
Dear Editor and reviewer, 
  
We very much appreciate the reviewers’ comments and feel that they have allowed us to 
substantially improve our manuscript. Below, we repeat the reviewers’ comments and then 
respond to each comment individually in blue italics. Related modifications in the revised 
manuscript are highlighted in red. 
  
Reviewer #2 
This study presents approach to build a deep learning-based model to better simulate 
burned area as part of an Earth system model. Although several machine learning and 
data-driven fire models were developed in the last years, this is a first study that directly 
aims to implement a deep neural network (DNN)-based fire model with a Earth system 
model. The paper is well written. 
Response: 
We appreciate the reviewer’s positive comments. We have addressed all major and specific 
comments below. 
  
1 Integration of DNN-based fire model with the Earth system model 
The paper is not clear about how the DNN-based model with implemented with the Earth 
system model (ESM). For the title and abstract, I expect the DNN model was implemented 
in the ESM. This would allow analyses about how the improved simulation of fire affects 
the simulated carbon fluxes and stocks in the ESM. But as the paper does not represent 
such results, I assume that DNN-based fire model was just applied outside of the ESM and 
that both models were actually not coupled. Hence, I’m wondering how the authors to 
imagine to couple both models. Especially the final DNN-Fire-GFED setup simulates clearly 
different burned area then the original BASE-Fire or DNN-Fire models setups. This implies, 
that for example a much higher simulated burned area in Africa should result also in a 
much lower biomass in Africa and hence changes the fuel load variable as input to the 
DNN-fire models. In the coupled model, the DNN-Fire-GFED model would lead to results 
that are inconsistent with the feature space that was initially used to train the DNN-Fire 
model. Ideally, the authors should do a sensitivity analysis in the coupled DNN-Fire-GFED 
and ESM models to see if the results are still consistent and reliable. If this is not feasible, 
the authors should at least discuss how they would address such inconsistencies. I assume 
that only a joint optimization of fire and fuel loads/biomass in the coupled model would 
solve this issue (Drüke et al., 2019). 
Response: 
We agree that to fully couple DNN-Fire and E3SM land models is important and is our long-term 
objective for fire modeling. We will achieve this long-term goal with a stepwise approach. This 



study is the first step to develop and tune the wildfire model within the E3SM land model 
interface so that burned area dynamics could be reasonably simulated. The current study is an 
important step towards a fully coupled E3SM + DNN-Fire model, which we will pursue  in future 
work. We appreciate the suggestion on joint optimization, and will  explore the effectiveness of 
such an optimization strategy in the future. 
  
In the revised manuscript, we add a paragraph to discuss the goal of this study and future work 
on fully coupled E3SM+DNN-Fire model (Line 356-359): “This study focuses on design, 
development, and parameterization of the DNN fire model within the E3SM model interface. In 
this way the DNN model can be readily coupled in the future and iteratively simulate climate, 
ecosystem fuel conditions, and fire dynamics. This study is an important step towards fully 
coupling E3SM and the DNN-Fire models in the future. ” 
  
  
2 Training and testing 
The authors trained a DNN model for each GFED region. Training the model for different 
regions is an unfair approach in comparison to process-based fire models as these models 
are truly global models, maybe with a PFT-dependent parametrization. Hence the authors 
should provide a good reasoning why they trained the model per GFED region. In addition, 
it does make sense at all that a fire model is parametrised per GFED region for an 
application in an Earth system model. As Earth system models are applied to assess future 
changes, a parametrisation per region will fast lead to useless results. For example, if 
climate and vegetation conditions change in future, which regional model should be 
applied in a certain region? Fire should be only simulated as a response to climate, 
vegetation and socioeconomic conditions. If regional parametrisation is necessary, the 
parameters should be based on vegetation or socioeconomic conditions. 
Response: 
The choice of 14 fire regions was based on the historical convention from the Global Fire 
Emissions Database (GFED) studies. The 14 GFED regions were chosen based on clustering of fire 
behavior, background climatology, and vegetation types. The GFED regions also consider the 
suitability for comparison with other wildfire studies e.g., atmospheric tracer inversion studies 
(van der Werf 2006). 
  
We appreciate the reviewer’s suggestion to parameterize the DNN-Fire model based on 
vegetation types. We thus developed an alternative PFT-based parameterization strategy for 
the DNN-Fire model. We found that both PFT-based and GFED-based parameterization were 
equally accurate in terms of surrogating the original E3SM model and capturing the large-scale 
dynamics after calibration (Figure S7,S8). 



  
Therefore, in the revised manuscript we added a paragraph to discuss the alternative PFT-based 
parameterization strategy (Line 392-398): “Our GFED region-based parameterization strategy 
relied on the combination of climate and biome types, while an alternative parameterization 
strategy for DNN-Fire model could be based on plant functional type distributions. Based on our 
analysis, the PFT-based DNN-Fire model had similar performance compared with the GFED-
based model (Figure S7, S8). Since the current version of the E3SM land model does not allow 
PFT changes driven by climate, both GFED-based and PFT-based models may not fully capture 
the changes of fire dynamics due to longer-time scale fire regimes changes.” 
 

Figure S7. The performance of the Deep Neural Network wildfire model (DNN-Fire), compared 
with the original ELMv1 process-based wildfire model (BASE-Fire) aggregated over 14 plant 
functional types between years 2001 and 2010. 
  



Figure S8. A comparison of wildfire burned area among Deep Neural Network wildfire model 
(DNN-Fire), Deep Neural Network wildfire model fine-tuned with observed burned area (DNN-
Fire-OBS), and observations for 14 plant functional types. 
  
  
The monthly burned area data from all grid cells in each regions was splitted randomely in 
80% training data and 20% for testing. This is one of the simplest tests as the underlying 
conditions and statistical distribution of both samples is the same. However, in the context 
of an Earth system model, we expect non-stationary conditions and hence the model 
should be tested how well it can predict into 1) different regions, 2) different time periods 
(was done but the conditions in the two time periods are very similar), and 3) to different 
environmental conditions (Klemeš, 1986). 
Response: 
To address this comment and to maximally train and test the model across different fire 
conditions, we applied a “stratified random sample method” [Wang 2012] in the revised 
manuscript. The burned areas over all gridcells were first divided into three subgroups or 
“strata” based on the magnitude of the burn (low burn 0-33 percentile, medium burn 34-66 
percentile, high burn 67-100 percentile). Then the gridcells were randomly sampled, but with the 
constraint that samples were drawn from each strata according to the ratios of samples within 
each strata. In this case, gridcells with different percentage burns (e.g., highly burned gridcells) 
were more likely divided into different datasets of training and testing, compared with the 
straightforward random sample method. 
  



In the revised manuscript, we add a paragraph to describe and discuss the stratified random 
sampling approach (Line 199-205): 
“Furthermore, the random sampling was stratified to reduce the risk of sampling, e.g., adjacent 
high fire gridcells. All gridcells were first divided into three “strata”: low burn (0-33% 
percentile), median burn (33%-66% percentile), and high burn (67-100% percentile) gridcells 
based on the burn magnitude. The stratified random sample assured the sampled gridcells for 
training and testing had the same ratios of low, medium, and high burn, thus eliminating 
potential sampling bias from spatial autocorrelation [Wang et al., 2012].” 
  
In order to assess the representativeness of the year chosen for training and testing, we trained 
and evaluated model performance with different years of test datasets 1) 2001-2002, 2) 2003-
2004, 3) 2005-2006, 4) 2007-2008, 5) 2009-2010. The rests were used as training datasets, 
resulting in five different models, each trained by 8 years of data; and tested with the remaining 
2 years of data. We found that the selection of training or testing years did not significantly 
change the model performance (Figure S1). 
  
In the revised manuscript, we add a section to describe and discuss the impacts of selected year 
of test datasets on model performance (Line 205-211): 
“In addition to random sampling, we also investigated the impacts of data choice on the model 
performance by sampling the testing datasets within specific years (e.g., 2001-2002, 2003-2004, 
2005-2006, 2007-2008, 2009-2010) and using the rest of the years for training. We found 
insignificant  differences among the models (Figure S1) indicating the choice of training and 
testing data years were not impactful. Therefore, we will discuss the results using the stratified 
random sampling approach throughout the paper.” 
 



 
Figure S1. Model performance evaluated with testing datasets of default (20% randomly 
selected samples), or fixed to 2001-2002 period, 2003-2004 period, 2005-2006 period, 2007-
2008 period, and 2009-2010 periods (the rest of the dataset was used as a training dataset.). 
  
3 Input data 
Most of the input data for the DNN model comes from climate, land use or socioeconomic 
datasets. Information on fuel loads, fuel wetness and temperature, however, was taken 
from ELMv1 model simulations. I wonder about how good are these simulated variables in 
comparison with independent (e.g. Earth observation) data. For example, any biases in 
simulated biomass will directly affect the simulated burned area. Please compare the 
simulated biomass and soil moisture with useful datasets. Alternatively, a residual analysis 
would be also useful to see if any errors in simulated burned area rea related to errors in 
the simulated input. 
Response: 
To evaluate impacts of E3SM model simulated biomass and soil moisture on DNN-Fire model 
predictions, we drove the DNN model with the NOAA NCEP-NCAR-CDAS-1 (Kalnay 1996) soil 
moisture product. We found that soil moisture is not a significant source of DNN-Fire model 
uncertainty (Figure S5); in contrast, surface climate forcings overall were more impactful on 



burned area simulations. For example, in the three largest fire regions (SHSA, NHAF, SHAF), 
dominant biases came from climate forcing rather than soil moisture (Figure S5). 
  
It is difficult to evaluate the bias from surface biomass within the DNN-Fire model, since 
continuous observed biomass data is not available. Thus, we directly compare the E3SM 
simulated long-term dynamics of vegetation carbon with present-day estimates (Figure S6). We 
found that E3SM reasonably captures the vegetation biomass stock. 
 
In the revised manuscript, we add a paragraph to uncertainty from climate forcings, soil 
moisture, and fuel load (Line 360-379):  “The DNN model uncertainty was subject to the 
accuracy of climate forcings as well as other physical driving variables simulated by the physical 
wildfire model (ELMv1). For example, in addition to the default GSWP3 climate forcings dataset 
used in the study,  CRU-JRA [Onogi et al., 2007]  and NCEP-DOE2 [Kanamitsu et al., 2002] 
reanalysis forcings were also widely used and potentially different from GSWP3 forcings. ELMv1 
used climate forcing (e.g., temperature, precipitation, wind speed, relative humidity) to 
simulate soil temperature, soil moisture, fuel load and so on. These simulated variables served 
as inputs for the DNN model and could also result in prediction uncertainty. It was challenging 
to eliminate the forcing uncertainties in this work, but we could at least evaluate the magnitude 
of these uncertainties. We ran the DNN-Fire-OBS model with alternative forcings of CRU-JRA, 
NCEP-DOE2, and CDAS soil moisture from 2001 to 2010 and compared the results with DNN-
Fire-OBS driven by default inputs (GSWP3 climate and ELMv1 simulated soil moisture) (Figure 
S5). The results showed relatively larger uncertainties from climate forcing than that from soil 
moisture forcing particularly over the major fire regions (e.g., SHSA, SHAF, and NHAF). For fuel 
load, although no transient dataset of global living biomass existed yet, we directly compared 
the ELM model simulated biomass with the global estimate (GEOCARBON ~ 455 Pg C). We 
found that the modeled present-day biomass continuously increased from 425 to 470 Pg C and 
compared reasonably well with the global benchmark. Future work will focus on evaluating the 
uncertainties from dead fuel load and fuel temperature variables.” 
 
 



 
Figure S5. Sensitivity of modeled burned area (2001-2010 long-term averaged) to climate 
forcings (including temperature, precipitation, wind speed, relative humidity) and soil moisture. 



X-axis is burned area simulated by the default model using GSWP3 climate forcing and ELMv1 
simulated soil moisture. Y-axis is models with alternative climate forcing (CRUJRA, NCEPDOE2) 
and soil moisture  (NCEP CDAS soil moisture) products. 
 

Figure S6. E3SM simulated global vegetation biomass [425-472 PgC] and observational based 
estimate of present-day living biomass (455 PgC GEOCARBON). 
  
Can you please demonstrate that the tree cover from the LUH2 dataset is consistent with 
the simulated biomass. Are there any areas where the simulated biomass does not 
correspond to tree cover? 
Response: 
LUH2 land cover change time series are prescribed as forcing variables within E3SM including 
tree cover, therefore consistency between E3SM and LUH2 is imposed in the model. 
  
Specific comments 
L 26-27: From this statement it is not clear if the DNN is implemented as part of the E3SM 
or if it is independent of the ESM and just returns the same output. Please clarify 
Response: 
In the revised manuscript, we have clarified this point with “with the Energy Exascale Earth 
System Model (E3SM) interface”, as described above. 
  
L 30-31: It is not clear what the R2 means. Is it the R2 between the observed and 
predicted global annual total burned area in 2001 and 2015? 
Response: 



In the revised manuscript, we have clarified this point with: “The surrogate wildfire model 
successfully captured the observed monthly regional burned area during validation period 2011 
to 2015 (coefficient of determination, R2 = 0.93)” 
  
L 41: The statement should be updated with newer estimates, e.g. by (Lasslop et al., 
2020) 
Response: 
In the revised manuscript, we have updated the sentence to read: “global forests would double 
if fire were eliminated [Bond et al., 2005; Lasslop et al., 2020]” 
  
L 78-93: You should clarify the scale of wildfire models. Fire behaviour models aim to 
model the spread and intensity of individual fires and are widely used in fire management. 
Fire models as parts of global vegetation or Earth system models have a different 
purpose. I assume that you are mainly addressing the second group of models, so please 
clarify it. Here you should specify that the first group focus mostly on predicting large scale 
regional fire dynamics, whereas the second group focus more on predicting fire in 
individual grid cells. 
Response: 
In the revised manuscript, we have clarified these points as (line 93-100): “Historically, data-
driven models were often used for fire behavior modeling to predict ignition, spread, duration, 
and extinction of individual fires [Finney, 1998; Radke et al., 2019] at fine spatial and temporal 
scales. This group of models are more relevant to operational fire research. In contrast, 
process-based wildfire models used in global vegetation models or earth system land models 
focus on gridcell aggregated fire burned area dynamics that are more relevant to analyses of 
large-scale patterns and climate-scale predictions [Fang Li et al., 2019; Rabin et al., 2017]. This 
study particularly focuses on the second category of wildfire models.” 
  
Chapter 2.2: The text might be easier to understand if you draw the network structure as 
a figure including all input variables, the hidden layers, neurons and output. 
Response: 
We have updated Figure 1 to reflect the input variables and structure of DNN models. 



 

 
Figure 1. Schematic representation of the ELMv1 process-based BASE-Fire model and the 
components to be surrogated with the Deep Neural Network (DNN) model (dark grey). 
  
L 163-171: The description of the training of DNN-fire-GFED is not completely clear. From 
the text it reads that only the weights were readjusted by using observed GFED data. 
Does that mean that original bias parameters from DNN-Fire-BASE were kept? Is there 
any reasoning? 
Response: 
We adopted the standard transfer learning approach [Do et al., 2005] that, first, pre-trained the 
DNN-fire model with E3SM outputs to generate reasonable baseline values for weight 
parameter, and second, using the pre-trained weight parameters as initial values and then fine-
tune the weight parameters using observations. 
  
L 180: “spunup” 



Response: 
“spunup” was corrected in the revised manuscript. 
  
L 197-201: The readability would be improved if each equation is in a new line and not 
within the text line. 
Response: 
Equations 9-11 are updated in the revised manuscript. 
  
L 244: Should this be Figure 7? 
Response: 
Corrected. 
  
L 273-275: Yes, but not many process-based fire models have been really calibrated. It 
would be good to provide examples in the text where this has been done. 
Response: 
We have removed the ambiguous statement. 
  
L 276-277: The statement is not really valid as you do not calibrate the parameters of the 
process-based model but of the DNN-based model. 
Response: 
We have removed the ambiguous statement. 
  
L 332-334: I do not understand this sentence because you previously wrote that you were 
training models for different regions and not a global model. Please clarify. 
Response: 
ELM process-based fire model (not DNN surrogate model) has a unified representation for 
global wildfire dynamics. 
  
Table 1: It would be good to combine the columns data source and reference in one 
column. Otherwise it seems odd because population density and GDP do not have a data 
source. 
Response: 
Data source and reference columns are combined in Table 1. 
  
Figure 1: check “burn” area 
Response: 
Corrected. 
  



Figures 3, 5, 6: I recommend to combine these figures in one figure (with 4 columns per 
region) in order to directly compare the experiments in one plot. In addition, it would be 
good to also draw in a same way boxplots or violin plots of monthly burned area in order 
to check if the different experiments capture the statistical distribution of fire. 
Response: 
We appreciate the recommendation. We have combined Figure 3, 5, and 6 into one figure  
(Figure 3). 
 

 
Figure 3. A comparison of wildfire burned area between estimates from the ELMv1 process-
based model (BASE-Fire), Deep Neural Network wildfire model (DNN-Fire), Deep Neural Network 
wildfire model fine-tuned with observed burned area (DNN-Fire-OBS), and observations over 14 
GFED fire regions. 
  
Figure 4: This figure includes a lot of spatial aggregation. Can you draw a density scatter 
plot of the original monthly data in the used 1.9 x 2.5° resolution? 
Response: 
Thanks for the suggestions. We have added a density scatter plot in the supplementary material 
to demonstrate the performance of the surrogate model. The scatter plot showed that the 
majority of the BASE-Fire variability was captured by the DNN-Fire surrogate model (high 
density regions lie on 1:1 line).  



 
Figure S2. Performance of surrogate model (DNN-Fire) compared with ELMv1 process-based 
model (BASE-Fire).  
  
Figure 7 b: Is this a global averaged seasonal cycle? How do the seasonal cycles look like 
in different GFED regions? 
Response: 
Figure 7b is the global average and therefore dominated by major GFED fire regions, i.e. NHAF, 
SHAF, SHSA. For each different GFED region, we added a new figure in supplementary material 
to illustrate the seasonal cycles of modeled and observed burned area. Overall, the DNN-Fire-
OBS did a reasonably good job in capturing the seasonal dynamics of the burned area. Model 
biases were found for some specific months of the year. For example, DNN-Fire-OBS missed the 
decline of burned area in June over TENA and the relatively low burned area in March and April 
over AUST. 
  



 
Figure S3. Seasonal cycles of fine-tuned Deep Neural Network wildfire model (DNN-Fire-OBS) 
and observations over 14 GFED fire regions.  
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