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Daniel N Goldberg on behalf of authors

Comments from Reviewer 1

The uncertainty in model data is propagated to a Quantity of Interest (QoI) in ice sheet
simulations using a Bayesian approach. This kind of analysis has been published previously
but the authors extend it here to time dependent QoIs. They show how to reduce the
uncertainty in the prior by utilizing Bayes' formula for the posterior. The method is tested
with the SSA ice sheet equations solving an ISMIP-HOM problem. Parameters are varied in
numerical computations. Examples of possible future work are given in the final section.
The code for the experiments is available for free.

We thank the reviewer for this synopsis. We also point out that (to our knowledge)
the application of Algorithmic DIfferentiation to this problem (UQ of ice-sheet
initialisation) is new.

The paper is suitable for GMD and is improved if the comments below are addressed
somehow in a revised version.

General comments

Sect. 2.4: $\Gamma_{post}$ depends on how $r$ is chosen. If there is a gap in the
eigenvalue distribution then $r$ can be chosen such that the gap is between $\lambda_r$
and $\lambda_{r+1}$. But in general there is no gap. How should $r$ be chosen in a
general case? This question is related to the choice of $\gamma$, see Fig 4a. If we believe
in prior data then $\gamma$ should be large but if we don't then give data lower weight (or
should $\gamma$ be viewed only as a regularization parameter?).

We agree the “choosing” or $r$ was a point not addressed. In this work the problems
are small enough for us to recover the entire spectrum but in general this needs to be
decided. Isaac et al (2015) suggest a strategy of ensuring lambda_r is O(1). However
a more pragmatic strategy we are considering is to choose $r$ so that eq (22) (the



variance of the QoI) has negligible change as $r$ increases. We mention both
strategies now.

Choosing an appropriate value for the prior parameter $\gamma$ is in general very
important beyond the scope of this idealised study. We explain (line 347) that, in line
with other non-probabilistic inverse modelling studies, we carry out an L-curve
analysis, but only as a guideline for choosing values of \gamma to examine. In
general, it does have meaning, and we feel the background sections of the
manuscript express this sufficiently.

Sect. 4, (33): Why is this particular QoI chosen? A bit longer motivation would be welcome.

We now give more motivation for this choice -- and also “call forward” to a passage
that is (now) in the discussion (line 562) about the choice of QoI and its sensitivity to
small scale variability.

Sect. 4: How is the prior $c_0$ chosen? Maybe this is mentioned somewhere but it could be
repeated here. A discussion of how to select $c_0$ and its impact on the posterior result
would be interesting.

We now say:

“In our experiments $C_0$, the prior value of $C$, is uniformly zero -- indicating we
assume no preconceieved notion of its mean value, only its spatial variability
(implied by $\gamma$).”

It is beyond the scope of this idealised experiment, but in general C_0 should depend
on independent assessments e.g. the bed elevation $R$ may be sought as an
unknown, but independent assessments exist. However, we do not mention this as
we do not introduce additional unknown fields in our simple idealised framework.

Sect. 5.3: One would expect that the linear approximation of QoI should work for sufficiently
small perturbations. Maybe the perturbations are too large when the regularization is small
($\gamma_1$) and for smaller perturbations the approximation will work.

Yes, we agree -- and actually we feel this is echoed in our passage: “It is likely that
the small-scale noise inherent in the low-regularisation samples (\textit{cf} Fig. 8)
impacts the Quantity of Interest strongly enough that the linear approximation in Eq.
22 breaks down “

Sect. 6: The issues above with choice of $r, \gamma, c_0$ and QoI could also be discussed
in the last section.



Thank you for the suggestion. We have decided to address these issues in the
relevant sections of the methodology (see passages and line number references
above)

Specific comments

line 93: Euclidean inner product of $a$ with $\Gamma^{-1}_{obs}b$? Next line
$\|a\|_{\Gamma^{-1}_{obs}}$?

Thank you, fixed!

105: Is there a weight missing in front of the prior term? Maybe $\gamma$?

This is as we intended it. Parameters such as $\gamma$ are meant to be included in
\Gamma_{prior} ie. see eq 11.

110: Tell that you maximize over $\bar{c}$.

Done (though actually we minimize the negative log posterior)

145: Define $\delta$. $\matcal{L}$ is defined for a function in (9). In (10) $\matcal{L}$ is
applied to a vector $c$, at least $c$ is a vector after the last equality in (10). Should
$J_{reg}^c$ depend on a weight too?

Thank you for pointing out this is undefined, we now make clear that $\gamma$ and
$\delta$ are scalars (and thus $\delta(\cdot)$ implies multiplication). You also raise an
important point, $\gamma$ and $\delta$ in general can vary spatially, though in the
present they are treated as constant. We now write:

“where $\gamma$ and $\delta$ are positive scalars which are in general spatially
varying, though in the present study we consider only constants.”

These “weights” however are absorbed into the definition of $\mathbf{L}$.

149: Should the definition of $L$ have only one $\mathcal{L}$ in the integral? What are the
bars over $\phi$?

You are correct, apology for the oversight which is fixed. As described in 2.1, the
overbar is our convention for a coefficient vector of a finite element function.

171: Mention that the eigenvalues are ordered such that $\lambda_i\ge\lambda_{i+1}$.

Done.

179: leading eigenmodes -> leading eigenmodes with large eigenvalues.



With our implementation of the previous suggestion (that the eigenvalue ordering is
in descending order), this is now implied, so we do not make this change.

242: Specify parameters $B$ and $n$

We are not sure if you meant to define these or give the values we used, but we now
do both (lines 255-257)

251, 253: Specify $\delta$ which is different from $\delta$ in (9). Tell what o.w is.

Apologies, \delta is a symbol commonly used for this quantity (now defined just after
the equation), we have changed to \eta which is not used elsewhere in the paper, and
defined it (line 265).

o.w. = otherwise. We have simply written “otherwise”

321, 322: Is weight $\gamma$ missing here? Is $c$ a function in the integral after the first
equality and a vector in the second term after the second equality?

$\gamma$ is “absorbed” into the definition of the prior covariance (eq 11).

As for the formatting of $c$ this was an oversight -- thank you. In the first equality it
is a finite element function and we use the capital $C$ as previously in the
subsection. In the second it is a coefficient vector and we use \overline{c} (cf line
338).

515: The uncertainty in the QoI is not only lower than the uncertainty in the parameters due
to the filtering but also due to the choice of QoI. With a different QoI it may be larger even
with filtering.

This is a good point -- and we feel it is now addressed by the paragraph which *now*
follows this one (though, as your correctly point out below, we had forgotten to move
to the discussion).

Technical corrections

line 138: $J_c$ -> $J^c$

fixed.

176: $H$ -> $\bar{H}_{mis}$ ?

We believe this is correct as written. We have added additional equalities to make
this clearer.



223: (Section ?)

fixed.

302, 304: $C^2$ or $C$ here?

$C^2$ is what was intended. Eqn (30) is consistent with eq (24). Eq 31 is modified to
make clear we are defining C.

385: say something about ...... intervals?

Apologies, we overlooked this leading up to submission -- it is now removed.

413: maybe move ....?

We overlooked this but now it is moved and addresses nicely a comment you make
above.

665, 677: missing journals

Comments from Reviewer 2

This paper presents a mathematical method and a software tool for quantifying uncertainty
in glacier flow model projections. The methods consists of (1) using automatic differentiation
to compute the action of the full Hessian of the negative log posterior, (2) computing the
smallest few eigenvalue / eigenvector pairs of the Hessian in order to find out which
directions in parameter space are most important to sample, and (3) computing the
uncertainty in a given output quantity of interest by linearizing the model physics around the
most probable state. The authors then test this method on a synthetic test problem, the
ISMIP-HOM test case. The authors also address two key shortcomings of how data
assimilation in glaciology is usually practiced: accounting for discrete (as opposed to dense)
spatial observations and correlation between measurements. Overall, the method is
described fairly well albeit with a few points that could use clarifying. I have a few concerns
about how generalizable the method is, but in any case the paper and the software are a
valuable contribution that I recommend for publication with minor revisions.

Many thanks for your supportive comments and concise summary.

Regarding generalisability, we cannot address this point within the context of our
manuscript, though since the time of its writing we have been applying the
methodology to a more realistic domain and setting. Still, we are glad to hear that
even with the idealised experiments here you feel it is a valuable contribution.



The authors make excellent use of low-rank approximations to the Hessian. This trick has
appeared in the literature before (although it's not as widely used as it should be). How
does their approach compare to that of, say, Petra et al. 2014 or the hIPPYlib code?

In truth the approach is very similar to that of Petra 2014  (which we had neglected to
cite, thank you for raising this), which actually follows from their “Part 1” paper,
Bui-Thanh et al 2013. The two approaches are very similar and differ subtly, but not
profoundly, and essentially do the same thing. We prefer the formulation of Isaac et al
2015, which we follow (but also make explicit some ideas not in their manuscript,
such as eq 17). We have already stated that our analysis follows Isaac 2015, but we
now state:

“The following low-rank approximation follows from \cite{Isaac2015} and similar
approaches are used in \cite{BuiThanh2013} and \cite{petra2014}”

I have two real concerns with the approach, although these don't change my overall opinion
of this very good paper. First, the method relies on the assumption of quasi-linearity in
several places. While the authors check that this assumption wasn't violated for their
particular test case, it's difficult to assess whether this would generalize to other problems.
By contrast, the stochastic Newton approach in Petra et al. 2014 uses an assumption of
quasi-linearity only locally, to bootstrap a more sophisticated Monte Carlo sampling
algorithm.

We agree that this approach is limited by the assumption of Gaussianity (ie.
quasi-linearity) and we do caveat with the fact this assumption is made, in several
places. It is worth noting that Petra 2014’s Stochastic Newton MCMC method actually
does rely on a low-rank Hessian approximation, which is a central part of the
methods discussed in our manuscript as well. While we did not mention Petra 2014
originally, there is a mention of Martin et al 2012, who applied Stochastic Newton
MCMC to seismic inversion -- though this was a bit buried in line 422 (of the original
manuscript). We now cite Petra 2014 here as well.

The argument we make is that if one wanted to carry out MCMC on a state space this
large, they would likely need to use a method such as that of Martin et al 2012 (or
Petra et al 2014), which involves (as you mention) a local Hessian based
approximation to the posterior pdf -- but even so, these methods are beyond the
scope of the current study. To make this more clear we now add text to the
discussion making this clear, and note that Stochastic Newton MCMC using our
framework could be a future possibility.

Second, the authors make a big deal about using the full Hessian instead of the
Gauss-Newton approximation while at the same time relying on quasi-linearity, and yet the
Gauss-Newton approximation is works best when the dynamics are almost linear. At the
end of the paper, the authors state that they did not use a time-dependent control method



because it's computationally expensive. Would a time-dependent method have been
feasible if the authors had instead used the Gauss-Newton approximation? Establishing
whether the full Hessian is really necessary is a very important point. Other researchers
might want to emulate the techniques described in this paper and yet they might be using
other modeling frameworks for which the Gauss-Newton approximation is feasible to
implement while the full Hessian is not.

Thank you for this. Based on your feedback a decision was made to implement the
Gauss-Newton Hessian within fenics_ice. We now have an additional section before
the Discussion explaining its construction and providing results of a simple test, as
well as a short paragraph in the discussion regarding the implications for future work
-- but we stress that the results do not necessarily extend to more realistic settings.

General comments

45, "gradient-based optimisation": The point of this sentence is to state that computing the
MAP estimate doesn't give any information about parametric uncertainty. The fact that you
used a gradient-based algorithm concerns more the "how" than the "what"; it isn't really
important and you could just cut this phrase entirely. You could have used a derivative-free
optimization algorithm -- it's a dreadfully awful idea, but you could do it!

We agree that the MAP point does not tell us anything about uncertainty, we would
not completely agree that this is the point we are making -- a point which we feel is
addressed in the following paragraph regarding the seemingly contradictory aims of
large-scale and UQ. Therefore we feel the efficiency of control methods in finding the
MAP point relative to MC methods is in fact relevant. We remove the phrase, now
stating

“Although control methods might efficiently provide estimates of parameter fields,
they do not provide parametric uncertainty.”

57-60: How much better is using the full Hessian than using the Gauss-Newton
approximation? This isn't immediately apparent from the text or from the sources you cite
here.

We do not know of another study which addresses this question in the context of UQ.
As mentioned, though, we now have a section devoted to this. We of course cannot
address this question generally but we can and do for our experiments.

97: By taking the parameter-to-observation map f to be a map from R^n to R^m, you're
assuming a "discretize, then optimize" mindset. It might clarify the points you make about
mesh dependence later on if you instead define it as a map from some function space Q to
R^m -- the "optimize, then discretize" mindset. See Gunzburger 2002.



We appreciate what you are saying here, but at the same time feel that our approach
is very different from the "discretize, then optimize" approach taken by, e.g. the
line-by-line differentiation of ocean and climate models by source-to-source
transformation (e.g. Kalmikov and Heimbach 2014) -- we mention this because this is
the type of approach which "discretize, then optimize" typically refers to. Since
tlm_adjoint differentiates at the level of finite element variational forms, at least in
simple cases discretization and algorithmic differentiation commute, in which case
the approaches are equivalent.

Regardless, though, we believe our approach in this paper -- to consider functions
(and their higher-order derivatives) in terms of coefficient vectors -- greatly simplifies
things relative to trying to express relationships as differential forms, which we feel
would add complexity to the text and make it more difficult for interested audiences
to follow. We are very careful to use distinct notation for finite element coefficient
vectors to distinguish from the actual functions, and feel that we have struck a
balance between discrete and continuous.

The parameter-to-observation map that you've written down encapsulates both the physics
and the measurement process. This is just a suggestion, but it might help the exposition to
instead define f as the composition of two maps. First, there's a function g that takes the
parameters to the observable fields, like the ice velocity. This function g is basically just
"solve the shallow shelf equations". Next, there's a function h that takes the observable
fields to the actual observations. When doing the "wrong thing" that you point out later, h is
the identity map and the norm is an L^2 norm. When doing the correct that that you have
actually implemented, h evaluates the observable fields at a bunch of discrete points and
packs these observations into a vector, and the model-data misfit is a discrete sum of
squared errors.

Thank you for noting this, as this is a subtle point in the manuscript not made
explicit. Introducing another symbol altogether would add complexity to a number of
expressions which we feel outweighs the benefits of making this idea clear
symbolically. We add a paragraph now in section 4 where Numerical Experiments are
described:

“Our parameter-to-observable map $\vobs{f}$ is really a composition of two
functions: the first finds the solution to the momentum balance (Eq.
\ref{eq:weak_form}) as a finite-element function, and the second interpolates the
function to discrete locations. If the misfit cost were to be expressed as the weighted
$L_2$ norm of the model-data misfit as in Eq. \ref{eq:control_mis}, then the
interpolation function is replaced by the identity.”



135-139: Using a control method does not necessarily imply that you're writing the
model-data misfit as a squared L^2 norm, it's just a sinful thing that many glaciologists
(including me) have done because it's easier.

We agree with this, and we did not mean to imply that all control methods do this --
rather those which are specifically referenced in the introduction do. To avoid
ambiguity we now write

“By contrast with Bayesian methods, the control methods generally used in
glaciological data assimilation” .. and cite a subset of those cited in the introduction
(to avoid length/repetition)

It's also worth noting that when you say "mesh dependence", certain readers are
immediately going to think of something other than what you describe here. In the
PDE-constrained optimization literature, mesh dependence refers to what happens when
you use a bad optimization algorithm based on using the vector of coefficients of the
derivative obtained from the adjoint method as a descent direction. This can give really
obvious mesh imprinting artifacts in the results, especially with higher-order finite element
bases. (The minimal right thing to do is to multiply by the inverse of the mass matrix. You
mention using the BFGS method later, and taking the H_0 matrix to be the inverse mass
matrix works there as well.) This problem is more a question of how you solve a particular
optimization problem. The mesh dependence that you're talking about is much more serious
-- by neglecting the discreteness of the observations, going to a finer mesh implicitly
assumes that you magically have more measurements than you did before. At a higher
level, what you've done is tackle the fact that everyone has been solving the wrong
problem, irrespective of how they were solving it. Since some readers will immediately
associate with the first case, it might be good to either (1) clarify the distinction with a
reference to, say, Schwedes et al. 2017, or, (2) if you don't feel like talking about that, use a
different phrase besides "mesh dependence".

In fact, by mesh dependence we actually intend the meaning to be with respect to the
computational mesh, i.e. how things change (or do not change) when the mesh itself
is resolved and finite-element degrees of freedom increase -- which we believe is
distinct from the two types of mesh dependence you mention. In the experiment you
refer to the observational spacing and location remains the same (we believe this is
clear, since Figs 4c and 4d relate to the refinement of the observation array.) We
would like to retain “mesh (in)dependence” as it was the same wording used in Isaac
et al 2015 (their figure 5), and we now cite this paper where it is mentioned.

140-146: Including the delta term is essentially adding the prior information that you think
the mean of the parameters is zero. I don't think this is a good prior in all cases. Are there
other ways to get a prior with bounded covariance that don't make this assumption? For
example, you could use the Moreau-Yosida regularization of bounds constraints, which



instead assumes that the parameters don't wander too far outside a preset interval but
which provides no constraints within that interval.

We agree it is not the only way to impose this prior mean, and agree it is perhaps not
the best approach in all cases, but as mentioned in our response to referee 1 we feel
that a prior mean of zero is appropriate. The elliptic operator we use for a prior does
have strong advantages though such as the ease of inverting which needs to be
done many times. We point out this is not the only way to impose this and reference
an optimisation study which uses the regularisation method you mention.

260-264: It's easy to get the impression from this paragraph that you're doing
time-dependent inversions, which is only dispelled in the conclusion on line 552. You should
probably state this earlier in the text.

We now add “ In this study, we do not consider initialisations based on time-varying
data (i.e. the misfit cost function $J_{mis}^c$ does not depend on time-varying
fields), so the continuity function is only involved with finding a Quantity of Interest
and propagation of initialisation uncertainty.”

270-273: How do you know how many Picard iterations is adequate? Why not use another
globalization strategy, like damping / line search or trust regions?

We do not know (or specify) a priori a set number of picard iterations, rather we
specify a relative tolerance, which is chosen empirically. We now state this as well as
the value used for our study.

274: Why did you use BFGS when you can calculate a Hessian-vector product? Why not
Newton-Krylov?

Full Hessian-vector multiplication costs the tangent-linear + second order adjoint,
as well as the usual forward + first order adjoint, so as a baseline would be more
expensive, and we are not sure that a Newton-Krylov approach would on the
whole offer an advantage. While we have not carried out a detailed study of
Newton-Krylov methods for optimisation of the cost function, results with a
Newton-CG approach were not very promising. Given this, we feel the passage is
best kept as-is.

341: The L-curve is fine, but you might want to mention the discrepancy principle or other
more statistically-motivated approaches. See Habermann et al. 2013.

We now note that there are alternative approaches to determining the optimal level of
regularisation and cite a few references which implement these, including
Habermann 2013.



484-490: This is really great, I haven't seen anyone address this issue before.

Thank you, to our knowledge it had not been examined in the context of this problem.

537-538: I don't think the technical hurdles are minor at all because of exactly what you say
in the next sentence.

I would remove this statement from the text.

We meant to say that it is relatively trivial to add another “control” field into the
fenics_ice framework and implement Hessian-vector products with respect to this
joint space -- not to overcome the issue of equifinality and/or quantify overfitting (in
fact this is very difficult). To avoid confusion we modify to

“The version of \texttt{fenics\_ice} presented in this study is not capable of joint
inversions or of Hessian-vector products with multiple parameter fields, however the
technical hurdles to implementation are minor.”

550-551: It might be worth citing some of the work that Karen Willcox and her group have
done on multi-fidelity modeling and UQ.

What we were suggesting was much less sophisticated than a multifidelity approach
but we do now add a reference.

Technical corrections

Several of the authors' "note to self" comments remain in the manuscript.

Thank you, these were overlooked and now actioned.

484: "isotroptically" -> "isotropically"

Thank you, fixed.

--------------------------------------------------------------------------------------
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Abstract.

Mass loss due to dynamic changes in ice sheets is a significant contributor to sea level rise, and this contribution is expected

to increase in the future. Numerical codes simulating the evolution of ice sheets can potentially quantify this future contri-

bution. However, the uncertainty inherent in these models propagates into projections of sea level rise, and hence is crucial

to understand. Key variables of ice sheet models, such as basal drag or ice stiffness, are typically initialized using inversion5

methodologies to ensure that models match present observations. Such inversions often involve tens or hundreds of thousands

of parameters, with unknown uncertainties and dependencies. The computationally intensive nature of inversions along with

their high number of parameters mean traditional methods such as Monte Carlo are expensive for uncertainty quantification.

Here we develop a framework to estimate the posterior uncertainty of inversions, and project them onto sea level change pro-

jections over the decadal timescale. The framework treats parametric uncertainty as multivariate Gaussian, and exploits the10

equivalence between the Hessian of the model and the inverse covariance of the parameter set. The former is computed effi-

ciently via algorithmic differentiation, and the posterior covariance is propagated in time using a time-dependent model adjoint

to produce projection error bars. This work represents an important step in quantifying the internal uncertainty of projections

of ice-sheet models.

1 Introduction15

The dynamics of ice sheets are strongly controlled by a number of physical properties which are difficult (or intractable) to

observe directly, such as basal traction and ice stiffness (Arthern et al., 2015). This poses challenges in terms of future ice-

sheet projections, as the behaviour of ice sheets often depends strongly on these (spatially varying) properties. There are two

principal approaches that have been taken by ice-sheet modellers to approach these challenges: control methods and sampling-

based uncertainty quantification. Below, we discuss these approaches in the context of ice-sheet modelling.20

Control methods (MacAyeal, 1992), sometimes referred to simply as “inverse methods” in a glacial flow-modelling context,

consist of the minimisation of a “cost” function involving some global measure of model-data misfit, as well as regularisation

cost terms which penalise nonphysical behaviour (e.g. high variability at small scales or strong deviation from prior knowl-

edge). A strong benefit of control methods is their ability to estimate hidden properties at the grid scale through large-scale

1



optimisation techniques. Such methods have been used extensively to calibrate ice-sheet models to observations (e.g., Rom-25

melaere, 1997; Vieli and Payne, 2003; Larour et al., 2005; Sergienko et al., 2008; Morlighem et al., 2010; Joughin et al., 2010;

Fürst et al., 2015; Cornford et al., 2015).

Uncertainty quantification (UQ) in projections of ice-sheet behaviour is a crucial challenge in ice-sheet modelling. Studies of

fast-flowing Antarctic glaciers have shown that uncertainties in the parameters controlling ice flow can lead to large variability

in modelled behaviour (Nias et al., 2016). Thus it is of great importance to quantify how this parametric uncertainty translates30

into uncertainty in projections. In some cases, this uncertainty may be exogenous to the dynamics of the ice sheet model:

for instance, uncertainty in ocean-driven ice shelf melt, while a likely important contributor to ice-sheet projection uncertainty

(Robel et al., 2019), arises from incomplete knowledge of the ocean system rather than the dynamics of the ice model itself. This

is in contrast to parameters that must be constrained via calibration; their uncertainties derive from observational uncertainty,

uncertainty in model physics, and a priori knowledge.35

The uncertainty associated with ice-sheet model calibration can be quantified through Bayesian inference, in which prior

knowledge is “updated” with observational evidence. Such methods have been applied to continental-scale ice-sheet models

and models of coupled ice-ocean interactions (Gladstone et al., 2012; Ritz et al., 2015; Deconto and Pollard, 2016). In these

Bayesian studies, the dimension of the parameter space is small (i.e. less than∼20). Though the methods of these studies differ,

they share the common feature of generation of a large ensemble (thousands of runs) through sampling of a parameter space.40

Bayesian methods are then applied in conjunction with observational data to find likelihood information for the parameters,

and associated probability distributions of ice-sheet behaviour.

Applying such ensemble-based Bayesian methods to glacial flow models and parameter sets of dimension ∼O(104− 106)

(a dimension size typical of control methods) is prohibited by computational expense. Although control methods efficiently

might
:::::
might

::::::::
efficiently

:
provide estimates of parameter fields, they do not provide parametric uncertainty. While it can be shown45

that such methods provide the most likely parameter field (often referred to as the Maximum A Posteriori, or MAP, estimate)

(Raymond and Gudmundsson, 2009; Isaac et al., 2015), the covariance of the joint probability distribution – necessary for

assessing uncertainty in calibrated model behaviour at the MAP point – cannot be inferred.

Thus, there is at present a disconnect between the dual aims of (i) modelling ice sheets as realistically as possible, i.e. through

the implementation of higher-order stresses and without making limiting assumptions regarding “hidden” properties of the ice50

sheet, and (ii) uncertainty quantification (UQ) of models by approximate inference by reducing the dimensionality of the set of

parameters.

By augmenting control methods using a Hessian-based Bayesian approach, it is possible to quantify parametric uncertainty

without sacrificing parameter dimension or model fidelity. Just as control methods can be interpreted as returning the mode

of a joint posterior probability distribution, it can be shown that, under certain assumptions, the covariance of the distribution55

can be characterised by the inverse of the Hessian (the matrix of second derivatives) of the cost function with respect to the

parameters (Thacker, 1989; Kalmikov and Heimbach, 2014; Isaac et al., 2015). For a nonlinear model, calculating the Hessian

involves model second derivatives with respect to parameters, which can be challenging for complex models; in many cases,

second-derivative information is ignored and the Hessian is approximated using first-derivative information only (Kaminski

2



et al., 2015); such an approximation is referred to as the Gauss-Newton Hessian (Chen, 2011). Some studies retain second-60

derivative information, however, using variational methods (Isaac et al., 2015) or Algorithmic Differentiation (AD) software

(Kalmikov and Heimbach, 2014).

Once determined, the Hessian-based parameter covariance can then be used to quantify the variance of a scalar Quantity

of Interest (QoI) of the calibrated model (e.g., ice-sheet sea level contribution over a specified period). One approach to this

is projecting the parameter covariance on to a linearised model prediction (e.g., Kalmikov and Heimbach, 2014). Isaac et al.65

(2015) employ this methodology in a finite-element ice flow model, but since their model is time-independent, uncertainty

estimates cannot be projected forward in time.

In this study we introduce a framework for time-dependent ice-sheet uncertainty quantification, and apply it to an idealised

ice-sheet flow problem (Pattyn et al., 2008). Beginning with a cost-function optimisation for sliding parameters given noisy

ice-sheet velocity data, we then generate a low-rank approximation to the posterior covariance of the sliding parameters through70

the use of the cost-function Hessian. In our work, the Hessian is calculated through AD, using the “complete” Hessian rather

than the Gauss-Newton approximation. We then project the covariance on a linearisation of the time-dependent ice-sheet model

(again using AD to generate the linearisation) to estimate the growth of QoI uncertainty over time. We also apply a method of

sampling the posterior distribution, and use this to validate our calculation of time-dependent QoI uncertainty for an idealised

problem.75

2 Methodology

2.1 Symbolic convention

To facilitate readability of this and subsequent sections we adopt formatting conventions for different mathematical objects.

Coefficient vectors corresponding to finite-element functions appear as c; general vectors and vector-valued functions as d̆ ∈
Rq; and matrices as E.80

2.2 Mathematical Framework

An ice-sheet flow model can be thought of as a (nonlinear) mapping from a set of input fields, which might be unobservable or

poorly known (such as bed friction) to a set of output fields, which might correspond to observable quantities (such as surface

velocity). Here, our focus is on the probability distribution function (PDF) of a “hidden” fieldC conditioned on an observational

field U , i.e. p(C|U); and our aim is to determine properties of this conditional distribution through Bayes’ theorem:85

p(C|U) =
p(U |C)p(C)

p(U)
. (1)

p(U), the unconditional distribution of observations, is effectively a normalisation constant which we do not consider further.

As described in Section 3, our ice-sheet flow model is a finite-element model, meaning C can be described by a vector of

finite dimension. We furthermore consider discrete observations, meaning U can be described by a finite-dimensional vector
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as well (in general with different dimension from C). We assume that observational errors follow a Gaussian distribution.90

Referring to the vector of observations as ŭobs ∈ Rm, this is expressed as

−log

(
p(ŭobs)

)
=

1

2
〈ŭobs− ŭtrue, ŭobs− ŭtrue〉Γ−1

obs
≡ 1

2
‖ŭobs− ŭtrue‖2Γ−1

obs

. (2)

Here, 〈ă, b̆〉Γ−1
obs

is the Euclidean inner product of ă with Γobsb̆:::::
Γ−1
obsb̆, where Γobs ∈ Sym+(m) (the set of real symmetric

positive definite m×m matrices) is the observational covariance matrix, and ‖ă‖Γobs is the associated norm
:::::::
‖ă‖Γ−1

obs ::
is

:::
the

::::
norm

:::::::::
associated

::::
with

:::
its

::::::
inverse. If the parameter field is represented by the vector c ∈ Rn, then the conditional PDF p(U |C)95

satisfies

−log

(
p(ŭobs|c)

)
=

1

2
‖ŭobs− f̆(c)‖2

Γ−1
obs

, (3)

where f̆ : Rn→ Rm is a function from the space of parameter fields to the space of observations, i.e. our ice-sheet flow model.

Note that the above construction equates f̆(c) with the “truth”, i.e. it assumes zero model error. In general model error is

extremely difficult to constrain, and doing so is beyond the scope of our study; however, in Section 7 we discuss potential100

strategies to incorporate model error into our framework.

The distribution p(C) in Eq. 1 is the prior PDF of c, which expresses knowledge of C prior to consideration of ice-sheet

observations and physics – for instance, the autocorrelation scale of basal friction, which may be inferred from proxies such

as the presence of basal water inferred from ice-penetrating radar. If the prior PDF is Gaussian, then the distribution of c

conditioned on ŭobs satisfies105

−log

(
p(c|ŭobs)

)
=

1

2
‖ŭobs− f̆(c)‖2

Γ−1
obs

+
1

2
‖c− c0‖2Γ−1

prior

, (4)

where c0 is the prior mean and Γprior ∈ Sym+(n) is the prior covariance. This conditional distribution is referred to as the

posterior distribution, or ppost. If f̆ is linear, ppost is Gaussian, with mean µ and covariance Γ given by

µpost,lin =Γpost,lin

((
∂f̆

∂c

)T
Γ−1
obs(ŭobs− f̆0) + Γ−1

post,linc0

)
,

Γpost,lin =

((
∂f̆

∂c

)T
Γ−1
obs

(
∂f̆

∂c

)
+ Γ−1

prior

)−1

. (5)110

(The above can be derived by maximizing
:::::::::
minimizing

:
Eq. 4

:::
with

::::::
respect

::
to

::
c
::::
with f̆ = f̆0 + (∂f̆/∂c0)(c− c0).)

Models of ice-sheet dynamics are in general nonlinear, however, and Eq . 5 does not strictly apply. Instead we use a quadratic

approximation to the negative log posterior (Bui-Thanh et al., 2013; Isaac et al., 2015; Kalmikov and Heimbach, 2014). Such

an approximation considers a second-order Taylor expansion of −log(ppost) about the mode of the posterior, or equivalently

about the Maximum a Posteriori (MAP) estimate cMAP . This leads to a Gaussian distribution with mean cMAP and covariance115

Γpost =

((
∂f̆

∂c

)T
Γ−1
obs

(
∂f̆

∂c

)
+ Γ−1

prior +

(
∂2f̆

∂c2

)
Γ−1
obs(ŭobs− f̆(c))

)−1

. (6)
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Eq. 6 differs from the covariance given by Eq. 5 in that derivatives of f̆ depend on cMAP , and in the final term involving

second derivatives of f̆ . Essentially, ppost is approximated by the Gaussian distribution with the local covariance at cMAP .

While this is insufficient to calculate global properties of ppost such as skew, it gives insight into the directions in parameter

space which are most (and least) constrained – information which can be propagated to model projections.120

2.3 Relation to control methods

By contrast with Bayesian methods, the control methods discussed in Section 1
:::::::
generally

::::
used

::
in

:::::::::::
glaciological

::::
data

::::::::::
assimilation

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Morlighem et al., 2010; Joughin et al., 2010; Cornford et al., 2015) find the parameter set which gives the best fit to observa-

tions. This is done by minimizing a scalar cost function which takes the general form

Jc = Jcmis + Jcreg. (7)125

Jcmis, the misfit cost, is the square-integral of the misfit between the surface velocity of the ice model and remotely-sensed

observations, normalised by the observational error. These terms are discretised to implement the control method. If the ice-

sheet model is solved via a finite element scheme, then the misfit cost can be written

Jcmis =
1

2
‖ŭobs− ŭ‖2Dσ

−1MDσ
−1 (8)

Here ŭ and ŭobs are nodal values of the finite-element representations of modelled and observed velocities; Dσ is a diagonal130

matrix containing standard errors of the ŭobs measurements; and M is the mass matrix corresponding to the finite element basis

φi: Mij =
∫

Ω
φiφjdA, where Ω is the computational domain. Jreg , the regularisation cost, is imposed to prevent instabilities,

and is generally chosen as a Tikhonov operator which penalises the square-integral of the gradient of the parameter field (e.g.,

Morlighem et al., 2010; Cornford et al., 2015). In other words, regularisation imposes smoothness on the control parameter

field, which otherwise may exhibit variability at scales not strongly determined by the observations. Such a term can generally135

be written as a positive definite quadratic form of c.

Jc is thus a functional with a form similar to Eq. 4, i.e. the negative log posterior. In this sense, solving the control problem

is equivalent to finding cMAP . However, there are important differences between Jcmis and the first term of Eq. 4. The former

is an L2 inner product (which, with standard continuous finite elements, introduces mesh dependent factors in the covariance)

while the latter is an inner product involving values at a fixed set of observation points (which does not). Identifying Jc:::
Jc as140

a negative log posterior therefore implies observational errors that are changed by factors related to grid cell areas.

Our framework effectively uses a control method – but one which allows calculation of the posterior covariance after the

MAP point is found. As such we use a fixed set of points, as described above, in our misfit cost term. Thus, the Hessian of the

cost function of our control method is equal to the inverse of the posterior covariance given by Eq. 6. However, our form of

Jcreg does not involve the square integral of the gradient of c, as Bui-Thanh et al. (2013) note this can lead to unbounded prior145

covariances as the numerical grid is refined. These authors recommend a discretization of a differential operator of the form

L(·)≡ γ∇2(·)− δ(·) (9)
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where the
:
γ

:::
and

::
δ
:::
are

:::::::
positive

::::::
scalars

::::::
which

:::
are

::
in

::::::
general

::::::::
spatially

:::::::
varying,

::::::
though

:::
in

:::
the

::::::
present

:::::
study

:::
we

::::::::
consider

::::
only

::::::::
constants.

::::
The second term on the right hand side ensures the operator is invertible;

::::::
though

:::::
there

:::
are

::::
other

:::::
ways

::
of

:::::
doing

::::
this

:::::::::::::::::::::::::::
(e.g., Keuthen and Ulbrich, 2015),

::
it
::
is

:
a
::::::::::::::
computationally

::::::
simple

:::::::
approach. Isaac et al. (2015) use the same definition for their150

prior, which we adopt in our study as well. Hence, our regularisation term is

Jcreg =

∫
Ω

1

2
(L(c))2dA=

1

2
‖c‖2LM−1L (10)

where L is the operator on the finite element space such that φ
T

i Lφj =
∫

Ω
L(φi)L(φj)dA::::::::::::::::::::

φ
T

i Lφj =
∫

Ω
φiL(φj)dA:for all φi,

φj . Thus, in the Bayesian interpretation of the control method optimisation, the prior covariance is given by

Γprior = L−1ML−1. (11)155

2.4 Low rank approximation

In the previous section we establish that the posterior covariance is equivalent to the inverse of the Hessian of the (suitably

defined) cost function. With a large parameter space, though, calculating the complete Hessian (and its inverse) can become

computationally intractable. Still, in many cases, the constraints on parameter space provided by observations can be described

by a subspace of lower dimension. In the present study, our idealised examples are small enough that the full Hessian can160

be calculated; but to provide scalable code we seek an approximation to the posterior covariance that exploits this low-rank

structure.

The following low-rank approximation follows from Isaac et al. (2015)
:::
and

::::::
similar

:::::::::
approaches

:::
are

::::
used

::
in

:::::::::::::::::::::::
Bui-Thanh et al. (2013) and

::::::::::::::
Petra et al. (2014). We define the term(
∂f̆

∂c

)T
Γ−1
obs

(
∂f̆

∂c

)
+

(
∂2f̆

∂c2

)
Γ−1
obs(ŭobs− f̆(c))165

from Eq. 6 as Hmis, the Hessian of the misfit component of the negative log posterior (or, equivalently, of the misfit cost term).

Eq. 6 can be written

Γpost =

(
Hmis + Γ−1

prior

)−1

. (12)

This can be rearranged:

Γpost =

(
ΓpriorHmis + I

)−1

Γprior. (13)170

The term H̃mis ≡ ΓpriorHmis is referred to as the “prior-preconditioned Hessian”, and it has the eigendecomposition

H̃mis = CΛC−1 (14)
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where Λ is a diagonal matrix of eigenvalues and C contains the corresponding eigenvectors. H̃mis is not in general symmetric

positive semidefinite (even though Hmis and Γprior both are), but Eq. 14 can be written as

Γ
1
2
priorHmisΓ

1
2
prior = Γ

− 1
2

priorCΛC−1Γ
1
2
prior (15)175

i.e. an eigendecomposition of the symmetric matrix Γ
1
2
priorHmisΓ

1
2
prior. Thus the eigenvalues in Λ are real-valued, and the

eigenvectors C can be chosen to be Γ−1
prior-orthogonal, i.e. such that

CTΓ−1
priorC = I. (16)

While Hmis could be eigendecomposed directly, decomposing H̃mis better informs uncertainty quantification: for an
:
.
:::
We

::::::
assume

::
an

::::::::
ordering

::
of

::::
the

::::::::::
eigenvalues

::
λi::::

such
::::

that
::::::::::
λi+1 ≤ λi. :::

For
:::
an eigenvector ck with eigenvalue λk, the negative log180

posterior probability density evaluated at c= ck + cMAP is

〈ck,Hck〉= 〈ck,(Hmis + Γ−1
prior)ck〉

= 〈ck,(Γ−1
priorH̃mis + Γ−1

prior)ck〉

= λk
::::

〈ck,Γ−1
priorck〉+: 〈ck,Γ

−1
priorck〉

=
:

(1 +λk)〈ck,Γ−1
priorck〉185

= (1 +λk). (17)

In other words, the leading eigenmodes of H̃mis correspond to those directions in which the posterior uncertainty is reduced

by the most, relative to the prior uncertainty in those directions. Thus one can truncate the eigendecomposition, neglecting

eigenmodes for which the data provides minimal information. The Sherman–Morrison–Woodbury matrix inversion lemma

gives190

Γpost = (I−CDC−1)Γprior (18)

where D is a diagonal matrix with entries dkk = λk/(1 +λk), and with Eq. 16 this becomes

Γpost = Γprior −CDCT . (19)

This can then be approximated

Γpost ∼ Γprior −CrDrC
T
r . (20)195

where Cr represents the first r columns of C and similarly for Dr, with the rationale of neglecting posterior information in
:
.

::
In

:::
this

::::::
study,

:
the directions where it has minimal effect

::::::::
problems

:::::::::
considered

:::
are

::::::::::
sufficiently

:::::
small

::::
that

:::
we

::::::::
calculate

:::
all

::::::::::
eigenvalues,

:::
i.e.

:::
we

:::
do

:::
not

:::::
carry

::::
out

:
a
::::::::

low-rank
:::::::::::::

approximation.
:::

In
:::::::
general,

:::::::
though,

::
a
:::::::
strategy

:::
for

::::::::
deciding

::
r

::
is

:::::::
needed.

:::::::::::::::::::::::::
Isaac et al. (2015) recommends

::::::::
choosing

:
r
:::::

such
:::
that

:::::::
λr� 1,

::::::
which

::::
may

::
in

:::::
some

:::::
cases

:::::
result

::
in

:
a
:::::

large
:::::
value

:::
for

::
r.

::
A

:::::
more

::::::::
pragmatic

::::::::
approach

::::::
would

::
be

::
to
:::::::

choose
:
r
:::::
such

:::
that

::::
Eq.

:::
22,

:::
the

::::
QoI

:::::::
variance

::::
(see

:::::::
Section

:::
2.5)

::::
has

::::::::
negligible

:::::::
change

:::::
when200

::::::::::::
approximating

::::
with

::::::::
additional

:::::::::::::::::::
eigenvalue/eigenvector

::::
pairs.
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2.5 Propagation of errors

Often of interest is how the observational data constrains outputs of a calibrated model, as opposed to how they constrain the

calibrated parameters themselves. (A simple analogy is an extrapolation using a regression curve, which is generally of more

interest than the regression parameters.) Such an output is termed a Quantity of Interest (QoI) Q, an example of which is the205

loss of ice volume above floatation (VAF), the volume of ice that can contribute to sea level, at a certain time horizon. Here we

write QT (c) to indicate the value of Q based on the output of the calibrated model at time horizon T .

The distribution of QT can be assessed by sampling from the posterior distribution of c, although such sampling might

be slow to converge. Alternatively an additional linear assumption can be made. Neglecting higher-order terms, QT can be

expanded around cMAP :210

QT =QT (cMAP ) +

(
∂QT
∂c

)
(c− cMAP ). (21)

As this is an affine transformation of a Gaussian random variable, QT has a mean of QT (cMAP ) and a variance of

σ2(QT ) =

(
∂QT
∂c

)T
Γpost

(
∂QT
∂c

)
(22)

If ∂QT
∂c can be found at a number of times T along a model trajectory, then the growth of uncertainty along this trajectory

arising from parametric uncertainty can be assessed.215

Note the assumption of linearity in Eq. 21 is in general false due to the nonlinear momentum and mass balance equations

that define a time-dependent ice-sheet model. For the idealised experiments conducted in this paper, we compare the above

estimate for the variance with that derived from sampling the posterior.

3 Numerical approach

In this study we use a new numerical code, fenics_ice. fenics_ice is a Python code which implements the time-220

dependent Shallow Shelf Approximation (SSA; MacAyeal (1989)). The SSA is an approximation to the complete Stokes stress

balance thought to govern ice flow. In the approximation the vertical stress balance is assumed to be hydrostatic, such that

normal stress is in balance with the weight of the ice column. Additionally, flow is assumed to be depth-independent. These ap-

proximations reduce a three-dimensional saddle-point problem to a two-dimensional convex elliptic problem, enabling a more

efficient solve. The nonlinear power-law rheology of the full Stokes problem is retained however. Despite these simplifications,225

the SSA describe flow of fast flowing ice streams and floating ice shelves well (Gagliardini et al., 2010; Cornford et al., 2020).

fenics_ice makes use of two sophisticated numerical libraries: FEniCS (Logg et al., 2012; Alnæs et al., 2015), an

automated finite element method equation solver, and tlm_adjoint (Maddison et al., 2019), a library which implements

automated differentiation of numerical partial differential equation solvers. FEniCS is a widely-used software library which

abstracts the user away from low-level operations such as element-level operations. Rather, the weak form of the equation is230

written in Unified Form Language (UFL; Alnæs et al. (2014)), and FEniCS generates optimised low-level code which solves
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the related finite-element problem with specified parameters (e.g. the order of the basis functions). tlm_adjoint is a library

which implements high-level algorithmic differentiation of codes written with FEniCS or Firedrake.

tlm_adjoint is used for several of the operations detailed in Section 2. It facilitates the minimization of the model-data

misfit cost Jc (Section
:::
2.3) with respect to x (which is equivalent to finding the mode of the posterior density of x). The235

higher-order derivative capabilities of tlm_adjoint furthermore enable efficient computation of the product of the Hessian

of Jc with arbitrary vectors, enabling an iterative eigendecomposition of the prior-preconditioned Hessian as described in

2.4. Finally, tlm_adjoint’s time-dependent capabilities enable differentiation of the temporal trajectory of the Quantity

of Interest QT , enabling projections of posterior uncertainty as described in 2.5. In our experiments in the present study, our

cost function Jc is time-independent – but tlm_adjoint does allow for efficient calculation of Hessian-vector products for240

time-varying functionals (Maddison et al. (2019), their Section 4.2) – meaning time-varying data constraints can be considered

with fenics_ice. Currently fenics_ice calls SLEPc for the solution of the generalised eigenvalue problem

HmisC = ΓpriorCΛ (23)

ensuring real-valued eigenvalues – though in future versions of fenics_ice randomized algorithms of the type used by Villa

et al. (2018) can be used without loss of generality.245

fenics_ice solves the Shallow Shelf Approximation by implementing the corresponding variational principle (Schoof,

2006; Dukowicz et al., 2010; Shapero et al., 2021):

∫
Ω

2Hν∇φ : (εu + Tr(εu)I)dA+

∫
Ω

C2χφ ·udA

+

∫
Ω

W∇R ·φ−F∇ ·φdA

+

∫
Γc

(φ ·n) ·
(

1

2
ρg(H2− (ρw/ρ)|z−b |

2)−F
)
dA= 0. (24)250

Here φ is a vector-valued test function, and u is the depth-integrated horizontal velocity vector. εu is the horizontal strain-rate

tensor 1
2 (∇u+uT ), I is the 2×2 identity tensor, and “:” represents the Frobenius inner product. H is ice-sheet thickness (the

elevation difference between the surface, zs, and the base, zb). ν is ice viscosity, which depends on the strain rate tensor:

ν =
1

2
Bε

1−n
2n
e ,

εe =ε2
11 + ε2

22 + ε2
12 + ε11ε22.255

::
B

::
is

::::::::
generally

:::::::
referred

::
to

::
as
::::

the
:::::::::
“stiffness”

::
of

::::
ice,

:::
and

::
is
:::::::
thought

::
to

:::::::
depend

:::
on

:::
ice

::::::::::
temperature.

:::
In

::
all

:::::::::::
experiments

::
in

::::
this

:::::
study,

::
B

::
is

:::::::
spatially

:::::::
constant

::::
and

::::::::::
corresponds

::
to

:
a
::::::::::
temperature

:::
of

:::::::
-12.5◦C

:::::::::::::::::::::::
(Cuffey and Paterson, 2010).

::
n
::
is

:
a
::::::::
measure

::
of

:::
the

:::::
degree

::
of
:::::
strain

::::::::::
weakening

::
of

:::
ice,

::::
with

::
a

:::::
widely

::::::::
accepted

:::::
value

::
of

:
3
::::::::::::
(Glen, 1955). C is a

::::::::::
real-valued, spatially varying sliding

coefficient, and χ is a function that indicates where ice is grounded according to the hydrostatic condition:

H > (−ρw/ρ)R≡Hf (25)260
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where ρ and ρw are ice and ocean densities, respectively, and R is bed elevation (note that zb =R when this condition is

satisfied). In our code C can in general depend locally on velocity and thickness, though in this study we consider only a linear

sliding law, i.e. one in which C varies only with location.

F is defined as

F =


1
2ρgH

2 H >Hf ,

1
2ρg(ηH2 + (1− η)H2

f otherwise,
(26)265

:::::
where

::::::::::::::
η = (1− ρ/ρw), andW as

W =

ρgH H >Hf ,

ρgHf otherwise.
(27)

Γc is defined as the calving boundary, i.e. the boundary along which the ice sheet terminates in the ocean (or in a cliff on dry

land), and n is the outward normal vector at this boundary. Finally, |z−b | indicates the negative part of the ice base, i.e. it is zero

when zb =R> 0. The third integral of Eq. 24 is the weak form of the driving stress of the ice sheet, τ d = ρgH∇zs. Although270

in our experiments in this study we consider only grounded ice, the full weak form is shown for completeness. The form of the

driving stress term used here,∇F +W∇R, is not standard in glacial flow modelling, but it is equivalent to the more common

form when thickness is represented by a continuous finite-element function.

In addition to the momentum balance, the continuity equation is solved:

Ht +∇ · (Hu) = b. (28)275

Here b represents localised changes in mass at the surface or the base of the ice sheet, i.e. accumulation due to snowfall or

basal melting of the ice shelf by the ocean (though in the present study, surface b=0). The continuity equation is solved using

a first-order upwind scheme which is implicit in H and explicit in u.
:
In

::::
this

:::::
study,

:::
we

::
do

::::
not

:::::::
consider

:::::::::::
initialisations

:::::
based

:::
on

::::::::::
time-varying

::::
data

::::
(i.e.

:::
the

:::::
misfit

:::
cost

::::::::
function

::::
Jcmis::::

does
:::
not

:::::::
depend

::
on

:::::::::::
time-varying

::::::
fields),

::
so

:::
the

:::::::::
continuity

:::::::
function

::
is

::::
only

:::::::
involved

::::
with

::::::
finding

:
a
::::::::
Quantity

::
of

:::::::
Interest

:::
and

::::::::::
propagation

::
of

:::::::::::
initialisation

::::::::::
uncertainty.280

We discretize velocity (u) using 1st-order continuous Lagrange elements on a triangular mesh. In the present study thickness

(H) is discretized with 1st-order continuous Lagrange elements as well – although we point out that formulation (Eq. 26 and

Eq. 27), together with an appropriate discretization for the continuity equation (28), will allow for discontinuous Galerkin

elements (which have been found in more realistic experiments with fenics_ice to improve stability of time-dependent

simulations). Eq. 24 is solved for u with a Newton iteration, with the Jacobian calculated at the level of the weak equation285

form using core FEniCS features. In the early iterations of the Newton solve, the dependence of ν on u is ignored in the

Jacobian. This “linear” fixed-point iteration (often referred to in glacial modelling as Picard iteration, Hindmarsh and Payne

(1996)) aids the Newton solver as it has a larger radius of convergence; once the Picard iteration is suitably converged
:
.
:::::
Once

::
the

::::::::
nonlinear

:::::::
residual

:::
has

:::::::::
decreased

::
by

::
a

:::::::
specified

:::::::
amount

::
(a

::::::
relative

::::::::
tolerance

::
of

:::::
10−3

:
is
:::::
used

::
for

::::
this

:::::
study), the full Newton

iteration is applied.290
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To carry out an inversion, a cost function is minimized using the L-BFGS-B algorithm (Zhu et al., 1997; Morales and

Nocedal, 2011) supplied with SciPy 1.5.2 (although note that no bounds on the controls are used). SLEPc (Hernandez et al.,

2005) is used to implement the eigendecomposition described in Section 2.4, using a Krylov-Schur method. Rather than solve

the eigenvalue problem (Eq. 14), we solve the Generalised Hermitian Eigenvalue Problem

HmisC = Γ−1
priorCΛ, (29)295

which guarantees real-valued eigenvalues. (Despite Λ being real-valued, the application of SLEPc to the non-hermitian eigen-

value problem Eq. 14 represents eigenvectors as imaginary, effectively doubling the memory requirements.)

4 Numerical Experiments

In this study, we aim to do the following:

1. Establish that control-method optimisations can be carried out with fenics_ice300

2. Calculate eigendecompositions of the prior-preconditioned model-misfit Hessian as described in 2.4, examining the

impacts of regularisation, resolution, and spatial density and autocorrelation of observations y̆obs on the reduction of

variance in the posterior.

3. Propagate the posterior uncertainty on to a Quantity of Interest QT as in 2.5

4. Establish, through simple Monte Carlo sampling, that the variance found through Eq. 22 is accurate.305

Control method optimisations using ice-sheet models have been done extensively, with parameter sets of very high di-

mension (e.g., Cornford et al., 2015; Goldberg et al., 2015; Isaac et al., 2015), so our results regarding (1) above simply

demonstrate the capabilities of fenics_ice but are not novel. Isaac et al. (2015) carries out eigendecompositions of the

prior-preconditioned model-misfit Hessian and projects the associated uncertainty on to a Quantity of Interest – however, their

QoI is time-independent. Importantly, Hessian-based Uncertainty Quantification has not been implemented for a model of ice310

dynamics using Algorithmic Differentiation before. Moreover, a time-dependent QoI has not been considered, nor has the

impact of observational data density on the posterior uncertainty.

To investigate these and similar factors comprehensively, as well as validate the assumption of Gaussian statistics that leads

to Eq 22, requires a model setup that is relatively inexpensive to run. We therefore choose one of the simplest frameworks

possible for our numerical experiments, that of the Benchmark experiments for higher-order ice sheet models (ISMIP-HOM)315

intercomparison (Pattyn et al., 2008). We adopt the experiment ISMIP-C, a time-independent experiment in which an ice sheet

slides across a doubly-periodic domain with constant thickness and a basal frictional factor that varies sinusoidally in both

horizontal dimensions. The relation between velocity and basal shear stress is linear:

τ b =−C2(x,y)u (30)
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where C is the factor from the second integral of Eq. 24, which has the form320

C2(x,y) = 1000 + 1000 sin
2πx

Lx
sin

2πy

Ly

√
1000 + 1000 sin

(
2πx

Lx

)
sin

(
2πy

Ly

)
:::::::::::::::::::::::::::::::

(31)

with units of Pa (m/a)−1, where Lx and Ly are experimental parameters. In this ISMIP-C specification, thickness is constant

(H = 1000 m) and a shallow surface slope of 0.1◦ is imposed. In this ISMIP-HOM intercomparison, SSA models compared

well with Stokes models for Lx, Ly over ∼40 km, so this is the value we use in our study. A regular triangular mesh is used to

solve the model. Unless otherwise stated, cell diameter of the mesh is 1.33 km.325

In our experiments, the momentum balance (Eq. 24) is solved on a highly refined grid and taken to be the "truth". To generate

synthetic observations, values are interpolated to predefined locations. Observational error is then simulated by adding Gaussian

random noise to these values. (These synthetic observations correspond to ŭobs in Eq. 2.) In this study observational points

occur at regular intervals, though our code allows for arbitrary distributions of observation points. Unless stated otherwise, in

this study observational data points are spaced 2 km apart, with the velocity vector components coincident, and observational330

uncertainties are mutually independent with a standard deviation of 1 m/a. The regular spacing of observational points is

not realistic and other studies use randomly scattered locations (e.g., Isaac et al., 2015); however, this choice is in line with

the idealised nature of our study and furthermore allows comprehensive investigation of the effects of observational density

(Section 5.4).

:::
Our

::::::::::::::::::::
parameter-to-observable

::::
map

::
f̆
::
is

:::::
really

::
a

::::::::::
composition

::
of

::::
two

::::::::
functions:

::::
the

:::
first

:::::
finds

:::
the

:::::::
solution

::
to

:::
the

::::::::::
momentum335

::::::
balance

::::
(Eq.

:::
24)

:::
as

:
a
::::::::::::
finite-element

::::::::
function,

:::
and

:::
the

::::::
second

::::::::::
interpolates

:::
the

:::::::
function

:::
to

::::::
discrete

:::::::::
locations.

::
If

:::
the

:::::
misfit

::::
cost

::::
were

::
to

::
be

:::::::::
expressed

::
as

:::
the

::::::::
weighted

:::
L2 ::::

norm
:::
of

:::
the

:::::::::
model-data

:::::
misfit

::
as

::
in
::::
Eq.

::
8,

::::
then

:::
the

::::::::::
interpolation

::::::::
function

:
is
::::::::
replaced

::
by

:::
the

:::::::
identity.

An inverse solution c is then found using a control method, where c is the vector of nodal coefficients of C. Below we refer

to C as the sliding parameter.
::::
Note

:::
that

:::::::::::
minimisation

:::::
with

::::::
respect

::
to

::
C

:::
and

::::
not

:::
C2.

:
Our cost function JcIS is composed of a340

misfit term equal to the negative log density of observed velocities conditioned on c (cf. Eq. 2), and the regularisation operator

is the discretised form of Eq. 9:

JcIS =
1

2
‖ŭobs− f̆(c)‖2

Γ−1
u,obs

+
1

2

∫
Ω

‖L(c− cC −C
:::::0)‖2dA

=
1

2
‖ŭobs− f̆(c)‖2

Γ−1
u,obs

+
1

2
‖c− cc−

:
c0‖2LM−1L (32)

where L is as described in Section 2.3. In many studies, the optimal value for γ, the regularisation parameter, is deter-345

mined heuristically through an L-curve analysis (e.g., Gillet-Chaulet et al., 2012)
:
–
::::::::
although

::::
there

:::
are

:::::::::
alternative

::::::::::
approaches

::::::::::::::::::::::::::::::::::::::::::::
(e.g., Waddington et al., 2007; Habermann et al., 2013). Here we examine, for different values of γ, the degree of uncertainty

reduction associated with the cost-function optimisation. In other words, we seek the posterior density of c, the coefficient

vector of the finite-element function C. (We conduct an L-curve analysis, but only as a guideline for which values of γ to

examine.)
::
In

:::
our

:::::::::::
experiments

:::
C0,

:::
the

::::
prior

:::::
value

:::
of

::
C,

::
is

:::::::::
uniformly

::::
zero

:
–
:::::::::
indicating

:::
we

::::
have

::
no

::::::::::::
preconceieved

::::::
notion

::
of

:::
its350

::::
mean

::::::
value,

::::
only

::
its

::::::
spatial

::::::::
variability

::::::::
(implied

::
by

:::
γ).

:
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ISMIP-C does not prescribe a time-dependent component, but it is straightforward to evolve the thickness H (which is

initially uniform) according to Eq. 28, where m = 0. We define a Quantity of Interest QIST as

QIST =

∫
Ω

(H(T )−H0)4dA. (33)

Unlike Volume above Floatation, the example given in Section 2.5, QIST has no strong physical or societal significance. How-355

ever, it is convenient to calculate and sufficiently nontrivial and nonlinear that the effects of uncertainty in C, as well as the

strength of the prior covariance, can be seen.
:::::::::
Moreover,

:::::::
Volume

:::::
above

:::::::::
Floatation

::
is

:::::::::
insensitive

::
to

:::::
small

:::::
scale

:::::::::
variability

::
in

:::::::
thickness

::
–
:::
but

:::::
there

::::
may

::
be

::::::::
scientific

:::::::::
motivation

::
to
:::::

study
:::::::::

Quantities
:::
of

::::::
Interest

::::::
which

::
do

::::
take

::::
such

:::::::::
variability

::::
into

:::::::
account

:::
(see

:::::::
Section

::
7).

:::::
Thus

:::
we

::::::
choose

:::
Eq.

::
33

:::
as

:
a
::::
QoI

:::::
which

::
is

:::::::::::::
straightforward

:::
but

:::
also

:::
an

:::::::
indicator

:::
of

::::::::
thickness

:::::::::
variability.

In our error propagation we evolve the ISMIP-C thickness for 30 years and use the time-dependent adjoint capabilities of360

fenics_ice to find ∂QIST /∂c for discrete values of T over this period, and uncertainty at these times is found using Eq.

22; an uncertainty “trajectory” is then found for QIS via interpolation. Our results regarding the uncertainty of QIS , and the

quadratic approximation inherent in Eq. 22, are then tested via sampling from the posterior as described in Section 5.3.1.

5 Results

5.1 Parameter uncertainties365

5.1.1 Effect of regularisation

An L-curve for our inversion results (Fig. 1) shows the behaviour of regularisation cost and model-data misfit as γ is varied

over 3 orders of magnitude. In all inversions, c is initialised assuming a point-wise balance between driving stress and basal

drag arising from interpolated velocity observations, and Jc is lowered from the initial value by a factor of∼ 103 (meaning the

probability density associated with C, proportional to e−J
c

, is increased by a factor of approximately 10400).370

While misfit does not vary greatly in a proportional sense, it suggests γ = 10 as a reasonable tradeoff between misfit and

regularisation. Fig. 2 displays results of an inversion with a “strong” level of regularisation (γ = 50; referred to below as the

γ50 experiment). The resulting C is relatively smooth (Fig. 2(a)), and the misfit is generally small though with some outliers

(Fig. 2(d)). (Misfit is displayed as a histogram of errors – obtained by interpolating the finite-element solution to the sampled

velocity locations – rather than as a spatially continuous function, to emphasize the discrete nature of the model-data misfit.)375

Fig. 3 gives equivalent results for a “weak” regularisation inversion (γ = 1; referred to below as the γ1 experiment). The misfit

distribution is similar but the inverted sliding parameter is significantly noisier, as a result of weaker constraints on these

“noisy” modes by the prior.

The effect of regularisation on reduction of uncertainty can be seen from examining the eigenvalues defined by Eq. 14. More

precisely, the ratio 1/(1 +λi), where λi is the ith leading eigenvalue, is examined. As shown in Section 2.4, this ratio gives380

the reduction in variance of the associated eigenvector in the posterior PDF relative to the prior distribution. In Fig. 4(a) this

quantity is shown for the eigenvalue spectra corresponding to γ = 1, 10, and 50. For all inversions, uncertainty reduction is
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several orders of magnitude for the leading eigenvalues, but the tails of the spectra are quite different. In the case of strong

regularisation, there is little reduction in variance beyond i∼100, while in the weakly regularised case there is considerable

reduction across the entire spectrum. This discrepancy can be interpreted as the prior providing so little information in the385

low-regularisation case that the information provided by the inversion reduces uncertainty across all modes. The comparison

of eigenvalue spectra across experiments is only meaningful to the extent that the corresponding eigenvectors are equivalent.

A comparison between the four leading eigenvectors in the high- and low-regularisation experiments (Fig. 5) shows they are

not equivalent but have the same overall structure. (Differences arise due to cMAP but also due to differences in Γprior.)

Approximating the posterior covariance of c, Γpost, also allows an estimation of ΣC , the pointwise variance of C. This is390

done via calculation of the square root of the diagonals entries of Γpost, i.e. the standard deviation of the marginal distributions

of the coefficients of c. ΣC is shown for the inversions discussed above in Figs. 2(b) and 3(b). Pointwise uncertainties in γ1 are

5-10 times larger than in γ50. For γ50 there is a clear pattern of higher uncertainty where the bed is weaker (i.e. C is smaller),

though for γ1 it is difficult to discern any pattern.

5.1.2 Effect of resolution395

The impacts of grid resolution on eigenvalue spectra are investigated (Fig. 4(b)). In Isaac et al. (2015), it was shown that the

leading eigenvalues were independent of the numerical mesh, implying that the leading eigenvectors – the patterns for which

uncertainties are quantified – are not dependent on the dimension of the parameter space (which would be an undesirable

property). Our spectra suggest that at 2 km resolution, there is mesh dependence; but the spectra for 1.33 and 1 km resolution

are in close agreement, suggesting mesh independence
::::::::::::::
(Isaac et al., 2015). Consistent values of γ and δ are used for these400

experiments, meaning the results of the L-curve in Fig. 1 are not dependent on model resolution.

5.2 Propagation of uncertainties

5.3 Linear propagation of uncertainties

The low-rank approximation of the posterior covariance of c found with Eq. 20 can be used to estimate the uncertainty of

QIST using the Eq. 22. To do so, ∂Q
IS
T

∂c must be found, which is done using Algorithmic Differentiation of the time-dependent405

model as described in Section 4. Figs. 2(e) and 3(e) show ∂QIS30
∂c arising from their respective inversions. There is small-scale

noise in the low-regularisation experiment (γ1), but the general pattern and magnitude between the two gradients is similar,

with strengthening of weak-bedded areas and weakening of strong-bedded areas both leading to an increase in the fourth-order

moment of thickness. The gradient ofQIST with respect to c is found for intermediate values of T over the 30-year interval, with

σ(QIST ) calculated at these times – which can then be linearly interpolated to find a trajectory of uncertainty. In our experiments410

we find the gradient of QIST every 6 years, but . .. say something about how it is not time-limited to find gradients on shorter

intervals. In Fig. 6(a) these trajectories are shown for the γ50 and γ1 experiments, plotted as a 1-σ error interval around the

calculated trajectory of QIST .
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The trajectory of uncertainties for γ50 and γ1 can also be seen in Fig 6(b), compared against the trajectories of((
∂QIST
∂c

)T
Γprior

(
∂QIST
∂c

))1/2

(34)415

i.e. the prior uncertainty linearly projected along the trajectory of QIST . This uncertainty measure is not physically meaningful

as it depends on the calculated ∂QIST /∂c, which in turn depends on the inversion for c and the related trajectory of QIST – and

a random sample from the prior distribution of c is unlikely to yield such a trajectory. Still, it serves as a measure of decrease

in uncertainty arising from the information encapsulated in the observations and model physics.

QIST is greater in magnitude in the γ = 1 experiment than in the γ = 50 experiment at all times – and it can be seen from420

the uncertainty of the γ1 trajectory that this difference is statistically significant. The two experiments have differing (inverse)

solutions, with the γ1 inversion favoring a closer fit to noisy observations at the cost of small-scale variability in the inverse

solution. Our quantity of interest (the fourth-order moment of thickness) is sensitive to this small-scale variability, so uniformity

of trajectories of QIST would not be expected. At the same time, the level of QoI uncertainty in the γ1 trajectory relative to

that of the γ50 QoI uncertainty is much smaller than the relative magnitudes of the inversion uncertainties (cf. Figs 2(b), 3(b))425

would suggest. This can be rationalised by considering Eq. 22: uncertainty in the QoI will depend on the extent to which

uncertain parameter modes project on to the gradient of the QoI with respect to the parameters. While the γ1 inversion results

are overall more uncertain, the leading order modes are still constrained quite strongly. Thus, whileQIST is to a degree sensitive

to small-scale variability it may still filter the most uncertain modes of the γ1 inversion, resulting in a smaller QoI uncertainty

than expected. In fact, it can be seen from Fig. 6(b) that despite the large differences in prior distributions between γ50 and γ1,430

the projections of the respective prior covariances along the trajectory of QIST are very similar, suggesting that the gradient of

QIST does not project strongly on the modes which are poorly constrained in the γ1 experiment.

The sensitivity of QoIs to small-scale variability is significant because not all glaciologically motivated QoIs are expected to

have such sensitivities. For instance, the QoI considered by Isaac et al. (2015) was a contour integral of volume flux over the

boundary of the domain, equivalent to a rate of change of ice volume – and such a quantity might be less sensitive to velocity435

gradients and small-scale thickness change in the domain interior. On the other hand, a forecast focused on the impact of

evolving surface elevation on proliferation of surface lakes, or on surface fractures, might be very sensitive to such variability.

Therefore, when considering parametric uncertainty, it should also be considered whether the nature of this uncertainty impacts

the uncertainty of the intended Quantity of Interest. maybe move to discussion

5.3.1 Direct sampling of QoI uncertainties440

Ideally, the assumptions implicit in the calculation of QoI uncertainties shown in Fig. 6(a) would be tested through unbiased

sampling from the prior distributions of c; followed by using the sampled parameters to initialise the time-dependent model

and generating a sample of trajectories of QIST ; and finally scaling the probability of each member of the ensemble based

on the observational likelihood function p(ŭobs|c). However, given the dimension of the space containing c (equal to 900

in our idealised experiment; but on the order of 104-105 in more realistic experiments), the number of samples required to445
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ensure nonnegligible likelihoods would not be tractable without a sophisticated sampling strategy such as Markov Chain

Monte Carlo (MCMC) methods (Tierney, 1994) (and even then may require approximations similar to those described above

(Martin et al., 2012)
:::::::::::::::::::::::::::::::
(Martin et al., 2012; Petra et al., 2014)). However, such approaches are beyond the scope of this study.

The assumptions in our propagation of observational and prior uncertainty to Quantity of Interest uncertainty are (i) that of

Gaussianity of the distribution of c and (ii) that of linearity of the map from c to QoI. While (i) cannot be tested for the reasons450

stated above, (ii) can be tested by sampling from the calculated posterior distribution of c, initialising the time-dependent

model, and finding the ensemble variance and standard deviation of QIST . Our strategy for sampling from the posterior is

described below, and is based on the derivation in Bui-Thanh et al. (2013).

A randomly sampled vector x will have covariance Γpost and mean cMAP if it is generated via

x= cMAP + KN (35)455

where N is a sample from a multivariate normal distribution N∼N (0,I) of the same dimension as c, and K is such that

KKT = Γpost. Hence it is required to find a suitable K. We restate the generalised eigenvalue problem HmisC = Γ−1
priorCΛ.

Since C is orthogonal in the inverse prior covariance (cf. Eq. 16), the identity matrix I can be spectrally decomposed in ci (the

columns of C):(∑
cic

T
i Γ−1

prior

)
= I. (36)460

Rearranging gives
∑
cic

T
i = Γprior, and so (cf. Eq. 20)

Γpost ∼ Γprior −CrDrC
T
r

=

n∑
i=1

cic
T
i −

r∑
i=1

cic
T
i

(
λi

1 +λi

)

=

n∑
i=r+1

cic
T
i +

r∑
i=1

cic
T
i

(
1

1 +λi

)
. (37)

We define the matrix B:465

B = Γprior +

r∑
i=1

cic
T
i

(
λi√

1 +λi
− 1

)

=

n∑
i=r+1

cic
T
i +

r∑
i=1

cic
T
i

(
1√

1 +λi

)
. (38)

And due to the Γ−1
prior-orthogonality of C,

BΓ−1
priorB

T =

n∑
i=r+1

cic
T
i +

r∑
i=1

cic
T
i

(
1

1 +λi

)
= Γpost. (39)470
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Therefore a suitable K is given by (cf. Eq. 11)

BΓ
−1/2
prior = BLM−1/2. (40)

The action of the square root of the mass matrix M is found by a Taylor series approach (Higham (2008), eq. 6.38). Fig. 7

shows a result of sampling from the posterior in the γ50 experiment. To the left (panel (a)), a realisation of the prior distribution,

with mean zero and covariance Γprior is displayed. (This realisation is found similarly to that of the posterior, with the formula475

NΓ
1/2
prior.) To the right (panel (b)), a realisation of the posterior distribution is shown with the mean cMAP removed. (Note that

both samples are derived from the same realisation of N.) From comparing the images it can be seen that variance is greatly

reduced, particularly at medium-to-large scales. By contrast, when the posterior distribution of γ1 is sampled, the result is very

similar to the prior. Very little reduction of variance is visually apparent, especially at small scales.

Using this method of sampling the posterior, an ensemble of 1,000 30-year runs is carried out for both low and high regu-480

larisation experiments (γ1 and γ50, respectively), and standard deviations of QIST are calculated at discrete times. Values are

plotted in Fig. 6(b). (For each such calculation, the variance quickly converged to the value shown, so it is unlikely that the

Quantity of Interest is under-sampled.) In the γ50 experiment there is strong agreement between the sampled uncertainties and

those found via projecting C uncertainty along the linearised QoI trajectory, suggesting the linear approximation inherent in

Eq. 22 is appropriate. In contrast, there are large discrepancies in the γ1 case. It is likely that the small-scale noise inherent485

in the low-regularisation samples (cf Fig. 8) impacts the Quantity of Interest strongly enough that the linear approximation in

Eq. 22 breaks down – despite that this noise does not strongly affect the cost function Jc. As mentioned in Sec. 5.2, this may

be due to the nature of the QoI. In the γ10 experiment (not shown), the disagreement in uncertainties is on the order of 30 –

greater than for the γ50 experiment but far less than for γ1.

5.4 Observational density and uncertainty490

In all results presented to this point, the imposed locations observational data ŭobs, v̆obs lie on a regular grid with a spacing of

2 km. Here we consider the effects of the observational spatial density on the reduction of uncertainty in c.

5.4.1 Effect of observation spacing

Eigendecompositions of the prior-preconditioned misfit Hessian (Ĥmis) are carried out for observational spacings of 500 m, 1

km, 2 km, 4 km, and 8 km. (The 2 km case corresponds to the γ10 experiment in Fig. 4(a).) In all other respects the experiments495

are identical. Results are shown for comparison in Fig. 4(c). Increasing spatial density appears to reduce uncertainty: in the

500 m case, there is considerable uncertainty reduction even in cases where there is almost no reduction in coarser-observation

cases. The result is intuitive: each increase in observational density quadruples the number of independent constraints, effec-

tively adding more information (though a more sophisticated framework is required to quantify the information increase from

a given observation, e.g., Alexanderian et al. (2014)).500

Comparison of eigenspectra relies on the corresponding eigenvectors being the same, or similar, between the experiments.

As in the regularisation and resolution experiments, the eigenvectors depend on the exact form of Ĥmis which in turn depends
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on cMAP , which may differ between the experiments due to the differing number of points. However they are likely to be of

similar patterns (on the basis of the results of Section 5.1.1).

5.4.2 Effect of observational covariance505

The results described above imply that posterior uncertainty could be made arbitrarily small by increasing the spatial density

of observations (although we do not examine observations more dense than 500 m). However, the decreasing uncertainty

relies on the observations being statistically independent, which is unlikely to be the case as observations become more and

more dense. We consider here the implications of a nonzero spatial covariance. Rather than imposing a realistic observational

covariance matrix, we consider a simplified covariance structure in which correlations decay isotroptically
::::::::::
isotropically. That510

is, our observational covariance matrix Γu,obs is given by

Γu,obs(i, j) =


σ2
u,obs i= j,

σ2
u,obse

−
|xi−xj |

2

d2auto o.w.

(41)

Here σu,obs is the observational uncertainty and xi is the position of observation i. (By contrast, Γu,obs in all experiments

described above is a diagonal matrix with entries σ2
u,obs.) A value of 1 m/a is used for σu,obs, as in all previous experiments;

and dauto is set to 750 m. We assert that the observations of orthogonal velocity components are independent, i.e. Γu,obs is515

block-diagonal with each block corresponding to a velocity component. While velocity component uncertainties are likely to

correlate, introducing spatial correlation among the individual components already greatly changes the effect of observation

spacing on uncertainty reduction, as seen in Fig. 4(d). When observational spacing is large compared to dauto, an increase in

density has a similar effect to that seen in the zero-spatial correlation case (Fig. 4(c)). But for observational spacing on the

order of dauto, additional observations have minimal effect.520

6
::::::::::::
Gauss-Newton

::::::::::::::
approximation

::
to

:::
the

:::::::
Hessian

::::::
Section

:::
2.2

:::::::::
introduces

::
the

:::::::
Hessian

::
of

:::
the

::::
cost

:::::::
function,

:::
and

:::::
gives

::
an

:::::::::
expression

:::
for

:::
the

:::::::
posterior

:::::::::
covariance

:::::
when

:::
the

:::::::::::::::::::
parameter-to-observable

:::
map

::
f̆
::
is

:::::
linear

::::
(Eq.

:::
5).

:::
The

::::
first

::::
term

::
in

:::::::
brackets

:::
on

:::
the

::::
right

::::
hand

::::
side

::
of

:::
Eq.

::
5,
::::::
which

:::
we

::::
write

:::::
here:(

∂f̆

∂c

)T
Γ−1
obs

(
∂f̆

∂c

)
.

:::::::::::::::::

(42)

:
is
:::
the

:::::::
Hessian

:::
of

:::
the

:::::
misfit

::::
cost

:::::::
function

::::
Jcmis:::::

under
:::

the
:::::::::

condition
:::
that

::
f̆
::
is

:::::
linear.

::
It
::
is
:::::
quite

::::
often

:::::
used

::
as

::
an

:::::::::::::
approximation525

::
to

:::
the

:::::::
Hessian

:::
for

:::
the

:::::::
purpose

::
of

:::::::::
covariance

::::::::
estimates

:::::
even

:::::
when

::
f̆

::
is

::::::::
nonlinear

:::::::::::::::::::::::::::::::::::
(Kaminski et al., 2015; Loose et al., 2020),

:::
and

::
is

:::::::
referred

::
to

::
as

:::
the

::::::::::::
Gauss-Newton

::::::::::::
approximation

::
to

:::
the

:::::::
Hessian

:::::::
(GNaH).

::::
The

::::::
GNaH

:::
has

:::
the

:::::::::
advantage

::
of

::::::::
avoiding

:::
the

:::::::::
complexity

::
of

::::::
finding

:::::::::::
second-order

::::::::::
derivatives.

::
It

:::
also

::::
has

:::
the

:::::::
property

:::
that

:::
the

:::::
misfit

:::::::
Hessian

:::
(or

::::::
rather,

::
its

:::::::::::::
approximation)

::
is

::::::
positive

:::::::::::
semidefinite

:
–
:::
this

::
is
:::
not

::::::::::
necessarily

:::
true

:::
of

:::
the

:::::
“full”

::::::
Hessian

:::::
even

:::::
when

::
the

::::
cost

:::::::
function

:::
Jc

::
is

:::::::::
minimised,

::::::::
meaning

::
the

:::::::::::::::::
eigendecomposition

::::::::
described

::
in

:::::::
Section

:::
2.4

:::
can

::::
have

:::::::
negative

:::::::::::
eigenvalues.530
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::
In

:::
the

::::::
context

::
of

:::
our

::::::::
idealised

::::::::::
experiments

:::
we

::::::::
calculate

:::
the

::::::
GNaH

::
(or

::::::
rather,

:::
its

:::::
action

::
on

::
a
::::::
vector)

::
to

::::::::
compare

::::::
against

:::
the

:::::
“full”

:::::::
Hessian.

::::::::::::::
tlm_adjoint

:::::::
library’s

:::::::::::
functionality

:
is
:::::::::

employed
::
as

:::::::
follows.

:::
For

::
a
:::::
given

:::::::::::
finite-element

:::::::::
coefficient

::::::
vector

::
ξ,

::
the

::::::
GNaH

::::::
action

:::
can

::
be

::::::
written

:(
∂f̆

∂c

)T
Γ−1
obs

(
∂f̆

∂c

)
ξ =

(
∂f̆

∂c

)T
η̆

::::::::::::::::::::::::::::

(43)

:::::
where

:̆
η
::

is
::::::::
obtained

:::::::
through

:::
the

:::::
action

::
of

:::
the

:::::::
tangent

:::::
linear

:::::
model

:::::::::

(
∂f̆/∂c

)
:::
on

:
ξ
::::
and

:::
the

:::::
action

::
of

:::
the

::::::
inverse

::::::::::::
observational535

:::::::::
covariance

::
on

:::
the

:::::
result.

::::
The

:::::
GNaH

:::::
action

::
is
::::
then

:::::::
obtained

:::::::
through

:::
the

:::::
action

::
of

:::
the

::::::
adjoint

::
of

:::
the

:::::::
Jacobian

::
of

:::
the

::::::::::::::::::::
parameter-to-observable

::::
map,

:::::::::::

(
∂f̆/∂c

)T
.

::
In

:::
Fig.

::
9

::
we

::::::::
examine

::
the

::::::
effects

::
of

:::::
using

:::
the

:::::
GNaH

:::::
rather

::::
than

:::
the

:::::::
Hessian

::
in

:::
our

::::::::::::
Hessian-based

:::
UQ

::::::::::
framework.

::::
This

:
is
:::::
done

::
for

::::
just

:
a
:::::
single

::::::::::
experiment,

::::
with

::::
1.33

:::
km

::::::::
elements,

:
2
:::
km

:::::::::::
observational

:::::::
spacing,

::::
and

:::::::::::
regularisation

::::
with

:::::::
γ = 10.

:::::::::
Examining

:::
the

:::::::::
uncertainty

::::::::
reduction

::::
(Fig.

:::::
9(a)),

:::
the

:::
first

::::
∼80

::::::::::
eigenvalues

:::
are

::::::::::::
near-identical,

:::
but

::::
after

:::
this

:::
the

:::::::::
uncertainty

::::::::
reduction

::::::::::
approaches540

:
1
:::::
much

:::::
faster

:::
(or,

:::::::::::
equivalently,

:::
the

::::::::::
eigenvalues

::::::
decay

:::::
much

:::::
faster)

::::
with

::::
the

::::::
GNaH.

::
In

:::::
terms

::::::::
posterior

::::
QoI

:::::::::
uncertainty

:::::
(Fig.

::::
9(b)),

:::::::
σ(QIST )

::
is
:::::::
slightly

::::::
smaller

::::
with

:::
the

::::::
GNaH,

:::
but

:::
the

:::::::::
difference

::
is

::::
very

::::
small

::::
and

::::
only

::::::
visible

::
at

::::
later

:::::
times.

:

7 Discussion and Conclusions

The inversion of surface velocities for basal conditions is ubiquitous in ice-sheet modelling – but in most studies in which this

is done, the uncertainty of the resulting parameter fields is not considered, and the implications of this parametric uncertainty545

on projection uncertainty is not quantified. We introduce fenics_ice, a numerical Python code which solves the Shallow

Shelf Approximation (SSA) for ice-sheet dynamics. The code uses the FEniCS library to facilitate finite-element solution of

partial differential equations. Algorithmic differentiation is implemented with the tlm_adjoint library, allowing for adjoint

generation of the time-dependent and time-independent versions of the SSA. This feature is used to aid in inversions of surface

velocity for parameter fields such as the basal sliding parameter. In addition, the tlm_adjoint library allows efficient550

second-order differentiation of the inversion cost function, allowing a low-rank approximation to the cost function Hessian. We

utilise this ability to exploit the connection between the control-method inversions typically carried out with ice-sheet models,

and a Bayesian characterisation of the uncertainty of the inverted parameter field. This interpretation allows us to form a local

approximation to the posterior probability density at the maximum a posteriori (MAP) point. With a time-dependent Quantity

of Interest (QoI) which depends on the outcome of the inversion, the adjoint features of fenics_ice allow linear propagation555

of parametric uncertainty to QoI uncertainty.

We apply our framework to a simple idealised test case, Experiment C of the ISMIP-HOM intercomparison protocol, involv-

ing an ice stream sliding across a doubly periodic domain with a varying basal friction parameter. An idealised time-varying

QoI is defined, equivalent to the fourth moment of thickness in the domain, as thickness evolves due to mass continuity. The

posterior probability density is examined, suggesting mesh independence (provided resolution is high enough). It is shown560

that the level of uncertainty reduction relative to the prior distribution depends on the amount of information in the prior (or,
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equivalently, the degree of regularisation). Uncertainty of the QoI is found along its trajectory, and is found to increase with

time and also found to be larger with less-constrained priors. However, the difference in the uncertainty of the QoI is far less

than that of the parametric uncertainty, due to filtering of
::::::::::
insensitivity

::
of

:::
the

:::
QoI

::
to
:
high-frequency modes. Testing the

::::::::
Sampling

::::
from

:::
our

::::::::
posterior

::::::
allows

::
us

::
to

:::
test

:::
the

:::::::
linearity

::
of

:::
the

:::::::::::::::
parameter-to-QoI

::::::::
mapping,

:::
and

::::
this

::::::::::::
approximation

::
is

::::
seen565

::
to

::
be

::::::::
accurate

::::
with

:
a
::::::::::

moderately
::::::
strong

:::::
prior.

::::::::
However,

:::::
even

::::
with

:::
the

::::::::
relatively

:::::::
modest

:::::::
problem

:::::
sizes

::::::::::
considered,

::::::
testing

::
the

:
validity of our local

:::::::
Gaussian

:
approximation of the posterior probability density is

:::::
would

::::::
require

:::::::::::
sophisticated

::::::::
sampling

:::::::
methods

:::::
which

::::
are beyond the scope of our study. However, sampling from our posterior allows us to test the linearity of

the parameter-to-QoI mapping, and this approximation is seen to be accurate with a moderately strong prior.
:
It
::
is
::::::

worth

:::::
noting

::::::
though

::::
that

:::
one

::::
such

::::::::
method,

::::::::
Stochastic

:::::::
Newton

:::::::
MCMC

::::::::::::::::::::::::::::::::
Martin et al. (2012); Petra et al. (2014),

:::::
relies

::
on

::::::::::
framework570

::::::::
developed

::
in

:::
this

:::::
study

::::
(i.e.

:::::::::::
characterising

:::
the

:::::
local

::::::::
behaviour

::
of

:::
the

:::::::
posterior

:::::::
density

::::::
through

::
a

:::::::::::
Hessian-based

::::::::::::::
approximation).

::::::::
Therefore

:
it
::::
may

:::
be

:
a
::::::
viable

:::::::
approach

:::
for

::::::::::::
non-Gaussian

:::::::::
uncertainty

::::::::::::
quantification

::
in

:::::
future

:::::::::
iterations.

:::
The

:::::::::
sensitivity

::
of

::::
QoIs

::
to

::::::::::
small-scale

::::::::
variability

::
is

:::::::::
significant

:::::::
because

:::
not

::
all

:::::::::::::
glaciologically

::::::::
motivated

::::
QoIs

:::
are

::::::::
expected

::
to

::::
have

::::
such

::::::::::
sensitivities.

::::
For

:::::::
instance,

:::
the

::::
QoI

:::::::::
considered

:::
by

::::::::::::::::::
Isaac et al. (2015) was

::
a
:::::::
contour

::::::
integral

::
of

:::::::
volume

::::
flux

::::
over

:::
the

::::::::
boundary

::
of

:::
the

:::::::
domain,

:::::::::
equivalent

::
to

:
a
::::
rate

::
of

::::::
change

::
of

:::
ice

::::::
volume

::
–
:::
and

:::::
such

:
a
:::::::
quantity

:::::
might

:::
be

:::
less

::::::::
sensitive

::
to

:::::::
velocity575

:::::::
gradients

::::
and

::::::::::
small-scale

::::::::
thickness

::::::
change

::
in
::::

the
::::::
domain

:::::::
interior.

::::
On

:::
the

:::::
other

:::::
hand,

:
a
:::::::

forecast
:::::::

focused
:::
on

:::
the

::::::
impact

:::
of

:::::::
evolving

::::::
surface

::::::::
elevation

::
on

:::::::::::
proliferation

::
of

::::::
surface

:::::
lakes,

:::
or

::
on

::::::
surface

::::::::
fractures,

::::::
might

::
be

::::
very

:::::::
sensitive

::
to
:::::

such
:::::::::
variability.

::::::::
Therefore,

:::::
when

::::::::::
considering

:::::::::
parametric

::::::::::
uncertainty,

:
it
::::::
should

::::
also

::
be

:::::::::
considered

:::::::
whether

:::
the

:::::
nature

::
of

::::
this

:::::::::
uncertainty

:::::::
impacts

::
the

::::::::::
uncertainty

::
of

:::
the

:::::::
intended

::::::::
Quantity

::
of

:::::::
Interest.

:

A key difference between our approach and the control-method inversions typically undertaken is the Euclidean inner product580

that appears in the misfit component of the cost function, as opposed to an area integral of velocity misfit. As discussed in

Section 2.3, the latter formulation leads to difficulties with a Bayesian interpretation by conflating the observational error

covariance with mesh-dependent factors. In our study observation locations are imposed on a regular grid. It is shown that,

with statistically independent observations, posterior uncertainty is continually reduced as the observational grid becomes

more dense. When a spatial correlation of observations is considered, however, there is little reduction of uncertainty when585

adding observations beyond a certain spatial density. This result is of significance to ice-sheet modelling: most ice-sheet model

studies which calibrate parameters to velocity observations (including those mentioned in the Introduction) do not consider the

spatial correlation of observations. As discussed in Section 2.3, these studies express the model-data misfit as an area integral

– meaning that, effectively, observations in adjacent model grid cells are considered independent. If grid cells are sufficiently

large, this is likely a suitable approximation – though with higher and higher resolutions being used in ice-sheet modelling590

studies (Cornford et al., 2013), it should be considered whether the spatial covariance of observations is such that it might

affect results. Assessing such effects poses an additional challenge, however, as ice-sheet velocity products are not generally

released with spatial error covariance information (Rignot et al., 2017).

Our study does not consider “joint” inversions, i.e. inversions with two or more parameter fields. With such inversions,

complications can arise when both parameters affect the same observable, potentially leading to equifinality/ill-posedness. An595

example of such a pair is C, the sliding coefficient, and B, the ice stiffness in the nonlinear Glen’s rheology (cf. Eq. 24), which
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can both strongly affect ice speeds in a range of settings. The version of fenics_ice presented in this study is not capable

of joint inversions or of Hessian-vector products with multiple parameter fields. However,
:
,
:::::::
however

:
the technical hurdles

::
to

:::::::::::::
implementation are minor. More importantly, though, Hessian-based Bayesian uncertainty quantification with multiple param-

eter fields has not, to our knowledge, been carried out in an ice-sheet modelling context, and may present difficulties due to600

a larger problem space or the equifinality issues mentioned above. (Instead of performing a joint inversion, Babaniyi et al.

(2020) use a Bayesian Approximation Error framework, treating the stiffness parameter as a random variable.) Nonetheless,

the investigation of joint inversions and uncertainty quantification is a future research aim for fenics_ice.

Model uncertainty is not accounted for in our characterisation of parametric uncertainty. In the expression for the posterior

probability density (Eq. 4), the model-misfit term is expressed as the difference between observed and modelled velocity, and605

the uncertainty is assumed to arise from the observation platform. In fact, the discrepancy between modelled and observed

velocity is the sum of observation error, εobs and model error, εmodel. This second error source can be considered a random

variable, as it arises from incomplete knowledge about the ice-sheet basal environment and material properties of the ice, as well

as the approximations inherent in the Shallow Shelf Approximation. Characterising this uncertainty is challenging as it requires

both perfect knowledge of the basal sliding parameter and observations with negligible error, and is beyond the scope of our610

study. Future research, however, could involve using a model which implements the full Stokes solution (e.g., Gagliardini et al.,

2010) to partially characterise this uncertainty,
::
or
:::::
could

:::::
make

:::
use

:::
of

:
a
:::::::::::
multi-fidelity

::::::::
approach

:::::::::::::::::::::::
(Khodabakhshi et al., 2021).

:
A
:::::::

number
:::

of
::::::::::::
Hessian-based

::::::::::
uncertainty

::::::::::::
quantification

::::::
studies

:::
use

::::
the

::::::::::::
Gauss-Newton

:::::::::::::
approximation

::
to

:::
the

:::::::
Hessian

::
(
::
cf.

::::::
Section

:::
6),

:::::::
avoiding

:::::::::::
computation

:::
of

::::::::::
higher-order

::::::::::
derivatives

::
of

:::
the

::::::
model,

:::
but

::::
few

::::::
studies

:::::
have

::::::::::
investigated

:::
the

::::::
impact

:::
of

::::::::
neglecting

:::::
these

::::::::::
higher-order

::::::
terms.

:::
For

:::
our

:::::::
idealised

::::::::::
experiment

:::
we

::::
have

::::::::
compared

:::::::::
uncertainty

::::::::
reduction

::::
and

:::
QoI

::::::::::
uncertainty615

::::
with

::::
both

::::::::::::
Gauss-Newton

::::
and

:::::
“full”

:::::::
Hessian

:::::::::::
computation.

::::::
There

::
is

::::::::
negligible

:::::::::
difference

::
in
::::::

terms
::
of

::::
QoI

::::::::::
uncertainty,

:::
but

::
it

::::::
remains

::
to
:::
be

::::
seen

::
if

:::
this

::
is

:::
the

::::
case

::
for

:::::
more

:::::::
realistic

:::::::::::
experiments.

Our study does not consider time-dependent inversions, i.e. control methods where the cost function is time-dependent.

While the majority of cost-function inversions are time-independent, there are a growing number of studies carried out with

time-dependent inversions (Larour et al., 2014; Goldberg et al., 2015) and it is possible that such methods may provide lower620

uncertainty in calibration of hidden parameters (simply by providing additional constraints) and hence in ice-sheet projec-

tions. fenics_ice (or rather tlm_adjoint) is capable of eigendecomposition of Hessian matrices of time-dependent

cost functions (Maddison et al., 2019), but time-dependent Hessian-vector products are computationally expensive, requiring

checkpointing and recomputation of both forward and reverse mode model information, and it is unlikely that full eigenvalue

spectra can be found for even modestly sized problems. It is hopeful that for realistic problems of interest only a small fraction625

of eigenvalues will need to be found to accurately approximate the posterior covariance, but .
:::::::::::
Alternatively,

:::
the

:::::::::::::
Gauss-Newton

::::::::::
approximate

:::::::
Hessian

:::::
might

:::::::
diminish

:::::
some

::
of

:::
the

:::::
cost.

:::::::
Certainly

:
more work is required in this area.

Code availability. The fenics_ice code can be obtained from https://doi.org/10.5281/zenodo.5153231 and is freely available under the

LGPL-3.0 License. The branch containing the version of the code used for this manuscript is GMD_branch. Python scripts for running
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all experiments and creating all figures in this manuscript can be found in the example_cases directory, and installation instructions for630

fenics_ice and dependencies can be found in the user_guide folder. The commit tag of tlm_adjoint used for the experiments in this

manuscript is 79c54c00a3b4b69e19db633896f2b873dd82de4b.
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Figure 1. An L-curve showing the tradeoff between model misfit (first and second terms of Eq. 32) and the regularisation cost (the second

terms of Eq. 32 divided by γ). Associated values of the regularisation parameter γ are shown. In all optimizations, δ is equal to 10−5 and

observational points occur at intervals of 2 km.
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Figure 2. Results of the control-method inversion with γ = 50. (a) The recovered basal traction C2. (b) The point-wise standard deviation of

the sliding parameter C. (c) The surface speed associated with the inverted C. (d) Histogram of model-data velocity misfit (where misfit is

the 2-norm of the difference of observed and modelled velocity). (e) The sensitivity of QIS30 to the sliding parameter. (f) Thickness after 30

years of time stepping.
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Figure 3. Similar to Fig. 2 but with γ = 1. Note the difference in colormap with Fig. Fig. 2(b).
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Figure 4. Uncertainty reduction factor 1/(1+λk) versus eigenvalue index k for a range of experimnents
:::::::::
experiments. (a) Dependence of

reduction spectra on regularisation parameter γα. (b) Dependence of reduction spectra on model resolution. (c) Dependence of reduction

spectra on density of observational sample points. (d) Dependence of reduction spectra on density of observational sample points with

nonzero observational covariance.
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Figure 5. (a)-(d): Leading four eigenvectors of C in γ50 experiment. (e)-(g): Leading four eigenvectors of C in γ1 experiment.

Figure 6. (a) Paths ofQIST in γ50 experiment (blue) and γ1 experiment (green). Shading shows the 1-σ uncertainty interval for each trajectory

calculated by projecting the Hessian-based (posterior) uncertainty along the linearised trajectory. (b) Uncertainties in the time-dependent

experiments over time. Dashed lines: prior uncertainties projected along the linearised QIST trajectory. Solid lines: Hessian-based posterior

uncertainties projected along the linearised trajectory. Markers: Standard deviation of QIST from sampling the posterior density. In both

panels, green corresponds to γ50, and blue to γ1.
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Figure 7. (a) A realisation of the prior density of C for the γ50 experiment. (b) A realisation of the posterior density of C for the γ50

experiment with mean cMAP removed.
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Figure 8. (a) A realisation of the prior density ofC for the γ1 experiment. (b) A realisation of the posterior density ofC for the γ1 experiment

with mean cMAP removed. Note the difference in colormap with Fig. 7.
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