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Abstract. This paper presents the first development and evaluation of the reduced-complexity air quality 18 

model for China. In this study, a reduced-complexity air quality intervention model over China ( InMAP-19 

China) is developed by linking a regional air quality model, a reduced-complexity air quality model, an 20 

emission inventory database for China, and a health impact assessment model to rapidly estimate the air 21 

quality and health impacts of emission sources in China. The modelling system is applied over mainland 22 

China for 2017 under various emission scenarios. A comprehensive model evaluation is conducted by 23 

comparison against conventional CMAQ simulations and ground-based observations. We found that 24 

InMAP-China satisfactorily predicted total PM2.5 concentrations in terms of statistical performance. 25 

Compared with the observed PM2.5 concentrations, the mean bias (MB), normalized mean bias (NMB), 26 

and correlations of the total PM2.5 concentrations are -8.1 µg/m3, -18%, and 0.6, respectively. The 27 

statistical performance is considered to be satisfactory for a reduced-complexity air quality model and 28 

remains consistent with that evaluated in the United States. The underestimation of total PM2.5 29 

concentrations was mainly caused by its composition, primary PM2.5. In terms of the ability to quantify 30 

source contributions of PM2.5 concentrations, InMAP-China presents similar results in comparison with 31 
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those based on the CMAQ model, the difference is mainly caused by the different treatment of secondary 32 

inorganic aerosols in the two models. Focusing on the health impacts, the annual PM2.5-related premature 33 

mortality estimated using InMAP-China in 2017 was 1.92 million, which was 25 ten thousand deaths 34 

lower than that estimated based on CMAQ simulations as a result of underestimation of PM2.5 35 

concentrations. This work presents a version of the reduced-complexity air quality model over China, 36 

provides a powerful tool to rapidly assess the air quality and health impacts associated with control policy, 37 

and to quantify the source contribution attributable to many emission sources. 38 

1 Introduction 39 

With rapid urbanization and industrialization, fine particulate matter pollution less than 2.5 µm in 40 

diameter (PM2.5) has become a major environmental issue in China. High PM2.5 concentrations can be 41 

observed over eastern China from satellite observations (Xiao et al., 2020) and the PM2.5 concentrations 42 

have been largely decreased since 2013 due to the effective control measures taken by Chinese 43 

governments ( Zhao et al., 2021). PM2.5 can affect air quality, ecosystems, and climate change and 44 

damage human health through short-term or long-term exposure. The Global Burden of Disease study 45 

reported that 1.1 million premature deaths were caused by long-term PM2.5 exposure over China in 2015 46 

(Cohen et al., 2017). 47 

State-of-the-science three-dimensional air quality models ( AQMs) have been widely used in China 48 

as tools to simulate regional PM2.5 concentrations, quantify the contributions to total PM2.5 concentrations 49 

resulting from emission sources and assess the benefits associated with control measures (Chang et al.; 50 

2019, Li et al., 2015; Zhang et al., 2015; Zhang et al., 2019). The Weather Research and Forecasting 51 

model-Community Multiscale Air Quality Modelling System (WRF-CMAQ) (Appel et al., 2017; Chang 52 

et al., 2019), the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) 53 

(Reddington et al., 2019), the Weather Research and Forecasting model-Comprehensive Air Quality 54 

Model Extension (WRF-CAMx) (Li et al., 2015), and the Global Adjoint model of Atmospheric 55 

Chemistry (GEOS-Chem Adjoint)  (Zhang et al., 2015) were frequently used in previous studies. To 56 

conduct a series of simulations for multiple scenarios or quantify the separate contributions attributable 57 

to multiple sources, large computational resources and run time are required while utilizing conventional 58 

AQMs. To address these challenges and to improve the availability and accessibility of air quality 59 

modelling, a number of reduced-complexity models have been developed by the air quality research 60 
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community. The three representative reduced-complexity air quality models frequently used are the 61 

Estimating Air Pollution Social Impacts Using Regression (EASIUR) model (Heo et al., 2016; Heo et 62 

al., 2017), the updated Air Pollution Emission Experiments and Policy (APEEP2) model (Muller et al., 63 

2007; Muller et al., 2011) and the Intervention for Air Pollution model (InMAP) (Tessum et al., 2017). 64 

A recent study compares three reduced-complexity models, EASIUR, APEEP2, and InMAP, and the 65 

results indicate that these three models are consistent in their assessment of the marginal social cost at 66 

the county level (Gilmore et al., 2019). Reduced-complexity air quality models are less computationally 67 

intensive and easier to use. However, it is not available for China. Therefore, it is essential to develop a 68 

reduced-complexity air quality model over China to quickly predict PM2.5 concentrations and the 69 

associated health impacts of emission sources. 70 

The reduced-complexity intervention model for air pollution, InMAP, was developed by Tessum et 71 

al. (Tessum et al., 2017) to rapidly assess the air pollution, health, and economic impacts resulting from 72 

marginal changes in air pollutant emissions. Compared with conventional air quality models, InMAP has 73 

the advantage of time efficient, can predict annual-average PM2.5 concentrations within few hours but 74 

with a modest reduction in accuracy compared with CTMs. InMAP reduces the running time by 75 

simplifying the physical and chemical process. InMAP has been used to assess marginal health damage 76 

of location-specific emission sources (Goodkind et al., 2019), to quantify the health impacts of individual 77 

coal-fired power plants in the United States (Thind et al., 2019) and to estimate the health benefits of 78 

control policies considering specific locations (Sergi et al., 2020). However, to date, a version of the 79 

reduced-complexity air quality intervention model over China is absent. 80 

In this work, based on the source code of the version 1.6.1 of InMAP model，a reduced-complexity 81 

air quality intervention model over China ( InMAP-China) is developed to rapidly predict the air quality 82 

and estimate the health impacts of emission sources in China. The total consumed time for a simulation 83 

for the year 2017 using the InMAP-China established in this study is approximately an hour with a single 84 

CPU of 24 nodes. Therefore, it is convenient when conducting multiple simulations of PM2.5 85 

concentrations due to air pollutants emissions in 2017. The modelling system is applied over mainland 86 

China for 2017 under various emission scenarios to examine model performance. Comparisons against 87 

conventional air quality models and surface observations are performed in this study. The model 88 

applicability and limitations are also declared. 89 

The paper is organized as follows: Section 2.1 presents the components of InMAP-China including 90 

the interface development between WRF-CMAQ and InMAP to generate parameters of the base 91 



 4 

atmospheric state, the preprocessed process of emission input data and the exposure-response functions 92 

employed in this model. Section 2.2 introduces the evaluation protocol, including the statistical variables 93 

adopted and the simulation design in this study. Section 3 presents the evaluation of InMAP-China’s 94 

predictions of PM2.5 air quality and PM2.5-related health impacts in several simulations. Section 4 95 

summarizes the conclusions and limitations of this study. 96 

2 Description of InMAP-China model 97 

2.1 Model components and configurations 98 

The reduced-complexity intervention model for air pollution, InMAP, was developed by Tessum et 99 

al. (Tessum et al., 2017) to rapidly assess the air pollution, health, and economic impacts resulting from 100 

marginal changes in air pollutant emissions. The model has been widely used in studies (Sergi et al., 101 

2020; Thind et al., 2019; Goodkind et al., 2019; Dimanchevi et al., 2019) focusing on PM2.5 pollution 102 

and health, economic impacts resulting from emission sources in the United States. In this model, the 103 

continuous equation of atmospheric pollutants is solved at an annual scale, and the run time can be 104 

reduced. The parameters used to represent physical and chemical processes for simplified simulation are 105 

calculated prior to using CTM output data. PM2.5 air quality and PM2.5-related premature mortality are 106 

predicted and output in the InMAP model. 107 

In this work, a Chinese version of the reduced-complexity air quality intervention model InMAP-108 

China is developed for the purpose of rapidly estimating the PM2.5 concentration and associated health 109 

impacts of emission sources. Figure 1 shows the model framework. Based on the source code of the 110 

InMAP model, three-step development work is conducted to establish InMAP-China. First, we develop 111 

a preprocessed interface to calculate physical and chemical process parameters using the WRF-CMAQ 112 

output variables to support the simplified simulation in InMAP-China. Second, air pollutant emission 113 

data are preprocessed to an appropriate format for the InMAP-China simulation. Third, the exposure-114 

response function of the GEMM model is employed in InMAP-China and replaces the original default 115 

function to assess PM2.5-related health impacts. 116 

Table 1 presents the basic configurations of InMAP-China. The simulation domain is over East 117 

Asia and covers mainland China. The spatial resolution is 36 km. Fourteen vertical layers are used in 118 

InMAP-China, ranging from the surface layer to the top level of the tropospheric layer. 119 
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2.1.1 Parameter interface development for simplified simulation in InMAP-China 120 

We develop a preprocessed interface to calculate physical and chemical process parameters using 121 

WRF-CMAQ output variables for simplified simulation in InMAP-China based on the Environmental 122 

Protection Agency’s (EPA) work (Baker et al., 2020). Two NETCDF files containing the key parameters 123 

for simplified simulation are generated by using the parameter interface developed here, one is at 36km 124 

resolution across entire mainland of China and another is at 4km resolution over the BTH region. The 125 

main step of the preprocessed interface includes meteorological and chemical variable extraction and 126 

merging, unit conversion, vertical layer mapping, physical and chemical process parameter calculation 127 

and average processing. The hourly chemical and meteorological variable outputs from the WRF-CMAQ 128 

modelling system are converted into annual-average physical and chemical process parameters required 129 

for simplified simulation. 130 

A NETCDF file containing the three-dimensional annually averaged parameters to characterize 131 

atmospheric advection, dispersion, mixing, chemical reaction, and deposition is generated. Table 2 shows 132 

the relationship between the annual-average parameters for simplified simulation and the original hourly 133 

variables. In InMAP-China, the annual averaged component and the deviation of wind speed to represent 134 

advection are calculated using hourly elements. The offset of wind vectors in different directions may 135 

result in some uncertainties in this process. The parameters of eddy diffusion and convective transport 136 

are precalculated using hourly elements, including temperature, pressure, boundary layer height, etc. The 137 

annual wet deposition rate is determined by the rainwater mixing ratio and cloud fractions. The annual 138 

dry deposition rate of particles and gaseous pollutants at the surface level is precalculated using friction 139 

speed, heat flux, radiation flux and land cover. The simplification of chemical reactions is different 140 

among pollutants. For NOx, NH3, and volatile organic compound (VOC) precursors, the annual averaged 141 

gas-particle partitioning is adopted and calculated before using the output concentrations of species from 142 

CMAQ. For SO2 pollutants, the annual oxidation rate of two major conversion pathways for SO2 is 143 

calculated using concentrations of hydroxyl radical (HO) and hydrogen peroxide (H2O2) in CMAQ, and 144 

the conversion is estimated in InMAP-China. 145 

2.1.2 Prior WRF-CMAQ simulation 146 

To generate the meteorological and chemical parameters required by InMAP-China, a one-year 147 

WRF-CMAQ simulation covering the entire mainland of China is conducted to output hourly 148 

meteorological and chemical-related variables in the year 2017. Besides, the nested WRF-CMAQ 149 
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simulation over the BTH region is also conducted and validated using observed data. The corresponded 150 

output data is used to generate the meteorological and chemical parameters required by InMAP-China 151 

for the simulations of 4 km resolution in the BTH region. Tables S1 and S2 show the major configurations 152 

of the WRF-CMAQ modelling system. The WRF model is driven by the National Centers for 153 

Environmental Prediction Final Analysis (NCEP-FNL) (https://doi.org/10.5065/D6M043C6) reanalysis 154 

data to provide the initial and boundary conditions. The meteorological fields derived from the WRF 155 

model is used to drive the CMAQ model (Appel et al., 2016) simulations. The air pollutant emissions 156 

used here include anthropogenic emissions over China derived from the MEIC model 157 

(http://meicmodel.org/), anthropogenic emissions over the region of East Asia outside China derived 158 

from the MIX-2010 inventory (Li et al., 2015), and biogenic emissions derived from the MEGANv2.10 159 

model. The CB05 chemical mechanism and the AERO6 aerosol module are employed in the model 160 

simulation.  161 

Table S3 summarizes the performance statistics of meteorological variables, including surface 162 

temperature, relative humidity, and wind speed, in China in 2017, as simulated by the WRF model. The 163 

hourly observed data of major meteorological variables derived from the National Climate Data Center 164 

( NCDC) are utilized here. The results show that the meteorological variables simulated by the WRF 165 

model agree well with the surface observations, which is consistent with previous studies (Wu et al., 166 

2019; Zheng et al., 2015; Hong et al., 2017). The model performs well on the predictions of surface 167 

temperature, with an MB of -0.7 K, an NMB of -6.1%, and R of 0.9. The predictions of relative humidity 168 

at a height of 2 metres are relatively satisfied with an MB of 4.1% and an NMB of 6.1%. The predictions 169 

of wind speed at a height of 10 metres are slightly overestimated, with an MB of 0.3 m/s and an NMB 170 

of 12.4%, which may be caused by out-of-date USGS land use data employed in the model runs. 171 

The SO2, NO2 and PM2.5 concentrations modelled across the domain agree well with the surface 172 

observations in terms of the statistical performance and monthly variations. Table S4 summarizes the 173 

performance of the statistics of major air pollutant concentrations. The nationwide annual averaged PM2.5 174 

concentration simulated in 2017 in China was 42.1 µg/m3. Compared with the observed PM2.5 of 45.9 175 

µg/m3, there are slight underpredictions with an MB of 3.7 µg/m3 and NMB of 8.1%. The CMAQ model 176 

has moderate underpredictions of the NO2 concentrations and SO2 concentrations, which may be related 177 

to the uncertainties of emission inputs. For modelled NO2 concentrations, MB and NMB are -4.6 µg/m3 178 

and -13.9%, respectively. For modelled SO2 concentrations, MB and NMB are -0.8 µg/m3 and -4.5%, 179 
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respectively. Figure S3 shows the monthly variation. The variation trend of the observed SO2, NO2, and 180 

PM2.5 concentrations can basically be reproduced in the CMAQ simulations. 181 

2.1.3 Preprocessed emission input data 182 

We develop the preprocessed module to generate vector emission input for the InMAP-China 183 

simulation. This module can allocate air pollutant emissions vertically and horizontally to supply the 184 

missing parameters for the emission file and convert them into a shapefile vector format. The shapefile 185 

vector format’s emission data of 36km resolution in entire mainland of China and 4km resolution in the 186 

BTH region in 2017 are pre-processed by using this module.  187 

In this module, the emission data are preprocessed by source and altitude. The anthropogenic 188 

emissions of five sectors in China in 2017 from the MEIC inventory (http://meicmodel.org/), the 189 

anthropogenic emissions over regions outside mainland China in Asia from the MIX-2010 inventory (Li 190 

et al., 2015), and the natural emissions estimated using the MEGANv2.10 model (Guenther et al., 2012) 191 

are employed in this study.         192 

More detailed, the gridded anthropogenic emissions of 0.3 degrees for the residential, transportation, 193 

and agricultural sectors are preprocessed and input to the surface layer. The gridded air pollutant 194 

emissions of the industrial sector and noncoal power plants are preprocessed for allocation to attitudes 195 

ranging from 130 metres to 240 metres and 130 metres to 890 metres, respectively. The emissions of 196 

coal-fired power plants (CPPs) are preprocessed as point sources. The air pollutant emissions and the 197 

stack attribution of each unit are provided in the emission file. Because the stack attribution of the power 198 

unit is missed in the MEIC inventory, we supplied the information in the preprocessed module based on 199 

NEI ( National Emission Inventory data) data of power units. For stack height/stack diameter, a linear 200 

relationship is first established (see Figure S1), and then, supplementation for these two parameters of 201 

Chinese power plants is conducted by using the relationships. The fixed value for the other two variables 202 

of stack attribution is set here because the PM2.5 concentrations attributable to power plants (CPPs-PM2.5) 203 

are less sensitive to the two variables (see Figure S2). The stack gas exit velocity and stack gas exit 204 

temperature of the power unit are 6 m/s and 313 K, respectively. The air pollutant emissions over regions 205 

outside mainland China in Asia and the natural emissions simulated by MEGANv2.10 are preprocessed 206 

and input to the surface layer. 207 
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2.1.4 Exposure-response function from GEMM 208 

To rapidly estimate the premature mortality of PM2.5 exposures, we employ the exposure-response 209 

function from GEMM to estimate PM2.5-related premature mortality, which was developed by Burnett 210 

et al. (Burnett et al., 2018), and calculate the premature mortality using PM2.5 concentration predictions 211 

of InMAP-China. Premature mortality due to non-communicable diseases (NCDs) and lower respiratory 212 

infections (LRIs) was considered in this study. Mortality is determined by the mortality incidence rate, 213 

population, and attributable fraction (AF) to certain PM2.5 concentrations. The national mortality 214 

incidence rate and the population data were derived from the GBD2017 study (Institute for Health 215 

Metrics and Evaluation). The spatial distribution of the population in 2015 from the Gridded Population 216 

of World Version 4 (Doxsey et al., 2015) was employed to allocate the population in 2017. 217 

2.2 Evaluation protocol 218 

2.2.1 Evaluation method 219 

In this study, the performances of the InMAP-China predictions are evaluated by comparison 220 

against CMAQ simulations and surface observations. Model-to-model comparison and model-to-221 

observation comparison have both been used to evaluate the performance of reduced-complexity air 222 

quality models in previous studies (Tessum et al., 2017, Gilmore et al., 2019). 223 

The following aspects are considered to make an evaluation. First, we examine the ability of 224 

InMAP-China to predict PM2.5 concentrations at different emission levels, which will be introduced in 225 

Section 3.1. Second, to examine the ability to quantify source contributions to PM2.5 concentrations, we 226 

compare the InMAP-China’s predictions of the sectoral contributions attributable to power, industry, 227 

residential, transportation, and agriculture with those based on the CMAQ model, which will be 228 

presented in Section 3.2. Third, to comprehensively understand the performance at higher spatial 229 

resolution using InMAP-China, we compare the predictions of PM2.5 concentrations at 4km spatial 230 

resolution in the BTH region both modelled by InMAP-China and conventional CMAQ with the 231 

observations, which is displayed in Section 3.3. Fourth, focusing on the health impacts, the PM2.5-related 232 

premature mortality predicted by InMAP-China is also compared with mortality estimation based on 233 

PM2.5 exposure derived from CMAQ, which is presented in Section 3.4. 234 

For the observed PM2.5 concentration data, the annual averaged observed PM2.5 concentrations in 235 

2017 were calculated using hourly concentration data from the China National Environmental 236 

Monitoring Center, CNEMC (http://www.cnemc.cn/). More than 1400 national monitoring sites for air 237 
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pollutant concentrations are included in the simulation domain. The statistical parameters used in this 238 

study include the correlation coefficient (R), mean bias (MB), mean error (ME), normalized mean bias 239 

(NMB), normalized mean error (NME), and root mean square error (RMSE). The statistical analyses on 240 

the performance of InMAP-China are similar to our previous evaluation of conventional CTMs ( Zheng 241 

et al., 2015; Wu et al., 2019). 242 

2.2.2 Experimental design 243 

We design twelve simulations to examine the model ability of InMAP-China in this study. Table 3 244 

shows the sequence of simulations. 245 

InMAP_TOT represents the baseline simulation with maximum emissions input, in which five 246 

sectoral anthropogenic emissions are derived from the MEIC inventory, natural emissions are derived 247 

from the MEGANv2.10 model, and Asian emissions outside mainland China are derived from the MIX-248 

2010 inventory are combined as emission inputs. Five sectoral and five abatement simulations are also 249 

conducted to examine the ability of InMAP-China to predict concentration changes in response to 250 

sectoral emissions and abatement emissions. The emission inputs for these ten simulations have been 251 

declared in Table 3. The annual averaged physical and chemical process parameters are calculated based 252 

on the output variables of WRF-CMAQ model, which has already been mentioned in Section 2.1.2. 253 

Based on the above input, the particle continuity equations are solved by InMAP-China model to obtain 254 

the annual averaged PM2.5 concentrations at the steady-state of the atmosphere. The above simulations 255 

are all conducted at 36km spatial resolution across the entire mainland of China. Besides, another 256 

simulation represented by InMAP-BTH is conducted at 4km spatial resolution over the BTH region, with 257 

the anthropogenic emission input data at 4km resolution derived from the MEIC inventory and natural 258 

emissions derived from the MEGANv2.10 model is utilized in this simulation.  259 

In order to make a comparison with the InMAP-China simulations, eleven CMAQ simulations are 260 

also performed under the same emission inputs. The hourly PM2.5 concentrations simulated by CMAQ 261 

in 2017 are averaged at obtain the annual averaged PM2.5 concentrations. Due to limited computational 262 

resources, each simulation is conducted for four representative months (January, April, July, and October) 263 

in 2017.  264 
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3 Results and Discussion 265 

3.1 Model performance of PM2.5 concentrations in China 266 

3.1.1 Total PM2.5 concentrations 267 

Figure 3 shows the performance evaluation of total PM2.5 concentrations in the InMAP_TOT 268 

simulations. Compared with the observed annual averaged PM2.5 concentrations, the total PM2.5 269 

concentrations are moderately underpredicted by InMAP-China with an MB of -8.1 µg/m3 and an NMB 270 

of -18.1%. Compared with the CMAQ predictions, the total PM2.5 concentrations are also underpredicted, 271 

with an MB of -5.3 µg/m3 due to the underprediction of primary PM2.5. Consistent air pollutant emissions 272 

are employed in the CMAQ and InMAP-China simulations. Therefore, the underpredictions are caused 273 

by the different mechanisms in the two models. Basically, InMAP-China reproduces the spatial pattern 274 

of total PM2.5 concentrations simulated by CMAQ. Notably, significant overpredictions of PM2.5 275 

concentrations can be observed over mountain areas across Northern China, and the complex terrain and 276 

large emission intensity increase the challenge of predicting PM2.5 concentrations using the reduced-277 

complexity air quality model in this region. 278 

Figure 4 shows a comparison of PM2.5 compositions. Compared with the CMAQ results, the 279 

InMAP-China predictions of PM2.5 compositions are satisfactory, with NMBs for SO4
2-, NO3

 -, NH4
+, and 280 

primary PM2.5 equal to 13%, -8%, -10%, and -23%, respectively. The predictions of SO4
2-, NO3

-, and 281 

NH4
+ perform better than those of primary PM2.5. Figure 5 and Figure 6 compare the spatial distribution 282 

of PM2.5 compositions, and similar over-predictions of PM2.5 compositions can be observed in the 283 

mountain area in Northern China. 284 

The ability of InMAP-China to predict PM2.5 compositions is also examined at various emission 285 

levels. Figure 7 compares the concentrations of PM2.5 compositions and the proportions of secondary 286 

inorganic aerosols (hereafter, SNA) in total PM2.5 concentrations in different scenarios by two models. 287 

In the InMAP_TOT scenario, the proportion of SNA is 56%, which is extremely close to the 50% 288 

proportion in the WRF-CMAQ simulations. In five emission abatement simulations, the proportion was 289 

approximately equal to that in the baseline scenario because the linearly treated chemical reaction 290 

relationship of SNA was employed in InMAP-China. However, focusing on the simulations of five 291 

sectoral emission scenarios, a significant difference can be observed, which is mainly caused by the 292 

difference in chemical treatments in InMAP-China and CMAQ. In this situation, the impacts on PM2.5 293 

concentrations are distinct due to the nonlinear emission-concentration process. 294 
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3.1.2 Marginal change in PM2.5 concentrations 295 

   Figure 8 compares the InMAP-China and CMAQ predictions of population-weighted PM2.5 296 

concentrations and PM2.5 compositions for eleven emission scenarios. Marginal changes in air pollutant 297 

concentrations are defined as 1 µg/m3 by normalizing the population-weighted air pollutant 298 

concentrations of each scenario using the largest value among all scenarios modelled by CMAQ. The 299 

InMAP-China reproduces CMAQ predictions on the marginal change in population-weighted PM2.5 300 

concentrations, with a NMB of -12% and correlations of 0.98, as shown in Figure 8(a). This performance 301 

is similar to that predicted by InMAP in the United States (Tessum et al., 2017). 302 

Figure 8(b)-(f) compares the predictions of PM2.5 compositions. The InMAP-China predictions of 303 

SO4
2-, NO3

-, NH4
+ and primary PM2.5 agree well with the CMAQ results, but the predictions of secondary 304 

organic aerosol (SOA) are the poorest. The marginal changes in NO3
- and primary PM2.5 concentrations 305 

are moderately underpredicted by InMAP-China, with NMB values of -13% and -21%, respectively. 306 

Conversely, the marginal change in SO4
2- concentrations is overpredicted with an NMB of 23%. The 307 

marginal change in NH4
+ predicted by InMAP-China agrees well with the CMAQ predictions. Because 308 

few reaction pathways of SOA are included in the CB05 mechanism in the CMAQ simulations, SOAs 309 

are underpredicted in the entire modelling system. 310 

The regional performance of the changes in PM2.5 and its compositions for eleven emission 311 

scenarios is also examined in this study. Figures S4-S7 show the regional results. Four regions, including 312 

the Beijing-Tianjin-Hebei region ( BTH), Yangtze River Delta ( YRD), Pearl River Delta ( PRD), and 313 

Fen Wei Plain ( FWP), are analysed here (see Figure 2). At the regional level, the CMAQ predicted 314 

marginal changes in population-weighted PM2.5 concentrations, and its composition can be reproduced 315 

by InMAP-China, which is similar to the nationwide performance. However, the marginal change in 316 

SO4
2- concentrations over the BTH is significantly overpredicted by InMAP-China, with an NMB of 317 

135%, which is expected to be improved by optimizing the representation of the annual sulfate oxidation 318 

rate in this region. 319 

3.2 Model performance of source contributions in China 320 

Figure 9 shows the contribution of each sector to PM2.5 concentrations nationwide and at the regional 321 

scale, and Table 4 displays the proportion value of sectoral contribution based on two models. The 322 

predictions of the source contributions of PM2.5 concentrations in InMAP-China are basically reliable 323 

compared with those based on the CMAQ model, and the difference can be explained. 324 
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The results based on the two models indicate that the industrial and residential sectors are the first 325 

and second contributors among the five sectors. The contribution of the electricity sector is comparable 326 

when using the two models, while the contributions of transportation and agriculture are moderately 327 

different, which is mainly due to the difference in the model mechanism and the treatment of secondary 328 

inorganic aerosols in the two models. At the regional scale, the difference in the sectoral contribution 329 

caused by the mechanism in the two models is more significant than at the national scale. 330 

3.3 Model performance of PM2.5 predictions at higher resolution in the BTH region 331 

We also conducted a simulation with higher spatial resolution of 4 km in the BTH region by using 332 

InMAP-China model and make a comparison with the WRF-CMAQ nested simulation at the same area 333 

in the BTH region. Figure 10 and Figure 11 show the performance evaluation of total PM2.5 concentration 334 

and the composition in the InMAP_BTH scenario. Compared with the observed annual averaged PM2.5 335 

concentrations, the total PM2.5 concentrations are moderately overpredicted in InMAP_BTH with an 336 

NMB of 41.3% and an R of 0.5.  337 

Further compared with the nested CMAQ predictions, the total PM2.5 concentrations are also over-338 

predicted by InMAP-China model. The predictions of PM2.5 compositions in the InMAP_BTH scenario 339 

are partially satisfactory, except for SO4
2-, with NMBs for SO4

2-, NO3
 -, NH4

+, and primary PM2.5 equal 340 

to 178%, 36%, 33%, and 27%, respectively. Figure 12 further shows the comparison of the spatial 341 

distribution of PM2.5 compositions in the BTH region. The overall spatial distribution pattern of PM2.5 342 

compositions is similarly modeled by two models, however, an obvious difference can be observed 343 

across the mountain area in the BTH region, for instance, the over-predictions of PM2.5 compositions, 344 

especially, SO4
2- and NO3

- observed near the Taihang mountain area.  345 

3.4 Model performance of PM2.5-related premature mortality in China  346 

To examine the performance of the predictions of PM2.5-related premature mortality, a comparison 347 

of premature mortality using the PM2.5 predictions from InMAP-China and CMAQ, separately, is 348 

performed here. Figure 13 shows the comparison based on two models for all provinces. The results 349 

demonstrate that, compared with the premature mortality based on CMAQ, the relative difference is 350 

ranging from -44% to 15% at the provincial level due to the difference of PM2.5 concentrations in the two 351 

models.  352 

At the provincial level, the PM2.5-related premature mortality in Beijing city, Tianjin city, Hebei 353 

province, and Shanghai city is slightly over-predicted by InMAP-China, with the relative difference 354 



 13 

ranging from 4% to 15%. Conversely, for the other majority of provinces, PM2.5-related premature 355 

mortality is under-predicted by InMAP-China, with the relative difference ranging from -3% to -44%. 356 

Overall, the PM2.5-related premature mortality estimated using InMAP-China was 1.92 million people in 357 

2017. Compared with the CMAQ-based estimations, 25 ten thousand deaths are under-predicted by 358 

InMAP-China because of underestimation of total PM2.5 concentrations in the baseline simulation. 359 

4 Conclusions  360 

This work develops a reduced-complexity air quality intervention model over China and presents a 361 

comprehensive evaluation by comparing CMAQ simulations and surface observations. The InMAP-362 

China aims at providing a simplified modeling tool to rapidly predict the PM2.5 concentrations due to 363 

emission change as well as health impact of emission sources in China. After the model is established, 364 

the total consumed time for a new simulation under the atmosphere condition in the year 2017 across the 365 

mainland of China using InMAP-China is merely an hour with a single CPU of 24 nodes. Therefore, it 366 

is time-efficient when conduct new simulations of PM2.5 concentrations in China. Notably, the running 367 

of WRF-CMAQ simulations is merely necessary in our developing stage of InMAP-China. For the 368 

application of InMAP-China, we recommend users to select InMAP-China as a prior tool with extensive 369 

simulation demands, for instance, to quantify the PM2.5 concentrations due to hundreds of pollution 370 

emitters or to rapidly estimate the PM2.5 concentrations caused by dozens of control policies, separately. 371 

Besides, the variable grid can also be set in InMAP-China to allow high spatial resolution of 1km or even 372 

higher in certain urban area.  373 

InMAP-China has moderately satisfactory performance in this study, however, this model has 374 

reductions in accuracy compared with conventional CTMs. Overall, InMAP-China satisfactorily predicts 375 

total PM2.5 concentrations in the baseline simulation in terms of statistical performance. Compared with 376 

the observed PM2.5 concentrations, the MB, NMB, and correlations of the total PM2.5 concentrations are 377 

-8.1 µg/m3, -18%, and 0.6, respectively. The statistical performance is satisfactory for a reduced-378 

complexity air quality model and remains consistent with the performance evaluation in the United States. 379 

The underestimation of total PM2.5 mainly comes from the primary PM2.5. Moreover, the spatial pattern 380 

of total PM2.5 concentrations can be reproduced in InMAP-China, while an overestimation over the 381 

mountain area in Northern China can be observed. The large emission intensity and complex terrain over 382 

this region increase the difficulty of modelling concentrations in this area. The predictions of source 383 

contributions to PM2.5 concentrations by InMAP-China are comparable with those based on the CMAQ 384 
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model, and the difference is mainly caused by the uncertainty of the simplification of chemical process 385 

in the InMAP-China. The global version of reduced-complexity air quality model ( Global-InMAP) is 386 

also developed and preprint recently ( Thakrar et al., 2021), our results of InMAP-China can provide 387 

more accurate result in the mainland of China.  388 

This study is subject to some limitations and uncertainties. In InMAP-China, the annual-average 389 

chemical and physical processes parameters are calculated using hourly parameters from WRF-CMAQ. 390 

Complicated seasonal and daily variations affecting the formation and transportation of particulate matter 391 

are challenging to retain. The intensity of advection of the air mass is supposed to be weakened due to 392 

the offset of the wind vector in the averaging process, which was also pointed out in a previous study. 393 

Moreover, InMAP-China has difficulty predicting SOA concentrations because reaction pathways for 394 

SOA are insufficient in this modelling system. Further research work is suggested to improve the model 395 

performance. For instance, the combination of machine learning with the simplified simulation may need 396 

to research to promote the reduced-complexity air quality modeling over China. 397 

 398 
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Table 1. Model configurations in InMAP-China. 608 

Category Parameters Configurations 

Basic 

Research area and period China, 2017 

Spatial resolution 36 km × 36 km 

Vertical layers 14 layers 

Run type Steady run 

Variable grid Static grid 

Projection Lambert 

Grid numbers 305816 

Input 

Meteorological and chemical 

parameters 

Calculated using variables from WRFv3.8-

CMAQv5.2 

Anthropogenic emissions 

 

MEIC, MIX, MEGAN 
 

 

Population data GPW 2015 and GBD 2017 

Baseline mortality rate GBD 2017 

Output 

Air pollutants 

 

PM2.5 and its composition concentrations 

 

Mortality PM2.5-related premature mortality 
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Table 2 The relationship between parameters for simplified simulation and original variables. 619 

WRF-

CMAQ’s 

Variables 

Descriptions 
InMAP-China’s 

Parameters 
Descriptions 

U, V, W Wind fields 

UAvg, UDeviation 

VAvg, VDeviation 

WAvg, WDeviation 

Advection and mixing 
coefficients 

PH, PHB 
Base state of geopotential and 

perturbation geopotential 
Dz Layer heights 

PBLH Planetary boundary layer height 
M2d, M2u, Kxxyy, 

Kzz 
Mixing coefficients 

T Potential Temperature 
SO2Oxidation, 

PlumeHeight 

Chemical reaction 

rates and plume rise 

P, PB 
Base state pressure plus perturbation 

pressure 
 

Chemical reaction 

rates and plume rise 

QRAIN Mixing ratio of rain 
ParticleWetdep, 

GasWetdep 
Wet deposition 

QCLOUD Cloud mixing ratio SO2Oxidation 

Aqueous-phase 

chemical reaction 
rates 

CLDFRA 
Fraction of grid cell covered by 

clouds 

ParticleWetdep, 

GasWetdep 
Wet deposition 

SWDOW

N,GLW 

Downward shortwave and longwave 

radiative flux at ground level 

GasDrydep, 

ParticleWetdep 
Dry deposition 

HFX Surface heat flux 
M2d, M2u, Kxxyy, 

Kzz, Drydep 

Mixing and dry 

deposition 

UST Friction velocity  
Mixing and dry 

deposition 

LU_INDE

X 
Land use type 

M2d, M2u, Kxxyy, 

Kzz 
Mixing 

DENS Inverse air density  

Mixing and convert 
between mixing ratio 

and mass 

concentration 

aVOC 
Anthropogenic VOCs that are SOA 

precursors 
aOrgPartitioning 

VOCs/SOA 

partitioning 

 aSOA Anthropogenic SOA  

OH, H2O2 
Hydroxyl radical and hydrogen 

peroxide concentrations 
SO2Oxidation Oxidation rates 

pNO ANO3I, ANO3J NOPartitioning 
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gNO NO and NO2  

NOx /pNO3 

partitioning 

 

pNH ANH4I, ANH4J NHPartitioning 
NH3/pNH4 

partitioning gNH NH3  

 620 
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Table 3 Simulation experiments conducted using InMAP-China. 644 

Class Simulations Emission input 
Physical and chemical 

parameter input 

Base InMAP_TOT 
Five sectoral anthropogenic emissions 

and natural emissions 

 

 
 

 

 

 

 

 

Converted using WRF- 

CMAQv5.2 simulation 

data in the year of 2017; 

Remain the same in all 

simulations. 

High_re InMAP_BTH 

Five sectoral anthropogenic emissions 

and natural emissions with 4km 

resolution at BTH region 

Sec1 InMAP_POW Power plants emissions 

Sec2 InMAP_INDUS Industrial emissions 

Sec3 InMAP_TRANS Transportation emissions 

Sec4 InMAP_RESI Residential emissions 

Sec5 InMAP_AGRI Agricultural emissions 

   

Aba1 InMAP_RE10 

Reduce the air pollutants emissions by 

10% based on InMAP _TOT 

emissions 

Aba2 InMAP_RE30 

Reduce the air pollutants emissions by 

30% based on InMAP _TOT 

emissions 

Aba3 InMAP_RE50 

Reduce the air pollutants emissions by 

50% based on InMAP _TOT 

emissions 

Aba4 InMAP_RE70 

Reduce the air pollutants emissions by 

70% based on InMAP _TOT 

emissions 

Aba5 InMAP_RE90 

Reduce the air pollutants emissions by 

90% based on InMAP _TOT 

emissions 
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Table 4 Comparison of the proportions of sectoral contributions to PM2.5 concentrations using InMAP-653 

China and CMAQ. 654 

Sector 

National BTH YRD PRD FWPY 

CMA

Q 

InMA

P-

China 

CMA

Q 

InMA

P-

China 

CMA

Q 

InMA

P-

China 

CMA

Q 

InMA

P-

China 

CMA

Q 

InMA

P-

China 

Power 6.9% 8.1% 6.2% 9.4% 7.4% 8.6% 
10.4

% 
8.2% 7.0% 10.0% 

Industry 
30.8

% 
35.0% 

30.2

% 
38.2% 

33.3

% 
39.1% 

37.5

% 
35.4% 

27.7

% 
31.9% 

Residential 
25.9

% 
28.1% 

24.7

% 
28.2% 

17.9

% 
20.8% 

19.5

% 
28.4% 

30.0

% 
33.8% 

Transportat

ion 

14.0

% 
17.3% 

13.4

% 
15.6% 

15.7

% 
21.2% 

17.1

% 
17.5% 

13.2

% 
15.0% 

Agriculture 
22.5

% 
11.5% 

25.5

% 
10.4% 

25.7

% 
12.4% 

15.4

% 
11.6% 

22.0

% 
9.4% 

 655 
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 668 
Figure 1 Model framework of InMAP-China. 669 

 670 
 671 
 672 
 673 
 674 
 675 
 676 
 677 
 678 
 679 
 680 
 681 
 682 
 683 



 28 

 684 
Figure 2 Four key regions defined in this study, including the Beijing-Tianjin-Hebei region, Yangtze River 685 
Delta region, Pearl River Delta region and Fen Wei Plain region. 686 
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 698 

Figure 3 The spatial pattern and statistical metrics of total PM2.5 concentrations predicted by InMAP-China 699 

and WRF-CMAQ. Panels (a) and (c) display the spatial patterns of total PM2.5 concentrations predicted by InMAP-700 

China and WRF-CMAQ, respectively. Panel (d) presents the difference in the spatial distribution of the total PM2.5 701 

concentrations predicted by the two models. Panel (b) shows the statistical metrics between the simulated and 702 

observed PM2.5. The observed total PM2.5 concentrations are marked as circles in panel (a) and panel (c). In panel 703 

(d), the circle shows the difference between the PM2.5 simulated by InMAP-China and the observed PM2.5. The same 704 

colorbar is utilized in the contour and the marked circle. 705 
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 706 
Figure 4 Scatter plot comparing the PM2.5 composition concentration modelled by the InMAP-China and 707 

WRF-CMAQ models. Panels (a), (b), (c) and (d) display sulfate, nitrate, ammonium, and primary PM2.5, 708 

respectively. The statistical metrics are labelled in the lower right corner of each panel. 709 
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 710 
Figure 5 The spatial pattern of PM2.5 compositions modelled by the InMAP-China and WRF-CMAQ models. 711 

Panels (a), (c), (e), and (g) present the sulfate, nitrate, ammonium, and primary PM2.5, respectively, simulated by 712 

InMAP-China in the InMAP-TOT scenario. Panels (b), (d), (f), and (h) present the results modelled by WRF-CMAQ. 713 
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 714 
Figure 6 The difference in the spatial pattern of PM2.5 compositions between InMAP-China and WRF-CMAQ. 715 

Panels (a), (b), (c), and (d) display sulfate, nitrate, ammonium, and primary PM2.5, respectively. 716 

 717 

 718 

 719 

 720 

 721 
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 722 
Figure 7 Comparison of PM2.5 component concentrations and SNA contributions in these eleven simulations. 723 

(a) and (c) show the modelled PM2.5 compositions. Panel (a) presents the results of sectoral emission scenarios, and 724 

panel (c) presents the results of the baseline and emission abatement scenarios. Panels (b) and (d) present the SNA 725 

contribution (%) for each scenario. 726 
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 727 
Figure 8 Marginal change in nationwide annual average population-weighted PM2.5 concentration and its 728 

composition as modelled by InMAP-China and WRF-CMAQ for eleven emissions scenarios. The population-729 

weighted pollutant concentration for each scenario is normalized using the largest value among all scenarios 730 

modelled by CMAQ. The eleven dots represent the eleven scenarios, and the statistical metrics are labelled in the 731 

lower right corner for each panel. 732 
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 734 
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 736 

Figure 9 Comparison of source contributions to population-weighted PM2.5 concentrations estimated by the 737 

two models. 738 
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 746 
 747 
 748 
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 749 
Figure 10 Scatter plot comparing the PM2.5 concentration modeled in the BTH region with 4 km spatial 750 

resolution by the InMAP-China and WRF-CMAQ.  The value of statistical metrics is labeled in the panel. 751 
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 761 
Figure 11 Scatter plot comparing the PM2.5 composition concentration modeled at BTH region with 4km 762 

spatial resolution by the InMAP-China and WRF-CMAQ. Panels (a), (b), (c) and (d) display the sulfate, nitrate, 763 

ammonium, and primary PM2.5, respectively. The statistical metrics are labeled in the lower right corner of each 764 

panel.  765 

 766 

 767 
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 768 

Figure 12 The spatial pattern of PM2.5 compositions simulated in the BTH region with 4km spatial resolution 769 

by the InMAP-China and WRF-CMAQ. Panels (a), (c), (e), and (g) present the sulfate, nitrate, ammonium, and 770 

primary PM2.5, respectively, simulated by InMAP-China. Panels (b), (d), (f), and (h) present the corresponding 771 

results simulated by WRF-CMAQ. 772 
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 773 
Figure 13 Comparison of PM2.5-related premature mortality using the PM2.5 predictions from two models. 774 

(a) InMAP-China-based; (b) CMAQ-based; and (c) difference between the two models. 775 
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