB information, does not come with a distribution (except the attempt in 464 

Hartley et al., (2017)), calling for an alternative approach to assess the knowledge gain. Given that the prior distribution of the 465 

cover fraction was based on the previous CWT, the difference between the prior and the posterior distributions can be 466 

considered as the knowledge gained from using AGB information. Following this reason, the question we seek to answer is: 467 

“Is the cover fraction used by the original cross walking table falling outside the 95% credible interval of our posterior 468 

estimate?”  469 

If the answer is no, the biomass map is more likely in agreement with the previous effort to estimate the original cross walking 470 

table. If the answer is yes, adding the information contained in the satellite-based biomass maps is most likely in strong 471 

disagreement with the previous effort to estimate the original cross walking table. The original CWT has a global extent, and 472 

the constrained CWT is only valid for Africa. Therefore, knowledge gains should be carefully interpreted as they may reflect 473 

trade-offs that had to be made previously to construct a global rather than regional CWT. Knowledge gains were assessed for: 474 

“croplands”, “dense evergreen forests”, “woodlands and savannas”, and “xeric shrublands and grasslands” separately. 475 

 476 

4.2.1 Croplands (UN-LCCS 10, 11, 30, 40). 477 

Despite the cover fraction of woody vegetation on croplands being close to none in the original CWT, this study found that 478 

the four land cover types associated with croplands, UN-LCCS 10, 11, 30, 40 are in fact covered with 11% to 24% woody 479 

vegetation (Table 2). This large difference in the presence of woody vegetation on croplands is also reflected in the biomass 480 

data, which suggest two distinct but co-existing agricultural systems in Africa, i.e., one system with a low biomass and one 481 

around with a higher biomass.  482 

The agricultural system with the low biomasses likely represents annually replanted crops such as millet, sorghum, wheat, 483 

sweet potatoes or cassava (FAO), with a maximum reported biomass between 10 and 15 t/ha for high-input cropping associated 484 

with commercial production of cassava and sweet potatoes. These values are in line with values estimated as reference biomass 485 

(see 2.3.2). Nonetheless, 97% of total cropland area Africa is rainfed (Calzadilla et al., 2009) and most of Africa’s agricultural 486 

land is used for subsistence or small-scale farming associated with low-input cropping which explains why the actual average 487 

biomass estimate from the CESBIO map for cropland is between 2,0± 0,7 t/ha (Fig. 2) and thus considerably lower than the 488 

potential production. 489 
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The high biomass agricultural system which is estimated at 83±3 t/ha in the CESBIO map (Fig. 2) likely includes plantations 490 

for coffee, rubber, fruits as well as shelter trees and forest remnants (FAO). Permanent croplands do not have their own land 491 

cover type in the UN-LCCS or in ORCHIDEE. The mixture of bare soil, herbaceous vegetation and woody vegetation, makes 492 

it challenging to discretize African croplands into the current PFTs (Table 1). Moreover, small changes in the woody reference 493 

biomass for high biomass agricultural systems lead to large changes in cover fractions of herbaceous vegetation and bare soil 494 

ratio. Without constraint reference biomass estimates, total biomass alone does not sufficiently constrain the share of woody 495 

vegetation. For the time being, high biomass agricultural systems could be with a woodland fraction ranging from 9,0% to 496 

26% (Table 2). Although this could be an acceptable solution for biomass and albedo simulations, it will underestimate the 497 

agricultural production in the region.   498 

  499 

4.2.2 Tropical rainforest (UN-LCCS 50, 160). 500 

The woody cover fraction of tropical rainforest in the original CWT is close to 90% and falls outside the credible interval of 501 

the posterior estimates, i.e., 71 to 79%. This lower cover fraction from many pixels classified as tropical rainforest that do not 502 

reach the reference biomass of 416±16 t/ha (Fig. 2). The reference derived from the biomass map matches the AGB observed 503 

at field plots of intact forests in the Congo basin (Lewis et al., 2013) but the large value in bare soil cover fraction for these 504 

land cover types may thus reflect wide-spread degradation of the forests in the region (Tyukavina et al., 2018) or a too high 505 

reference biomass (Kearsley et al., 2013). 506 

 507 

4.2.3 Tropical deciduous forest, woodland, and savanna (UN-LCCS 61, 60 and 62).  508 

The woody cover fraction of the tropical deciduous forest ranged between 45% and 75% in the original CWT. Refining the 509 

CWT using AGB information shifts this range to between 27% and 58%. For savanna (UN-LCCs 62) the original cover 510 

fractions are within the constrained 95% CI. For woody cover, the fraction of deciduous forest (UN-LCCS 61) decreased from 511 

85% to 58%. We observe an overall decrease for the woody cover fraction since the reference biomass is much higher than 512 

the actual biomass of most of the pixels.   513 

Although the reference biomasses used in this study are in line with previously reported values (Carreira et al., 2013), 514 

disagreement between the original and the constrained CWT is considerable. The original CWT starts from the view that all 515 

ecosystems (except croplands) are in their natural state. The AGB map, however, does not contain any evidence in support of 516 

this view but rather suggests that 50% of the savanna (UN-LCCs 62) are 65% below their reference biomass. Likewise, 50% 517 

for dry woodland (UN-LCCs 60) are 71% below their reference biomass (Fig. 2). The AGB map thus suggests wide-spread 518 

degradation of these ecosystems which are in a highly anthropized region (Mitchard et al., 2013). Uncertainty coming from 519 

the reference biomasses could be reduced by field observations at the ecoregion or finer spatial scales. 520 
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For deciduous forest, however, the difference in cover fraction of woody vegetation between the original CWT and the 521 

constrained CWT could also be explained by an inaccurate estimation of the reference biomass due to a too coarse definition 522 

of the deciduous woody vegetation ranging from deciduous forest, over woodlands to savannas which are composed by 523 

different dominant tree species, with different biomasses (Sawadogo et al., 2010). 524 

4.2.4 Xeric shrubland (UN-LCCS 100, 110, 120).  525 

The woody cover fraction of xeric shrublands and grasslands ranged between 40 and 60% in the original CWT. Accounting 526 

for the information contained in the AGB map significantly decreased the woody cover fraction range toward 5,0 and 16%. 527 

Indeed, shrubs which represent a large part of the xeric shrublands were originally classified as woody vegetation for the 528 

ORCHIDEE model (i.e., when moving from the generic PFTs to the ORCHIDEE-specific PFTs; see section 2). This 529 

assumption is true from an ecological point of view but in a simplified world like in land surface models, xeric shrubland has 530 

an aboveground biomass that resembles cropland and grassland (Fig. 2). By overlaying the land cover type and aboveground 531 

biomass maps, 37% of the African shrublands were found to be degraded with a biomass of 2,7±1,5 t/ha, 54% were found to 532 

be intact with a biomass of 22±19 t/ha and 9% of the shrublands are thickets with a biomass of 68±11 t/ha. This is in line with 533 

other aboveground biomass estimates from remote sensing products (Saatchi et al., 2011; Mitchard et al., 2013; Avitabile et 534 

al., 2016) and in situ measurements where shrublands, degraded thicket, and intact thicket in south Africa accumulated 3, 24 535 

and 102 t/ha of biomass respectively (Mills, et al., 2005). These findings suggest that in the model world, xeric shrubland is 536 

best represented by a large fraction of herbaceous plant functional groups, when the overall objective is to model AGB.  537 

4.2.4 Sparse vegetation (UN-LCCS 150, 153). 538 

The constrained cover fraction estimates are in line with the original CWT for UN-LCCS 150 which represent the most 539 

common class of sparse vegetation. The constrained cover fraction for UN-LCCS 153 has a larger herbaceous i.e., 29 to 97%, 540 

then the bare soil cover fraction, i.e., 2,0 to 61% contrary to the original CWT. The herbaceous cover fraction could be 541 

overestimated if a too low reference biomass was used. A reference biomass of 3,0 t/ha was used and is acceptable compared 542 

to the reported biomass for the Succulent and Nama Karoo Biomes ranging from 0.5 to 7,6 t/ha (Rutherford, 1978; Rutherford 543 

and Westfall, 1986). Given the current lack of reference biomass observations, disagreement between the original and 544 

constrained CWT could be resolved by using an independent estimate of bare soil fraction.  545 

 546 

4.3 Consequences for land surface modelling 547 

4.3.1 Which land cover types affect the biomass estimate? 548 

The large disagreement in cover fraction estimates (30 to 40%) resulted in small disagreement in biomass, i.e., <1,0 t/ha in 549 

regions with little precipitation like Somali Acacia-Commiphora Bushlands and Thickets and the Kalahari Xeric Savanna. This 550 

counter-intuitive result is explained by the growth processes simulated in ORCHIDEE. Under xeric climate conditions 551 
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ORCHIDEE simulates low tree biomasses (< 2,0 t/ha) because the low precipitation and subsequent plant water availability 552 

results in a continuous high tree mortality. Nonetheless, in forest ecoregions like the eastern Guinean forests or in the Congo 553 

basin, where the sensitivity to a change in the cover fractions ranged from 1,0 to 5,0 t/ha/% and had a considerable impact on 554 

the simulation since a 15% uncertainty in the bare soil fraction may lead to a 75 t/ha uncertainty of the biomass in the tropical 555 

forest of the Congo basin. Underestimating the forest cover in humid ecoregions will have a much larger consequence on the 556 

simulated AGB than overestimating the forest cover in xeric ecoregions. The uncertainty surrounding the land cover fractions 557 

should thus be further reduced for the land cover types that already come with the lowest uncertainty, i.e., the forests. 558 

4.3.2 Which land cover types affect the albedo estimate? 559 

As for AGB, uncertainties in land cover fractions are only partly reflected in the uncertainties of the visible albedo. Dampening 560 

is caused by the fact that the reflectivity of grassland (0.06), cropland (0.06) are close to the leaf reflectivity of a forest (0.03 561 

to 0.04) compared to bare soils reflectivity (0.1 to 0.25 depending on the colour of the soil) in ORCHIDEE. By increasing the 562 

bare soil cover fraction, the albedo will increase accordingly but changing forest into grassland will not drastically change 563 

albedo. The most sensitive area is the western tropical forest in the Congo basin for which a 15% change in bare soil cover 564 

fraction may trigger a 15% change in the visible albedo (fig 3C).  Similar as for AGB, the uncertainty surrounding the land 565 

cover fractions of the forested land cover types should be further reduced to reduce the uncertainty of the model simulations.  566 

4.4 Outlook 567 

In this study a single biomass map was used as this enabled keeping the focus on the method itself. Nevertheless, other biomass 568 

products are available (Saatchi et al., 2011; Baccini et al., 2012; Avitabile et al., 2016; Santoro et al., 2021) and could have 569 

been used. Repeating this study for each of these biomass products would add another source of uncertainty to the cross-570 

walking table. Owing to the method presented in this study, this uncertainty could then be propagated into the PFT map and 571 

all the way up to the simulated biomass, albedo -as done in this study for one biomass product- and other land surface 572 

properties. Considering different biomass products would give an insight of the impact of satellite-based biomass estimates on 573 

the discretisation of the vegetation and by extension surface properties as estimated by land surface models. Likewise, a single 574 

land cover map has been used in our analysis, but other products are available as well (Copernicus, UN-spider, Li et al., 2020). 575 

By using different land cover maps, one could quantify the uncertainty in the land cover classification and propagate it to 576 

evaluate its impact on the simulated land surface properties. 577 

Compared to other continents, the Africa vegetation has been documented by relatively few quantitative observations (Mills, 578 

et al., 2005; Saatchi et al., 2011; Asner et al., 2012; Réjou‐Méchain et al., 2015). Hence, it is the continent where remote 579 

sensing data could largely enhance our knowledge on the issue. Recent high‐resolution satellite observations bear the promise 580 

to significantly reduce the credible interval around the aboveground carbon stock to estimate the CO2 emissions from tropical 581 

forests (Hansen et al., 2013; Bouvet et al., 2018; Defourny et al., 2019; Buchhorn et al., 2020) but land surface models will 582 

need to be ready to routinely assimilate these data to fully benefit from the information contained in biomass maps. This study 583 
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demonstrated one way of how satellite-based biomass data can help modellers to constraint the initialization process by means 584 

of refining the cross-walking tables that are used to map land cover classes derived from satellite observations into PFT maps. 585 

Nevertheless, biomass maps could be used for applications other than model initialization (this study), including model 586 

parameterisation and model evaluation.  587 

The biomass map could be used to optimise model parameters related to growth, turnover and mortality to better simulate the 588 

vegetation biomass for the different PFTs. The evaluation stage could benefit from the biomass maps by benchmarking the 589 

model results against observed relationships between biomass-climate and biomass-land-use to better distinguish and simulate 590 

the difference between actual and potential biomass (Sankaran et al., 2005). Although the availability of several biomass 591 

products makes it possible to use one product to inform the cross-walking tables and another product to evaluate the simulated 592 

surface properties, the magnitude of present-day differences between biomass products (Mitchard et al., 2013) is expected to 593 

result in major inconsistencies when different biomass products are used for different purposes (e.g., assimilation, 594 

parameterization, evaluation) into a single analysis. In this study, less than 0,01% (see 2.3.1) of the information contained in 595 

the biomass map was used to constraint the cross-walking table and none was used to optimise model parameters. The 596 

simulated biomass remains, therefore, largely independent from the biomass map which implies that a single biomass map can 597 

be used for land cover optimisation (as in this study), and in a second step for parameter optimization or model evaluation. 598 

With an increase in resolution of the land cover map comes a decrease in the reliance on the cross-walking tables. Cross 599 

walking tables will no longer be required once the resolution will be high enough (around 10 x 10 m) such that each pixel 600 

contains a single vegetation type equivalent to a single PFT classification used by land surface models (Li et al., 2020). No 601 

longer having to rely on cross walking tables would likely reduce the width of the credible intervals of the PFT map. As there 602 

would no longer be a need to estimate woody and herbaceous fractions, there would no longer be a need for the information 603 

contained in the biomass map. It will then be feasible to solely use biomass maps to better parameterize the processes that 604 

contribute to simulating the reference biomass. It should be noted, however, that higher resolutions will not solve the basic 605 

challenge of discretizing vegetation. High resolution land cover maps would split structurally complex ecosystems, for 606 

example savannas, into a pure forest fraction and a pure grassland fraction. This would overlook the interactions between the 607 

grasses and the trees which are among the defining ecological characteristics of a savanna. 608 

Finally, we should note that other satellite-derived products than the AGB could be used to constrain the mapping of the land 609 

cover classes into model PFTs (i.e., CWT). For instance, the global tree cover fraction map, at 30-meter resolution, from 610 

Hansen et al., (2013) could also be used to constraint the fraction of bare soil within each land cover class like what was done 611 

in this study with the AGB map.  612 

 613 

4.5 Conclusion 614 

This study demonstrates how an aboveground biomass map could be used to constrain a cross-walking table that enables 615 

remapping land cover types derived from satellite-observations into plant functional types used as a boundary condition in 616 
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land surface models. Given that previous cross-walking tables did not report uncertainties as they were mostly based on expert-617 

knowledge, it remains unclear how much the use of an additional constraint really improved the cross-walking tables. 618 

Nevertheless, the considerable uncertainties remaining in the cross-walking table that made use of the aboveground biomass 619 

map suggests that total biomass map should be complemented with a bare soil map to better constrain the cross-walking table. 620 

Likewise, the reference biomass for both herbaceous and woody vegetation need to be constrained to at least the ecoregion 621 

scale to avoid underestimating or overestimating bare soil fractions. The method developed in this study helped to estimate 622 

the uncertainty of cross-walking tables which can now be used to benchmark further methodological developments. Moreover, 623 

the method identified bare soil cover fraction would be required to reduce the uncertainty of future cross-walking tables and 624 

the plant functional type maps they generate.    625 

5 Acknowledgements 626 

This study was primarily financed by the French space agency, Centre National d’Etude Spatiale (CNES), through the 627 

"BIOMASS-Valorisation" project from the TOSCA research program which contributed to the funding of Guillaume Marie 628 

and Cécile Dardel. The Marie Sklodowska Curie Fellowship CLIMPRO (MSCA-Fellowship EU 895455) partly funded 629 

Guillaume Marie.   630 

 631 

 632 

 633 

6 Data availability 634 

▪ CESBIO African AGB map. Biomass map of Africa created by CESBIO can be downloaded at https://www.theia-635 
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