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Abstract 15 

Wildfire is an important ecosystem process, influencing land biogeophysical and 16 

biogeochemical dynamics and atmospheric composition. Fire-driven loss of vegetation cover, for 17 

example, directly modifies the surface energy budget as a consequence of changing albedo, 18 

surface roughness, and partitioning of sensible and latent heat fluxes. Carbon dioxide and 19 

methane emitted by fires contribute to a positive atmospheric forcing, whereas emissions of 20 

carbonaceous aerosols may contribute to surface cooling. Process-based modeling of wildfires in 21 

earth system land models is challenging due to limited understanding of human, climate, and 22 

ecosystem controls on fire number, fire size, and burned area. Integration of mechanistic wildfire 23 

models within Earth system models requires careful parameter calibration, which is 24 

computationally expensive and subject to equifinality. To explore alternative approaches, we 25 

present a deep neural network (DNN) scheme that surrogates the process-based wildfire model 26 

with the Energy Exascale Earth System Model (E3SM) interface. The DNN wildfire model 27 

accurately simulates observed burned area with over 90% higher accuracy with a large reduction 28 

in parameterization time compared with the current process-based wildfire model. The surrogate 29 

wildfire model successfully captured the observed monthly regional burned area during 30 

validation period 2011 to 2015 (coefficient of determination, R2 = 0.93). Since the DNN wildfire 31 

model has the same input and output requirements as the E3SM process-based wildfire model, 32 

our results demonstrate the applicability of machine learning for high accuracy and efficient 33 

large-scale land model development and predictions.  34 
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1. Introduction 35 

Wildfires burn ~500 million hectares of vegetated land surface each year, which 36 

significantly modifies the physical properties and biogeochemical cycles of terrestrial 37 

ecosystems [Andela et al., 2017; Bond-Lamberty et al., 2007; Pellegrini et al., 2018; Randerson 38 

et al., 2006]. Living vegetation biomass, surface litter, and coarse woody debris are directly 39 

combusted and removed by wildfire [Harden et al., 2006; Walker et al., 2019]. It has been 40 

suggested that global forest would double if fire were eliminated [Bond et al., 2005]. Fire has 41 

multiple important consequences for the climate system, including directly releasing greenhouse 42 

gases (e.g., CO2, CH4) [Kasischke and Bruhwiler, 2002; Ross et al., 2013] and aerosols [Jiang et 43 

al., 2020]; changing land surface albedo and energy budgets [French et al., 2016; Rother and De 44 

Sales, 2020] and land-atmosphere exchanges of heat, mass, and momentum [Chambers and 45 

Chapin, 2002]; limiting plant transpiration and regional water recycling [Brando et al., 2020; 46 

Holden et al., 2018]; and reshaping forest composition [Mekonnen et al., 2019]. In addition, 47 

biomass burning emits a large amount of fine particulate matter that contributes to about 30% of 48 

cloud condensation nuclei globally [Day, 2004]. Soil organic matter decomposition, nitrogen 49 

mineralization, and the richness and diversity of soil fungal communities [Oliver et al., 2015] 50 

could also be influenced by wildfire through modifying litter substrate supply and degraded 51 

enzymatic activities [Bowd et al., 2019; Holden et al., 2018; Pellegrini et al., 2018; Pellegrini et 52 

al., 2020]. 53 

Climate change and land use activities have jointly affected fire spatial distribution, 54 

frequency, and intensity [Andela et al., 2017; Kelley et al., 2019; X Xu et al., 2020] since the pre-55 

industrial era. For example, warmer and drier climate conditions enhance fuel aridity and favor 56 

fire occurrence in forest ecosystems where fuels have built up over a period of decades and 57 

centuries [Abatzoglou and Williams, 2016; Williams et al., 2019]. Even if annual precipitation 58 

does not decline, redistribution of precipitation towards wet season extreme rainfall events could 59 

contribute to longer dry periods and thus more severe fire activity [X Xu et al., 2020].  Human 60 

activities often shape wildfire activity through regulating patterns of ignition and fire occurrence 61 

(e.g., powerline ignition) [Keeley and Syphard, 2018] and suppressing wildfire activity by means 62 

of land fragmentation, fire management, and livestock grazing [Andela et al., 2017]. In 63 

California, fire density is highly associated with population density and the distance to the 64 

wildland urban interface (WUI) [Syphard et al., 2007]. At the global scale, along gradients of 65 
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increasing population density, fire frequency initially increases by up to 20% and then gradually 66 

declines in more densely populated areas [Knorr et al., 2014]. 67 

Although global wildfire burned area has declined over the recent two decades [Andela et 68 

al., 2017],  many vulnerable ecosystems and geographic regions have experienced significant 69 

increases in wildfire activity [Abatzoglou and Williams, 2016; Walker et al., 2019] resulting in 70 

large losses of natural resources and economic assets [Papakosta et al., 2017; Stephenson et al., 71 

2013]. Over western U.S. forests, wildfire has dramatically increased, costing billions of dollars 72 

each year and gaining wide public attention. This regional wildfire increase is mainly driven by 73 

concurrent increases of spring temperature and declining snowpack [Westerling et al., 2006], 74 

mid-summer increases in vapor pressure deficit [Williams et al., 2019], and increases in drought 75 

stress during fall [Goss et al., 2020]. The enhancement of wet and dry oscillations favors initial 76 

vegetation growth and subsequent wildfire activity [Heyerdahl et al., 2002; Saha et al., 2019].  77 

Wildfire models have played an important role in many aspects of wildfire research, 78 

including monitoring fire spread [Finney, 1998; Radke et al., 2019], analyzing controllers of 79 

wildfire short-term and long-term variability [Kelley et al., 2019], predicting severity of the 80 

upcoming fire seasons [Preisler and Westerling, 2007] and climate-scale fire variability 81 

[Girardin and Mudelsee, 2008; Yue et al., 2013], and understanding the complex climate-82 

wildfire-ecosystem feedbacks [Clark et al., 2004; Mekonnen et al., 2019; Zou et al., 2020]. Two 83 

types of wildfire models are widely used: process-based models and data-driven statistical 84 

models [Hantson et al., 2016]. Process-based wildfire models consider detail processes related to 85 

natural fire ignition [Prentice and Mackerras, 1977], anthropogenic ignition [Venevsky et al., 86 

2002], fire spread and duration [Thonicke et al., 2010], fire suppression [Lenihan and Bachelet, 87 

2015], and fire mass and heat fluxes [F Li et al., 2012]. Process-based wildfire models have been 88 

widely used in dynamic vegetation models and coupled earth system models (ESMs) with 89 

various complexities of parameterization [Fang Li et al., 2019; Rabin et al., 2017]. As more and 90 

more detailed fire processes are considered and parameterized, structural and parametric 91 

uncertainties may increase due to incomplete representation of individual processes and 92 

imperfect mathematical formulation [Riley and Thompson, 2017]. Historically, data-driven 93 

models were often used for fire behavior modeling and aim to track the ignition, spread, 94 

duration, and extinction of individual fires [Finney, 1998; Radke et al., 2019] at fine spatial and 95 

temporal scales. This group of models are more relevant to operational fire research. While 96 
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process-based wildfire models in the context of global vegetation models or earth system land 97 

models focuses on the gridcell aggregated fire burned area dynamics that are more relevant to 98 

researches on large scale patterns and climate scale predictions [Fang Li et al., 2019; Rabin et 99 

al., 2017]. This study particularly focuses on the second category of wildfire models. 100 

Although explicit processes are simulated, the accuracy of process-based wildfire models 101 

are highly dependent on parameterization, which is computationally expensive [Teckentrup et 102 

al., 2018; L Xu et al., 2021; Zhu and Zhuang, 2014]. Data-driven models, however, directly link 103 

the driving variables (e.g., climate factors) to the fire activity using simple statistical models or 104 

more sophisticated machine learning techniques, ignoring the explicit processes and feedbacks 105 

associated with wildfire [Ganapathi Subramanian and Crowley, 2018; Radke et al., 2019; Tonini 106 

et al., 2020]. Through training and validation, statistical representations of wildfire dynamics are 107 

learned by models using principles from machine learning. Data-driven wildfire models are 108 

diverse in terms of driving variables and model structure. For example, many current machine 109 

learning wildfire models rely on remote oceanic dynamics (e.g., sea surface temperature 110 

variability) and atmospheric teleconnections to simulate land surface fire activities [Chen et al., 111 

2020; Chen et al., 2011; Yu et al., 2020]. Another group of data-driven wildfire models draws 112 

more heavily upon regional climate, plant functional type, and human infrastructure driver 113 

variables [Coffield et al., 2019; Sayad et al., 2019]. 114 

In this study, we develop a machine learning wildfire model using the process 115 

representation of wildfire in the Energy Exascale Earth System Model (E3SM) land model 116 

(ELMv1) [Zhu et al., 2019], five observationally inferred burned area products [Andela et al., 117 

2019; Giglio et al., 2018; Lizundia-Loiola et al., 2020; Lizundia-Loiola et al., 2018; Van Der 118 

Werf et al., 2017], and a deep neural network approach [Goodfellow et al., 2016]. We 119 

implemented a deep learning model that can better capture the complex and non-linear 120 

interactions between controlling factors and wildfire activity. The objectives of this study are to 121 

surrogate the wildfire parameterization in ELMv1 with the deep neural network and improve the 122 

model simulated wildfire burned area across various fire regions [Giglio et al., 2013]. 123 

 124 

2. Methodology 125 

2.1 ELMv1 wildfire model 126 
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The process-based wildfire model in ELMv1 originates from the Community Land 127 

Model (CLM4.5) [F Li et al., 2012]; we take this wildfire model as the baseline (hereafter refer 128 

to as BASE-Fire) without modification on process representation. BASE-Fire combines 129 

information regarding ignition, fuel conditions, surface climate, and anthropogenic suppression 130 

to simulate total burned area based on the fire counts and spread area of each fire (Figure 1). The 131 

fire count in BASE-Fire is modeled as the sum of anthropogenic ignition and natural ignition, 132 

where the latter is proportional to lightning density [Prentice and Mackerras, 1977] and the 133 

former is determined by population density [Venevsky et al., 2002]. Human activity may also 134 

intentionally suppress wildfire occurrence if the fire is detected at early stage. For example, 135 

developed regions with high population density and gross domestic product are less likely to use 136 

fire to remove surface biomass. On the other hand, developed regions more likely suppress fire 137 

given more effective fire management policy and suppression capability. Fire count is also 138 

affected by surface fuel availability (aboveground biomass) and fuel combustibility (relative 139 

humidity, topsoil temperature and moisture). The fire spread area in BASE-Fire is modeled as an 140 

elliptical shaped region controlled by wind speed and fuel wetness [Rothermel, 1972] (using 141 

topsoil (0 – 15 cm) moisture as a proxy). The fire duration is set to be one day based on a study 142 

that reported years 2001-2004 mean global fire persistence [Giglio et al., 2006a]. BASE-Fire 143 

also does not explicitly consider roads, rivers, and firefighting activity [Arora and Boer, 2005]. 144 

 145 
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  146 
Figure 1. Schematic representation of the ELMv1 process-based BASE-Fire model and the 147 

components to be surrogated with the Deep Neural Network (DNN) model (dark grey). 148 

 149 

2.2 Deep neural network wildfire surrogate model 150 

We developed the new fire model in two steps: (1) surrogating BASE-Fire with a deep 151 

neural network (DNN) approach and (2) improving that surrogate model using five 152 

observationally inferred burned area products (Table S1). First, we surrogated BASE-Fire with a 153 

DNN approach (hereafter refer to as DNN-Fire) that uses the same input and output variables as 154 

BASE-Fire but treats the explicit intermediate processes (e.g., ignition, fire spread) as latent 155 

variables coded by hidden layers in the DNN (Figure 1). DNN-Fire was developed with five 156 

hidden layers and five neurons in each layer for burned area simulation. The DNN approach uses 157 

a fully-connected feedforward neural network [Schmidhuber, 2015] that comprises input, hidden, 158 

and output layers: 159 

ℎ! = 𝑓!(𝑊!𝐼 + 𝑏!)	   (1) 

ℎ" = 𝑓"(𝑊"ℎ! + 𝑏")	 (2) 
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ℎ# = 𝑓#(𝑊#ℎ" + 𝑏#)	 (3) 

ℎ$ = 𝑓$(𝑊$ℎ# + 𝑏$)	 (4) 

ℎ% = 𝑓%(𝑊%ℎ$ + 𝑏%)	 (5) 

𝑂 = 𝑓&(𝑊&ℎ% + 𝑏&)	  (6) 

where I denotes the input layer (e.g., climate factors) with 11 neurons, each corresponding to an 160 

input variable listed in Table 1. h1, h2, h3, h4, and h5 are five hidden vectors that are calculated 161 

with two steps. First is a linear combination of previous layers’ input vector (h) and the trainable 162 

weight parameter matrix [W1, W2, W3, W4, W5, W6], considering biases b1, b2, b3, b4, b5, and b6. 163 

Then, nonlinear activation functions f1, f2, f3, f4, f5, and f6. are applied to the output from the 164 

previous step. In this study we used softplus as the activation function [Zheng et al., 2015] that is 165 

a non-linear transformation of input signals. O denotes the output layer that summarize the latent 166 

variables from the last hidden layer (h5) and calculate burned area. 167 

Table 1. Input and output variables of ELMv1 BASE-Fire and surrogate DNN-Fire models 168 

Variable category Variable name Data source and reference 

Input variables 

Fuel conditions 

Tree coverage LUH2 [Hurtt et al., 2020] 

Fuel load ELMv1 total biomass [Zhu and Riley, 

2015; Zhu et al., 2019] 

Fuel wetness ELMv1 topsoil moisture [Zhu and 

Riley, 2015; Zhu et al., 2019] 

Fuel temperature ELMv1 topsoil temperature [Zhu and 

Riley, 2015; Zhu et al., 2019] 

Climate factors 

Precipitation GSWP3 [Dirmeyer et al., 2006] 

Near surface temperature GSWP3 [Dirmeyer et al., 2006] 

Wind speed GSWP3 [Dirmeyer et al., 2006] 

Relative humidity GSWP3 [Dirmeyer et al., 2006] 

Ignition 
Population density [Dobson et al., 2000] 

Lightning frequency NASA-LIS/OTD [Cecil et al., 2014] 

Anthropogenic 

suppression 

GDP [van Vuuren et al., 2007] 

Population density [Dobson et al., 2000] 
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output variable 

 Burned area ELMv1 percentage burned area [Zhu 

and Riley, 2015; Zhu et al., 2019] 

 169 

Second, we improved the surrogate DNN-Fire by fine-tuning the weight parameters using 170 

observations (hereafter refer to DNN-Fire-OBS). Between 2001 and 2010, we initialized 171 

DNN-Fire-OBS’s weight parameters (W1, W2, W3, W4, W5, and W6) using results from DNN-Fire, 172 

replaced the BASE-Fire burned area by the ensemble mean of five observationally inferred 173 

burned area products including GFEDv4s [Van Der Werf et al., 2017], Fire_CCI51 [Lizundia-174 

Loiola et al., 2020], Fire_CCILT11 [Lizundia-Loiola et al., 2018], MODIS MCD64 [Giglio et 175 

al., 2018], and Fire_Atlas [Andela et al., 2019] (Table S1), and adjusted weight parameters until 176 

the model best reproduced the observed burned area. This two-step approach will also allow 177 

rapid parameterization of the Fire model as new fire data and baseline fire model results become 178 

available. DNN-Fire-OBS can be more easily generalized since BASE-Fire provides explicit 179 

physical guidance and a larger-than-observation input and output feature space for development 180 

of the machine learning fire model. One limitation is the large discrepancy among five burned 181 

area products. Tuning DNN-Fire towards the ensemble mean of the five products will potentially 182 

compromise the data difference, however, future work is needed to improve the burned area data 183 

quality and consistency. 184 

2.3 Model setup and simulation protocol 185 

We ran ELMv1 with BASE-Fire at 1.9° by 2.5° spatial resolution [Zhu et al., 2020; Zhu 186 

et al., 2016] to generate training and testing datasets for the DNN wildfire model. BASE-Fire 187 

was first spun up for 600 years with accelerated soil decomposition followed by 200 years 188 

regular spinup with regular soil decomposition [Koven et al., 2013]. The spinup simulations were 189 

forced with constant atmospheric CO2 concentration (285 ppmv) and 1901-1920 repeated 190 

climate forcing from GSWP3 (Global Soil Wetness Project) [Dirmeyer et al., 2006]. The purpose 191 

of the spinup was to initialize ecosystem carbon pools and stabilize plant and soil carbon and 192 

water fluxes. Restarting from the “spunup” conditions, a transient simulation was then conducted 193 

from 1901 to 2015 with GSWP3 transient climate forcing, atmospheric CO2 concentrations, and 194 

nitrogen and phosphorus deposition [Lamarque et al., 2005; Mahowald et al., 2008]. Wildfire 195 

associated variables were selected for output with a monthly temporal resolution (Table 1). 196 
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BASE-Fire output from years 1981 to 2010 were used to train, test, and fine-tune 197 

DNN-Fire. We developed 14 region-specific models, corresponding to 14 widely used GFED 198 

regions. For each region, all land gridcells (comprising no fire history, infrequent fire, and 199 

repeated fire) were concatenated into one data matrix (where rows consist of the number of 200 

samples and columns of the number of variables). 80% of the data matrix was randomly sampled 201 

for the training dataset and the remaining 20% of the data were reserved for testing. Furthermore, 202 

the random sampling was stratified in order to reduce the risk of sampling, e.g., adjacent high 203 

fire grid cells. All grid cells were first divided into three “strata”: low burn (0-33% percentile), 204 

median burn (33%-66% percentile), and high burn (67-100% percentile) grid cells based on the 205 

magnitude of the burn. The stratified random sample assured the sampled grid cells for training 206 

and testing had the same ratios of low/medium/high burn, thus eliminating the sampling bias 207 

from spatial autocorrelation [Wang et al., 2012]. In addition to random sampling, we also 208 

investigated the impacts of data choice on the model performance, by sampling the testing 209 

datasets within specific years (e.g., 2001-2002, 2003-2004, 2005-2006, 2007-2008, 2009-2010) 210 

and used the rest of the years for training. We found neglected differences among the models 211 

(Figure S1) indicating the choice of training/testing data years were not impactful. Therefore, we 212 

will discuss the results with stratified random sampling approach as the major results throughout 213 

the paper. 214 

All training and testing datasets were normalized to the range [0, 1] with the following 215 

scaler: 216 

𝑋 = 	 '()!"#
)!$%()!"#

          (7) 

where X is the variable vector of interest and Xmin and Xmax are minimum and maximum values of 217 

X, respectively. During the training stage, we randomly initialized the weighting parameters (Eq. 218 

1-6) and optimized them using the Adaptive Moment Estimation method [Kingma and Ba, 219 

2014], which is a variant of the gradient descent optimization method but considers adaptive 220 

learning rate and momentum-like exponentially decaying gradients. The parameter optimization 221 

aimed to minimize a mean squared error cost function: 222 

𝐽 = !
*
∑ (𝑦+,-- − 𝑦+./01)"*
+2!      (8) 

where 𝑦+,-- and 𝑦+./01 are DNN-Fire and BASE-Fire generated burned area, respectively. i 223 

represents different gridcell. Cost function J summarizes the overall magnitude of the error 224 
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between the surrogate DNN-Fire and BASE-Fire. We then evaluated model performance using 225 

metrics of mean absolute error (Eqn. 9), Pearson correlation (Eqn. 10), and coefficient of 226 

determination (Eqn. 11). 227 

𝑀𝐴𝐸 = !
*
∑ |𝑦+,-- − 𝑦+./01|*
+2!   (9) 228 

𝑝 = 34567+6*38(:&'',:()*+)
567+6*38(:&'')567+6*38=:()*+>

 (10) 229 

𝑅" = 1 − ∑ (:"
&''(:"

()*+),#
"-.

∑ (:"
()*+(:!/$#

()*+),#
"-.

  (11) 230 

 231 

3. Results and discussion 232 

3.1 Evaluation of wildfire surrogate model 233 

BASE-Fire performed reasonably well for total global burned area (508 ± 53 Mha yr-1 234 

(million hector per year) between years 2001 and 2010 compared with the observational long-235 

term average of 424~484 Mha yr-1; Figure 2, Table S1). BASE-Fire also captured the global 236 

declining trend of wildfire burned area over this time period, attributed to a decrease in tropical 237 

fires [Andela et al., 2017]. At the regional scale, however, BASE-Fire underestimated tropical 238 

(S23.5° - N23.5°) burned area and overestimated temperate (N23.5° - N67.5°) and boreal (N67.5 239 

above) burned area (Figure 2). Large spatial heterogeneity existed for BASE-Fire regional bias. 240 

For example, over tropical GFED regions, BASE-Fire overestimated wildfire burned area over 241 

Southern Hemisphere South America (SHSA), but underestimated wildfire burned area over both 242 

Southern and Northern Hemisphere Africa regions (SHAF and NHAF), despite an overall 243 

underestimation over the tropical region (Figure 3). In contrast, consistent overestimation 244 

occurred over all temperate GFED regions. For example, wildfire burned was overestimated by 245 

about a factor of 16 (~1 versus 16 Mha yr-1) over the Europe GFED region (EURO) (Figure 3). 246 

Although there is room to improve BASE-Fire performance, the parameterization would involve 247 

large ensemble simulations and computational resources. Instead, we first used BASE-Fire 248 

generated data as training and testing datasets to parameterize DNN-Fire, then we fine-tuned the 249 

DNN-Fire model against observed burned area. 250 
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 251 
Figure 2. ELMv1 process-based model (BASE-Fire) simulated and five observationally inferred 252 

burned area products (Table S1) at (a) global scale; (b) Tropical (S23.5° -N23.5°); (c) Temperate 253 

(N23.5° - N 67.5°); and (d) Boreal (north of N 67.5°) regions. 254 

 255 

 256 
Figure 3. A comparison of wildfire burned area between estimates from the ELMv1 process-257 

based model (BASE-Fire), Deep Neural Network wildfire model (DNN-Fire), Deep Neural 258 

Network wildfire model fine-tuned with observed burned area (DNN‑Fire-OBS), and 259 

observations over 14 GFED fire regions. 260 

 261 
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Next we parameterized and compared DNN-Fire with BASE-Fire outputs. Using BASE-262 

Fire generated 1.9° × 2.5° resolution datasets of surface fuel conditions (fuel load (vegetation 263 

biomass), fuel temperature (topsoil temperature), and fuel wetness (topsoil moisture)) with 264 

gridded climate forcing (GSWP3) [Dirmeyer et al., 2006], land use (LUH2 dataset) [Hurtt et al., 265 

2020], and social economic [Dobson et al., 2000; van Vuuren et al., 2007] factors, DNN-Fire 266 

captured the spatial pattern of BASE-fire predicted wildfire activity (Figure 4, Figure S2). 267 

Across all GFED regions, mean absolute error of DNN-Fire was 4.4 Mha yr-1 (<1% of total burn 268 

area), with median and maximum errors of 1.8 and 13.0 Mha yr-1, respectively (Figure 3). 269 

Equatorial Asia (EQAS), Northern Hemisphere South America (NHSA), Central America 270 

(CEAS), and Europe (EURO) regions had the lowest DNN-Fire errors (< 1.0 Mha yr-1), while 271 

Southern Hemisphere Africa (SHAF), and Boreal Asia (BOAS) had the largest errors (10-13 272 

Mha yr-1). Overall, the correlation coefficient between BASE-Fire and DNN-Fire simulated 273 

burned area was 0.91 (p value < 0.01) and the coefficient of determination (R2) was 0.79. Across 274 

seasons, DNN-Fire also reasonably captured the BASE-Fire peak fire months (June to October), 275 

which were dominated by Southern Hemisphere Africa and Southern Hemisphere South 276 

America (Figure 5).  277 

By surrogating BASE-Fire, DNN-Fire is expected to have similar biases and 278 

uncertainties. The deficiency of BASE-Fire model will propagate to DNN-Fire. In our future 279 

work we will overcome such limitation by training multiple DNN-Fire models with ensemble 280 

simulations of BASE-Fire models that differ in critical parameters and vary in model structures. 281 

 282 

 283 
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Figure 4. The performance of the Deep Neural Network wildfire model (DNN-Fire), compared 284 

with the original ELMv1 process-based wildfire model (BASE-Fire) over 14 GFED regions 285 

between years 2001 and 2010. 286 

 287 

3.2 Calibrating the wildfire surrogate model using observations 288 

Although the global pattern was reasonably captured, BASE-Fire had relatively large 289 

biases in several GFED regions, as discussed above. Since DNN-Fire was trained and validated 290 

only with BASE-Fire generated inputs (e.g., fuel conditions) and outputs (burned area), we 291 

expect that, at best, DNN-Fire would have comparable biases as BASE-Fire. Starting from 292 

DNN-Fire, we further calibrated the model weighting parameters to create DNN-Fire-OBS and 293 

validated DNN-Fire-OBS performance using observed burned area from five existing burned 294 

area products (Table S1) between years 2001 and 2010. The calibration time cost several minutes 295 

with Intel Xeon Phi Processor 7250 processor. 296 

Dramatic improvements were found in most of the 14 regions simulated by DNN-Fire-297 

OBS (Figure 3). Overall, DNN-Fire-OBS simulated global long-term average burned area was 298 

458 Mha yr-1 (compared with observational average 467 Mha yr-1). Averaged across 14 regions, 299 

73% reduction of mean absolute error was achieved by DNN-Fire-OBS, compared with the 300 

BASE-Fire model. Pearson correlation coefficient between the DNN-Fire-OBS simulated and 301 

observational burned area was 0.98 (p value < 0.001) with an R2 of 0.97. Bias reduction was 302 

disproportionally distributed across the GFED regions (Figure 3). For example, severely burned 303 

regions, including Southern and Northern Hemisphere Africa (SHAF and NHAF) and Southern 304 

Hemisphere South America (SHSA) greatly benefited from the tuning and their regional biases 305 

were reduced by 88, 65, and 51 Mha yr-1 (or 88%, 89%, 98% reduction), respectively. Although 306 

Temperate Northern America (TENA) and Europe (EURO) wildfire burned area is relatively 307 

small (1-3 Mha yr-1), the impacts of wildfire activity were significant due to their high population 308 

densities. DNN-Fire tended to overestimate the burned area in TENA and EURO by 47 and 13 309 

Mha yr-1, while DNN-Fire-OBS significantly reduced biases in both regions to less than 0.3 Mha 310 

yr-1 (a 97-98%% reduction). 311 

BASE-Fire tended to overestimate inter-annual variability (IAV) and had opposite burned 312 

area anomalies between years 2001 and 2005. DNN-Fire dampened BASE-Fire’s IAV, but had 313 

systematic overestimation of burned area. DNN-Fire-OBS agreed well with the observed IAV 314 
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between years 2001 and 2010 (Figure 5a). The seasonal cycle was also improved in DNN-Fire-315 

OBS in terms of reducing BASE-Fire’s overestimation of burned area during peak fire seasons 316 

(Figure 5b, Figure S3), although we note that DNN-Fire-OBS is biased high during low fire 317 

seasons (March and April).  318 

 319 

  320 
Figure 5. Inter-annual variation of burned area from years 2001 to 2010 (a) and the averaged 321 

seasonal cycle (b) of burned area estimated by the ELMv1 process-based wildfire model (BASE-322 

Fire), Deep Neural Network wildfire model (DNN-Fire), Deep Neural Network wildfire model 323 

fine-tuned with observations (DNN-Fire-OBS), and observations. 324 

 325 

3.3 Prognostic simulation and limitations 326 

We next evaluated the DNN-Fire-OBS model against observations for the period 2011 to 327 

2015, using data which were not used to train and validate the model. Overall, DNN-Fire-OBS 328 

simulated 469-514 Mha yr-1 global burned area, compared with observations 349-509 Mha yr-1. 329 

Note that the large observational ranges were mainly due to the differences among the five 330 

burned area products rather than the inter-annual variability (Figure 6). Regionally, DNN-Fire-331 

OBS overestimated NHAF, SHAF and SHSA annual burned area by 8, 6, 2 Mha yr-1, 332 

respectively (Figure 6) compared with the observational mean. Averaged latitudinal distribution 333 

of simulated burned area during this period showed that global wildfire activity peaked around 334 

S10°- S15° and N5°-N10°, together accounting for burning 12-16% of the land surface (Figure 335 

7). These two peaks were dominated by large burned area over Southern (SHAF) and Northern 336 

Hemisphere Africa (NHAF) fire regions. Compared with observations, DNN-Fire-OBS 337 

simulated reasonable burned area latitudinal distributions (Figure 7). We also compared the nine 338 

(a) (b) 
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FireMIP models [Rabin et al., 2017; Teckentrup et al., 2018] and found diverse  latitudinal 339 

distribution of burned area. The across model differences were much larger than the inter-annual 340 

variation simulated by each individual model, which indicated large model structural 341 

uncertainties. Validation was also conducted for the historical period 1981-2000, when most of 342 

the satellite based burned area data were not available. Compared with charcoal index inferred 343 

burned area during 1981-2000 (Figure S4), DNN-Fire-OBS model reasonably captured the 344 

declining of burned area from ~530 Mha yr-1 to 490 Mha yr-1. In summary, DNN-Fire-OBS 345 

simulation is reasonably accurate and: (1) improved the simulated wildfire spatial and temporal 346 

distributions in ELMv1; (2) enabled effective and efficient parameterization of fires at regional 347 

scale.  348 

 349 

 350 
Figure 6. Prognostic simulation of annual wildfire burned area with the Deep Neural Network 351 

wildfire model fine-tuned with observations (DNN-Fire-OBS) compared with five burned area 352 

products (Table S1) over 2011-2015 for 14 GFED regions. 353 

 354 
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 355 
Figure 7. Prognostic simulation of wildfire burned area (2011-2015) with the Deep Neural 356 

Network wildfire model fine-tuned with observations (DNN-Fire-OBS) compared with 357 

observations and nine FireMIP models outputs. 358 

 359 

This study focuses on design, development, and parameterization of the DNN fire model 360 

within the E3SM model interface. In this way the DNN model can be readily coupled in the 361 

future and iteratively simulate climate, ecosystem fuel conditions, and fire dynamics. Although 362 

no feedbacks exist between biomass/tree cover and burned area were allowed under current 363 

offline mode, this study is an important step towards fully coupling E3SM and the DNN-Fire 364 

models in the future. We acknowledge several challenges and limitations in our modeling 365 

framework. First, the DNN model uncertainty was subject to the accuracy of climate forcings as 366 

well as other physical driving variables simulated by the physical wildfire model (ELMv1). For 367 

example, in this work ELM simulation of soil temperature, soil moisture, fuel load and so on is 368 

subject to the uncertainty of GSWP3 forcings. Furthermore, those simulated variables served as 369 

inputs for the DNN model and would result in burned area prediction uncertainty. It was 370 

challenging to eliminate the forcing uncertainties in this work, but we could at least evaluate the 371 

magnitude of these uncertainties. We ran the DNN-Fire-OBS model with alternative forcings of 372 

CRU-JRA, NCEP-DOE2, and CDAS soil moisture from 2001 to 2010 and compared the results 373 

with DNN-Fire-OBS driven by default inputs (Figure S5). The results showed relatively larger 374 

uncertainties from climate forcing than that from soil moisture forcing particularly over the 375 
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major fire regions (e.g., SHSA, SHAF, and NHAF). For fuel load, although no transient dataset 376 

of global living biomass existed yet, we directly compared the ELM model simulated biomass 377 

with the global estimate (GEOCARBON ~ 455 Pg C). We found that the modeled present-day 378 

biomass continuously increased from 425 to 470 Pg C and compared reasonably well with the 379 

global benchmark (Figure S6). Future work will focus on evaluating the uncertainties from dead 380 

fuel load and fuel temperature variables. 381 

Second, the original ELMv1 wildfire model has a unified mathematical representation of 382 

how fuel, climate, and social-economic conditions control wildfire burned area [F Li et al., 383 

2012]. However, training one single DNN wildfire model across the globe will produce a model 384 

dominated by gridcells that have high burned area (e.g., Africa). The performance of the trained 385 

DNN model, therefore, will likely have larger biases over the low fire gridcells although the 386 

globally aggregated burned area could be reasonable. We partly overcame this challenge by 387 

applying the widely used 14 GFED fire regions that assume unique and relatively uniform 388 

dynamics over each region [Giglio et al., 2006b], and employed stratified random sampling 389 

method for training and testing datasets. Although the regionally specific wildfire model 390 

introduces additional complexity, it better represents distinct characteristics of wildfire activity 391 

over different climate regimes and biomes [Zhu and Zhuang, 2013; Zou et al., 2019] and allows 392 

for future analyses of how the relevant controllers vary across the globe. 393 

Thirdly, the cost function and the training of DNN model relied on the normality 394 

assumption of burned area data. Therefore, the DNN model error might be dominated by highly 395 

burned gridcells. A potential solution is to use log transformation on non-normal data or the 396 

resultant cost function [Kelley et al., 2021]. Finally, our GFED region-based parameterization 397 

strategy relied on the combination of climate and biome types, while an alternative 398 

parameterization strategy for DNN-Fire model could be based on plant functional type 399 

distributions. Based on our analysis, the PFT-based DNN-Fire model had similar performance 400 

compared with the GFED-based model (Figure S7, S8). Since the GFED regions were defined by 401 

present-day climate and fire regimes, our GFED-based models may not fully capture the changes 402 

of future fire dynamics due to longer-time scale climate and fire regimes changes.  403 

 404 

4. Conclusions 405 
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In this study, we first surrogated the baseline ELMv1 wildfire model with a Deep Neural 406 

Network (DNN) approach (Pearson correlation coefficient = 0.91 (p value < 0.01), R2 = 0.79). 407 

The development was based on inputs and outputs from the baseline ELMv1 wildfire simulation, 408 

which is process-based and reasonably simulates global burned area, although regional biases 409 

existed. We then calibrated the neural network weights using the years 2001-2010 410 

observationally inferred burned area. The final calibrated DNN wildfire model (DNN-Fire-OBS) 411 

was shown to be more accurate over the 14 GFED regions. For example, reductions in absolute 412 

error over Africa, South America, and Europe were by ~90%. More importantly, the DNN-Fire-413 

OBS model parameters could be calibrated within minutes, compared with traditional ELMv1 414 

parameterization ensemble simulations that consume a large amount of computational time. The 415 

improved DNN-Fire-OBS model also accurately prognosed global and regional burned area in 416 

the five-year period following the training period from 2011 to 2015 (modeled 469-514 Mha yr-417 
1). We conclude that the improved surrogate wildfire model (DNN-Fire-OBS) developed in this 418 

study can serve as an effective alternative to the process-based fire model currently used in 419 

ELMv1. More broadly, we conclude that machine learning techniques can facilitate earth system 420 

model development, parameterization, and uncertainty reduction with high efficiency and 421 

accuracy. 422 

 423 

Acknowledgements 424 

This research was supported by Energy Exascale Earth System Modeling (E3SM, 425 

https://e3sm.org/) Project and the Reducing Uncertainties in Biogeochemical Interactions 426 

through Synthesis and Computation (RUBISCO) Scientific Focus Area, Office of Biological and 427 

Environmental Research of the U.S. Department of Energy Office of Science. Lawrence 428 

Berkeley National Laboratory (LBNL) is managed by the University of California for the U.S. 429 

Department of Energy under contract DE‐AC02‐05CH11231.  430 

 431 

Author contribution 432 

Q.Z., W.J.R, designed the study, Q.Z., W.J.R, L.X.., and J.T.R designed model experiments, 433 

Q.Z. and F.L. wrote code and run experiments, L.Z, K.Y, H.W., J.G all contribute to the results 434 

interpretation, and writing. 435 

 436 



 20 

Code availability 437 

https://zenodo.org/record/5508795#.YUGjg55KiDU  438 

 439 

Data availability 440 

GFEDv4s: https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html 441 

Fire_CCI51: https://geogra.uah.es/fire_cci/firecci51.php 442 

Fire_CCILT11: https://geogra.uah.es/fire_cci/fireccilt11.php 443 

MCD64: https://modis-fire.umd.edu/files/MODIS_C6_Fire_User_Guide_C.pdf 444 

Fire_Atlas: https://www.globalfiredata.org/fireatlas.html 445 

FireMIP model outputs: https://zenodo.org/record/3555562/accessrequest 446 

 447 

Reference 448 

Abatzoglou, J. T., and A. P. Williams (2016), Impact of anthropogenic climate change on wildfire 449 
across western US forests, Proceedings of the National Academy of Sciences, 113(42), 11770-450 
11775. 451 
Andela, N., D. Morton, L. Giglio, Y. Chen, G. Van Der Werf, P. Kasibhatla, R. DeFries, G. Collatz, S. 452 
Hantson, and S. Kloster (2017), A human-driven decline in global burned area, Science, 453 
356(6345), 1356-1362. 454 
Andela, N., D. C. Morton, L. Giglio, R. Paugam, Y. Chen, S. Hantson, G. R. Van Der Werf, and J. T. 455 
Randerson (2019), The Global Fire Atlas of individual fire size, duration, speed and direction, 456 
Earth System Science Data, 11(2), 529-552. 457 
Arora, V. K., and G. J. Boer (2005), Fire as an interactive component of dynamic vegetation 458 
models, Journal of Geophysical Research: Biogeosciences, 110(G2). 459 
Bond, W. J., F. I. Woodward, and G. F. Midgley (2005), The global distribution of ecosystems in a 460 
world without fire, New phytologist, 165(2), 525-538. 461 
Bond-Lamberty, B., S. D. Peckham, D. E. Ahl, and S. T. Gower (2007), Fire as the dominant driver 462 
of central Canadian boreal forest carbon balance, Nature, 450(7166), 89-92. 463 
Bowd, E. J., S. C. Banks, C. L. Strong, and D. B. Lindenmayer (2019), Long-term impacts of 464 
wildfire and logging on forest soils, Nature Geoscience, 12(2), 113-118. 465 
Brando, P., B. Soares-Filho, L. Rodrigues, A. Assunção, D. Morton, D. Tuchschneider, E. 466 
Fernandes, M. Macedo, U. Oliveira, and M. Coe (2020), The gathering firestorm in southern 467 
Amazonia, Science advances, 6(2), eaay1632. 468 
Cecil, D. J., D. E. Buechler, and R. J. Blakeslee (2014), Gridded lightning climatology from TRMM-469 
LIS and OTD: Dataset description, Atmospheric Research, 135, 404-414. 470 
Chambers, S., and F. Chapin (2002), Fire effects on surface-atmosphere energy exchange in 471 
Alaskan black spruce ecosystems: Implications for feedbacks to regional climate, Journal of 472 
Geophysical Research: Atmospheres, 107(D1), FFR 1-1-FFR 1-17. 473 
Chen, Y., J. T. Randerson, S. R. Coffield, E. Foufoula-Georgiou, P. Smyth, C. A. Graff, D. C. 474 
Morton, N. Andela, G. R. van der Werf, and L. Giglio (2020), Forecasting global fire emissions on 475 



 21 

subseasonal to seasonal (S2S) time scales, Journal of advances in modeling earth systems, 12(9), 476 
e2019MS001955. 477 
Chen, Y., J. T. Randerson, D. C. Morton, R. S. DeFries, G. J. Collatz, P. S. Kasibhatla, L. Giglio, Y. 478 
Jin, and M. E. Marlier (2011), Forecasting fire season severity in South America using sea 479 
surface temperature anomalies, Science, 334(6057), 787-791. 480 
Clark, T. L., J. Coen, and D. Latham (2004), Description of a coupled atmosphere–fire model, 481 
International Journal of Wildland Fire, 13(1), 49-63. 482 
Coffield, S. R., C. A. Graff, Y. Chen, P. Smyth, E. Foufoula-Georgiou, and J. T. Randerson (2019), 483 
Machine learning to predict final fire size at the time of ignition, International journal of 484 
wildland fire. 485 
Day, C. (2004), Smoke from burning vegetation changes the coverage and behavior of clouds, 486 
PhT, 57(5), 24-24. 487 
Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki (2006), GSWP-2: Multimodel 488 
analysis and implications for our perception of the land surface, Bulletin of the American 489 
Meteorological Society, 87(10), 1381-1398. 490 
Dobson, J. E., E. A. Bright, P. R. Coleman, R. C. Durfee, and B. A. Worley (2000), LandScan: a 491 
global population database for estimating populations at risk, Photogrammetric engineering 492 
and remote sensing, 66(7), 849-857. 493 
Finney, M. A. (1998), FARSITE, Fire Area Simulator--model development and evaluation, US 494 
Department of Agriculture, Forest Service, Rocky Mountain Research Station. 495 
French, N. H., M. A. Whitley, and L. K. Jenkins (2016), Fire disturbance effects on land surface 496 
albedo in Alaskan tundra, Journal of Geophysical Research: Biogeosciences, 121(3), 841-854. 497 
Ganapathi Subramanian, S., and M. Crowley (2018), Using spatial reinforcement learning to 498 
build forest wildfire dynamics models from satellite images, Frontiers in ICT, 5, 6. 499 
Giglio, L., L. Boschetti, D. P. Roy, M. L. Humber, and C. O. Justice (2018), The Collection 6 MODIS 500 
burned area mapping algorithm and product, Remote sensing of environment, 217, 72-85. 501 
Giglio, L., I. Csiszar, and C. O. Justice (2006a), Global distribution and seasonality of active fires 502 
as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) 503 
sensors, Journal of geophysical research: Biogeosciences, 111(G2). 504 
Giglio, L., J. T. Randerson, and G. R. Van Der Werf (2013), Analysis of daily, monthly, and annual 505 
burned area using the fourth-generation global fire emissions database (GFED4), Journal of 506 
Geophysical Research: Biogeosciences, 118(1), 317-328. 507 
Giglio, L., G. Van der Werf, J. Randerson, G. Collatz, and P. Kasibhatla (2006b), Global estimation 508 
of burned area using MODIS active fire observations. 509 
Girardin, M. P., and M. Mudelsee (2008), Past and future changes in Canadian boreal wildfire 510 
activity, Ecological Applications, 18(2), 391-406. 511 
Goodfellow, I., Y. Bengio, and A. Courville (2016), Deep learning, MIT press Cambridge. 512 
Goss, M., D. L. Swain, J. T. Abatzoglou, A. Sarhadi, C. A. Kolden, A. P. Williams, and N. S. 513 
Diffenbaugh (2020), Climate change is increasing the likelihood of extreme autumn wildfire 514 
conditions across California, Environmental Research Letters, 15(9), 094016. 515 
Hantson, S., A. Arneth, S. P. Harrison, D. I. Kelley, I. C. Prentice, S. S. Rabin, and S. Archibald 516 
(2016), The status and challenge of global fire modelling, Biogeosciences, 13, 3359-3375. 517 



 22 

Harden, J. W., K. L. Manies, M. R. Turetsky, and J. C. Neff (2006), Effects of wildfire and 518 
permafrost on soil organic matter and soil climate in interior Alaska, Global Change Biology, 519 
12(12), 2391-2403. 520 
Heyerdahl, E. K., L. B. Brubaker, and J. K. Agee (2002), Annual and decadal climate forcing of 521 
historical fire regimes in the interior Pacific Northwest, USA, The Holocene, 12(5), 597-604. 522 
Holden, Z. A., A. Swanson, C. H. Luce, W. M. Jolly, M. Maneta, J. W. Oyler, D. A. Warren, R. 523 
Parsons, and D. Affleck (2018), Decreasing fire season precipitation increased recent western 524 
US forest wildfire activity, Proceedings of the National Academy of Sciences, 115(36), E8349-525 
E8357. 526 
Hurtt, G. C., L. Chini, R. Sahajpal, S. Frolking, B. L. Bodirsky, K. Calvin, J. C. Doelman, J. Fisk, S. 527 
Fujimori, and K. K. Goldewijk (2020), Harmonization of global land-use change and management 528 
for the period 850–2100 (LUH2) for CMIP6, Geoscientific Model Development Discussions, 1-65. 529 
Jiang, Y., X.-Q. Yang, X. Liu, Y. Qian, K. Zhang, M. Wang, F. Li, Y. Wang, and Z. Lu (2020), Impacts 530 
of wildfire aerosols on global energy budget and climate: The role of climate feedbacks, Journal 531 
of Climate, 33(8), 3351-3366. 532 
Kasischke, E. S., and L. P. Bruhwiler (2002), Emissions of carbon dioxide, carbon monoxide, and 533 
methane from boreal forest fires in 1998, Journal of Geophysical Research: Atmospheres, 534 
107(D1), FFR 2-1-FFR 2-14. 535 
Keeley, J. E., and A. D. Syphard (2018), Historical patterns of wildfire ignition sources in 536 
California ecosystems, International journal of wildland fire, 27(12), 781-799. 537 
Kelley, D. I., I. Bistinas, R. Whitley, C. Burton, T. R. Marthews, and N. Dong (2019), How 538 
contemporary bioclimatic and human controls change global fire regimes, Nature Climate 539 
Change, 9(9), 690-696. 540 
Kelley, D. I., B. Chantelle, H. Chris, M. A. Brown, W. Rhys, and D. Ning (2021), Low 541 
meteorological influence found in 2019 Amazonia fires, Biogeosciences, 18, 787-804. 542 
Kingma, D. P., and J. Ba (2014), Adam: A method for stochastic optimization, arXiv preprint 543 
arXiv:1412.6980. 544 
Knorr, W., T. Kaminski, A. Arneth, and U. Weber (2014), Impact of human population density on 545 
fire frequency at the global scale, Biogeosciences, 11(4), 1085-1102. 546 
Koven, C. D., W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn, W. D. Collins, G. B. Bonan, D. M. 547 
Lawrence, and S. C. Swenson (2013), The effect of vertically resolved soil biogeochemistry and 548 
alternate soil C and N models on C dynamics of CLM4, Biogeosciences, 10, 7109-7131. 549 
Lamarque, J. F., J. T. Kiehl, G. P. Brasseur, T. Butler, P. Cameron-Smith, W. D. Collins, W. J. 550 
Collins, C. Granier, D. Hauglustaine, and P. G. Hess (2005), Assessing future nitrogen deposition 551 
and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition, 552 
Journal of Geophysical Research: Atmospheres, 110(D19). 553 
Lenihan, J. M., and D. Bachelet (2015), Historical climate and suppression effects on simulated 554 
fire and carbon dynamics in the conterminous United States, Global Vegetation Dynamics: 555 
Concepts and Applications in the MC1 Model, edited by: Bachelet, D. and Turner, D., AGU 556 
Geophysical Monographs, 214, 17-30. 557 
Li, F., M. Val Martin, M. O. Andreae, A. Arneth, S. Hantson, J. W. Kaiser, G. Lasslop, C. Yue, D. 558 
Bachelet, and M. Forrest (2019), Historical (1700–2012) global multi-model estimates of the fire 559 
emissions from the Fire Modeling Intercomparison Project (FireMIP), Atmospheric Chemistry 560 
and Physics, 19(19), 12545-12567. 561 



 23 

Li, F., X. Zeng, and S. Levis (2012), A process-based fire parameterization of intermediate 562 
complexity in a Dynamic Global Vegetation Model, Biogeosciences, 9(7). 563 
Lizundia-Loiola, J., G. Otón, R. Ramo, and E. Chuvieco (2020), A spatio-temporal active-fire 564 
clustering approach for global burned area mapping at 250 m from MODIS data, Remote 565 
Sensing of Environment, 236, 111493. 566 
Lizundia-Loiola, J., M. Pettinari, E. Chuvieco, T. Storm, and J. Gómez-Dans (2018), ESA CCI ECV 567 
Fire Disturbance: Algorithm Theoretical Basis Document-MODIS, version 2.0, edited, 568 
Fire_cci_D2. 569 
Mahowald, N., T. D. Jickells, A. R. Baker, P. Artaxo, C. R. Benitez-Nelson, G. Bergametti, T. C. 570 
Bond, Y. Chen, D. D. Cohen, and B. Herut (2008), Global distribution of atmospheric phosphorus 571 
sources, concentrations and deposition rates, and anthropogenic impacts, Global 572 
Biogeochemical Cycles, 22(4). 573 
Mekonnen, Z. A., W. J. Riley, J. T. Randerson, R. F. Grant, and B. M. Rogers (2019), Expansion of 574 
high-latitude deciduous forests driven by interactions between climate warming and fire, 575 
Nature plants, 5(9), 952-958. 576 
Oliver, A. K., M. A. Callaham Jr, and A. Jumpponen (2015), Soil fungal communities respond 577 
compositionally to recurring frequent prescribed burning in a managed southeastern US forest 578 
ecosystem, Forest Ecology and Management, 345, 1-9. 579 
Papakosta, P., G. Xanthopoulos, and D. Straub (2017), Probabilistic prediction of wildfire 580 
economic losses to housing in Cyprus using Bayesian network analysis, International journal of 581 
wildland fire, 26(1), 10-23. 582 
Pellegrini, A. F., A. Ahlström, S. E. Hobbie, P. B. Reich, L. P. Nieradzik, A. C. Staver, B. C. 583 
Scharenbroch, A. Jumpponen, W. R. Anderegg, and J. T. Randerson (2018), Fire frequency drives 584 
decadal changes in soil carbon and nitrogen and ecosystem productivity, Nature, 553(7687), 585 
194-198. 586 
Pellegrini, A. F., S. E. Hobbie, P. B. Reich, A. Jumpponen, E. J. Brookshire, A. C. Caprio, C. 587 
Coetsee, and R. B. Jackson (2020), Repeated fire shifts carbon and nitrogen cycling by changing 588 
plant inputs and soil decomposition across ecosystems, Ecological Monographs, e01409. 589 
Preisler, H. K., and A. L. Westerling (2007), Statistical model for forecasting monthly large 590 
wildfire events in western United States, Journal of Applied Meteorology and Climatology, 591 
46(7), 1020-1030. 592 
Prentice, S., and D. Mackerras (1977), The ratio of cloud to cloud-ground lightning flashes in 593 
thunderstorms, Journal of Applied Meteorology, 16(5), 545-550. 594 
Rabin, S. S., J. R. Melton, G. Lasslop, D. Bachelet, M. Forrest, S. Hantson, J. O. Kaplan, F. Li, S. 595 
Mangeon, and D. S. Ward (2017), The Fire Modeling Intercomparison Project (FireMIP), phase 596 
1: experimental and analytical protocols with detailed model descriptions, Geoscientific Model 597 
Development, 10(3), 1175-1197. 598 
Radke, D., A. Hessler, and D. Ellsworth (2019), FireCast: Leveraging Deep Learning to Predict 599 
Wildfire Spread, paper presented at IJCAI. 600 
Randerson, J. T., H. Liu, M. G. Flanner, S. D. Chambers, Y. Jin, P. G. Hess, G. Pfister, M. Mack, K. 601 
Treseder, and L. Welp (2006), The impact of boreal forest fire on climate warming, science, 602 
314(5802), 1130-1132. 603 
Riley, K., and M. Thompson (2017), An uncertainty analysis of wildfire modeling, Natural hazard 604 
uncertainty assessment: modeling and decision support. Monograph, 223, 193-213. 605 



 24 

Ross, A. N., M. J. Wooster, H. Boesch, and R. Parker (2013), First satellite measurements of 606 
carbon dioxide and methane emission ratios in wildfire plumes, Geophysical Research Letters, 607 
40(15), 4098-4102. 608 
Rother, D., and F. De Sales (2020), Impact of Wildfire on the Surface Energy Balance in Six 609 
California Case Studies, Boundary-Layer Meteorology, 1-24. 610 
Rothermel, R. C. (1972), A mathematical model for predicting fire spread in wildland fuels, 611 
Intermountain Forest & Range Experiment Station, Forest Service, US Department of 612 
Agriculture, 115. 613 
Saha, M. V., T. M. Scanlon, and P. D'Odorico (2019), Climate seasonality as an essential 614 
predictor of global fire activity, Global Ecology and Biogeography, 28(2), 198-210. 615 
Sayad, Y. O., H. Mousannif, and H. Al Moatassime (2019), Predictive modeling of wildfires: A 616 
new dataset and machine learning approach, Fire safety journal, 104, 130-146. 617 
Schmidhuber, J. (2015), Deep learning in neural networks: An overview, Neural networks, 61, 618 
85-117. 619 
Stephenson, C., J. Handmer, and R. Betts (2013), Estimating the economic, social and 620 
environmental impacts of wildfires in Australia, Environmental Hazards, 12(2), 93-111. 621 
Syphard, A. D., V. C. Radeloff, J. E. Keeley, T. J. Hawbaker, M. K. Clayton, S. I. Stewart, and R. B. 622 
Hammer (2007), Human influence on California fire regimes, Ecological applications, 17(5), 623 
1388-1402. 624 
Teckentrup, L., G. Lasslop, D. Bachelet, M. Forrest, S. Hantson, F. Li, J. R. Melton, C. Yue, A. 625 
Arneth, and S. P. Harrison (2018), Simulations of historical burned area: A comparison of global 626 
fire models in FireMIP, EGUGA, 17537. 627 
Thonicke, K., A. Spessa, I. Prentice, S. P. Harrison, L. Dong, and C. Carmona-Moreno (2010), The 628 
influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas 629 
emissions: results from a process-based model, Biogeosciences, 7(6), 1991-2011. 630 
Tonini, M., M. D’Andrea, G. Biondi, S. Degli Esposti, A. Trucchia, and P. Fiorucci (2020), A 631 
Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the 632 
Liguria Region in Italy, Geosciences, 10(3), 105. 633 
Van Der Werf, G. R., J. T. Randerson, L. Giglio, T. T. Van Leeuwen, Y. Chen, B. M. Rogers, M. Mu, 634 
M. J. Van Marle, D. C. Morton, and G. J. Collatz (2017), Global fire emissions estimates during 635 
1997-2016, Earth System Science Data, 9(2), 697-720. 636 
van Vuuren, D. P., P. L. Lucas, and H. Hilderink (2007), Downscaling drivers of global 637 
environmental change: Enabling use of global SRES scenarios at the national and grid levels, 638 
Global environmental change, 17(1), 114-130. 639 
Venevsky, S., K. Thonicke, S. Sitch, and W. Cramer (2002), Simulating fire regimes in human-640 
dominated ecosystems: Iberian Peninsula case study, Global Change Biology, 8(10), 984-998. 641 
Walker, X. J., J. L. Baltzer, S. G. Cumming, N. J. Day, C. Ebert, S. Goetz, J. F. Johnstone, S. Potter, 642 
B. M. Rogers, and E. A. Schuur (2019), Increasing wildfires threaten historic carbon sink of 643 
boreal forest soils, Nature, 572(7770), 520-523. 644 
Wang, J.-F., A. Stein, B.-B. Gao, and Y. Ge (2012), A review of spatial sampling, Spatial Statistics, 645 
2, 1-14. 646 
Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam (2006), Warming and earlier 647 
spring increase western US forest wildfire activity, science, 313(5789), 940-943. 648 



 25 

Williams, A. P., J. T. Abatzoglou, A. Gershunov, J. Guzman-Morales, D. A. Bishop, J. K. Balch, and 649 
D. P. Lettenmaier (2019), Observed impacts of anthropogenic climate change on wildfire in 650 
California, Earth's Future, 7(8), 892-910. 651 
Xu, L., Z. Qing, J. R. William, C. Yang, W. Hailong, M. Po-Lun, and T. R. James (2021), The 652 
influence of fire aerosols on surface climate and gross primary production in the Energy 653 
Exascale Earth System Model (E3SM), Journal of Climate 34, 7219-7238. 654 
Xu, X., G. Jia, X. Zhang, W. J. Riley, and Y. Xue (2020), Climate regime shift and forest loss 655 
amplify fire in Amazonian forests, Global Change Biology, 26(10), 5874-5885. 656 
Yu, Y., J. Mao, P. E. Thornton, M. Notaro, S. D. Wullschleger, X. Shi, F. M. Hoffman, and Y. Wang 657 
(2020), Quantifying the drivers and predictability of seasonal changes in African fire, Nature 658 
Communications, 11(1), 1-8. 659 
Yue, X., L. J. Mickley, J. A. Logan, and J. O. Kaplan (2013), Ensemble projections of wildfire 660 
activity and carbonaceous aerosol concentrations over the western United States in the mid-661 
21st century, Atmospheric Environment, 77, 767-780. 662 
Zheng, H., Z. Yang, W. Liu, J. Liang, and Y. Li (2015), Improving deep neural networks using 663 
softplus units, paper presented at 2015 International Joint Conference on Neural Networks 664 
(IJCNN), IEEE. 665 
Zhu, Q., and W. J. Riley (2015), Improved modelling of soil nitrogen losses, Nature Climate 666 
Change, 5(8), 705-706. 667 
Zhu, Q., W. J. Riley, C. M. Iversen, and J. Kattge (2020), Assessing impacts of plant stoichiometric 668 
traits on terrestrial ecosystem carbon accumulation using the E3SM land model, Journal of 669 
Advances in Modeling Earth Systems, 12(4), e2019MS001841. 670 
Zhu, Q., W. J. Riley, J. Tang, N. Collier, F. M. Hoffman, X. Yang, and G. Bisht (2019), Representing 671 
nitrogen, phosphorus, and carbon interactions in the E3SM Land Model: Development and 672 
global benchmarking, Journal of Advances in Modeling Earth Systems, doi: 673 
10.1029/2018MS001571. 674 
Zhu, Q., W. J. Riley, J. Tang, and C. D. Koven (2016), Multiple soil nutrient competition between 675 
plants, microbes, and mineral surfaces: model development, parameterization, and example 676 
applications in several tropical forests, Biogeosciences, 13, 341-363, doi:10.5194/bgd-12-4057-677 
2015. 678 
Zhu, Q., and Q. Zhuang (2013), Improving the quantification of terrestrial ecosystem carbon 679 
dynamics over the United States using an adjoint method, Ecosphere, 4(10), doi: 680 
dx.doi.org/10.1890/ES1813-00058.00051. 681 
Zhu, Q., and Q. Zhuang (2014), Parameterization and sensitivity analysis of a process-based 682 
terrestrial ecosystem model using adjoint method, Journal of Advances in Modeling Earth 683 
Systems, 6(2), 315-331. 684 
Zou, Y., Y. Wang, Z. Ke, H. Tian, J. Yang, and Y. Liu (2019), Development of a REgion-specific 685 
ecosystem feedback fire (RESFire) model in the Community Earth System Model, Journal of 686 
Advances in Modeling Earth Systems, 11(2), 417-445. 687 
Zou, Y., Y. Wang, Y. Qian, H. Tian, J. Yang, and E. Alvarado (2020), Using CESM-RESFire to 688 
understand climate-fire-ecosystem interactions and the implications for decadal climate 689 
variability, Atmospheric Chemistry and Physics, 20(PNNL-SA-150222). 690 
  691 



 26 

Supplementary Material 692 
 693 
Table S1. Burned area datasets used in this study 694 
 695 

Dataset name Temporal 
range 

Spatial 
resolution 

Burned area, 
mean (std) 

Citations 

GFEDv4s 1997-2015 0.25 degree 455(39) (Van Der Werf, Randerson 
et al. 2017) 

Fire_CCI51 2001-2019 0.25 degree 476(26) (Lizundia-Loiola, Otón et 
al. 2020) 

Fire_CCILT11 1982-2018 0.25 degree 484(20) (Lizundia-Loiola, Pettinari 
et al. 2018) 

MCD64 2001-2019 0.25 degree 424(35) (Giglio, Boschetti et al. 
2018) 

Fire_Atlas 2003-2016 0.25x0.25 
degree 

459(43) (Andela, Morton et al. 
2019) 

Note: the long-term average global burned area was calculated using data with the same 696 
overlapping temporal range (2003-2015), unit Mha yr-1 697 
  698 
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 699 

 700 
Figure S1. Model performance evaluated with testing datasets of default (20% randomly 701 
selected samples), or fixed to 2001-2002 period, 2003-2004 period, 2005-2006 period, 2007-702 
2008 period, and 2009-2010 periods (the rest of the dataset was used as a training dataset.).  703 
 704 

 705 
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Figure S2. Performance of surrogate model (DNN-Fire) compared with ELMv1 process-based 706 
model (BASE-Fire). 707 
 708 

 709 
Figure S3. Seasonal cycles of fine-tuned Deep Neural Network wildfire model (DNN‑Fire-OBS) 710 
and observations over 14 GFED fire regions. 711 
 712 
 713 

 714 
Figure S4. Comparison of DNN-Fire-OBS model simulated global burned area during 1981-715 
1999 with two charcoal index inferred burned area. 716 
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 717 
Figure S5. Sensitivity of modeled burned area (2001-2010 long-term averaged) to climate 718 
forcings (including temperature, precipitation, wind speed, relative humidity) and soil moisture. 719 



 30 

X-axis was burned area simulated by the default model using GSWP3 climate forcing and 720 
ELMv1 simulated soil moisture. Y-axis were models with alternative climate forcing (CRUJRA, 721 
NCEPDOE2) and soil moisture product (NCEP CDAS soil moisture). 722 
 723 
 724 

 725 
Figure S6. 3SM simulated global vegetation biomass [425-472 PgC] and observational based 726 
estimate of present-day living biomass (455 PgC GEOCARBON). 727 
 728 

 729 
Figure S7. The performance of the Deep Neural Network wildfire model (DNN-Fire), compared 730 
with the original ELMv1 process-based wildfire model (BASE-Fire) aggregated over 14 plant 731 
functional types between years 2001 and 2010. 732 
 733 
 734 
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 735 
Figure S8. A comparison of wildfire burned area among Deep Neural Network wildfire model 736 
(DNN-Fire), Deep Neural Network wildfire model fine-tuned with observed burned area (DNN-737 
Fire-OBS), and observations for 14 plant functional types. 738 
 739 


