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Abstract. The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate 

reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 

(NorESM1)—which features interactive aerosol-cloud schemes and an isopycnic-coordinate ocean component with 15 

biogeochemistry—with anomaly assimilation of SST and T/S-profile observations using the Ensemble Kalman Filter 

(EnKF).  

We describe the Earth system component and the data assimilation (DA) scheme, highlighting implementation of new 

forcings, bug-fixes, retuning, and DA innovations. Notably, NorCPM1 uses two anomaly assimilation variants to assess the 

impact of sea ice initialization and climatological reference period: The first (i1) uses a 1980–2010 reference climatology for 20 

computing anomalies and the DA only updates the physical ocean state; the second (i2) uses a 1950–2010 reference 

climatology and additionally updates the sea ice state via strongly coupled DA of ocean observations.  

We assess the baseline, reanalysis and prediction performance with output contributed to the Decadal Climate Prediction 

Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). The NorESM1 simulations exhibit a 

moderate historical global surface temperature evolution and tropical climate variability characteristics that compare 25 

favourably with observations. The climate biases of NorESM1 using CMIP6 external forcings, are comparable to, or slightly 

larger than those of the original NorESM1 CMIP5 model, with positive biases in Atlantic meridional overturning circulation 

(AMOC) strength and Arctic sea ice thickness, too cold subtropical oceans and northern continents, and a too warm North 

Atlantic and Southern Ocean. The biases in the assimilation experiments are mostly unchanged, except for a reduced sea ice 

thickness bias in i2 caused by the assimilation update of sea ice, generally confirming that the anomaly assimilation 30 

synchronises variability without changing the climatology. The i1 and i2 reanalysis/hindcast products overall show 

comparable performance. The benefits of DA-assisted initialization are seen globally in the first year of the prediction over a 
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range of variables, also in the atmosphere and over land. External forcings are the primary source of multiyear skills, while 

added benefit from initialization is demonstrated for the subpolar North Atlantic (SPNA) and its extension to the Arctic, and 

also for temperature over land if the forced signal is removed. Both products show limited success in constraining and 35 

predicting unforced surface ocean biogeochemistry variability. However, observational uncertainties and short temporal 

coverage make biogeochemistry evaluation uncertain and potential predictability is found to be high. For physical climate 

prediction, i2 performs marginally better than i1 for a range of variables, especially in the SPNA and in the vicinity of sea 

ice, with notably improved sea level variability of the Southern Ocean. Despite similar skills, i1 and i2 feature very different 

drift behaviours, mainly due to their use of different climatologies in DA; i2 exhibits an anomalously strong AMOC that 40 

leads to forecast drift with unrealistic warming in the SPNA, whereas i1 exhibits a weaker AMOC that leads to unrealistic 

cooling. In polar regions, the reduction in climatological ice thickness in i2 causes additional forecast drift as the ice grows 

back. Posteriori lead dependent drift correction removes most hindcast differences; applications should therefore benefit 

from combining the two products.  

The results confirm that the large-scale ocean circulation exerts strong control on North Atlantic temperature variability, 45 

implying predictive potential from better synchronisation of circulation variability. Future development will therefore focus 

on improving the representation of mean state and variability of AMOC and its initialization, in addition to upgrades of the 

atmospheric component. Other efforts will be directed to refining the anomaly assimilation scheme—to better separate 

between internal versus forced signals, to include land and atmosphere initialization and new observational types—and 

improving biogeochemistry prediction capability. Combined with other systems, NorCPM1 may already contribute to skilful 50 

multiyear climate prediction that benefits society. 

1 Introduction 

Retrospective predictions have demonstrated potential of forecasting seasonal-to-decadal climate variations. Particularly for 

the North Atlantic (Keenlyside et al., 2008; Yeager et al., 2017) and partly also for the North Pacific (Mochizuki et al., 2009) 

models show robust benefit from initializing the internal climate variability in forecasting the upper ocean state several years 55 

ahead. Prediction skill in the ocean gives rise to skill in the atmosphere and over land by affecting the atmospheric 

circulation or atmospheric transport of anomalous heat and moisture (Årthun et al., 2018; Athanasiadis et al., 2020; Omrani 

et al., 2014; Sutton and Hodson, 2005). The level of internal climate variability, and thus potential benefit from initialization, 

is especially high on regional scale, where it has numerous socioeconomic applications (Kushnir et al., 2019). Comparison of 

initialized retrospective predictions with the observed climate evolution not only provides forecast quality information, but 60 

also informs climate change attribution and Earth system model (ESM) evaluation. Initialized retrospective predictions were 

part of the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012) that provided input to the 

Intergovernmental Panel on Climate Change assessment IPCC AR5 report (Kirtman et al., 2013). They are also included in 
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the latest CMIP6 (Eyring et al., 2016), as part of the Decadal Climate Prediction Project (DCPP; Boer et al., 2016), feeding 

into the upcoming IPCC AR6 report. 65 

Current climate prediction systems are thought to not fully realise the predictive potential on multiyear times scales, although 

the practical limits of predictability themselves and their regional variations are poorly known (Branstator et al., 2021; 

Sanchez-Gomez et al., 2016; Smith et al., 2020). The skill of climate prediction depends on the initialization of internal 

climate variability state, the representation of the dynamics and processes that lead to predictability, and the representation of 

the climate responses to external forcings (Branstator and Teng, 2010; Latif and Keenlyside, 2011; Bellucci et al., 2015; 70 

Yeager and Robson, 2017). Dynamical climate prediction systems typically use ESMs (initially developed to provide 

uninitialized long-term climate projections) for representing the dynamics and the responses to external forcings (Meehl et 

al., 2009; Meehl et al., 2014). Importantly, the dynamical prediction systems add initialization capability to the ESMs, 

adopting a wide range of initialization strategies (see Section 2.2.1) (Meehl et al., 2021). A better understanding of the three 

aspects—initialization, model dynamics, forcing responses—is fundamental for better exploiting the climate predictive 75 

potential and improving estimates of climate predictability (Keenlyside and Ba, 2010; Cassou et al., 2018; Verfaillie et al., 

2021). The existing climate prediction systems undersample effects of model and initialization uncertainty and are not 

necessarily well suited to address questions related to changes in the observing system. The benefits from using advanced 

data assimilation for initialization, especially in an ocean density coordinate framework, are not well explored.  

The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new climate prediction system with coupled 80 

initialization capability that features innovations aiming to reduce initialization shock and forecast drift, and to rigorously 

account for observational uncertainties. NorCPM1 contributes to CMIP6 DCPP using two variants of an anomaly 

initialization method (see Section 2.2 for details), enriching the CMIP6 DCPP repository in terms of model and initialization 

diversity as well as simulation ensemble size. Specifically, it provides output from CMIP standard experiments (including a 

30-member ensemble of no-assimilation historical simulations), two sets of DCPP coupled reanalysis simulations, and two 85 

sets of initialized DCPP hindcast simulations that obtain their initial conditions from the two reanalysis sets. The output is 

suited for multi-model studies that address model and initialization uncertainty in climate prediction or aim at combining 

multiple models to achieve better predictions, and for benchmarking future versions of NorCPM.  

The Norwegian Earth System Model version 1 (NorESM1; Bentsen et al., 2013; Iversen et al., 2013), the backbone of 

NorCPM1, has previously contributed to CMIP5 with climate projections and distinguished itself with realistic El Niño–90 

Southern Oscillation (ENSO) variability (Lu et al., 2018) and a modest historical global warming trend that favourably 

compares to observations (Section 2.1.1 and S1). It also includes a physical-biogeochemical ocean component with a vertical 

density coordinate and an atmosphere component with specialised aerosol-cloud schemes. While not included in this version, 

current development efforts are directed to improving the regional climate representation in the sub-Arctic and Arctic and to 

exploring benefits for climate prediction from bias-reduction techniques (Toniazzo & Koseki, 2018, Counillon et al., 2021), 95 

model parameter estimation (Gharamti et al., 2017, Singh et al., in preparation), upgrades of model physics and resolution 
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(Seland et al., 2020), improved ocean biogeochemistry (Tjiputra et al., 2020), and coupling of multiple ESMs (Shen et al., 

2016).  

NorCPM1 further stands out in that it uses an Ensemble Kalman Filter (EnKF; Evensen, 2003) based anomaly DA scheme 

that updates unobserved variables in the ocean and sea ice components (currently DA update is not applied to atmosphere 100 

and land) by utilizing the state-dependent covariance information derived from the simulation ensemble, and also has a 

rigorous treatment of observation measurement and representation errors (see Appendix A for more information on the 

choice of DA scheme). To date, few climate prediction systems use assimilation schemes of similar complexity, and their 

implementations differ significantly from the one used here (see Section 2.2.3 for details). NorCPM's DA capability is 

subject to continuous development and the system serves as a tool and testbed for new science innovations in the field of 105 

DA. Reliable ensemble prediction requires an accurate representation of uncertainty in the initial conditions and the EnKF 

provides a mean to achieve this. The EnKF further allows assimilation of raw observations of various types and controls the 

assimilation strength depending on observational error, their spatial coverage and evolution of the covariance with the state 

of the climate. In a Monte Carlo manner, it propagates uncertainty from the previous assimilation, providing a complete 

spatiotemporal uncertainty estimate. The method generates a spread in hindcast initial conditions that reflects uncertainties in 110 

the initial conditions, which typically evolve in time and space as the observational network changes. This makes NorCPM1 

a suitable tool for assessing the impact of observation system changes on climate prediction. It also limits artefacts due to 

over-assimilation of sparse and uncertain observations in the early instrumental era. By utilizing initial conditions from a 

coupled reanalysis that assimilates observational anomalies into the same ESM as used in the predictions, the system reduces 

initialization shock and ensures consistency of initialization anomalies across variables and with the model dynamics.  115 

NorCPM1 has been developed from a series of prototypes. In a perfect model framework, Counillon et al. (2014) tested 

EnKF anomaly assimilation of synthetic SST observations into the low-resolution version of NorESM1 and found the system 

to constrain well oceanic variability in the tropical Pacific and subpolar North Atlantic. The system was successively 

upgraded to the medium-resolution NorESM1-ME and other features such as the use of real-world SST observations 

(Counillon et al., 2016; Wang et al. 2019, Dai et al., 2020), assimilation of temperature and salinity profiles (Wang et al., 120 

2017) and optional assimilation of sea ice concentration observations with strongly coupled ocean-sea ice state update 

(Kimmritz et al., 2018, 2019). The version described in this paper includes further upgrades of the external forcings to 

comply with CMIP6, code fixes, retuning of the physics, activation of ocean biogeochemistry and modifications to the 

anomaly assimilation scheme. These are detailed in Section 2.         

This paper sets out to technically describe NorCPM1 and its contribution to CMIP6 DCPP and then assess the model's 125 

fitness of purpose through a broad evaluation of its baseline climate, and climate reanalysis and prediction performance. The 

paper intends to inform science studies that use the model's CMIP6 DCPP output, to provide a synthesis of past model 

development and to serve as a baseline for future development. While presenting a comprehensive reference of NorCPM1, 

the paper is organised in a way that makes it easy to navigate through for readers with focused interest.  
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The following section describes the ESM component, assimilation scheme and CMIP6 simulations performed with 130 

NorCPM1. Section 3 evaluates the reanalysis and hindcast performance of NorCPM1. Section 4 further discusses the results 

and related caveats. Section 5 summarizes and concludes the paper. 

 
Figure 1: Schematic of NorCPM1 and its contribution to CMIP6. 

2 Prediction system and simulations 135 

This section describes the physical model, DA approach and simulations produced for CMIP6. The prediction setup and 

simulations are summarized in a schematic diagram in Figure 1. 

2.1 Norwegian Earth System Model (NorESM) 

The Earth system model used in NorCPM1 builds on the medium resolution NorESM1-ME that includes a complete carbon 

cycle representation, which allows the model to be run fully interactively with prescribed CO2 emissions. However, we use 140 

prescribed atmospheric greenhouse gas concentrations in NorCPM. While previous NorCPM prototypes (e.g., Counillon et 

al., 2014, 2016) used the original CMIP5 version, NorCPM1 uses a modified version that has been subject to CMIP6 forcing 

updates, minor code changes and retuning (see Section 2.1.3). In the following subsections, we will summarize the main 

features of the original NorESM1-ME and then detail the differences to the version used in NorCPM1. 
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2.1.1 General description 145 

NorESM1-ME (Bentsen et al., 2013; Tjiputra et al., 2013) is based on the Community Earth System Model (CESM1.0.4; 

Hurrell et al., 2013). Its atmosphere component CAM4-OSLO replaces the original prescribed aerosol formulation of the 

Community Atmosphere Model (CAM4; Neale et al., 2010) with a prognostic aerosol life cycle formulation using emissions 

and new aerosol-cloud interaction schemes (Kirkevåg et al., 2013). It also uses a different ocean component—the Bergen 

Layered Ocean Model (BLOM formerly NorESM-O; Bentsen et al., 2013; Danabasoglu et al., 2014)—that originates from 150 

the Miami Isopycnic Coordinate Ocean Model (MICOM; Bleck and Smith, 1990; Bleck et al., 1992). The vertical density 

coordinate of the ocean component minimizes spurious diapycnal mixing, improving conservation and transformation of 

tracers and water masses. BLOM transports biogeochemical tracers of the ocean carbon cycle component—the Hamburg 

Ocean Carbon Cycle model (HAMOCC; Maier-Reimer et al., 2005)—which has been coupled to the physical ocean model 

and optimised for the isopycnic coordinate framework (Assmann et al., 2010; Tjiputra et al., 2013). The Community Land 155 

Model (CLM4; Lawrence et al., 2011) and the Los Alamos Sea Ice Model (CICE4; Bitz et al., 2012) with five thickness 

categories and the elastic–viscous–plastic rheology (Hunke and Dukowicz, 1997), are adopted from CESM in their original 

form. 

The atmosphere and land components are configured on NCAR's finite-volume 2° grid (f19), which has a regular 1.9°×2.5° 

latitude-longitude resolution. The atmospheric component comprises 26 hybrid sigma-pressure levels extending to 3 hPa. 160 

The ocean and sea-ice components are configured on NCAR's gx1v6 horizontal grid, which is a curvilinear grid with the 

northern pole singularity shifted over Greenland and a nominal resolution of 1° that is enhanced meridionally towards the 

equator and both zonally and meridionally towards the poles. The ocean component comprises a stack of 51 isopycnic layers, 

with a bulk mixed layer representation on top consisting of two layers with time-evolving thicknesses and densities. 

2.1.2 CMIP6 forcing implementation 165 

This section details the CMIP6 external forcing implementation into NorCPM1. Special note is made where the model setup 

deviates from the CMIP6 protocol. The updates of external forcing from CMIP5 to CMIP6 are expected to moderately alter 

the model's climate mean state, variability and anthropogenic trends. A detailed assessment of the impacts of the individual 

forcing upgrades is beyond the scope of this overview paper and needs to be addressed in separate studies.  

The update that affects most the anthropogenic climate trend in NorCPM1 compared to the original NorESM1-ME is likely 170 

the change in anthropogenic emissions of aerosols and aerosol precursors (see Section 2.1.1 in Kirkevåg et al. 2013 for 

details of NorESM1-ME's CMIP5 aerosol implementation and emission datasets). We updated the emissions of SO2, SO4, 

fossil fuel and biomass burning of black carbon (BC) and organic matter (OM) to the CMIP6 preindustrial and historical 

forcing (Hoesly et al. 2018). We used the SSP2-4.5 scenario forcing, i.e., the "middle of the road" scenario of the SSP2 

socioeconomic family, with an intermediate 4.5 W m-2 radiative forcing level by 2100 (Gidden et al., 2019) for the post-2014 175 

period in accordance with the DCPP protocol (Boer et al. 2016). BC emissions from aviation, omitted in the CMIP5 
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implementation, are now included. The representations of natural aerosol emissions of biogenic OM and secondary organic 

aerosol (SOA) production, dimethyl sulfide (DMS), tropospheric background SO2 from volcanoes, mineral dust and sea salt 

are kept unchanged. 

We updated prescribed atmospheric greenhouse gas concentrations (except ozone) to Meinshausen et al. (2017) for the 180 

preindustrial and historical period and to SSP2-4.5 (Gidden et al., 2019) for the post-2014 period. We applied globally 

uniform concentrations of the five equivalent greenhouse gas species of CO2, NH4, N2O, CFC-11 and CFC-12. The forcing 

data is at annual resolution and linearly interpolated between years by the model. Due to a bug in the merging of historical 

and future scenario forcing, values for 2015 and 2016 were erroneously set to 2014 values while from 2017 all values 

correctly follow the scenario forcing. This results in a CO2 concentration error of less than 4 ppm, which has a negligible 185 

impact on the radiative forcing evolution but may impact ocean-atmosphere CO2 flux prediction. 

We updated prescribed atmospheric ozone concentrations to Hegglin et al. (2016) (see also Checa‐Garcia et al., 2018) for the 

preindustrial, historical and post-2014 periods. After most simulations had been completed, we discovered that the date in 

our historical and post-2014 ozone input files was erroneously shifted by 23 months (e.g., the January 2000 observation is 

applied in February 1998). As a result, the model anticipates anthropogenic ozone changes approximately two years too 190 

early. The 1-month shift in the seasonal cycle may have dynamical implications particularly for the stratosphere if compared 

against the preindustrial simulation that does not contain the shift.         

We updated the solar forcing to the CMIP6 product (Matthes et al., 2017) as well as the stratospheric volcanic forcing 

(Revell et al., 2017; Thomason et al., 2018). In NorESM1-ME used in CMIP5, stratospheric volcanic aerosol loadings were 

prescribed, and the model then computed the resulting radiative forcing assuming certain aerosol properties and particle 195 

growth. In CMIP6, pre-computed optical parameters are provided instead and prescribed directly to the radiation code of the 

models in order to reduce inter-model spread in responses. NorCPM1 prescribes zonally uniform space-time varying 

extinction coefficient, single scattering albedo and hemispheric asymmetry factor for 14 solar (i.e., shortwave covering 

infrared, visible and ultraviolet) and 16 terrestrial (i.e., thermal longwave) wavelength bands. Despite significant changes 

between volcanic forcing implementations, we found only minor differences when comparing the radiative forcing to the Mt 200 

Pinatubo 1991 eruption, with the CMIP6 implementation producing a less distinct peak and a wider tail compared to the 

CMIP5 implementation (not shown). Additionally, the CMIP6 experimental protocol now requires the use of a stratospheric 

volcanic background forcing (monthly climatology computed from historical 1850-2000 volcanic forcing) during pre-

industrial and future, whereas the use of such background forcing was optional in CMIP5 and not implemented in the 

original NorESM1-ME.    205 

We updated the land surface types and transient land-use to be consistent with the Land-Use Harmonization version 2 

(LUH2) dataset (Lawrence et al., 2016). For the post-2014 period, NorCPM1 deviates from the DCPP protocol as it uses 

land-use data from SSP3-7.0 scenario (which was the only LUH2-version land use scenario data for CLM4 available to us at 

that time) instead of the recommended SSP2-4.5. For CMIP6 DCPP, the main interest is in the historical period 1850-2014. 

From the future scenario only the period prior 2030 is of interest for DCPP decadal outlooks, during which time the 210 
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differences between the SSP scenarios are still small. We expect this deviation to have a minimal impact on the outcomes of 

NorCPM1's near-future climate outlooks (note that the greenhouse gases concentrations still follow the SSP2-4.5 scenario). 

Data users who specifically investigate near-future land-use related climate feedbacks are, however, advised to either 

exclude NorCPM1 from their analysis or take the land-use differences between SSP2-4.5 and SSP3-7.0 into consideration. A 

supporting simulation experiment revealed that the update to LUH2 caused an unrealistic land-cryosphere cooling trend over 215 

the historical period in NorCPM1 (Fig. S3, S4 and text in Section S1). The cause and ramifications are subject to further 

investigation.     

Other forcing not mentioned above (e.g., nitrogen deposition) are kept the same as in the CMIP5 model setup. 

2.1.3 Code changes, retuning and equilibration 

This section describes code changes unrelated to forcing upgrades, and retuning of NorCPM1 relative to NorESM1-ME that 220 

was necessary due to forcing and code changes.   

An error in the aerosol code that caused an overestimation of the BC load was identified in NorESM1-ME and a correction 

has been proposed (details in Graff et al., 2019). The correction of this error is applied in NorCPM1 and causes a slight 

cooling of the climate with a -0.5 °C difference in the Arctic (Fig. S4).   

NorESM1-ME featured too thick sea ice on the shelf seas of the eastern Eurasian Arctic due to spurious variability in ocean 225 

velocities enhancing ice formation in the region (Seland and Debernard, 2014; Graff et al., 2019). Increasing the built-in 

velocity damping applied to shallow ocean regions in MICOM reduces the regional thickness bias in NorCPM1. 

NorESM1-ME's ocean biogeochemistry output has been subject to substantial grid noise. The noise was traced back to a 

local tracer mass correction that was applied because surface freshwater fluxes do not change the ocean column mass in the 

model. For instance, a positive surface freshwater flux into the ocean—assuming tracer concentrations of this flux to be 230 

zero—will reduce the ocean tracer concentrations. Without a compensating increase in column water mass such a reduction 

in concentrations inevitably leads to a reduction (i.e., non-conservation) in column-integrated tracer mass. The correction in 

NorESM1-ME locally scales the tracer concentrations such that the column-integrated tracer mass is conserved for each grid 

cell. This correction scheme has the weakness that it produces considerable spatial noise at the surface and artificial temporal 

variability and trends in the deep ocean. These problems are mitigated in NorCPM1 by replacing the local scaling with a 235 

global scaling (i.e., the same correction scale factor is used for all grid cells) that enforces global instead of local tracer 

conservation.       

Using the original parameter settings of NorESM1-ME, the surface climate of the physical component of NorCPM1 drifts 

towards an unrealistic cold state with exacerbated biases as a consequence of introducing stratospheric background volcanic 

forcing, changing the land surface boundary conditions and correcting the bug in the aerosol code. To avoid a deterioration 240 

of climate performance and to re-equilibrate the climate we therefore retuned NorCPM1 relative to NorESM1-ME. 

Specifically, we increased the condensation threshold for low clouds (from 90.05 % to 90.08 %) and also decreased the snow 
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albedo over sea ice by adjusting parameters that affect snow metamorphosis (from r_snw=0, dt_mlt_in=1.5, 

rsnw_mlt_in=1500 to r_snw=-2, dt_mlt_in=2.0, rsnw_mlt_in=2000).   

After the retuning, NorCPM1 neither shows obvious climate improvements nor global scale deterioration compared to 245 

NorESM1-ME, though some regional differences exist (see Section S1). Since the model characteristics did not substantially 

change, we performed only a short preindustrial spin-up of 250 years for NorCPM1—using the year-1000 state of 

NorESM1-ME's spin-up (corresponding to the year 100 state of its CMIP5 preindustrial control simulation) as initial 

conditions—in order to allow the upper ocean, sea ice and land surface to equilibrate to the model code and forcing changes. 

2.2 Data assimilation (DA) 250 

The decadal hindcasts are initialized from two coupled reanalyses of NorCPM1 in which monthly anomalies of sea surface 

temperature (SST) and of hydrographic profiles are assimilated into NorESM using anomaly EnKF DA over the period 

1950–2018. The same ESM is used for generating the reanalysis and performing the decadal hindcasts, limiting adjustments 

that occur after the model system is initialized. The following subsections will present the assimilated data, the DA method, 

its general implementation and the treatment of ocean biogeochemistry during assimilation. A rationale behind the choice of 255 

the DA method is presented in Appendix A. 

2.2.1 Assimilated data 

For the period 1950-2010, SST data are taken from the HadISST2 dataset of the Met Office Hadley Centre (HadISST2.1.0.0; 

Kennedy et al., personal communication; Rayner et al., personal communication) that has also been utilized in the 

construction of the coupled reanalysis CERA-20C (Laloyaux et al., 2018). HadISST2 provides 10 realisations of monthly 260 

gridded SST over 1850-2010 with a 1° resolution. The spread between the realisations, which depends on time and space, is 

designed to reflect uncertainties in gridding and combining SST in-situ observations, retrievals from AATSR (Advanced 

Along-Track Scanning Radiometer) reprocessing and AVHRR (Advanced Very High Resolution Radiometer) retrievals. We 

consider the average and variance of these 10 realisations as the observations and their error variance. We use monthly SST 

data from the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation SST version 2 (OISSTV2; 265 

Reynolds et al., 2002) for the period 2011-2018, when HadISST2 data are not available. OISSTV2 provides weekly SST and 

weekly observation error variance, in addition to monthly SST. The observation error variance of the monthly data is 

estimated as the harmonic mean of weekly error variances provided by OISSTV2. We have confirmed through a separate 

reanalysis and set of hindcasts overlapping between 2006 and 2010 that the transition from HadISST2 to OISSTV2 does not 

cause discontinuities nor significant change of prediction skill (not shown). SST data in the regions covered by sea ice are 270 

not assimilated; these regions are identified using the sea ice mask in HadISST2 or OISSTV2. 

Subsurface ocean temperature and salinity hydrographic profile observations are taken from the EN4 dataset (EN4.2.1; Good 

et al., 2013). The EN4 dataset consists of profile data from all types of ocean profiling instruments, including from the World 

Ocean Database, the Arctic Synoptic Basin Wide Oceanography project, the Global Temperature and Salinity Profile 
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Program, and Argo. The EN4 profile data are available from 1900 to the present, including data quality information and bias 275 

corrections (Gouretski and Reseghetti, 2010). Data that lie within the mixed layer of NorCPM's first ensemble member are 

not assimilated, in order to maximize the impact of SST assimilation in the mixed layer. The uncertainty of observed 

hydrographic profiles is not available and we have used the estimate provided by Levitus et al. (1994a, 1994b) and Stammer 

et al. (2002). 

2.2.2 DA method 280 

The EnKF (Evensen, 2003) is an advanced, ensemble-based and recursive DA method. One advantage of the EnKF is its 

probabilistic nature that provides model uncertainty quantification through Monte-Carlo ensembles (Fig. 1; red box). 

Moreover, the EnKF provides multivariate and flow-dependent updates, meaning that information is propagated from the 

observed variables to the unobserved variables dependent on the evolving state of the climate system; this is crucial to 

capture shifts in regimes (Counillon et al., 2016). To work efficiently, the EnKF needs an ensemble size sufficiently large to 285 

span the model subspace dimension (Natvik and Evensen 2003; Sakov and Oke 2008). Localisation reduces the spatial 

domain of influence of observation which reduces drastically the need of a large ensemble size. With the recent 

improvements of high-performance computing, the use of the EnKF for seasonal to decadal climate prediction has emerged 

(Zhang et al., 2007; Karspeck et al., 2013; Counillon et al., 2014; Brune et al., 2015, Sandery et al., 2020). Because 

NorCPM1 performs monthly assimilation updates, the numerical cost for performing the updates is small compared to the 290 

cost of integrating the model. 

NorCPM1 uses a deterministic variant of the EnKF (DEnKF; Sakov and Oke, 2008). The DEnKF updates the ensemble 

perturbations around the updated ensemble mean using an expansion of the expected correction to the forecast. This yields 

an approximate but deterministic form of the traditional stochastic EnKF that outperforms the latter, particularly for small 

ensembles (Sakov and Oke, 2008). 295 

2.2.3 DA implementation 

In order to generate the coupled reanalysis, we assimilate in the middle of the month all observations available during that 

month and update the instantaneous model state. Assimilation of monthly SST data implies that the innovation (i.e., 

observations minus model state) compares variability of an instantaneous model snapshot with that of monthly averaged 

observations. An alternative has been investigated, where data has been assimilated at the end of the month comparing the 300 

monthly averaged model output with the SST data. However, the latter approach shows poorer performance for reanalysis 

and no improvements during prediction (Billeau et al., 2016). This suggests that comparing model snapshots with monthly 

data is not a critical approximation for our system. 

We perform anomaly assimilation in which the climatology of the observations is replaced by the model climatology. 

Considering the impact of the choice of the climatology reference period on the performance of reanalysis, NorCPM1 305 

contributes two coupled reanalysis products to CMIP6 DCPP, labelled assim-i1 and assim-i2 (see Fig. 1; Section 2.3 for 
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experiment overview). In assim-i1, the climatology is defined over the reference period 1980-2010 when assimilating 

EN4.2.1 hydrographic profile data and HadISST2 data, but over the period 1982-2010 when assimilating OISSTV2 data 

(i.e., beyond 2010) because OISSTV2 was not available before 1982. The model climatology is calculated from the 

ensemble mean of NorCPM1's 30-member no-assimilation historical experiment (Section 2.3). The observed climatology for 310 

assimilating hydrographic profile data is computed from EN4 objective analysis (Good et al., 2013). In assim-i2, the 

climatology reference period is 1950-2010. For the hydrographic profile and HadISST2 data, the climatology is computed 

for the longer reference period. However, the climatology for the OISSTV2 data (i.e, after 2010) is calculated from 

concatenated data of HadISST2 for 1950-1981 (when OISSTV2 is not available) and OISSTV2 for 1982-2010. 

Together with changing the climatology reference period, we test two versions of the DA system. Time and resources 315 

constraints prevented us from testing these two aspects separately. In assim-i1, we only update the ocean state based on 

oceanic observations. In this case the system belongs to the category of weakly coupled DA system (WCDA; Penny et al., 

2017), where the update in the ocean component of the system only influences the other components during model 

integration. In assim-i2, we allow the oceanic observations to update the ocean and the sea ice components. In this case the 

system is a strongly coupled DA system (SCDA), where the oceanic observations influence the sea ice component of the 320 

system both at the DA step and during the model integration. To avoid confusion with atmosphere-ocean SCDA (e.g., Penny 

et al., 2019), we will refer the assim-i2 approach as OSI-SCDA (where OSI stands for "ocean–sea ice"). The OSI-SCDA 

assures a more consistent initialization across components and exploits the longer temporal coverage of oceanic observations 

relative to sea ice observations (see also Appendix A). To update the sea ice state, we follow Kimmritz et al. (2018), where 

an optimal way to update the sea ice state was identified: the EnKF updates the sea ice concentrations of the individual 325 

thickness categories, while the other sea ice state variables (volume per thickness category, top surface temperature, snow 

and energy of melting) are post-processed to ensure physical consistency and maximize the benefit of the updates in the sea 

ice concentrations. In particular, the volume of the individual sea ice category is scaled proportionally to the updated 

individual concentration so that the prior individual category thickness is preserved. This approach ensures that the 

individual thickness values remain in its prescribed range, but still allows a large reduction of total ice thickness error 330 

(Kimmritz et al., 2018). 

The DA scheme updates all ocean physical state variables. In an isopycnal coordinate ocean model, the layer thickness (a 

time-varying ocean state variable) is by definition always strictly positive. Due to normality assumptions the linear analysis 

update of the EnKF may return unphysical (negative) values. To solve this issue, we use the aggregation method proposed 

by Wang et al. (2016), in which we iteratively aggregate layers in the vertical until no unphysical value is returned by the 335 

EnKF. This scheme does not significantly increase the computational cost of DA, but avoids the drift in heat content, salt 

content and mass that would otherwise be caused. 

The reanalysis system uses 30 ensemble members. The ensemble size is relatively small compared to the dimension of the 

system. In order to limit spurious correlation caused by sampling error, we use localization (Houtekamer and Mitchell, 

1998). We use the local analysis framework (Evensen, 2003) in which DA is performed for each horizontal grid cell and that 340 
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uses only observations around the targeted grid cell to limit spurious correlation as ocean covariance decays with distance. 

This also reduces the dimension of the problem. In order to avoid discontinuity in the increment at the edge of the local 

domain, we use the reciprocal of the Gaspari and Cohn function (a function of the distance between observation location and 

the target model grid; Gaspari and Cohn, 1999) to taper observation error variance (i.e., to reduce the influence of 

observations). We taper innovation and ensemble perturbations with the square root of the Gaspari and Cohn function, which 345 

is equivalent to the tapering of observation error variance. The localization radius used in NorCPM1 is a bimodal Gaussian 

function of latitude with a local minimum of 1500 km at the equator where covariances become anisotropic, a maximum of 

2300 km in the mid-latitudes, and another minimum in the high latitudes where the Rossby radius is small (Wang et al., 

2017). 

Observation errors are assumed to be uncorrelated. For the SST product, this assumption clearly fails because the SST data is 350 

the result of an analysis. We have therefore decided to only assimilate the nearest SST data. For the observed hydrographic 

profile, the independence of observation errors is more plausible. The observation error for the profile is considered to be the 

sum of the instrumental error (defined as in Levitus et al., 1994a, 1994b and Stammer et al., 2002) and the representativity 

error accounting for the model unresolved processes and scales. As detailed in Wang et al. (2017), the representativity error 

is estimated offline from the innovation and the ensemble spread of the 30-member historical experiment, to ensure that the 355 

reliability of the ensemble is preserved (i.e., the truth and the ensemble members can be considered to be drawn from the 

same underlying probability distribution function). The profile observation error is inflated by a factor of three in sea ice 

covered regions where the observation climatology critical for anomaly assimilation is highly uncertain because of the lack 

of observations. When there are several observations falling within the same grid cell, these observations are “superobed”: 

all observations falling within the same grid cell are averaged and the instrumental error variance is reduced as the harmonic 360 

sum of the individual instrumental error variances (Sakov et al., 2012). Note that the representativity error term mainly 

relates to the capability of the model to represent the truth and is thus not reduced by the superobed technique. 

As further detailed in Section 2.3, the initial ensemble used at the start of the reanalyses (year 1950) is branched from a 30-

member historical experiment. The historical experiment was initialized in 1850 from the end of a pre-industrial spinup 

simulation (Section 2.1.3), with initial ensemble spread being generated by adding small random noise O(10-10 K) to the 365 

ocean temperatures, and then integrated for 100 years allowing the spread to grow. This approach ensures that the initial 

ensemble spans sufficient spread in the interior of the ocean needed for a well calibrated EnKF and that each member is 

synchronised with respect to the timing of the external forcing. To avoid an abrupt start of the assimilation, the observation 

error variance is inflated by a factor of eight during the first assimilation update; every two assimilation updates, the factor is 

decreased by one until it reaches one, as suggested by Sakov et al. (2012). The ensemble spread is sustained during the 370 

reanalysis using the following inflation techniques. The DEnKF (Section 2.2.2) limits the need for inflation to some extent. 

We use the moderation technique of Sakov et al. (2012)—while the ensemble mean is updated with the observation error 

variance, the ensemble spread is updated with the observation error variance by a factor of four. We also use pre-screening 
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of the observation; i.e. the observation error variance is inflated so that the analysis remains within two standard deviations 

of the forecast error from the ensemble mean of the forecasts. 375 

2.2.4 Treatment of ocean biogeochemistry 

Fransner et al. (2020) showed with perfect model predictions using NorESM1-ME that the initial state of the biogeochemical 

tracers has a negligible impact on the predictability of ocean biogeochemistry beyond lead year one. During the assimilation 

process, the thickness of the isopycnal layers changes while the tracer concentrations on the layers remain unchanged, 

meaning that we allow assimilation to change the mass at every location. However, this does not introduce a drift as long as 380 

the analysis is unbiased (i.e., the assimilation does not systematically pull the model climate in one direction). This was 

verified with a ten-year long twin-experiment where SST from a preindustrial control run was assimilated every month into a 

run with 30 members. The total change in the biogeochemical tracer mass over this period was negligible; the largest drift 

was found for silicate that corresponded to 0.5 % of its global mass. With this approach the global near-surface primary 

production approached that of the control run, showing that there is a good potential for constraining biogeochemical 385 

variability by assimilating SST only in our model setup. This might be improved by the additional assimilation of sea ice and 

temperature and salinity profiles. Other studies have shown that assimilation of ocean physics improves the representation of 

ocean biogeochemistry (e.g., Seferian et al., 2014; Li et al., 2016). 

2.3 CMIP6 simulations 

Figure 1 provides a schematic overview of NorCPM1's simulations prepared for CMIP6, including their temporal coverage 390 

and initialization relations. We will base our model verification and evaluations on these simulations. They can be 

summarized in four groups.  

The Diagnostic, Evaluation and Characterization of Klima (DECK) baseline experiments comprise a coupled control 

experiment with fixed pre-industrial forcings (piControl), an idealised 1% per year CO2 increase experiment (1pctCO2), an 

abrupt four times CO2 experiment (abrupt4XCO2), and a forced atmosphere experiment with prescribed observed evolutions 395 

of SST and sea ice (amip). NorCPM1's piControl features three realisations to better allow time-evolving assessment of 

model drift. The second and third realisations start from the same initial conditions as the first realisation (taken from the end 

of a long spin-up), but with small random noise O(10-10 K) added to the atmospheric temperature field. amip features ten 

realisations (matching the ensemble size of the decadal hindcasts) with slightly perturbed atmospheric initial states. 1pctCO2 

and abrupt4XCO2 feature one realisation each.           400 

The historical experiment features 30 realisations that are used for initializing NorCPM1's assimilation experiments, for 

constructing the climate anomalies of the assimilation experiments, and also serve as a benchmark for the initialized 

hindcasts. The simulations are initialized from the same restart from piControl, with ensemble spread generated by adding 

small perturbations to the mixed layer temperatures (details in Section 2.2.3). In that way, we avoid contaminating influence 

of model drift on the ensemble spread that would occur if the restart conditions of piControl were sampled. historical-ext 405 
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extends the historical simulations from 2015 to 2029 using SSP2-4.5 scenario forcing (Section 2.1.2) to cover the time 

period of the hindcast and future outlook experiments. Hereafter, historical refers to the combined historical and historical-

ext experiment.   

The DCPP simulations comprise two sets of assimilation simulations (dcppA-assim), hereafter referred to as assim-i1 and 

assim-i2, with 30 ensemble members per set. The simulations are initialized from the January 1, 1950 states of historical and 410 

integrated until January 15, 2019. 

The DCPP simulations further comprise two sets of decadal hindcast simulations (dcppA-hindcast), hereafter referred to as 

hindcast-i1 and hindcast-i2, that each feature 10 ensemble members per start date, with one start date per year from 1960 to 

2018. The October 15 states of the first 10 members of assim-i1 and assim-i2 are used to initialize corresponding members 

of hindcast-i1 and hindcast-i2. However, we will in the following refer to November 1 as the initialization day because the 415 

assimilation update on October 15 uses observations from the entire October month. The hindcast simulations are integrated 

for a total of 123 months to cover 10 complete calendar years. 

3 Verification and evaluation 

In this section, we evaluate NorCPM1's reanalysis performance (Section 3.1) and hindcast performance (Section 3.2) based 

on the CMIP6 output. We measure skill and skill differences with anomaly correlation coefficients (ACCs) and anomaly 420 

correlation coefficient differences (ΔACCs) (for details and discussion of the skill metrics see Appendix B and Section 4). 

Additional evaluation of the ESM, focusing on its climatology and variability characteristics, is presented in Section S1. 

3.1 Reanalysis performance 

We evaluate the performance of the assim-i1 and assim-i2 reanalyses that span the period 1950–2018 and provide the initial 

conditions for the decadal hindcast experiments hindcast-i1 and hindcast-i2. The following subsections cover global 425 

assimilation statistics, impact of assimilation on the model mean states and synchronization of variability for the different 

components of the climate system. 

3.1.1 Global assimilation statistics 

We use the innovation to monitor the performance of assimilation over time (Sakov et al., 2012; Counillon et al., 2016), 

which is defined as the ensemble mean of the model forecast state (at assimilation time on the observational grid) minus the 430 

observation. In combination with the ensemble spread and the observation error standard deviation, it can be used to assess 

the reliability of the ensemble system (Sakov et al., 2012). Ideally, the reliability is checked for each grid cell. Under an 

ergodicity assumption, we define global statistics based on innovation as follows, 

𝑤! =
"!

∑ """
,            (1) 
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%

! ,            (4) 
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%

! ,            (5) 

𝜎'))) = *𝜎%))))
$
+ 𝜎&))))$,           (6) 

where 𝑎!  is the area of the model grid cell i where the gridded observation is located, 𝑤!  is the area-weight, 𝑑!  is the 440 

innovation, 𝜎!
% is the ensemble spread (standard deviation) of forecasts, and 𝜎!& is the standard deviation of observation error 

at the grid cell i at a given time. The observations are binned onto the model grid and into 42 depth bins that are also used to 

bin the model data. In a perfectly reliable system, the RMSE 𝑑&  matches 𝜎'))), i.e., the forecast ensemble spread combined with 

the observational error. Figure 2 shows the time evolutions of the innovation statistics for SST, ocean temperature and 

salinity in assim-i1 (the evolutions in assim-i2 are similar to those in assim-i1 and therefore not shown). 445 

For SST (Fig. 2a), 𝑑&  is stable with an accuracy of approximately 0.5 K. The bias 𝑑̅ is stable as well, fluctuating around zero. 

This is expected as we use anomaly assimilation (with the bias estimated from the historical experiment that does not use 

assimilation). It also indicates that the assimilation with a monthly cycle largely eliminates the conditional bias, caused by 

model error in the sensitivity to the forcing, and thus corrects the forced long-term trends. The ensemble spread  

𝜎%))))	is also relatively stable. There is a drop in observation error standard deviation 𝜎&)))) in 1982 with the emergence of satellite 450 

measurements and in 2011 with the transition from HadISST2 to OISSTV2 (see Section 2.2.2). The reliability of the system 

is good until 1982 (compare blue and magenta curves), but then 𝜎'))) drops slightly below 𝑑&  indicating that the introduction of 

satellite data overly reduces the observational error estimates applied during assimilation. When the observation error 

reduces, the model accuracy does not increase accordingly, most likely because the model fails to represent features seen in 

the observations. Adding a representativity error during the satellite era to improve the reliability should be explored in 455 

future development. 

For ocean temperature (Fig. 2b), the RMSE 𝑑&  decreases over time from 1.5 K to 1.2 K. The bias 𝑑̅ is positive prior 1970, but 

near zero afterwards. The distribution of the observations prior to 1970 is considerably uneven with a predominance in the 

North Atlantic region and the bias 𝑑̅ does not reflect the globally averaged bias. The total error standard deviation 𝜎'))) is 

smaller than the RMSE, suggesting that the ensemble system overestimates its accuracy (i.e., the ensemble spread is too 460 

small). For ocean salinity (Fig. 2c), the RMSE 𝑑&	is stable prior 2000 and after 2005. The decrease in the RMSE 𝑑&	in the 

period 2000-2005 is due to the introduction of ARGO floats. There is a negative bias 𝑑̅	in salinity prior 2000. The bias 𝑑̅  

remains negative but is relatively small after 2000. As for ocean temperature, there is a mismatch between the RMSE 𝑑& and  

total error standard deviation 𝜎'))) indicating that the system is overconfident. 
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 465 

Figure 2: Global assimilation statistics (see Section 3.1.1 for definitions). Bias 𝒅" (red dashed lines), ensemble spread 𝝈𝒇$$$ blue lines), 

observation error 𝝈𝒐$$$ (green lines), RMSE 𝒅%	(red solid lines), and the total error 𝝈𝒕$$$ (pink lines) for SST (a), ocean temperature (b), 

and ocean salinity (c). 

3.1.2 Effect of assimilation on mean state 

Anomaly assimilation should by design have a negligible effect on the climate mean state. Nonlinear propagation of the 470 

assimilation updates between the assimilation updates can, however, yield a post-assimilation change in the mean state in 

regions where there are no observations. Furthermore, assim-i1 and assim-i2 are not using the same reference period (1980-

2010 versus 1950-2010) and thus differences in the mean state can occur as because of different sampling of internal 

multidecadal climate variability in the observations and due to errors in the model's forced climate trend. Additionally, in the 

computation of observational profile anomalies we subtracted the climatology of the objective EN4 analysis, which is 475 

inaccurate in regions with sparse data coverage. This can further impact mean states of the reanalyses. 
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Figure 3: Annual-mean climatological biases for T300 (a–c), S300 (d–f), SSH (g–i), and SAT (j–k). Biases of historical (top row), 

differences between absolute biases in assim-i1 and historical (middle row), differences between absolute biases in assim-i2 and 480 
assim-i1 (bottom row). Cold colours imply bias improvement. The EN4.2.1 objective analysis (Good et al., 2013) is used to estimate 

the biases of T300 and S300 over 1950–2018. The Global ARMOR-3D L4 Reprocessed dataset (Larnicol et al., 2006) is used to 

estimate the biases of SSH over 1993–2018. HadCRUT4 (Morice et al., 2012) is used to estimate the biases of SAT over 1950–2018. 

We verify the effect of DA on the climatology by comparing mean state biases of our two assimilation products with those 

of the historical experiment (Fig. 3). The mean state changes due to assimilation in upper ocean temperature (T300) and 485 

salinity (S300) averaged over the top 300 m, sea surface height (SSH), and surface air temperature (SAT) are generally an 

order of magnitude smaller than the absolute biases of historical. The relative impact of DA on the biases is thus mostly 

below 10 % of its absolute magnitude. An exception is the Arctic, where the assim-i2 assimilation increases the S300 bias 

and decreases the SAT bias. This is consistent with that the assim-i2 assimilation tends to remove sea ice mass, leading to 

higher SAT because of the thinner ice and higher surface salinity because the model tries to grow back sea ice, ejecting salt 490 

during that process. Despite assimilating climate anomalies, the sea ice update in assim-i2 largely reduces the climatological 

sea ice thicknesses towards more realistic values whereas the climatology of assim-i1 remains unchanged (Fig. 4). In a 

similar NorCPM version with climatological too thick Arctic sea ice, Kimmritz et al. (2019) found anomaly assimilation of 

observed sea ice concentration (updating the area in different thickness categories of the model using OSI-SCDA) to yield 
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large reductions in total ice thickness error. Here we show that similar bias reduction is achieved by strongly coupled update 495 

of the sea ice states using ocean observations. The exact reason for this behaviour is subject to further investigation. 

 

Figure 4: November-March climatological biases of sea ice thickness (SIT) in historical (a), assim-i1 (b), and assim-i2 (c). The 

observational reference combines C2SMOS (Ricker et al., 2018), Cryosat2 (Hendricks et al., 2018a), and Envisat (Hendricks et al., 

2018b) over the period 2002–2018. 500 

The effect the assimilation has on the mean state of nutrients was assessed by investigating the difference between the 

ensemble means of historical and assim-i1 (Fig. 5a-c,e-g). From previous studies (While et al., 2010; Park et al., 2018) we 

know that the equatorial regions are the most susceptible to errors originating from assimilation of physical variables. 

However, since sea ice, an efficient blocker of sunlight, is updated by weakly coupled DA, some differences in the polar 

region are also expected. There is indeed an increase in primary production in the polar regions in the respective summers of 505 

each hemisphere. On average there is an increase in nutrients in the Arctic, indicating that part of the increase in productivity 

is caused by an increase in mixing as the ocean is exposed to the atmosphere. There are very small differences in the mean 

nutrient in the Southern Ocean. 
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Figure 5: Difference between the three nutrients nitrate (a,e), silicate (b,f), and phosphate (c,g), as well as oxygen (d,h) between 

assim-i1 and historical. Positive values means that the assimilation run has increased values. Left column shows the difference at 

100 meters depth and the right column shows the difference at a section along the equator. The plots are based on the mean from 520 
the period 1950–2018. 

Some impact of DA on the mean state of assim-i1 is also seen in the surface waters of the tropical oceans, these changes do 

not have a pronounced seasonal variation. The largest changes to the surface nitrate and phosphate occurred in the eastern 

Pacific, while for silicate there was also an increase in the concentration in the Bay of Bengal. The increase in silicate in the 

Bay of Bengal occurs throughout the water column, there is also a similar increase in the water column of the Western 525 

Tropical Pacific. For nitrate and phosphate, the increase in concentration is confined to the upper 500–1000 m. At the surface 

and down to about 1000 m all three nutrients have increased concentrations along the equator. Below 1000 m in the eastern 

equatorial Pacific nitrate has increased concentration while silicate and phosphate have decreased concentrations compared 

to historical. An increase in nitrate with a simultaneous decrease in silicate indicates that there is some movement in the 
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water masses that leads to decreased silicate and phosphate and at the same time an increase in oxygen in assim-i1 (Fig. 530 

5d,h); this reduces the denitrification that occurs below the thermocline in the tropical Pacific. Furthermore, we compared 

the magnitude of the computed ensemble mean differences between assim-i1 and historical along the equator with the 

variability of the historical ensemble. The changes are always within one standard deviation of the ensemble variability—

i.e., small relative to the internal variability—except for oxygen in a small region at around 2000 m in the equatorial Atlantic 

where there is a large increase in oxygen. We therefore conclude that the changes to nutrients in assim-i1 are caused by 535 

changes to circulation and temperature and not by unphysical mixing caused by the assimilation. 

3.1.3 Physical ocean variability 

We first evaluate the synchronisation of physical ocean variability globally at grid scale interpolated to 5°x5°. Figure 6 

shows ACCs for annual SST, T300, S300 and SSH for assim-i1 along with ΔACCs for assim-i1 - historical and assim-i2 - 

assim-i1. The ACCs for assim-i1 are high and statistically significant across variables in most regions. The ΔACCs for 540 

assim-i1 - historical show that the assimilation of ocean data significantly improves the synchronization of SST, T300 and 

S300 with observations in most regions. Significant improvements for T300 are in the Pacific and North Atlantic. The 

improvements for S300 are similarly high and largest in the Arctic, albeit showing localised degradation in some coastal 

regions. For SSH, ACCs are increased in the subpolar North Atlantic (SPNA), tropical Pacific and Indian oceans, but 

decreased in the South Atlantic due to the fact that the long-term trend is degraded by the weakly coupled DA in the assim-i1 545 

system (not shown). Missing contributions from land ice in the model play possibly a role in the degradation. The small 

ΔACCs for assim-i2 - assim-i1 suggest that the choice of the climatology reference period does not play an important role 

for the overall performance of the reanalysis in terms of variability. Significant differences appear close to the sea ice 

covered areas and are thus likely related to the sea ice state updated via OSI-SCDA in assim-i2. However, we have limited 

confidence in the EN4 objective analysis that we used for validation in ice covered regions where subsurface observations 550 

are sparse. 
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Figure 6: ACC for annual SST (a), 0-300m temperature (b), 0-300m salinity (c), and sea surface height (d) for assim-i1. ∆ACC for 

assim-i1 - historical (e–h), assim-i2 - assim-i1 (i–l). Temporal coverage is 1950–2018 of SST (ERSSTv5; Huang et al., 2017) and 

temperature and salinity (EN4.2.1; Good et al., 2013) observations, and 1993–2018 of sea surface height (ARMOR-3D; Larnicol et 

al., 2006). Hatched areas are not locally significant, dotted areas are field significant. 555 
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Figure 7: Anomaly time-series for selected large-scale indices. (a) Annual-mean Subpolar gyre ([60–15 °W, 48–65 °N]) SSH with 

ARMOR-3D L4 observations (Larnicol et al., 2006). (b) Annual-mean AMOC strength at 26.5 °N with RAPID observations (Johns 

et al., 2011). (c) Monthly Niño-3.4 index with HadISST observations (Rayner et al., 2003). (d) AMO index computed as the 10-year 

running mean of detrended SST averaged over the North Atlantic ([0–80 °W, 0–65 °N]), with HadISST observations. (e) Global-560 
mean SST with HadISST observations (Rayner et al., 2003). (f) Global-mean SAT with HadCRUT4 observations (Morice et al., 

2012). In all panels, the 1950–2018 climatology of historical is removed from historical, assim-i1 and assim-i2. Observations in (a) 

and (b) are shifted to align their time-mean with assim-i1. Observations in (c), (d), (e) and (f) are relative to 1950–2018 climatology. 

We evaluate the effect of assimilation on large-scale climate indices of leading modes of variability (Fig. 7). The North 

Atlantic subpolar gyre (SPG) circulation exerts strong control on subpolar North Atlantic (SPNA) temperature variations 565 

(e.g., Häkkinen and Rhines, 2004), affects the Atlantic meridional overturning circulation (AMOC) by regulating the 

poleward transport of Atlantic water (Hátún et al., 2005), and has a wide range of marine environmental impacts (e.g., Hátún 

et al. 2016). The SPG circulation index is here defined as the anomalous SSH averaged over the SPNA box [60–15 °W, 48–

65 °N] (Lohmann et al., 2009). A positive (negative) SPG index reflects a weak (strong) barotropic mass transport in the 

SPNA region that usually coincides with a warm (cold) SPNA. We note that more elaborated index definitions based on 570 

principle component analysis of SSH and subsurface density are likely to capture circulation features and associated water 
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mass variability better than our simple index (Koul et al, 2020). Figure 7a shows the SPG index over 1950-2018 in 

historical, assim-i1, assim-i2 and observations (altimetry data available from 1993). The observed SPG index exhibits an 

abrupt shift from a strong to a weak circulation around 1995, that has been linked to direct North Atlantic Oscillation (NAO) 

influence (Häkkinen and Rhines, 2004; Yeager and Robson, 2017) and NAO-related preconditioning of the ocean circulation 575 

state (e.g., Lohmann et al., 2009, Robson et al., 2012). The ensemble mean of the historical ensemble does not show the 

shift, but a slow long-term increase likely related to anthropogenic global sea level rise. The min-max range of the historical 

ensemble nevertheless bounds the observed SPG index, suggesting that the model range of variability is not inconsistent with 

the observed trajectory. The ensemble means of assim-i1 and assim-i2 show pronounced strong and weak SPG index phases 

and match well the observed SPG index changes during 1993-2018. Their simulated weak phase during 1950-1970 and 580 

strong phase during 1980-1997 are also in good agreement with other model studies (e.g., Msadek et al., 2014). The 

ensemble ranges of assim-i1 and assim-i2 are much smaller than that of historical, indicating the ensemble members are well 

synchronised by the assimilation. Despite showing similar decadal scale variability, assim-i1 and assim-i2 have different 

means and long-term trends. The stronger SPG circulation of assim-i2 goes in tandem with a stronger AMOC, and it is likely 

that these two are related (Eden and Willebrand, 2001; Eden and Jung, 2001; Böning et al., 2006).   585 

The strength of AMOC is measured continuously from April 2004 at 26.5 °N by a joint US-UK Rapid Climate Change – 

Meridional Overturning Circulation and Heat flux Array (RAPID-MOCHA; Johns et al., 2011). Accordingly, we define the 

AMOC index as the yearly anomalies of overturning transport maximum at 26.5 °N. Figure 7b shows the AMOC indices of 

historical, assim-i1 and assim-i2 and observations. The ensemble mean of historical, a measure for the simulated 

anthropogenic trend, rises before the mid-70s and then slowly declines. In contrast, the two assimilation products show a 590 

weakening before the mid-70s, followed by a strengthening that is consistent with a dominantly positive observed NAO 

during that period (Robson et al., 2012; Yeager and Robson, 2017; Zhang et al., 2019). The simulated AMOC strongly 

declines after 2005, though not as rapidly as in the observations, and flattens after 2010. Similar results have been shown in 

previous studies (e.g., Keenlyside et al., 2008; Karspeck et al., 2017). As for SPG circulation, assim-i1 and assim-i2 show 

similar multiyear AMOC variations but different long-term trends. Most notable, assim-i1 stays below the ensemble mean of 595 

historical over the entire period, while assim-i2 surpasses historical around 1990, which is more consistent with the 

anomalously strong AMOC during the mid-90s SPG shift. Results from a supporting experiment suggest that the stronger 

circulation in assim-i2 is primarily caused by the different climatological period but also partly by the OSI-SCDA update of 

sea ice (Fig. S8 and related text in Section S2).      

The Atlantic Multidecadal Oscillation (AMO)—or Atlantic Multidecadal Variability—refers to large-scale, low-frequency 600 

SST variations in the North Atlantic, with linkages to AMOC variability (Keenlyside et al., 2015; Yeager and Robson, 

2017). Following Enfield et al., (2001), we define the AMO index as the 10‐year running mean of linearly detrended SSTs 

averaged over the entire North Atlantic [0–80 °W, 0–65 °N]. Figure 7c shows the index in observations, historical, assim-i1, 

and assim-i2. In agreement with observations, the indices of all three experiments are in a warm phase during 1950-1965 and 

1995-2018 and a cold phase during 1965-1995. However, the historical ensemble mean (representing the forced response of 605 
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the model) underestimates the amplitude, exhibits a longer cold phase as well as an upward trend after 2010, when 

observations show a downward trend. As a result of assimilating SST observations, the AMO indices of assim-i1 and assim-

i2 both follow the observed index with only minor departures. assim-i2 shows a slightly weaker post-2000 downward trend 

than assim-i1 and observations, either related to differing sea ice behaviour or differences in AMOC. 

While ocean dynamics in the Atlantic basin give rise to multiyear climate predictability, ENSO variability is an important 610 

source for seasonal and interannual predictability. The ESM features realistic ENSO characteristics (Fig. S5, S6 and text in 

Section S1). But how well do monthly DA updates synchronise the model's ENSO variability with the observed one? Figure 

7d shows the monthly Niño 3.4—computed as the average of SST in the region [120–170 °W, 5 °S–5 °N]—for historical, 

assim-i1 and assim-i2 and HadISST. Both assim-i1 and assim-i2 accurately reproduce the observed index, showing a perfect 

match of the large 1998 event but slightly underestimate other peaks. We attribute the good performance to that DA in 615 

NorCPM1 constrains well thermocline depth (equivalent to warm water volume) in the equatorial Pacific that is critical to 

develop ENSO events (Meinen and McPhaden, 2000; Wang et al., 2019). The Niño 3.4 indices of assim-i1 and assim-i2 are 

almost identical, meaning that the climatology reference period defined in anomaly assimilation and the jointly updated sea 

ice state have little impact on the equatorial Pacific. The ensemble mean of historical has a smaller amplitude and is only 

marginally correlated with the observed index (r=0.2, p=0.085, alpha=0.1), suggesting a potential small contribution from 620 

external forcing. 

Last, we consider the effect of assimilation on the global mean SST representation. Figure 7e shows the anomalies of global 

mean SST evolutions for historical, assim-i1, assim-i2, and HadISST. historical captures the long-term warming trend and 

some shorter volcanic cooling events (e.g., after the 1963-Mt Agung and 1991-Mt Pinatubo eruptions). assim-i1 and assim-i2 

additionally capture the high-frequency variability on top of the forced signal. The assimilation experiments show minor 625 

discrepancies with respect to observations, such as a too weak post-Mt Pinatubo recovery and a seemingly underestimated 

1998-El Niño imprint on global mean SST. assim-i2 exhibits a slightly more positive trend after 2010 compared to assim-i1, 

which likely is the imprint of the more positive trend in AMO on global mean SST. The behaviour of global mean SAT (Fig. 

7d) is similar to that of SST and will be further addressed in Section 3.1.6. 

3.1.4 Ocean biogeochemistry variability 630 

The correlation skills of annual-mean Primary Production (PP), pCO2, and air-sea CO2 fluxes for the assimilation 

experiments are shown in Figure 8. For PP, the total skill (with contribution from external forcing) is high and field 

significant in the tropical Pacific and Indian Oceans, with some skill in the subtropical oceans. The ΔACCs between assim-i1 

and historical, measuring assimilation benefit, are not field significant and smaller in value than the ACCs of assim-i1, 

indicating that most skill comes from the external forcing. Still, large regions in the tropical Pacific and Indian Oceans 635 

feature high ΔACCs that are locally significant. The ΔACCs between assim-i2 and assim-i1 are generally small. The largest 

differences are found in the polar regions, although precaution should be taken when evaluating the PP in these regions due 

to the low coverage of satellite data. 
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Figure 8: ACC for annual primary production (a), CO2 flux (b), and surface pCO2 (c) for assim-i1. ∆ACC for assim-i1 - historical 640 
(d–f), assim-i2 - assim-i1 (g–i). Temporal coverage is 1998–2018 for observed primary production (GlobColour; Garnesson et al., 

2019) and 1982–2017 for CO2 flux and surface pCO2 (SOCCOM; Landschützer et al., 2019). The linear trend has been removed 

from the data. Hatched areas are not locally significant, dotted areas are field significant. 

For the CO2 fluxes and pCO2 (linearly detrended), the total skill is high and field significant over the tropical and subtropical 

oceans. Exceptions are eastern part of the tropical Pacific, and the southern subtropical Pacific for the CO2 fluxes. For CO2 645 

fluxes, there is also high skill in the southern part of the Southern Ocean, and in the Nordic Seas. This is not the case for 

pCO2, which suggests that part of the CO2 flux skill might be related to successful synchronisation of sea-ice variability. As 

for PP, the ΔACCs relative to historical are considerably smaller than the ACCs of assim-i1, despite the linear detrending 

that was applied to the CO2 fields before the ACC computation. The ΔACCs remain field significant in parts of the 

subtropical and tropical oceans, although with a reduced westward extension of the skilful areas. Contrary to expectation, the 650 

SPNA shows little skill. As for PP, skill differences for CO2 fluxes and pCO2 are small between assim-i1 and assim-i2.  

3.1.5 Sea ice variability 

We evaluate the success of our assimilation in phasing sea ice variability. We use ACC maps of annual mean sea ice 

concentration and HadISST (Reyner et al., 2003) data from 1950-2018 as a benchmark (Fig. 9).  
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 655 
Figure 9: ACC for annual sea ice concentration in Arctic (a) and Antarctic (b) for assim-i1. ∆ACC for assim-i1 - historical (c–d), 

assim-i2 - assim-i1 (e–f). Observations are from HadISST (Rayner et al., 2003) over the period 1950–2018. The data are 

interpolated to a regular 2°×2° grid. Hatched areas are not locally significant, dotted areas are field significant. 

Over the Arctic, assim-i1 features overall high skill. While much of this skill is from the externally forced trend, positive 

assim-i1 - historical ΔACCs show that ocean DA considerably improves the agreement in the marginal ice zones. Positive 660 

ΔACCs for assim-i2 - assimi-i1 show that updating the sea ice state via OSI-SCDA of ocean observations further improves 

the agreement, including over the central Arctic.  

Over the Antarctic, assim-i1 shows modest to high skill and only isolated negative ACCs. Strikingly, the assim-i1 - 

historical ΔACCs are as high or higher than the absolute ACCs of assim-i1. This means that assimilation corrects for the 

negative trend in the historical ensemble. OSI-SCDA again improves the skill (Fig. 9f), especially close to the coast where 665 

the ACCs of assim-i1 are low or negative (Fig. 9b). 
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Figure 10: ACC for annual 2 m temperature (SAT, a), precipitation (PR, b), sea level pressure (SLP, c), and 500 hPa geopotential 

height (Z500, d) for assim-i1. ∆ACC for assim-i1 - historical (e–h), assim-i2 - assim-i1 (i–l). Temporal coverage is 1950–2018 for 

observed SAT (HadCRUT4; Morice et al., 2012), PR (CRU TS4.03; Harris et al., 2020), SLP (NCEP reanalysis; Kalnay et al., 670 
1996), and Z500 (extended ERA5; Harris et al., 2020). Hatched areas are not locally significant, dotted areas are field significant. 

3.1.6 Atmosphere variability 

Because our DA is weakly coupled with respect to the atmosphere, we expect a partial synchronisation of atmospheric 

variability from the combined influence of the ocean surface-sea ice states and the external forcings. The reanalysis 

performance provides a hypothetical upper bound for the achievable atmospheric-land prediction skill with our system, 675 

assuming close to perfect prediction of ocean variability and skilful prediction of sea ice variability. We assess the 

synchronisation of atmospheric variability with ACCs of annual-mean SAT, precipitation over land (PR), sea level pressure 

(SLP) and 500 hPa geopotential height (Z500) for assim-i1 (Fig. 10a-d). We also consider ΔACCs for assim-i1 - historical 

and assim-i2 - assim-i1 to isolate skill contribution from DA and skill differences between two reanalysis products. 
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For SAT, the ACCs of assim-i1 are high over both ocean and land. Most of the DA benefit is located over the oceans, as 680 

revealed by the ΔACCs for assim-i1 - historical, with benefits over land mainly found in the tropical regions and also over 

northwest North America i.e., regions that are strongly affected by ENSO variability. assim-i2 does not show any significant 

skill improvement over assim-i1, despite the sizable improvements in sea ice variability when updating the sea ice state via 

OSI-SCDA. This is likely because the improvements in sea ice extent (Fig. 9) occur mostly during summer when they have 

little impact on surface temperatures (Deser et al., 2010). For global scale SAT synchronisation, the global warming hiatus at 685 

the beginning of the 21st Century, which has been attributed to both internal variability and external forcing (e.g., Medhaug 

et al., 2017), makes an interesting test case. Figure 7f shows that global mean SAT anomaly of assim-i1 reproduces well the 

flat post-2000 trend of the observations, while assim-i2 and historical continue to warm, consistent with their AMO and 

AMOC evolutions. The better match of assim-i1 with observed global mean SAT does not necessarily imply that assim-i1 is 

more correct than assim-i2. It is possible that assim-i1 makes up for a missing post-2000 cooling signal over the continents 690 

by an unrealistic low reduction of winter sea ice thickness during that period, something that warrants further investigation.       

For PR over land, the ACCs of assim-i1 are overall positive. The ΔACCs for assim-i1 - historical show similar strength and 

pattern, indicating a limited contribution to the ACCs of assim-i1 from the anthropogenically driven spin-up of the 

hydrological cycle. The ΔACCs for assim-i2 - assim-i1 do not suggest statistically significant performance differences 

between the two products.  695 

For SLP, the ACCs of assim-i1 are most positive over the low- and high-latitudes and less positive over the mid-latitudes, 

with slightly negative values over the Southern Ocean and Eurasia. The ΔACCs for assim-i1 - historical suggest that a large 

portion of the positive skill can be attributed to DA, including benefits over the North Pacific that stretch over North 

America and also over the SPNA, consistent with ENSO influence. However, DA seems to cause degradation over the 

subtropical North Atlantic, Central Europe, Siberia and East Asia. The ΔACCs for assim-i2 - assim-i1 reveal that updating 700 

sea ice improves SLP performance over the Arctic. DA also seems to partly mitigate the skill deficit over Central Europe 

while degrading skill further east. 

For Z500, the correlation skill of assim-i1 is virtually saturated over the tropics, decreases towards the mid-latitudes and 

again slightly increases towards the poles. While modest ΔACCs for assim-i1 - historical indicate that external forcing 

contributes significantly to high tropical skill, DA leads to consistent skill enhancement in those regions. One should note 705 

that a change in correlation from 0.6 to 0.9 equates to more than doubling in explained variance from 36 % to 81 % 

(estimated by the square of the correlation). Hence, the benefit from DA is more substantial than the ΔACCs alone would 

suggest. Significant skill enhancement is also present over the mid-to-high latitudes, presumably related to ENSO influence 

on the extratropical atmospheric circulation. The ΔACCs for assim-i2 - assim-i1 indicate weak improvement over the polar 

regions, albeit not statistically significant, and no signs of degradation, as consequence of updating the sea ice during DA. 710 
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3.2 Hindcast performance 

This section evaluates retrospective predictions with NorCPM1 that are initialized on November 1 (i.e., no observations after 

October 31 are utilized in the initialization) of the years 1960–2018. We demonstrate skill benefits from forecast 

initialization as well as from using a dynamic prediction system. To assess skill degradation with forecast lead time, we 

consider the different time-averaged forecast ranges lead year 1 (LY1), lead years 2–5 (LY2–5), and lead years 6–9 (LY6–9). 715 

We compare against the skill of NorCPM1's reanalyses, uninitialized prediction (constructed from historical), and 

persistence forecast (defined in Appendix B). We also highlight performance differences between the two hindcast products 

hindcast-i1 and hindcast-i2. The following subsections present skill evaluations for the physical ocean, marine 

biogeochemistry, sea ice, and atmosphere. 
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Figure 11: Prediction skill for SST. ACC of hindcast-i1 (a), ∆ACC of hindcast-i1 - persistence (b), ∆ACC of hindcast-i1 - historical 720 
(c), and ∆ACC of hindcast-i2 - hindcast-i1 (d) for LY1. Middle and right column show the same but for LY2–5 (e–h) and LY6–9 

(i–l). Observations use ERSSTv5 (Huang et al., 2017) with coverage 1960–2018. Hatched areas are not locally significant, dotted 

areas are field significant. 

3.2.1 Physical ocean variability – globally 

SST prediction has the most direct application for near-term climate impact assessment. We evaluate NorCPM1's capability 725 

to predict interannual to multiyear SST variations with ACC skill maps for hindcast-i1 along with skill difference maps for 
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hindcast-i1–assim-i1, hindcast-i1–persistence, hindcast-i1–historical and hindcast-i2–hindcast-i1 (Fig. 11). For LY1, 

hindcast-i1 exhibits generally positive ACCs, exceeding 0.8 over extended areas, that are both locally and field significant 

except for limited regions in the eastern Pacific and at high latitudes (Fig. 11a). The system loses information of the initial 

condition over time, resulting in notably smaller ACCs compared to the assim-i1 reanalysis (Fig. 11b). Significant benefits 730 

from initialization, as diagnosed from the ΔACC of hindcast-i1–historical, are concentrated in the Pacific and Atlantic 

sectors of the tropics and Southern Ocean, and also in the subpolar North Atlantic (SPNA) and extending from there into the 

Eurasian Arctic (Fig. 11d). Consistent with other prediction systems (e.g., Yeager et al., 2018), the SPNA stands out as the 

region that benefits most from initialization. However, hindcast-i1 does not outperform persistence in the SPNA (Fig. 11c), 

indicating that the benefit of initialization primarily offsets poor performance of the uninitialized dynamical prediction of 735 

historical in that region. hindcast-i2 shows improved skill over hindcast-i1 in sea ice covered regions and in a small part of 

the SPNA (Fig. 11e). These skill differences are not field significant, but the fact that the two systems differ in their sea 

ice treatment adds confidence that skill improvements in the polar regions are real. Much of the LY1 skill, in particular in the 

tropics, is likely related to skilful initialization of ENSO in NorCPM (Fig. S9 and text in Section S2), which has been studied 

in detail using a similar model configuration (Wang et al., 2019). 740 

The LY2–5 and LY6–9 multiyear SST skill patterns (Fig. 11, middle and right columns) resemble that of LY1, but with 

some notable differences. Large regions in the eastern central North Atlantic, tropical Indian Ocean, and West Pacific show 

elevated skills that exceed 0.9. The same regions show, however, negligible gains relative to uninitialized prediction of 

historical (Fig. 11i,n). Thus, the skill increase relative to LY1 is likely due to the forced trend having more weight, as the 4-

year averaging effectively filters out interannual internal variability, and less due to the presence of more predictable internal 745 

climate variability on multiyear time scales or forecast shock that more strongly impacts LY1. Despite limited initialization 

benefit, the initialized predictions globally outperform persistence except for in the Southern Ocean. Since we expect the 

persistence forecast to capture a linear trend, this may indicate a significant skill contribution from non-linearities in the 

forced trend. Also for multiyear prediction, the SPNA and its extension towards the Arctic stand out as the region benefiting 

most from initialization, although the benefit is somewhat reduced and less statistically robust than for LY1 (Fig. 11d). Over 750 

time, the impact of initializations in the SPNA diminishes and the system drifts back to the poorly performing simulated 

forced trend, causing skill deficit to emerge (Fig. 11f,k). This result stands in contrast to multi-model findings (that include 

NorCPM1) suggesting a positive contribution of the forced signal to SPNA temperature skill over a comparable period 

(Borchert et al., 2021). We suspect a problem with CMIP6 land use change specification (Fig. 13c and text in Section S1), 

leading to an unrealistic historical cooling trend over North America in NorCPM1. Via downstream effects, the continental 755 

cooling (likely an artifact) may contribute to the SPNA cooling trend shown after 1980, exacerbating the discrepancy 

between the observed and simulated SPNA temperature evolutions. The eastern Pacific presents another region where the 

skill notably deteriorates over time. The historical simulations perform better here than for the SPNA (Fig. 11i,n), suggesting 

a detrimental effect of initialization on multiyear scales on Pacific SSTs notwithstanding the positive effect on LY1 

prediction. Also for multiyear prediction, hindcast-i2 performs better than hindcast-i1 in the high latitude regions, notably in 760 
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the northwestern North Atlantic (Fig. 11j,o). However, the multiyear skill hindcast-i1–historical and hindcast-i2–hindcast-i1 

differences are both not field significant and we thus cannot exclude they are a sampling artefact.  

Skill patterns for the upper ocean temperature and salinity averaged over the top 300 m (Fig. S10,S11), and for sea surface 

height (Fig. S12)—a proxy for circulation and vertically integrated behaviour—largely reflect those for SST. Skill 

enhancement due to multiyear averaging is less apparent than for the surface state, presumably due to less presence of 765 

interannual climatic noise below the surface. Initialization benefit in the SPNA extends below the surface, across variables 

and stands out as a robust feature. 

3.2.2 Physical ocean variability – SPNA 

Initialization of the large-scale ocean circulation and the associated meridional heat transport have been identified as 

essential for skilful prediction of SPNA climate (e.g., Yeager and Robson, 2017). We evaluate in more detail how well 770 

NorCPM1 represents mechanisms that give rise to North Atlantic decadal predictability. This evaluation provides additional 

forecast quality information, better understanding of the hindcast-i2–hindcast-i1 skill differences, and of how well the 

predictive potential for North Atlantic SSTs is realised in the system. 

The forced evolution of the AMOC strength shows slight increase until 1980 and weakening thereafter (Fig. 12a, blue solid). 

assim-i1 initializes the circulation in an anomalous weak state prior to 1990, close to neutral between 1990 and 2010, and 775 

weak again thereafter (red solid), with the initial perturbations tending to be outside the internal variability range (blue 

shading). After initialization, the circulation (purple solid) rapidly relaxes towards the unperturbed ensemble-mean state 

evolution of historical (blue solid). Because ocean heat exchange between the subtropical and the SPNA covaries with the 

variability in AMOC strength (Fig. S13e-g), the anomalies of the northward heat transport at the time initialization (Fig. 12b, 

red solid) roughly resemble those of the circulation, mostly showing anomalously negative transports, except during the 90s. 780 

The heat transport relaxes towards the ensemble-mean of historical during the hindcasts. assim-i2 shows generally stronger 

circulation and heat transports with weaker long-term decline than assim-i1 (Fig. 12d,e). These circulation and heat transport 

differences are key to explaining strikingly different SPNA temperature evolutions in hindcast-i1 versus hindcast-i2 (Fig. 

12c,f). hindcast-i1 and hindcast-i2 notably drift away from the observed SPNA-averaged temperature trajectory, suggesting 

that both configurations struggle to predict the observed decadal SPNA temperature trends. However, while hindcast-i1 785 

exhibits drift behaviour towards cooling (most pronounced during 1960-1980 and after 2005), hindcast-i2 exhibits drift 

behaviour towards warming (most severe during 1980-2000). 
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Figure 12: AMOC strength at 26 °N, Atlantic meridional ocean heat transport at 48 °N and 0–2000 m temperature averaged over 

SPNA box [60–15 °W, 48–65 °N] for i1 (a–c) and i2 (d–f). Solid lines show ensemble means of historical (blue), assim (red), and 

hindcast (purple) experiments, with the 1950–2010 average of historical subtracted. Shading denotes ensemble minima and 790 
maxima. 

Diagnosing the hindcast SPNA temperature evolution from the anomalous ocean heat transport across 48 °N (Fig. S13a,c) or 

the regression of heat transport on AMOC (Fig. S13b,d) results in a very similar behaviour. The SPNA 0–2000m heat 

content changes are well balanced by transport changes across 48 °N and anomalous surface fluxes over the SPNA region 

(not shown). The latter mainly act to dampen the temperature signal, explaining the greater amplitude of the diagnosed 795 

temperature evolutions. The resemblance of diagnosed and simulated hindcast evolutions suggests that circulation exerts a 

strong control on the simulated SPNA temperature evolution and that poor SPNA prediction is largely a consequence of poor 

initialization of AMOC and associated poleward heat transport. Errors in the simulated externally forced AMOC trend and 

associated heat transport likely affect the skill as well. 
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 800 

Figure 13: Drift-corrected 0–2000m temperature (T2000) and SST averaged over SPNA box [60-15 °W, 48-65 °N] for i1 (a,b) and 

i2 (c,d), respectively. Solid lines show ensemble means of historical (blue), assim (red), and hindcast (purple) experiments, with the 

1950–2010 average of historical subtracted. Shading denotes ensemble minima and maxima. Also shown, ACCs as function of lead 

time for T2000 and SST for i1 (e,f) and i2 (g,h), respectively. The persistence forecasts use the average over the last one year (solid) 

and ten years (stippled) from the observations.  805 

How can hindcast-i1 and hindcast-i2 exhibit very different SPNA 0–2000 m temperature evolutions but similar correlation 

skills? Applying lead-dependent drift correction largely removes the differences (Fig. 13a,c). Remaining differences hint at a 

slight time dependence, consistent with the somewhat different long-term trends in AMOC strength in assim-i1 and assim-i2 

(Fig. 12a vs d). In terms of ACC skill, hindcast-i2 performs marginally better than hindcast-i1 for long lead times but does 

not outperform persistence (Fig. 13e,g). The results for SPNA SST (Fig. 13b,d) generally resemble those for 0–2000 m 810 

temperature but look slightly more promising, with hindcast-i2 performing marginally better than persistence for long lead 

times (Fig. 13f,h). 
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Figure 14: Prediction skill for primary production (PP). ACC of hindcast-i1 (a), ∆ACC of hindcast-i1 - persistence (b), ∆ACC of 

hindcast-i1 - historical (c), and ∆ACC of hindcast-i2 - hindcast-i1 (d) for LY1. Middle and right column show the same but for 

LY2–5 (e–h) and LY6–9 (i–l). Observations use GlobColour (Garnesson et al., 2019) with coverage 1998–2018. Hatched areas are 815 
not locally significant, dotted areas are field significant. 

3.2.3 Ocean biogeochemistry variability 

We evaluated the performance of ocean biogeochemistry for PP and surface CO2 flux. Figure 14 shows maps of PP 

prediction skill for LY1, LY2–5 and LY6–9. While the results are patchy, some coherent patterns can be distinguished. For 
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the total LY1 skill of hindcast-i1 (Fig. 14a), ACCs are relatively high and field significant over large parts of the tropical 820 

Pacific and tropical Indian Oceans. The correlations stay relatively high for longer lead times (Fig. 14f,k), although their 

significance is reduced. When subtracting the skill of historical (Fig. 14d,i,n), the correlation is greatly reduced, showing 

that much of the total skill comes from external forcing. The only region with a coherent pattern of locally significant 

correlation differences is in the tropical Pacific [0-30 °S, 120-150 °W], which shows positive skill differences until LY2–5. 

For LY6–9, the correlation differences become statistically not significant, although the values stay relatively high. The 825 

ΔACCs for hindcast-i1 - assim-i1 (Fig. 14b,g,l) are negative over the tropical Indo-Pacific and large parts of the South 

Pacific and Southern Ocean, indicating information from initialization is lost over time, while they are positive over the 

tropical Atlantic, parts of the Atlantic subpolar gyre, and most parts of the extratropical Indo-Pacific. Paradoxically, the 

analysis used to initialize the hindcasts does not consistently outperform the hindcasts. Improvement of the initialized 

dynamic predictions over persistence can be seen for LY2–5 and LY6–9, but not for LY1. Thus, temporal nonlinearities in 830 

the externally forced climate trend are likely to contribute to skill, as persistence should capture any linear trends due to 

forcings and most of the skill comes from the external forcing. Differences between the two sets of hindcasts lack statistical 

robustness (Fig. 14e,j,o).  

Using satellite chlorophyll measurements for model evaluation is subject to caveats. For example, temporal data coverage is 

relatively short and the spatial data coverage at high latitudes is poor due to cloudiness. Following Yeager et al. (2018), we 835 

therefore also analysed the model's ability to hindcast its own analysis over the period 1960–2018 (Fig. 15). We will refer to 

this as the potential predictability*, using the asterisk to indicate that it differs from more conventional potential 

predictability estimates based on self-prediction that typically utilize a preindustrial control simulation (e.g., Collins et al., 

2006). The results become less patchy, and the total skill stays field significant for large parts of the global ocean until LY6–

9. Removing the skill of historical again reveals that there are regions where the skill is improved by initialization, notably 840 

the subtropical gyres and the Nordic Seas (Fig. 15d,i,n). Note that subtracting negative historical ACCs leads to ΔACCs 

higher than the absolute ACCs of hindcast-i1 itself. Therefore, a large skill benefit from initialization does not necessarily 

translate into a societally useful absolute skill. We analysed time series of region-averaged PP between 1970-2018 in regions 

of high skill, namely the subtropical gyres of the Pacific, Atlantic and Indian Oceans, as well as the Nordic Seas (not shown). 

The Nordic Seas is the only region with a strong positive correlation between hindcast-i1 and historical (r=0.5 and 0.6 for 845 

single year and four-year means, respectively), indicating that there is a large contribution of the external forcing to the 

predictive skill. There, the correlation between the hindcast-i1 and assim-i1 is close to 0.75 for all lead year ranges, 

indicating an improvement with respect to historical, with the largest difference for LY1. For the other regions there is 

considerable agreement between the hindcast-i1 and the assim-i1 for LY1, with correlations exceeding 0.7. For the 

subtropical gyres in the Pacific and South Atlantic the agreement between the hindcasts and the analysis extends to LY2–5, 850 

while the skill in the Indian and North Atlantic Oceans drops beyond LY1. 
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Figure 15: Potential predictability* for primary production (PP). ACC of hindcast-i1 (a), ∆ACC of hindcast-i1 - persistence (b), 

∆ACC of hindcast-i1 - historical (c) and ∆ACC of hindcast-i2 - hindcast-i1 (d) for LY1. Middle and right column show the same 

but for LY2–5 (e–h) and LY6–9 (i–l). Synthetic observations constructed from the ensemble mean of the first 10 members of assim-

i1 with coverage 1960–2018. Hatched areas are not locally significant, dotted areas are field significant. 855 

Despite the ambiguous results, the predictability of PP of a couple of years in the tropical/subtropical Pacific is in agreement 

with the results from perfect model experiments (Fransner et al., 2020) and Seferian et al. (2014), who found a predictability 

of 2–5 years when comparing with satellite-based PP in the same region. Also, Krumhardt et al. (2020) found a potential 

predictability of PP of a couple of years in tropical/subtropical regions when comparing to a reconstruction based on an 

ocean simulation forced with an atmospheric reanalysis. However, to remove the effect of external forcing they performed a 860 

linear detrending. This partly removes the effect of climate change but not of other episodic external forcing such as volcanic 

eruptions. Frölicher et al. (2020) found a perfect model predictability of more than 10 years in some parts of the subtropical 

gyres in their perfect model study.  
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Studies have yet to report predictability of PP in high latitudes if compared to observational data. In these regions the use of 

satellite observations is not reliable because of the lower data coverage and more variable chlorophyll:carbon ratio of 865 

phytoplankton (Frigstad et al., 2014). However, several recent perfect and potential predictability studies suggest that 

predictability of primary production in high latitudes is low or even non-existent on interannual to decadal time scales 

(Fransner et al., 2020, Frölicher et al., 2020, Krumhardt et al., 2020).  

For CO2 fluxes (linearly detrended), a high total skill is found for all lead years but with initialization benefit limited to LY1 

in the tropical Pacific, indicating that most skill stems from external forcing (Fig. S14 and text in Section S2). The modest 870 

benefit from initialization agrees with the findings of Lovenduski et al. (2019), who compared hindcasts of CESM-DPLE 

(Yeager et al., 2018) with the same observational dataset. However, other model systems (Li et al., 2016, Ilyina et al., 2020) 

and perfect model studies (Seferian et al., 2018, Fransner et al., 2020) have shown a predictability of unforced CO2 flux 

variability up to several years, particularly in the North Atlantic subpolar gyre, suggesting that there is room for 

improvement for the NorCPM1 decadal predictions.  875 
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Figure 16: ACC for sea ice concentration (SIC) for historical (left), hindcast-i1 (middle), and hindcast-i2 (right) in Arctic (top row) 

and Antarctic (bottom row) for LY1. Observations are from HadISST1 (Rayner et al., 2003) over the period 1960–2018. The data 

are interpolated to a regular 1°×1° grid. 

3.2.4 Sea ice variability 

Previous studies have found robust initialization benefits for sea ice prediction lasting for a couple of months (Guemas et al., 880 

2016), with some reemergence of skill during the second year (Day et al., 2014). While these studies reported strong 

seasonal dependencies, the evaluation here is limited to hindcasts initialized in November. We evaluate LY1 predictions of 

annual-mean sea ice concentration (SIC) against HadISST1 (Rayner et al., 2003) over the period 1960-2018 that includes 

historical observations as well as satellite estimates (Fig. 16). In the Arctic, the uninitialized predictions (historical) show 

externally forced skill in the Barents, Kara and Chukchi Seas as well as the Canadian Archipelago (Fig. 16a). hindcast-i1 885 

shows consistently higher ACCs than historical in these regions and additionally exhibits first-year skill in sub-Arctic 

regions, e.g., in the Bering and Greenland Seas (Fig. 16b). hindcast-i2 benefits from a stronger constraint on the sea ice 

initial state compared to hindcast-i1, resulting in generally higher and more widespread skill (Fig. 16c). In the Antarctic, 
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historical shows patches of both positive and negative ACC (Fig. 16d). There are nearly no regions where hindcast-i1 

shows negative ACC, while regions with positive ACC are limited to the east-Pacific sector of the Southern Ocean (Fig. 890 

16e). hindcast-i2 shows even more positive skill, that extends into the Atlantic sector (Fig. 16f), but also some negative skill 

in the Pacific sector, albeit less negative as in historical. 

Figure 17: ACC for Arctic (top) and Antarctic (bottom) total ice area as a function of lead month for monthly averages (left) and 

3-month averages (right). The persistence forecast uses the observed October mean, while the hindcasts were initialized November 

1. Observations are from HadISST1 (Rayner et al., 2003) limited to the satellite era 1979–2018. 895 

We address seasonal dependence and temporal forecast limit of sea ice prediction by computing the ACC of total Arctic and 

Antarctic sea ice area as a function of lead month after November initialization (Fig. 17a,c). The Arctic ACC of persistence 

drops rapidly and both hindcast-i1 and hindcast-i2 show comparable or higher skill during the first winter and into spring. 

From early summer, the ACCs of hindcast-i1 remain close to zero. In contrast, hindcast-i2 shows some reemergence of skill 

from the first autumn extending into the second year. Performing 3-month pre-averaging makes the skill reemergence for 900 

hindcast-i2 and improvements over hindcast-i1, persistence and historical clearer (Fig. 17b,d). The uninitialized prediction 

from historical shows some skill during autumn and winter but no skill during summer. For the Antarctic, both uninitialized 

and initialized predictions perform inferior to persistence, with hindcast-i1 performing worst (Fig. 17c,d). Nevertheless, 

assim-i1 and assim-i2, which provide the initial conditions for hindcast-i1 and hindcast-i2, outperform persistence during 
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most of the year, except in austral winter when persistence shows reemerging skill. This suggests that model errors are skill-905 

limiting rather than imperfect initialization in that region. 

Figure 18: Hemispheric correlation skill for Arctic (top) and Antarctic (bottom) ice area as a function of lead month for monthly 

averages (left) and 3-month averages (right). The data is first interpolated to a 5°×5° degree grid and correlations are then 

computed jointly over space and time, applying area-weighting and only considering grid cells with non-zero temporal standard 

deviations. The persistence forecast uses the observed October mean, while the hindcasts were initialized November 1. 910 
Observations are from HadISST1 (Rayner et al., 2003) limited to satellite era 1979–2018. 

Since regional sea ice variability is not necessarily in phase with total hemispheric sea ice area, we define a hemispherically 

integrated skill score for predicting local (i.e., grid cell scale) sea ice conditions (Fig. 18). We first interpolate observation 

and model data to a common 5°×5° grid and then reduce the space and time dimensions to a vector that is used in the ACC 

computation. We apply square root grid cell area weighting and only consider cells with non-zero temporal standard-915 

deviation. The squared score gives the fraction of predicted sea ice concentration variance. A theoretical score of one would 

imply perfect prediction in every location (note the score depends on the resolution of the common grid). In addition to 

monthly ACCs (Fig. 18a,c), we present 3-monthly ACCs  (Fig. 18b,d) that are smoother. For the Arctic (Fig. 18a), the 

hindcast-i2 score reaches 0.4 during the first lead month, outperforming the sharply dropping persistence score (with 1-

month e-folding scale), and remains significantly higher than the uninitialized historical score throughout winter and spring 920 

and marginally higher during the remainder of the two lead years. persistence shows a reemergence of skill during summer 
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and autumn that is present but weaker in hindcast-i2. hindcast-i1 shows a score below 0.3 for the first lead month and no 

initialization benefit after the first spring. Consistent with these differences in hindcast scores, assim-i2 features consistently 

higher scores than assim-i1. For the Antarctic (Fig. 18c), the initialized predictions do better than the uninitialized ones (with 

no or negative skill) but for the most part fall behind persistence. assim-i2 shows notably higher and more stable skill than 925 

assim-i1, explaining better performance of hindcast-i2 over hindcast-i1.  

We have demonstrated initialization benefits for predicting sea ice up to two years ahead in NorCPM1, but can initialization 

improve prediction of decadal trends in Arctic sea ice decline? An analysis of Northern Hemisphere integrated sea ice 

volume (SIV) provides little evidence for that (Fig. S15). The initialized hindcasts have a tendency to simulate a flatter trend 

than the historical experiment over the last decade, which arguably can be interpreted as an improvement. Despite the lack 930 

of initialization benefit, the comparison between the two reanalysis products and their corresponding hindcasts is instructive 

and illustrates the importance of forecast drift correction. As mentioned in Section 3.1, the sea ice state update in assim-i2 

overall reduces the simulated SIV to values closer to observations, whereas the climatology of assim-i1 remains unaffected. 

Once assimilation is stopped, the sea ice in hindcast-i2 grows back towards levels comparable to the no-assimilation 

historical experiment. As a result, the hindcast-i2 predictions all simulate strongly positive decadal SIV trends, whereas 935 

hindcast-i1 produces flat or negative trends more in line with observations. Adjusting for lead-dependent forecast drift 

largely eliminates differences in the decadal SIV trends between the two hindcast products. 

3.2.5 Atmosphere variability 

Transfer of skill from the ocean to the atmosphere and over land is key to societally relevant climate prediction. We assess 

the extent such transfer is realized in NorCPM1 from ACCs of SAT, total precipitation (PR), 500 hPa geopotential height 940 

(Z500) and sea level pressure (SLP).  

For SAT, hindcast-i1 shows considerable first-year and multiyear hindcast skill that exceeds persistence skill over most land 

areas, except over central South America and parts of Africa and South Asia (Fig. 19a,c). The LY1 initialization benefit (Fig. 

19d) is highest over the subpolar North Atlantic, extending from there over Scandinavia and western Siberia. Siberia is also 

the only region where hindcast-i2 consistently shows higher skill than hindcast-i1 (Fig. 19e). While the ΔACCs are not field 945 

significant, it is plausible that differences in sea ice initialization impact skill over adjacent land (Ringgaard et al., 2020). For 

LY1, the ΔACCs relative to historical (Fig. 19d) hint ENSO-related initialization benefits over low-latitude coastal regions 

as well as over northwest North America. For LY2–5 and LY6–9, the difference maps indicate little initialization benefit, 

implying that most multiyear SAT skill over land stems from the externally forced trend in NorCPM1. However, this result 

can be sensitive to the ΔACC metric (Fig. S18 and related discussion in Section 4). 950 
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Figure 19: Prediction skill of 2 m temperature (SAT). ACC of hindcast-i1 (a), ∆ACC of hindcast-i1 - persistence (b), ∆ACC of 

hindcast-i1 - historical (c), and ∆ACC of hindcast-i2 - hindcast-i1 (d) for LY1. Middle and right column show the same but for 

LY2–5 (e–h) and LY6–9 (i–l). Observations use HadCRUT4 (Morice et al., 2012) with coverage 1950–2019. Hatched areas are not 

locally significant, dotted areas are field significant. 
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 955 

Figure 20: Prediction skill of total precipitation (PR). ACC of hindcast-i1 (a), ∆ACC of hindcast-i1 - persistence (b), ∆ACC of 

hindcast-i1 - historical (c), and ∆ACC of hindcast-i2 - hindcast-i1 (d) for LY1. Middle and right column show the same but for 

LY2–5 (e–h) and LY6–9 (i–l). Observations use CRU TS4.03 (Harris et al., 2020) with coverage 1950–2018. Hatched areas are not 

locally significant, dotted areas are field significant. 

For PR, hindcast-i1 exhibits positive skill over most land regions for all lead ranges (Fig. 20a,f,k). For LY1 it is highest and 960 

field significant over the western tropical Pacific and Indonesian Archipelago (Fig. 20a). The LY1 skill difference to 

historical (Fig. 20d), a measure for the benefit from initialization, resembles the hindcast-i1 skill itself, suggesting only a 
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small contribution from the externally forced trend to the first-year skill. For LY2–5 and LY6–9, the hindcast-i1 skill over 

the western tropical Pacific, Indonesian Archipelago and Australia is considerably reduced or disappears, whereas it is 

enhanced over North Africa, North America and Northern Eurasia (Fig. 20f,k). It is plausible to assume that the bulk of the 965 

multiyear skill is driven by the externally forced changes in rainfall patterns and hydrological cycle (Dong and Sutton, 2015), 

which is evidently the case over North Africa where ΔACCs relative to historical are small or even negative (Fig. 20i,n). 

However, positive ΔACCs over western North America and Northern Eurasia for all lead ranges suggest contributions from 

initialization. Most ΔACCs for precipitation are not field significant and we cannot preclude that they are a sampling artifact. 

This is in particular true for the hindcast-i2 and hindcast-i1 precipitation skill differences (Fig. 20e,j,o).  970 

Initialization benefits for predicting atmospheric circulation variability, as diagnosed from Z500 (Fig. S16) and SLP (Fig. 

S17), are most robust for LY1 owing to the influence of ENSO. For SLP, some multiyear initialization benefits are also 

present—albeit not field significant—over the extratropical Atlantic Ocean and Indian Ocean as well as the North American 

and Eurasian continents. The DA update of sea ice in hindcast-i2 slightly improves the multiyear skill in the Arctic, though 

the differences are small and not field significant.  975 

3.2.6 Global skill evaluation 

We globally summarise first- and multiyear prediction skills by computing ACCs over time and space for the variables 

assessed in previous sections (Fig. 21). Skills are computed for LY1, LY2–5 and LY6–9 for the two analyses and hindcast 

products and benchmarked against the uninitialized historical predictions and persistence. The results are not particularly 

sensitive to grid cell variance normalization and therefore similar to the globally averaged local (i.e., grid cell) ACC and also 980 

qualitatively similar to the mean-square skill score (not shown). 
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Figure 21: Global correlation skill for sea surface temperature (SST, a), 0–300 m temperature (T300, b), sea surface height (SSH, 

c), surface CO2 flux (fCO2, d), column-integrated primary production (PP, e,f), 2 m air temperature (SAT, g), land precipitation 

(PR, h), and sea level pressure (SLP, i). The ACCs are computed over time and space after weighting with the square root of the 

cell area. The box plots are constructed from 1000 bootstrap ACC realisations. Potential predictability* of PP (f) is referenced to 985 
assim-i1. 

For SST (Fig. 21a), which is assimilated, the ACCs of assim-i1 and assim-i2 exceed 0.8 for all lead year ranges. After 

assimilation is discontinued, the values drop to 0.5 during the hindcasts. For LY1, this is still higher than and well separated 

from the 0.4 value of the historical experiment, suggesting statistically robust benefit from initialization for dynamical 

prediction with NorCPM1. Consistent with better first-year skill in ice covered regions, hindcast-i2 performs slightly better 990 

than hindcast-i1, and both hindcast products exhibit marginally higher skill than persistence for LY1 (differences are not 

statistically significant). For LY2–5 and LY6–9, the ACCs of the two analyses and initialized hindcast products are very 

similar to or slightly higher than those for LY1. For multiyear prediction, the ACC of the historical experiment is on par 
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with the initialized hindcast products, suggesting a major contribution from the externally forced trend and negligible 

initialization benefit. The fact that persistence scores lower than the uninitialized historical experiment reveals that the skill 995 

contribution from the externally forced trend is more than what could be expected from a linear anthropogenic climate trend. 

For T300 (Fig. 21b), the ACCs of the two analyses are 0.6-0.7, i.e., lower than for SST, presumably due to lower data 

coverage and higher observation error. Similar as for SST, a clear initialization benefit manifests for first-year prediction and 

only a hint of benefit for multiyear prediction. SSH (Fig. 21c) shows initialization benefit for first-year prediction but signs 

of detrimental initialization impact for multiyear prediction. The ACC estimates for SSH are more uncertain than for T300, 1000 

partly owing to the shorter evaluation period.   

Surface CO2 flux (Fig. 21d) and primary production (Fig. 21e) are poorly constrained by the assimilation with the two 

analyses exhibiting ACCs of 0.2 and below. It is therefore unsurprising that the initialized hindcasts are not skilful and at 

best show marginal initialization benefit over likewise unskilful uninitialized predictions of historical. However, Ilyina et al. 

(2020) found a predictability of the global air-sea CO2 fluxes of up to 6 years when combining the members of the two 1005 

hindcast sets, suggesting considerable sensitivity to the chosen biogeochemistry skill metric, spatial averaging, evaluation 

period, and ensemble size. In contrast to the hindcasts, the persistence skill for CO2 flux exceeds 0.6 for LY1 and 0.3 for 

LY2–5, and for PP is close to 0.3 for LY1. When using assim-i1 as observational truth for primary production (Fig. 21f) the 

system suggests initialization benefit for all lead years with hindcasts reaching ACCs close to 0.6 for LY1. Inherent issues in 

the marine ecosystem parameterization to represent realistic variability (Tjiputra et al., 2007; Gharamti et al., 2017) in 1010 

combination with observational uncertainties are likely causing this discrepancy.   

Assimilation in NorCPM1 updates the ocean and sea ice state but does not directly constrain the atmospheric and land states. 

Nevertheless, the assimilation can improve their prediction to the extent that SST and sea ice control the atmospheric state. 

The ACCs for SAT (Fig. 21g) resemble those for SST, but are lower, in particular for the two analyses. Land precipitation 

(PR) exhibits ACCs of 0.4 independent of lead year range for the two analyses, and 0.2 for the hindcasts for LY1, suggesting 1015 

some success in initializing ENSO. Contrary to SAT, the historical experiment and persistence both exhibit zero skill for 

PR, both for annual means and multiyear means, despite anthropogenic spinup of the hydrological cycle and other external 

influences. SLP (Fig. 21i) behaves differently in that the global ACCs of persistence, ranging between 0.3 and 0.5, are 

consistently higher than those of NorCPM1. Thus, the external forcing seems to have a significant influence on the observed 

SLP variability, but NorCPM1 fails to capture it. For LY1, the ACCs of the initialized hindcasts are slightly higher than 1020 

those of the historical experiment, again suggesting skilful initialization of ENSO. 
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Figure 22: Correlation skill for global means of sea surface temperature (SST, a), 0–300 m temperature (T300, b), sea surface 

height (SSH, c), surface CO2 flux (fCO2, d), column-integrated primary production (PP, e,f), 2 m air temperature (SAT, g) and 

land precipitation (PR, h). The box plots are constructed from 1000 bootstrap realisations of the correlations. Potential 1025 
predictability* of PP (f) is referenced to assim-i1. The plotted correlation range varies for different variables. 

We finally evaluate how well the system constrains the temporal evolutions of global means (Fig. 22). Especially in the 

context of climate change attribution, it is of interest whether DA leads to improved representation of global surface 

warming, global sea level change and strength of the global hydrological cycle. The initialized hindcasts outperform 

persistence and historical for SST and SAT for LY1. Beyond that, the results show little evidence of initialization benefit, 1030 

except a marginal improvement of multiyear mean prediction for the oceanic CO2 flux and a sizable potential predictability* 

benefit for PP. While the initialized hindcasts performed equal or better than historical for globally averaged skill of local 

SST, T300, and SAT (Fig. 21a,b,g), hindcast-i1 and hindcast-i2 show slightly poorer multiyear skill than historical in their 
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global means (Fig. 22a,b,g). Except for SST, the reanalyses mostly outperform both persistence and historical but not as 

clearly as for the globally averaged skill. Interestingly the benefit from DA is considerably larger for global precipitation 1035 

than for global mean SST, possibly indicating a strong control of well constrained tropical—likely ENSO-related—SST 

variability on large-scale precipitation. DA does not improve the match with the 16-year short observational record of global 

sea level. Why exactly the globally averaged grid-cell skills (Fig. 21) show more benefit from DA than the skills of the 

global means (Fig. 22) is something that warrants further investigation. 

4 Discussion 1040 

Evaluating interannual to multiyear variability in NorCPM1 simulations with and without DA against observations, we 

found measurable initialization benefits—particularly for first year prediction—and only few signs of detrimental effects 

from DA. In this section, we will further discuss the findings, related caveats, and potential improvements.  

The anomaly assimilation scheme of NorCPM1 currently updates only the ocean and sea ice components, and the 

atmosphere and land components are only constrained to the extent that they are affected by the surface conditions. Utilizing 1045 

atmospheric observations and better constraining the atmospheric circulation variability has potential to improve the ocean 

and sea ice initialization by producing surface fluxes that are more consistent with the SST and SIC anomalies during the 

assimilation phase. Constraining the atmospheric circulation will also improve atmosphere and land initialization, beneficial 

for sub-seasonal to seasonal prediction. The success of utilizing initial conditions from forced ocean-sea ice simulations 

(Yeager et al., 2018) demonstrates the potential in constraining surface fluxes over ocean and sea ice for initializing 1050 

multiyear climate predictions. Performing EnKF ocean–sea ice assimilation in addition to constraining the atmospheric 

variability is expected to further improve the predictions (Polkova et al., 2019). Utilization of atmospheric observations in 

NorCPM's initialization is work in progress. A unified EnKF-based assimilation scheme covering all ESM component would 

be desirable but is subject to numerous technical and scientific challenges. As an intermediate solution, we are exploring 

atmospheric nudging in combination with EnKF-based ocean–sea ice assimilation in NorCPM, a strategy that has been 1055 

successfully applied in the MPI MiKlip system (Polkova et al., 2019). We will take advantage of the availability of multiple 

simulation members of the reanalysis products like ERA5 (Hersbach et al., 2020) and CERA-20C (Laloyaux et al., 2018) 

and nudge the members of the NorCPM analysis to individual members of the reanalysis products to provide a representation 

of atmospheric observational uncertainties and help generate ensemble spread in the ocean state. We will complement the 

atmospheric nudging with the leading average cross covariance technique that has been shown to further improve ocean 1060 

initialization by performing a one-way (from atmosphere to ocean) strongly coupled data assimilation (Lu et al., 2015). 

NorCPM1 shows overall high multiyear prediction skill from external forcing, with a modest and regionally limited increase 

in skill from improving the initial conditions via DA. A caveat with using ACC differences for detecting initialization benefit 

is that if the absolute ACCs are large, the ACC differences become difficult to robustly detect. Smith et al. (2019) proposed a 

more robust quantification method for initialization benefit, where the forced signal of the model is regressed out of both the 1065 
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model and observation data and ACCs are computed from the residuals (the result is scaled to account for the smaller 

variance of the residuals, see Section S2 for more details). Figure S18 compares both methods, with the residual ACCs 

showing clear initialization benefit for SAT over land regions where ∆ACCs are statistically indistinguishable from zero. 

Like in Yeager et al. (2018), we use ∆ACCs in this study to systematically compare against multiple benchmarks. The use of 

residual ACCs should, however, be of interest for future work, especially for assessing the impact of DA developments on 1070 

forecast skill.  

While the focus of this study leans towards DA innovations, future skill improvement clearly depends also on improving the 

ESM component of NorCPM. The dynamical model representation has been demonstrated key to skilful climate prediction 

(Athanasiadis et al., 2020; Yeager et al., 2018) and recent studies revealed a larger role of external forcing than previously 

thought (Borchert et al., 2021; Klavans et al., 2021; Liguori et al., 2020). The skill benefit from DA-assisted initialization 1075 

does not only relate to synchronisation of internal climate variability, but also to correcting the externally forced climate 

signal at forecast initialization time—which is subject model and forcing errors. We nevertheless expect a continuous need 

for, and benefit from improving NorCPM's assimilation, along with improving its ESM component. We have seen from 

weather and seasonal forecasting how improvements in both models and methods to assimilate observations (as well as 

observations and computing power) have continued to lead to enhanced prediction skill (Bauer et al., 2015). Work has 1080 

started to upgrade NorCPM's ESM component to NorESM2-MM (Seland et al., 2020)—featuring improved physical process 

parameterisations, a higher atmospheric resolution, a more realistic AMOC, and overall reduced climate biases compared to 

NorESM1—and results of this effort will be documented in future publications. We envision that the climate prediction 

evaluation and DA can increasingly inform the development of NorESM, which traditionally focused on long-term climate 

projections. There is growing evidence that current generation climate models systematically underestimate the influence of 1085 

SST variations and external forcing variability on extratropical atmospheric variability, particularly related to the North 

Atlantic Oscillation (e.g., Scaife and Smith, 2018; Athanasiadis et al., 2020). While post-processing methods relying on large 

ensembles have been proposed to mitigate this shortcoming (Smith et al. 2020), improving this aspect in the next model 

generation should be a key priority for the prediction community. 

The significance testing used in this study (Appendix B) does not account for observational error. Nowadays, observational 1090 

reanalyses routinely provide ensemble products that span observational uncertainty. While beyond the scope of this study, 

future skill evaluations should explore ways of utilizing this ensemble information in local and field significance testing. The 

addition of observational uncertainty should generally lower the p-values, leading to stricter testing. 

The ACC, our primary metric for quantifying skill in this study, is sensitive to random correlation that can occur over the 

evaluation period as it does not penalize for amplitude errors. The Mean Square Skill Score (MSSS), that penalizes 1095 

amplitude errors, can be used as an alternative, potentially more robust metric (Goddard et al., 2013 and Section S2). As we 

found the MSSS results (Fig. S19) comparable to the ACC results (Fig. S10), we decided to use ACC to facilitate 

comparison with previous works (e.g., Yeager et al., 2018) and because amplitude errors stemming from the model 

underestimating the forced climate signal can to some extent be corrected posteriori (Smith et al., 2019; Smith et al., 2020).   
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Our skill evaluation based on annual means does not address seasonal effects. Separately evaluating the skill for individual 1100 

seasons may help better understand the origins of skill and utility for society. 

5 Conclusions 

The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new climate prediction system that has contributed with 

model output to the Decadal Climate Prediction Project as part of the Coupled Model Intercomparison Project phase 6 

(CMIP6 DCPP). NorCPM1 combines the Norwegian Earth System Model version 1 (NorESM1) with Ensemble Kalman 1105 

Filter (EnKF) anomaly-assimilation of sea surface temperature and hydrographic profile observations. This paper provides a 

description and evaluation of NorCPM1. 

Compared to other dynamical climate prediction systems, NorCPM1 distinguishes itself by its EnKF anomaly assimilation 

that performs cross-component ocean-to-sea ice updates and is optimised for an ocean vertical density coordinate. The EnKF 

scheme makes optimal use of the observations by also updating unobserved variables using state-dependent relations from 1110 

the model's simulation ensemble. The use of these relations further minimizes shock by ensuring that all variables are 

updated consistently, to the extent the system behaves linearly. Through performing EnKF anomaly assimilation and 

accounting for measurement and representation errors in the observations, NorCPM1 aims at synchronising internal 

variability in a targeted and gentle manner to provide a reliable system (i.e., where the ensemble spread reflects the true 

internal variability error) that is mostly free of detrimental prediction shock. While on grid-scale this allows certain 1115 

mismatch between model and observations, our evaluation of the assimilation experiments shows that the approach 

accurately synchronises the large-scale variability modes (such as ENSO, PDO, and SPG strength) that are likely to carry 

multiyear predictability.  

The paper assessed the performance of the ESM component of the prediction system. Upgrades of the external forcings from 

CMIP5 to CMIP6 and minor code changes have only a minor impact on the model's climate representation relative to the 1120 

original NorESM1, which contributed to CMIP5. Spatial biases in key climate variables have mostly remained the same, as 

has the global climate response to external forcings. The conditional bias is hence largely unaltered relative to previous 

NorCPM configurations. Noteworthy biases are a 50 % too strong Atlantic meridional overturning circulation, excessive 

Arctic sea ice with cold adjacent continents, warm surface biases in the subpolar North Atlantic and Southern Ocean that are 

mirrored by cold biases at lower latitudes. In turn, the model's ENSO characteristics and its historical global warming 1125 

compare favourably to observations. 

The paper assessed the performance of the assimilation capability with two 30-member climate reanalyses products that have 

been contributed to CMIP6 DCPP. Both assimilate SST and T/S profile observations but differ in their treatment of sea ice 

and reference period used to construct anomalies. The anomaly assimilation of NorCPM1 does not show any detrimental 

effects on the climatology and generally reduces the RMSE of both observed and unobserved state variables (unobserved 1130 

means not part of observation types that are assimilated) in the assimilation experiments relative to the historical experiment 
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without assimilation. The application of cross-component anomaly assimilation reduces a positive bias in Arctic sea ice 

thickness and improves synchronisation of sea ice variability and variability of other climate variables, such as Southern 

Ocean sea surface height.  

A challenge unique to anomaly assimilation is how to best construct the anomalies. The choice of reference period has 1135 

limited impact on their correlation scores with observations, but it has significant impact on mean and long-term trends, e.g., 

in Atlantic meridional overturning circulation strength and meridional ocean heat transport. Future NorCPM development 

efforts will explore more sophisticated ways of designing climate anomalies, e.g., following Chikamoto et al. (2019), 

addressing important issues such as conditional bias and separation of internal variability versus externally forced signals in 

observations.      1140 

The assimilation shows limited success in synchronising variability in ocean biogeochemistry variables like net primary 

production or air-sea CO2 flux. This result contrasts findings of a perfect model study (Fransner et al., 2020) with the ESM 

component of NorCPM1 that suggests strong control of the physical state on interannual ocean biogeochemistry variability. 

Imperfect synchronisation of physical variability, short evaluation periods, errors in observations, and errors in the model 

representation of ocean biogeochemistry and its interaction with physical processes can contribute to this discrepancy. 1145 

The paper assessed the performance of the system to produce first- and multiyear climate predictions. We found robust 

initialization benefits for first-year prediction across a range of climate variables that at least partly are related to skilful 

synchronisation of ENSO variability. Predictability of sea ice extends into the second year in the hindcast product initialized 

from a reanalysis that more strongly constraints the sea ice state.  

While the externally forced trend leads to significant multiyear prediction skill, our evaluation provides limited evidence for 1150 

robust initialization benefits on multiyear time scales but also little indication for detrimental effects from initialization. 

Multiyear initialization benefit is mainly confined to SPNA in NorCPM1, where it largely offsets negative skill in 

uninitialized predictions, and leads to modest absolute skill that is significantly lower than the skill from non-dynamical 

prediction such as persistence forecast. After removing the forced signal, the initialization benefit for SPNA translates into 

robust benefit for temperature over adjacent land. The comparison of two differently initialized hindcast products reveals 1155 

high sensitivity of the AMOC to the details of the initialization approach with considerable impact on SPNA temperatures, 

such as shift in mean state and long-term trend and hindcast drift behaviour. Notwithstanding that both products struggle 

predicting the circulation evolution, it indicates the potential for improving SPNA temperature predictions by improving 

initialization of hydrographic anomalies that condition the evolution of the large-scale ocean circulation. To realise the full 

potential, however, would require a model representation of the circulation with realistic mean state, variability and 1160 

sensitivity to external forcing, aspects we will prioritise in further NorCPM development. Lead-dependent drift correction 

removes much of the differences between the two products (including a strong forecast drift in sea ice thickness present in 

one of the products) and therefore has merits also for anomaly-initialized predictions, in particular if model output is 

intended as input for climate impact studies. 
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The initialization of the physical model states does not robustly benefit ocean biogeochemistry predictions in NorCPM1. 1165 

This is unsurprising given the aforementioned poor skill of the reanalyses used for hindcast initialization. Thus, improving 

and understanding the lack of skill in the reanalyses is paramount to improving NorCPM's ocean biogeochemistry capability. 

We found robust transfer of initialization skill benefit to atmosphere and land for first-year prediction. As current climate 

models tend to underestimate atmospheric signal-to-noise ratios, more hindcast simulation members are expected to increase 

first-year skill and enable detection of multiyear signals (Scaife and Smith, 2018; Smith et al., 2020).  1170 

In summary, we found demonstrable benefits from initialization for climate prediction with NorCPM1. The initialization is 

virtually free of detrimental effects. At this stage, NorCPM1 primarily serves as a research tool. Based on the forecast quality 

evaluation presented in this paper, further development is needed to reach multiyear prediction skill at a societally useful 

level that makes the system more fit for operational use. To this end, the evaluation in this paper will serve as a benchmark 

for further NorCPM development, such as upgrades to the ESM component and refinements to the assimilation approach 1175 

with extension to all model components. Deficiencies of NorCPM1 skill identified here will guide future research and model 

development. The system has demonstrated promising seasonal prediction capabilities (Wang et al., 2019; Kimmritz et al., 

2019) and may already contribute to skilful multiyear climate prediction with societal application in a multi-model 

framework (Smith et al., 2020). 

Appendix A – Choice of DA scheme 1180 

There are multiple ways to initialize hindcasts, such as initialization from existing reanalysis products produced with an 

independent system (e.g., Chikamoto et al., 2019) or initialization of the ocean component by running it uncoupled, forced 

with an atmospheric reanalysis product (Yeager et al., 2018). In NorCPM1, the hindcasts are initialized from a reanalysis 

produced with the same ESM that assimilates ocean observations with the Ensemble Kalman filter (EnKF; Evensen, 2003). 

The advantage of using the same ESM is that it avoids initialization adjustment that occurs when changing the model. The 1185 

EnKF is an advanced flow dependent data assimilation method where the multivariate corrections are based on a set of 

observations, their uncertainty and the ensemble of model realisation produced by a Monte Carlo integration from the 

previous analysis step. Counillon et al. (2016) showed that the upper ocean heat content in the Equatorial and North Pacific, 

the north Atlantic subpolar gyre region and the Nordic Seas can be well constrained by assimilating SST anomalies with the 

EnKF. In particular, the vertical covariance shows a pronounced seasonal and decadal variability that highlights the benefit 1190 

of flow-dependent data assimilation. In NorCPM1 covariances in the ocean are formulated in isopycnal coordinates (the 

native vertical coordinate of the ocean model), which allows for deeper influence of the assimilated surface observations 

than when formulating them in standard depth-coordinate (Counillon et al., 2016). 

Up to now, climate prediction systems have predominantly assimilated data independently in their respective components, an 

approach referred to as weakly coupled data assimilation (WCDA; Penny et al., 2017). The other model components adjust 1195 

to these individual changes dynamically in between the assimilation cycles. Allowing the assimilation to update across 
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model components is expected to outperform WCDA because it would enhance dynamical consistency of the initial 

condition and expand the influence of the observations across its own component (strongly coupled data assimilation, 

SCDA; Penny et al., 2017, 2019). The climate system includes complex, coupled phenomena over wide, separated spatial 

and temporal scales of the Earth System components (atmosphere, ocean, land surface, cryosphere). DA procedures, on the 1200 

other hand, are mostly designed to deal with a single dominant scale of motion or under the assumption of weak coupling 

(Laloyaux et al., 2016, Sun et al., 2020). Joint OSI-SCDA of ocean and sea ice has been successful with flow dependent DA 

methods such as the EnKF. The scale separation between ocean and sea ice is not as pronounced as between ocean and 

atmosphere. The application of flow dependent covariance can handle well the anisotropy and sign reversal of the covariance 

at the sea ice front (Lisæter et al., 2003; Sakov et al., 2012) and the update of the multicategory sea ice state (Massonnet et 1205 

al., 2015; Kimmritz et al., 2018). Application of the methods has since also been tested successfully in a fully coupled ESM 

(Kimmritz et al., 2018) and used for seasonal prediction of Arctic sea ice (Kimmritz et al., 2019). A full SCDA of the ESM 

is a more challenging task because of the separation of spatial and temporal scales among atmosphere and ocean. There have 

been many advances both theoretically (Lu et al., 2015a; Smith et al., 2015; Tardif et al., 2015; Sluka et al., 2016; Penny et 

al. 2017) and on application e.g., the CERA reanalysis (Laloyaux et al., 2016) but no system is yet at the stage of achieving a 1210 

full SCDA. For interannual-to-decadal time scale, the largest part of climate predictability resides in the ocean and sea ice 

(e.g., Mariotti et al. 2018). Making use of the rich atmospheric observation network will be explored in future NorCPM 

versions as it can further improve the initialization of the slow modes of variability in the ocean where observations are 

sparse and generally enhance the consistency of the system. 

Climate models have strong biases that are in some places larger than the internal variability (Richter et al., 2014). There are 1215 

two common strategies in the climate prediction communities to handle bias: full-field assimilation requiring a subsequent 

post-processing to account for the model adjustment back to its own attractor or anomaly assimilation where the observed 

anomaly (calculated relative to a reference climatology) are imposed on a biased model climatology (Weber et al., 2015). 

Both methods have their advantages and disadvantages. NorCPM1 uses anomaly assimilation because full-field assimilation 

is problematic with ensemble DA (Dee, 2005): As models are attracted to their biased climatological states, the model bias in 1220 

the observed variables is propagated to the non-observed variables by the multivariate covariance matrix, which leads to a 

slow degradation of the system through the consecutive assimilation cycle. A challenge when defining a climatological 

reference is to ensure that the climatological reference is accurate and representative of the same variability between the 

model and data. Estimating an accurate climatology for observations becomes problematic in regions where observations are 

very sparse, limiting the possible span of a reliable climatological period. Furthermore, while it is usually possible for the 1225 

model to nullify the internal variability by averaging different ensemble members starting from different initial conditions, 

there is only a single realisation of the truth, and one must ensure that the climatological period of the observation is long 

enough to cancel out internal variability. Finally, it should be added that anomaly assimilation only addresses climatological 

biases and conditional biases such as in the variability and in the forced trends. 
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An emerging number of climate prediction models include ocean biogeochemistry (e.g., Séférian et al. 2014; Li et al., 2016; 1230 

Lovenduski et al., 2019; Park et al., 2019). Due to technical challenges with implementing ocean biogeochemistry in DA 

systems related to data sparsity and the non-Gaussian behaviour of many biogeochemical tracers, assimilation of 

biogeochemical observations is commonly not applied in these models (e.g., Park et al 2019). Instead, the ocean 

biogeochemistry is treated passively. This has been shown to constrain the biogeochemical variability relatively well 

(Seferian et al, 2014; Li et al., 2019; Park et al., 2019). There are, however, problems related to the update of physics that 1235 

introduces artificial mixing between surface and deep waters, leading to excessive surface nutrient concentrations and 

primary production, especially in the tropics (While et al., 2010; Park et al., 2018). Skilful near-time predictions of 4–7 years 

of air–sea CO2 exchange (Li et al., 2016, 2019), a couple of years for chlorophyll (Park et al., 2019) and 2–5 years for net 

primary production (NPP, Seferian et al. 2014) have been achieved by this passive initialization of ocean biogeochemistry. 

Fransner et al. (2020) showed, in a perfect model framework, that the initial state of ocean biogeochemistry has little impact 1240 

on the prediction skill beyond LY1, and their work suggested that assimilation of biogeochemical tracers would only give a 

marginal improvement in the predictive skill of ocean biogeochemistry. 

Appendix B – Skill scores and significance testing 

Following Goddard et al. (2013), we use the anomaly correlation coefficient (ACC) for assessing hindcast and reanalysis 

performance. We use ∆ACC score differences for comparing our reanalysis and hindcast products and for benchmarking 1245 

against uninitialized predictions and persistence forecast. As in Goddard et al. (2013), we consider lead year 1 (LY1), lead 

year 2–5 (LY2–5) and lead year 6–9 (LY6–9) forecast ranges using multiyear averages. For example, if a hindcast is 

initialized in October 1960 then LY1 corresponds to the average of 1961, i.e., the following calendar year.  

If the temporal coverage of the observations is shorter than that of the model output, we maximize the use of observations in 

the ACC computation. For example, if the observations start in 1993 then the ACC computation for LY6–9 will use 1250 

hindcasts starting at the end of 1983 and later. Consequently, the start dates used in the ACC computation may differ for the 

different forecast ranges, while the evaluation period is fixed except in the persistence forecast. The LY1 persistence forecast 

uses the observational average of the previous year, while the LY2–5 and LY6–9 persistence forecasts use the average over 

the four previous years. This is done because we found the effect of temporal filtering to outweigh the shift towards older 

observations, resulting in persistence skills consistently higher than if using the last month or last year instead.  1255 

Prior to the ACC computation, we interpolate model and observational data to a common, regular 5°×5° grid if not stated 

otherwise. We do not remove the linear trend or other estimates of the forced response, except when evaluating surface 

carbon flux. When comparing ACCs of hindcasts (which comprise 10 simulation members) with uninitialized predictions, 

we only use the first 10 members of historical because we want to isolate the benefit of initialization without confounding it 

with the effect of ensemble size on the accuracy of the externally forced trend estimate.   1260 
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We test local and field significance of skill scores and score differences following Yeager et al. (2018). We consider a score 

locally significant if the associated p-value (i.e., probability for producing a random score equal or higher than the score 

tested) is below 𝛼local≔0.1 (i.e., 90% confidence). Regions that fail the local significance test are marked with slash / on the 

skill score maps (e.g., Fig. 7). We derive the p-values by means of resampling the original data that is interpolated to the 

common grid. For each obtained skill score we construct 4,000 bootstrapped scores that capture random uncertainty 1265 

stemming from temporal sampling and from having a limited ensemble size. Using the moving block bootstrapping 

technique, we resample the data (pairwise model-observation sampling with replacement) in 5-year blocks that may start in 

any year but not in the last four years to account for temporal autocorrelation. The blocks are concatenated, and the last 

block is truncated such that the bootstrapped time series has the same length as the original series. Additionally, we resample 

(with replacement) the ensemble members used in the computation of the ensemble means. While the combination of 1270 

members varies between different bootstrapped time series, we keep it fixed within each series. We test significance for both 

positive and negative scores. Following Goddard et al. 2013, we estimate the p-value for a particular skill score as the 

fraction of bootstrapped scores with opposite sign of that of the score tested (e.g., if the original score is positive and 200 out 

of the 4,000 bootstrapped scores are negative then we determine p as 200/4,000 = 0.05). The rationale is to utilise the spread 

information from the bootstrapped distribution to calculate the probability for obtaining a score equal or higher than the 1275 

score tested, under the null hypothesis that the true score is zero. We verified the bootstrap estimation of p-values on a large 

set of artificially constructed series with known true correlation and found good agreement with Monte Carlo estimated p-

values, with r(pbootstrap,pMonteCarlo) > 0.95.  

Local significance information has particular utility if considering a single location of interest and if the choice of this 

location is not informed by the spatial score distribution. Explorative analyses, however, often simultaneously consider 1280 

multiple locations of interest and make the selection of locations dependent on the spatial score distribution as they tend to 

focus on regions with the most extreme scores. In such cases the use of field significance is more meaningful. Like Yeager et 

al. 2018, we test field significance using the false discovery rate (FDR) approach following Wilks (2006, 2016), which has 

the practical advantage that it reuses the p-values from the local significance test. The FDR algorithm determines pFDR such 

that the false discovery rate in the region where p < pFDR (locations marked with dot · on the maps) becomes approximately 1285 

equal to a target FDR of 10%. The value of pFDR, stated on all ACC plots, is computed from Equation B1 where N is the 

number of p-values, p(i) is the i-th sorted p-value and 𝛼FDR a parameter that controls the FDR.  

𝑝()* = 𝑚𝑎𝑥!+,,...,/3𝑝(!): 𝑝(!) ≤ (𝑖/𝑁)𝛼()*;,         (B1) 

If pFDR exists, then the test also rejects the global null-hypothesis that the true scores are zero everywhere at 90% confidence 

level. Assuming moderate to strong spatial correlation (Wilks 2006), we set 𝛼FDR≔2𝛼global and 𝛼global≔𝛼local=0.1. Consistent 1290 

with intuition, pFDR tends to be close to 𝛼local if most points are locally significant, while pFDR << 𝛼local if only few points are 

locally significant. In rare situations pFDR can become larger than 𝛼local (due to 𝛼FDR > 𝛼local) with the consequence that scores 
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can be field significant without being locally significant. We consider this an artefact of the ad-hoc adjustment of 𝛼FDR for 

spatial correlation, and we set pFDR≔𝛼local in such case. 
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Code availability. The NorCPM1 code can be downloaded from https://doi.org/10.11582/2021.00014 (Bethke, 2021a) or 1295 
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