
Dear Editor and reviewer, 
  
We very much appreciate the reviewers’ comments and feel that they have allowed us to 
substantially improve our manuscript. Below, we repeat the reviewers’ comments and then 
respond to each comment individually in blue italics. Related modifications in the revised 
manuscript are highlighted in red. 
 
Reviewer #1 
Zhu et al. develop a machine learning (ML) burnt area model that can be used in place of a 
process-based algorithm in ELM. This approach was first used to surrogate the fire model of Li 
et al. which was in CLM (and then now ELM). The ML approach uses a deep neural network to 
reproduce the process model result (they call it Base). Then by altering the parameters they 
tuned it to match GFED4 burned area. The paper is clearly written and results are generally well 
presented. I found the work interesting as this is an important problem. Present process-based 
fire models are not overly skillful. Much of this stems from the many complexities of fire 
modelling - especially anthropogenic influences. I am optimistic this paper can be published but 
I would like to see some careful consideration of my comments below. At present the 
manuscript is what I would consider an absolute bare minimum of what can be published and 
there are many opportunities to make this paper into a much better resource to the community. 
This particular approach could be valuable but I think it needs some expansion to demonstrate 
how useful imbedding ML approaches in process models can be. As a result I would like to see 
some expansion of the work to better demonstrate the utility of the approach.  
 
Response: 
We appreciate the reviewer’s positive comments. We have addressed all major and 
specific comments below. 
 
1 The DNN-Fire model was subsequently tuned to match GFEDv4 but this is not the only 
burned area product available (e.g. Chuvieco et al. 2019). Indeed there are many other products 
now available and they don't agree so well (e.g. Padilla et al. 2015, Humber et al. 2019). I worry 
that by tuning the model to reproduce one dataset you may get a result closer to that dataset 
but at the expense of adopting its same biases and thereby potentially not getting as admirable 
advances in accuracy at it seems. Why not consider all of the available burned area products to 
produce a burned area estimate that could then be less biased by a single dataset? As, in 
reality, we are most interested in increasing our predictive skill - not just reproducing an 
observation. 
 
Response: 
We agree that considering multiple existing datasets of burned area could avoid over-
parameterization to any individual dataset and thus reduce the DNN-Fire model 
prediction uncertainty. In the revised version, we considered five prevailing burned area 
products including the GFEDv4s, FIRE_CCI51, FIRE_CCIT11, MCD64, Fire_Atlas. 
Comparing the five prevailing burned area products (Table S1), long term averaged 



burned area ranged from 424 Mha yr-1 to 484 Mha yr-1, and most of the data 
discrepancy was located over tropical regions (Figure 2). Compared with multi-datasets 
mean, the Base-Fire model (ELMv1 process-based wildfire model) still had large biases 
across tropics, temperate, and boreal regions (Figure 2). 
 
In order to make use of the five datasets and reduce DNN model uncertainty associated 
with over-parameterization towards any individual datasets, we first calculated 
ensemble mean and standard deviation of the five burned area datasets for each 
gridcells, then we tuned the DNN-Fire surrogate model towards ensemble mean with 
standard deviation across 14 GFED regions. All new results were updated throughout 
the paper (highlighted in the manuscript with red color). 
 
Table S1. Burned area datasets used in this study 
 

Dataset 
name 

Temporal 
range 

Spatial 
resolution 

Global burned area, 
mean (std) 

Citations 

GFEDv4s 1997-
2015 

0.25 
degree 

455(39) (van Der Werf, 
Randerson et al. 
2017) 

Fire_CCI51 2001-
2019 

0.25 
degree 

476(26) (Lizundia-Loiola, Otón 
et al. 2020) 

Fire_CCILT
11 

1982-
2018 

0.25 
degree 

484(20) (Lizundia-Loiola, 
Pettinari et al. 2018) 

MCD64 2001-
2019 

0.25 
degree 

424(35) (Giglio, Boschetti et al. 
2018) 

Fire_Atlas 2003-
2016 

0.25 
degree 

459(43) (Andela, Morton et al. 
2019) 

Note: the long-term average global burned area was calculated using data with the 
same overlapping temporal range (2003-2015), unit Mha yr-1 
 



 
Figure 2. BASE-Fire simulated and burned area datasets of GFEDv4s, Fire-CCI51, 
Fire-CCILT11, MCD64, Fire-Atlas. (a) Global scale; (b) Tropical (S23.5° -N23.5°); (c) 
Temperate (N23.5° - N 67.5°); and (d) Boreal (north of N 67.5°) regions. 
 
2 By surrogating Base-Fire, the DNN-Fire then integrates/assumes the biases and issues 
apparent in ELM's simulations (e.g. too much/little biomass, too dry/wet soil, etc.) and produces 
a model that aims to get the right result (burned area matching GFED) potentially for the wrong 
reasons (based on biased inputs). Why not run an ensemble approach with different forcing 
datasets (e.g. met forcing of CRUJRA in addition to GSWP3, or a different land cover (if using 
prescribed), etc.) to try and give at least a measure of the uncertainty in these inputs to the 
DNN? We have found for our model (run in normal process-based mode) the results can be 
surprising and have some strong impacts for certain variables. Gitta Lasslop looked at this too 
and found a large impact upon fire, primarily due to the wind speed differences (e.g. Fig 3 in 
Lasslop et al. 2014). Alternatively using an observation-based product of one of the ELM 
variables (Table 1) like soil wetness or above ground biomass as another means to look at the 
influence of input bias.  
 
Response: 
We agree that the model uncertainties from biased inputs are potentially important. 
Therefore, we investigated the DNN-Fire model uncertainties from 1) surface climate; 2) 
soil moisture inputs; 3) interactions between climate and soil moisture. Unfortunately, 
the uncertainty from biomass (fuel load) was not evaluated, due to lack of 2001-2010 
transient data for global vegetation biomass.  
 
For climate forcing uncertainty we drived the DNN model with (CRU-JRA (Onogi 2007), 
NCEP-DOE2 (Kanamitsu 2002), in addition to the default GSWP3 (Dirmeyer et al., 
2006). For other ELM input variables, we evaluated soil moisture uncertainty by driving 



the DNN model with the NOAA NCEP-NCAR-CDAS-1 (Kalnay 1996) topsoil moisture 
product. 
 
Overall, climate forcing was a big uncertainty source for burned area simulations. For 
example, over the three largest fire regions (SHSA, NHAF, SHAF), major uncertainty 
came from climate forcing rather than topsoil moisture (Figure S3). Furthermore, among 
the three climate forcings, CRU-JRA was close to the default GSWP3 forcings, while 
NCEP-DOE2 forcing led to large reduction in simulated burned area.  
 
In the revised manuscript, we add a paragraph to discuss the potential uncertainties 
from input variables (Line 360-375):  
“We acknowledge several challenges and limitations in our modeling framework. First, 
the DNN model uncertainty was subject to the accuracy of climate forcings as well as 
other physical driving variables simulated by the physical wildfire model (ELMv1). For 
example, in addition to the default GSWP3 climate forcings dataset used in the study,  
CRU-JRA [Onogi et al., 2007]  and NCEP-DOE2 [Kanamitsu et al., 2002] reanalysis 
forcings were also widely used and potentially different from GSWP3 forcings. ELMv1 
used climate forcing (e.g., temperature, precipitation, wind speed, relative humidity) to 
simulate soil temperature, soil moisture, fuel load and so on. These simulated variables 
served as inputs for the DNN model and could also result in prediction uncertainty. It 
was challenging to eliminate the forcing uncertainties in this work, but we could at least 
evaluate the magnitude of these uncertainties. We ran the DNN-Fire-OBS model with 
alternative forcings of CRU-JRA, NCEP-DOE2, and CDAS soil moisture from 2001 to 
2010 and compared the results with DNN-Fire-OBS driven by default inputs (GSWP3 
climate and ELMv1 simulated soil moisture) (Figure S3). The results showed relatively 
larger uncertainties from climate forcing than that from soil moisture forcing particularly 
over the major fire regions (e.g., SHSA, SHAF, and NHAF). Future work will focus on 
evaluating the uncertainties from fuel load and fuel temperature variables.” 



 
Figure S3. Sensitivity of modeled burned area (2001-2010 long-term averaged) to 
climate forcings (including temperature, precipitation, wind speed, relative humidity) and 



soil moisture. X-axis was burned area simulated by the default model using GSWP3 
climate forcing and ELMv1 simulated soil moisture. Y-axis were models with alternative 
climate forcing (CRUJRA, NCEPDOE2) and soil moisture product (NCEP CDAS soil 
moisture). 
 
3 Around line 188 you describe the training/testing split. This approach of doing it randomly 
makes me wonder if the influence of spatial autocorrealtion will result in an overly optimistic 
error estimate. Especially as fire is likely  autocorrelated. There are many papers in the literature 
discussing the dangers of random sampling on spatially correlated data (e.g. Roberts et al. 
2017; Meyer et al. 2019; Ploton et al. 2020; Kühn and Dormann, 2012). I would suggest an 
alternate strategy be employed. It also wasn't clear how this test/train split results were 
integrated. I think it was just in the model score? 
 
Response: 
In the revised manuscript, we used “stratified random sample method” to maximally 
eliminate the impacts of spatial autocorrelation on random sampling [Wang 2012]. The 
burned area over all grid cells were first divided into three subgroups or “strata” based 
on the magnitude of the burn (low burn 0-33 percentile, medium burn 34-66 percentile, 
high burn 67-100 percentile). Then the grid cells were randomly sampled, but with the 
constraint that samples were drawn from each strata according to the ratios of samples 
within each strata. In this case, the spatially correlated gridcells (e.g., nearby highly 
burned gridcells) were more likely divided into different datasets of training/testing, 
compared with the straightforward random sample method.  
 
In the revised manuscript, we add a paragraph to describe and discuss the stratified 
random sampling approach (Line 193-199):  
“Furthermore, the random sampling was stratified in order to reduce the risk of 
sampling, e.g., adjacent high fire grid cells. All grid cells were first divided into three 
“strata”: low burn (0-33% percentile), median burn (33%-66% percentile), and high burn 
(67-100% percentile) grid cells based on the magnitude of the burn. The stratified 
random sample assured the sampled grid cells for training and testing had the same 
ratios of low/medium/high burn, thus eliminating the sampling bias from spatial 
autocorrelation [Wang et al., 2012].” 
 
4 What is the impact of training on such a short timeseries of fire observations when some 
regions have fire return intervals of >100 years? Also how representative are those years 
chosen? Would it matter if you instead trained on 2006 - 2015 and tested on 2001 - 2005?  
 
Response: 
We agree that the fire return interval could be longer than the observation period (2001-
2010 in this study). And the fire return interval may impact the modeling of site level fire 



dynamics. We argue that across a large scale such impact will decrease due to spatial 
heterogeneity of the fire occurrence (gridcells have the same fire return interval, but with 
fire occurring in different years).  
 
In order to assess the representativeness of the year chosen for training and testing, we 
trained and evaluated model performance with selected year of test datasets 1) 2001-
2002, 2) 2003-2004, 3) 2005-2006, 4) 2007-2008, 5) 2009-2010. The rests were used 
as training datasets.  It resulted in five different models, each trained by 8 years of data; 
and tested with the remaining 2 years of data. We found that the selection of training or 
testing years did not significantly change the model performance (Figure S1).  
 
In the revised manuscript, we add a section to describe and discuss the impacts of 
selected year of test datasets on model performance (Line 199-205):  
“In addition to random sampling, we also investigated the impacts of data choice on the 
model performance, by sampling the testing datasets within specific years (e.g., 2001-
2002, 2003-2004, 2005-2006, 2007-2008, 2009-2010) and used the rest of the years for 
training. We found neglected differences among the models (Figure S1) indicating the 
choice of training/testing data years were not impactful. Therefore, we will discuss the 
results with stratified random sampling approach as the major results throughout the 
paper.” 
 



 
Figure S1. Model performance evaluated with testing datasets of default (20% 
randomly selected samples), or fixed to 2001-2002 period, 2003-2004 period, 2005-
2006 period, 2007-2008 period, and 2009-2010 periods (the rest of the dataset was 
used as a training dataset.). 
 
5 Figure 7 is the same as the years trained upon so there is little interesting information here. 
Basically this is showing that it can do an ok job when tested over the same training region.  
Why not expand this out beyond the satellite era? How does this do from say 1900 on? Yes 
there is no satellite data but there are other means to check results (see e.g. Arora and Melton 
2018) 
 
Response: 
We really appreciate the idea of evaluating model performance during historical periods. 
In the revised manuscript, we compared the DNN-Fire-OBS model simulated global 
burned area during 1981-2000 periods against the charcoal index inferred burned area 
(Arora and Melton 2018). We found that the DNN-Fire-OBS model was able to capture 
the decadal declining trend of burned area at global scale.  
 
In the revised manuscript, we add several sentences that compared DNN-Fire-OBS with 
charcoal index inferred burned area  (Line 342-346):  



“Validation was also conducted for the historical period 1981-2000, when most of the 
satellite based burned area data were not available. Compared with charcoal index 
inferred burned area during 1981-2000 (Figure S2), DNN-Fire-OBS model reasonably 
captured the declining of burned area from ~530 Mha yr-1 to 490 Mha yr-1 .” 

 
Figure S2. Comparison of DNN-Fire-OBS model simulated global burned area during 
1981-1999 with two charcoal index inferred burned area. 
 
6 Didn't GFEDv4 offer some uncertainty bounds? 
 
Response: 
In the revised version, we used the five datasets average as target variable, and 
min/max range as uncertainty bounds during training/evaluation. While, the uncertainty 
of each individual dataset was not accounted during training and testing.   
 
7 Fig 8 to make a stronger demonstration that this is a signifcant improvement, what about 
plotting the models of FireMIP as further reference points? E.g. Hantson et al. 2020. 
 
Response: 
We appreciate the suggestions on comparing DNN model with FireMIP predictions (9 
models). FireMIP models simulated burned areas till 2013. Our prognostic simulation 
period was 2011-2015. Therefore, we took the overlapped 2011-2013 FireMIP results, 
and compared with observations. We found that FireMIP simulated diverse latitudinal 
distributions of burned area and generally underperformed compared with DNN-Fire-
OBS model (Figure 9), when benchmarked against the averaged latitudinal distribution 
of the five burned area products.  
 
In the revised manuscript, we add several sentences that discuss FireMIP (Line 339-
342):  



“We also compared the nine FireMIP models [Rabin et al., 2017; Teckentrup et al., 
2018] and found diverse latitudinal distribution of burned area. The across model 
differences were much larger than the inter-annual variation simulated by each 
individual model, which indicated large model structural uncertainties.” 

 
Figure 9. Prognostic simulation of annual wildfire burned area (2011-2015) with the 
Deep Neural Network wildfire model fine-tuned with observations (DNN-Fire-OBS) 
compared with observations and nine FireMIP models outputs. 
 
8 L41, a more up to date reference would be Lasslop et al. 2020 as it was done with more 
advanced models 
 
Response: 
Citation updated (Line 41) 
 
9 L90: A good reference could be Rabin et al. 2017 as there are some figures showing explictly 
how the models differ. 
 
Response: 
Citation updated (Line 90) 
 
10L186 - to be clear, the 14 submodels were combined to produce the global estimates right? 
Would there be benefit from doing even more sub-regions? What about 20, 50, etc? Where are 
the diminishing returns here? 
 



Response: 
The choice of 14 fire regions was based on the historical convention from Global Fire 
Emissions Database (GFED) studies. The 14 GFED regions were high level clusters for 
similar fire behavior, background climatology, and vegetation types. The GFED regions 
also consider the suitability for comparison with other wildfire studies e.g., atmospheric 
tracer inversion studies (van der Werf 2006).  
 
We appreciate the reviewer’s suggestion of dividing the 14 regions into more sub-
regions, which might benefit the model performance. But, we would like to still keep the 
14 submodels in this study, for the sake of consistency and easy comparison with other 
wildfire modeling work.   
 
11 L276 - was this talking about the speed of creating DNN-Fire or DNN-Fire-GFED? Several 
minutes on a laptop? HPC?  
 
Response: 
We have clarified the description with “we found that parameterization time could be 
substantially reduced (several minutes for the global calculation with Intel Xeon Phi 
Processor 7250 processor)” (Line 297) 
 
12 Fig 8 - it seems that DNN-Fire-GFED might be less variable than GFEDv4, is that correct? Is 
this due to the inputs to the ML or is it a result of the ML approach itself? 
 
Response: 
In the revised Figure 8 and Figure 9, the variability was determined by both the 
interannual variability of each dataset during 2011-2015, also affected by the 
differences among the five burned area datasets. Therefore, it was expected that the 
variability of OBS (observations) was larger than the DNN-Fire-OBS model simulated 
variability, which only accounted for interannual variability. 
 



 
Figure 8. Prognostic simulation of annual wildfire burned area (2011-2015) with the 
Deep Neural Network wildfire model fine-tuned with observations (DNN-Fire-OBS) 
compared with five observational datasets. 
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Reviewer #2 
This study presents approach to build a deep learning-based model to better simulate 
burned area as part of an Earth system model. Although several machine learning and 
data-driven fire models were developed in the last years, this is a first study that directly 
aims to implement a deep neural network (DNN)-based fire model with a Earth system 
model. The paper is well written. 
Response: 
We appreciate the reviewer’s positive comments. We have addressed all major and specific 
comments below. 
  
1 Integration of DNN-based fire model with the Earth system model 
The paper is not clear about how the DNN-based model with implemented with the Earth 
system model (ESM). For the title and abstract, I expect the DNN model was implemented 
in the ESM. This would allow analyses about how the improved simulation of fire affects 
the simulated carbon fluxes and stocks in the ESM. But as the paper does not represent 
such results, I assume that DNN-based fire model was just applied outside of the ESM and 
that both models were actually not coupled. Hence, I’m wondering how the authors to 
imagine to couple both models. Especially the final DNN-Fire-GFED setup simulates clearly 
different burned area then the original BASE-Fire or DNN-Fire models setups. This implies, 
that for example a much higher simulated burned area in Africa should result also in a 
much lower biomass in Africa and hence changes the fuel load variable as input to the 
DNN-fire models. In the coupled model, the DNN-Fire-GFED model would lead to results 
that are inconsistent with the feature space that was initially used to train the DNN-Fire 
model. Ideally, the authors should do a sensitivity analysis in the coupled DNN-Fire-GFED 
and ESM models to see if the results are still consistent and reliable. If this is not feasible, 
the authors should at least discuss how they would address such inconsistencies. I assume 
that only a joint optimization of fire and fuel loads/biomass in the coupled model would 
solve this issue (Drüke et al., 2019). 
Response: 
We agree that to fully couple DNN-Fire and E3SM land models is important and is our long-term 
objective for fire modeling. We will achieve this long-term goal with a stepwise approach. This 
study is the first step to develop and tune the wildfire model within the E3SM land model 
interface so that burned area dynamics could be reasonably simulated. The current study is an 
important step towards a fully coupled E3SM + DNN-Fire model, which we will pursue  in future 
work. We appreciate the suggestion on joint optimization, and will  explore the effectiveness of 
such an optimization strategy in the future. 
  



In the revised manuscript, we add a paragraph to discuss the goal of this study and future work 
on fully coupled E3SM+DNN-Fire model (Line 356-359): “This study focuses on design, 
development, and parameterization of the DNN fire model within the E3SM model interface. In 
this way the DNN model can be readily coupled in the future and iteratively simulate climate, 
ecosystem fuel conditions, and fire dynamics. This study is an important step towards fully 
coupling E3SM and the DNN-Fire models in the future. ” 
  
  
2 Training and testing 
The authors trained a DNN model for each GFED region. Training the model for different 
regions is an unfair approach in comparison to process-based fire models as these models 
are truly global models, maybe with a PFT-dependent parametrization. Hence the authors 
should provide a good reasoning why they trained the model per GFED region. In addition, 
it does make sense at all that a fire model is parametrised per GFED region for an 
application in an Earth system model. As Earth system models are applied to assess future 
changes, a parametrisation per region will fast lead to useless results. For example, if 
climate and vegetation conditions change in future, which regional model should be 
applied in a certain region? Fire should be only simulated as a response to climate, 
vegetation and socioeconomic conditions. If regional parametrisation is necessary, the 
parameters should be based on vegetation or socioeconomic conditions. 
Response: 
The choice of 14 fire regions was based on the historical convention from the Global Fire 
Emissions Database (GFED) studies. The 14 GFED regions were chosen based on clustering of fire 
behavior, background climatology, and vegetation types. The GFED regions also consider the 
suitability for comparison with other wildfire studies e.g., atmospheric tracer inversion studies 
(van der Werf 2006). 
  
We appreciate the reviewer’s suggestion to parameterize the DNN-Fire model based on 
vegetation types. We thus developed an alternative PFT-based parameterization strategy for 
the DNN-Fire model. We found that both PFT-based and GFED-based parameterization were 
equally accurate in terms of surrogating the original E3SM model and capturing the large-scale 
dynamics after calibration (Figure S7,S8). 
  
Therefore, in the revised manuscript we added a paragraph to discuss the alternative PFT-based 
parameterization strategy (Line 392-398): “Our GFED region-based parameterization strategy 
relied on the combination of climate and biome types, while an alternative parameterization 
strategy for DNN-Fire model could be based on plant functional type distributions. Based on our 
analysis, the PFT-based DNN-Fire model had similar performance compared with the GFED-



based model (Figure S7, S8). Since the current version of the E3SM land model does not allow 
PFT changes driven by climate, both GFED-based and PFT-based models may not fully capture 
the changes of fire dynamics due to longer-time scale fire regimes changes.” 
 

Figure S7. The performance of the Deep Neural Network wildfire model (DNN-Fire), compared 
with the original ELMv1 process-based wildfire model (BASE-Fire) aggregated over 14 plant 
functional types between years 2001 and 2010. 
  



Figure S8. A comparison of wildfire burned area among Deep Neural Network wildfire model 
(DNN-Fire), Deep Neural Network wildfire model fine-tuned with observed burned area (DNN-
Fire-OBS), and observations for 14 plant functional types. 
  
  
The monthly burned area data from all grid cells in each regions was splitted randomely in 
80% training data and 20% for testing. This is one of the simplest tests as the underlying 
conditions and statistical distribution of both samples is the same. However, in the context 
of an Earth system model, we expect non-stationary conditions and hence the model 
should be tested how well it can predict into 1) different regions, 2) different time periods 
(was done but the conditions in the two time periods are very similar), and 3) to different 
environmental conditions (Klemeš, 1986). 
Response: 
To address this comment and to maximally train and test the model across different fire 
conditions, we applied a “stratified random sample method” [Wang 2012] in the revised 
manuscript. The burned areas over all gridcells were first divided into three subgroups or 
“strata” based on the magnitude of the burn (low burn 0-33 percentile, medium burn 34-66 
percentile, high burn 67-100 percentile). Then the gridcells were randomly sampled, but with the 
constraint that samples were drawn from each strata according to the ratios of samples within 
each strata. In this case, gridcells with different percentage burns (e.g., highly burned gridcells) 
were more likely divided into different datasets of training and testing, compared with the 
straightforward random sample method. 
  



In the revised manuscript, we add a paragraph to describe and discuss the stratified random 
sampling approach (Line 199-205): 
“Furthermore, the random sampling was stratified to reduce the risk of sampling, e.g., adjacent 
high fire gridcells. All gridcells were first divided into three “strata”: low burn (0-33% 
percentile), median burn (33%-66% percentile), and high burn (67-100% percentile) gridcells 
based on the burn magnitude. The stratified random sample assured the sampled gridcells for 
training and testing had the same ratios of low, medium, and high burn, thus eliminating 
potential sampling bias from spatial autocorrelation [Wang et al., 2012].” 
  
In order to assess the representativeness of the year chosen for training and testing, we trained 
and evaluated model performance with different years of test datasets 1) 2001-2002, 2) 2003-
2004, 3) 2005-2006, 4) 2007-2008, 5) 2009-2010. The rests were used as training datasets, 
resulting in five different models, each trained by 8 years of data; and tested with the remaining 
2 years of data. We found that the selection of training or testing years did not significantly 
change the model performance (Figure S1). 
  
In the revised manuscript, we add a section to describe and discuss the impacts of selected year 
of test datasets on model performance (Line 205-211): 
“In addition to random sampling, we also investigated the impacts of data choice on the model 
performance by sampling the testing datasets within specific years (e.g., 2001-2002, 2003-2004, 
2005-2006, 2007-2008, 2009-2010) and using the rest of the years for training. We found 
insignificant  differences among the models (Figure S1) indicating the choice of training and 
testing data years were not impactful. Therefore, we will discuss the results using the stratified 
random sampling approach throughout the paper.” 
 



 
Figure S1. Model performance evaluated with testing datasets of default (20% randomly 
selected samples), or fixed to 2001-2002 period, 2003-2004 period, 2005-2006 period, 2007-
2008 period, and 2009-2010 periods (the rest of the dataset was used as a training dataset.). 
  
3 Input data 
Most of the input data for the DNN model comes from climate, land use or socioeconomic 
datasets. Information on fuel loads, fuel wetness and temperature, however, was taken 
from ELMv1 model simulations. I wonder about how good are these simulated variables in 
comparison with independent (e.g. Earth observation) data. For example, any biases in 
simulated biomass will directly affect the simulated burned area. Please compare the 
simulated biomass and soil moisture with useful datasets. Alternatively, a residual analysis 
would be also useful to see if any errors in simulated burned area rea related to errors in 
the simulated input. 
Response: 
To evaluate impacts of E3SM model simulated biomass and soil moisture on DNN-Fire model 
predictions, we drove the DNN model with the NOAA NCEP-NCAR-CDAS-1 (Kalnay 1996) soil 
moisture product. We found that soil moisture is not a significant source of DNN-Fire model 
uncertainty (Figure S5); in contrast, surface climate forcings overall were more impactful on 



burned area simulations. For example, in the three largest fire regions (SHSA, NHAF, SHAF), 
dominant biases came from climate forcing rather than soil moisture (Figure S5). 
  
It is difficult to evaluate the bias from surface biomass within the DNN-Fire model, since 
continuous observed biomass data is not available. Thus, we directly compare the E3SM 
simulated long-term dynamics of vegetation carbon with present-day estimates (Figure S6). We 
found that E3SM reasonably captures the vegetation biomass stock. 
 
In the revised manuscript, we add a paragraph to uncertainty from climate forcings, soil 
moisture, and fuel load (Line 360-379):  “The DNN model uncertainty was subject to the 
accuracy of climate forcings as well as other physical driving variables simulated by the physical 
wildfire model (ELMv1). For example, in addition to the default GSWP3 climate forcings dataset 
used in the study,  CRU-JRA [Onogi et al., 2007]  and NCEP-DOE2 [Kanamitsu et al., 2002] 
reanalysis forcings were also widely used and potentially different from GSWP3 forcings. ELMv1 
used climate forcing (e.g., temperature, precipitation, wind speed, relative humidity) to 
simulate soil temperature, soil moisture, fuel load and so on. These simulated variables served 
as inputs for the DNN model and could also result in prediction uncertainty. It was challenging 
to eliminate the forcing uncertainties in this work, but we could at least evaluate the magnitude 
of these uncertainties. We ran the DNN-Fire-OBS model with alternative forcings of CRU-JRA, 
NCEP-DOE2, and CDAS soil moisture from 2001 to 2010 and compared the results with DNN-
Fire-OBS driven by default inputs (GSWP3 climate and ELMv1 simulated soil moisture) (Figure 
S5). The results showed relatively larger uncertainties from climate forcing than that from soil 
moisture forcing particularly over the major fire regions (e.g., SHSA, SHAF, and NHAF). For fuel 
load, although no transient dataset of global living biomass existed yet, we directly compared 
the ELM model simulated biomass with the global estimate (GEOCARBON ~ 455 Pg C). We 
found that the modeled present-day biomass continuously increased from 425 to 470 Pg C and 
compared reasonably well with the global benchmark. Future work will focus on evaluating the 
uncertainties from dead fuel load and fuel temperature variables.” 
 
 



 
Figure S5. Sensitivity of modeled burned area (2001-2010 long-term averaged) to climate 
forcings (including temperature, precipitation, wind speed, relative humidity) and soil moisture. 



X-axis is burned area simulated by the default model using GSWP3 climate forcing and ELMv1 
simulated soil moisture. Y-axis is models with alternative climate forcing (CRUJRA, NCEPDOE2) 
and soil moisture  (NCEP CDAS soil moisture) products. 
 

Figure S6. E3SM simulated global vegetation biomass [425-472 PgC] and observational based 
estimate of present-day living biomass (455 PgC GEOCARBON). 
  
Can you please demonstrate that the tree cover from the LUH2 dataset is consistent with 
the simulated biomass. Are there any areas where the simulated biomass does not 
correspond to tree cover? 
Response: 
LUH2 land cover change time series are prescribed as forcing variables within E3SM including 
tree cover, therefore consistency between E3SM and LUH2 is imposed in the model. 
  
Specific comments 
L 26-27: From this statement it is not clear if the DNN is implemented as part of the E3SM 
or if it is independent of the ESM and just returns the same output. Please clarify 
Response: 
In the revised manuscript, we have clarified this point with “with the Energy Exascale Earth 
System Model (E3SM) interface”, as described above. 
  
L 30-31: It is not clear what the R2 means. Is it the R2 between the observed and 
predicted global annual total burned area in 2001 and 2015? 
Response: 



In the revised manuscript, we have clarified this point with: “The surrogate wildfire model 
successfully captured the observed monthly regional burned area during validation period 2011 
to 2015 (coefficient of determination, R2 = 0.93)” 
  
L 41: The statement should be updated with newer estimates, e.g. by (Lasslop et al., 
2020) 
Response: 
In the revised manuscript, we have updated the sentence to read: “global forests would double 
if fire were eliminated [Bond et al., 2005; Lasslop et al., 2020]” 
  
L 78-93: You should clarify the scale of wildfire models. Fire behaviour models aim to 
model the spread and intensity of individual fires and are widely used in fire management. 
Fire models as parts of global vegetation or Earth system models have a different 
purpose. I assume that you are mainly addressing the second group of models, so please 
clarify it. Here you should specify that the first group focus mostly on predicting large scale 
regional fire dynamics, whereas the second group focus more on predicting fire in 
individual grid cells. 
Response: 
In the revised manuscript, we have clarified these points as (line 93-100): “Historically, data-
driven models were often used for fire behavior modeling to predict ignition, spread, duration, 
and extinction of individual fires [Finney, 1998; Radke et al., 2019] at fine spatial and temporal 
scales. This group of models are more relevant to operational fire research. In contrast, 
process-based wildfire models used in global vegetation models or earth system land models 
focus on gridcell aggregated fire burned area dynamics that are more relevant to analyses of 
large-scale patterns and climate-scale predictions [Fang Li et al., 2019; Rabin et al., 2017]. This 
study particularly focuses on the second category of wildfire models.” 
  
Chapter 2.2: The text might be easier to understand if you draw the network structure as 
a figure including all input variables, the hidden layers, neurons and output. 
Response: 
We have updated Figure 1 to reflect the input variables and structure of DNN models. 



 

 
Figure 1. Schematic representation of the ELMv1 process-based BASE-Fire model and the 
components to be surrogated with the Deep Neural Network (DNN) model (dark grey). 
  
L 163-171: The description of the training of DNN-fire-GFED is not completely clear. From 
the text it reads that only the weights were readjusted by using observed GFED data. 
Does that mean that original bias parameters from DNN-Fire-BASE were kept? Is there 
any reasoning? 
Response: 
We adopted the standard transfer learning approach [Do et al., 2005] that, first, pre-trained the 
DNN-fire model with E3SM outputs to generate reasonable baseline values for weight 
parameter, and second, using the pre-trained weight parameters as initial values and then fine-
tune the weight parameters using observations. 
  
L 180: “spunup” 



Response: 
“spunup” was corrected in the revised manuscript. 
  
L 197-201: The readability would be improved if each equation is in a new line and not 
within the text line. 
Response: 
Equations 9-11 are updated in the revised manuscript. 
  
L 244: Should this be Figure 7? 
Response: 
Corrected. 
  
L 273-275: Yes, but not many process-based fire models have been really calibrated. It 
would be good to provide examples in the text where this has been done. 
Response: 
We have removed the ambiguous statement. 
  
L 276-277: The statement is not really valid as you do not calibrate the parameters of the 
process-based model but of the DNN-based model. 
Response: 
We have removed the ambiguous statement. 
  
L 332-334: I do not understand this sentence because you previously wrote that you were 
training models for different regions and not a global model. Please clarify. 
Response: 
ELM process-based fire model (not DNN surrogate model) has a unified representation for 
global wildfire dynamics. 
  
Table 1: It would be good to combine the columns data source and reference in one 
column. Otherwise it seems odd because population density and GDP do not have a data 
source. 
Response: 
Data source and reference columns are combined in Table 1. 
  
Figure 1: check “burn” area 
Response: 
Corrected. 
  



Figures 3, 5, 6: I recommend to combine these figures in one figure (with 4 columns per 
region) in order to directly compare the experiments in one plot. In addition, it would be 
good to also draw in a same way boxplots or violin plots of monthly burned area in order 
to check if the different experiments capture the statistical distribution of fire. 
Response: 
We appreciate the recommendation. We have combined Figure 3, 5, and 6 into one figure  
(Figure 3). 
 

 
Figure 3. A comparison of wildfire burned area between estimates from the ELMv1 process-
based model (BASE-Fire), Deep Neural Network wildfire model (DNN-Fire), Deep Neural Network 
wildfire model fine-tuned with observed burned area (DNN-Fire-OBS), and observations over 14 
GFED fire regions. 
  
Figure 4: This figure includes a lot of spatial aggregation. Can you draw a density scatter 
plot of the original monthly data in the used 1.9 x 2.5° resolution? 
Response: 
Thanks for the suggestions. We have added a density scatter plot in the supplementary material 
to demonstrate the performance of the surrogate model. The scatter plot showed that the 
majority of the BASE-Fire variability was captured by the DNN-Fire surrogate model (high 
density regions lie on 1:1 line).  



 
Figure S2. Performance of surrogate model (DNN-Fire) compared with ELMv1 process-based 
model (BASE-Fire).  
  
Figure 7 b: Is this a global averaged seasonal cycle? How do the seasonal cycles look like 
in different GFED regions? 
Response: 
Figure 7b is the global average and therefore dominated by major GFED fire regions, i.e. NHAF, 
SHAF, SHSA. For each different GFED region, we added a new figure in supplementary material 
to illustrate the seasonal cycles of modeled and observed burned area. Overall, the DNN-Fire-
OBS did a reasonably good job in capturing the seasonal dynamics of the burned area. Model 
biases were found for some specific months of the year. For example, DNN-Fire-OBS missed the 
decline of burned area in June over TENA and the relatively low burned area in March and April 
over AUST. 
  



 
Figure S3. Seasonal cycles of fine-tuned Deep Neural Network wildfire model (DNN-Fire-OBS) 
and observations over 14 GFED fire regions.  
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