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Abstract. Mean radiant temperature (Tmrt) is a frequently-used measure of outdoor radiant heat conditions. Excessive Tmrt, 

linked especially to clear and warm days, has a negative effect on human well-being. The highest Tmrt on such days is found 

in sunlit areas, whereas shaded areas have significantly lower values. One way of alleviating high Tmrt is by planting trees to 

provide shade in exposed areas. To achieve the most efficient mitigation of excessive Tmrt by tree shade with multiple trees 10 

requires optimized positioning of the trees, which is a computationally extensive procedure. By utilizing metaheuristics, the 

number of calculations can be reduced. Here, we present TreePlanter v1.0, which applies a metaheuristic hill climbing 

algorithm on input raster data of Tmrt and shadow patterns to position trees in complex urban areas. The hill climbing algorithm 

enables dynamic exploration of the input data to position trees, compared with very computationally demanding brute-force 

calculations. The hill climbing algorithm has been evaluated with a static greedy algorithm that positions trees one at a time 15 

based on ranking and is expected to always find relevant locations for trees. The results show that the hill climbing algorithm, 

in relatively low model runtime, can find positions for several trees simultaneously that lowers Tmrt substantially. TreePlanter, 

with its two algorithms, can assist in optimization of tree planting in urban areas to decrease thermal discomfort. 

1 Introduction 

The increased risk of exposure to excessive heat in urban areas during extreme events as an effect of a modified urban climate 20 

can lead to excess mortality and morbidity (Dousset et al., 2010; Gabriel and Endlicher, 2010). The modified and generally 

warmer urban climate is a result of several factors, such as density of building stock, street orientation, color of materials, 

absence of permeable surfaces, anthropogenic heat and lack of vegetation (Arnfield, 2003). Mean radiant temperature (Tmrt 

(°C)) is an important meteorological variable in the human energy balance and outdoor human thermal comfort, especially 

during clear and warm weather (Mayer and Höppe, 1987; Höppe, 1992; Mayer et al., 2008). Tmrt is the sum of all short- and 25 

longwave radiation fluxes (both direct and reflected) to which the human body is exposed, defined by ASHRAE (2001) as the 

“uniform temperature of an imaginary enclosure in which radiant heat transfer from the human body equals the radiant heat 

transfer in the actual non-uniform enclosure”. High Tmrt has negative effects on human health (Mayer et al., 2008). Thorsson 

et al. (2014) showed that there is a higher correlation between Tmrt and mortality compared than between air temperature and 
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mortality on hot days. High daytime Tmrt correlated with heat related mortality among people aged 80+, whereas high nighttime 30 

Tmrt correlated with heat related mortality among peopled aged 45-79.  

Lateral longwave irradiance from surroundings is the largest component of Tmrt (Lindberg et al., 2014), and although this 

component does increase on clear days, high values of outdoor Tmrt only occur in sunlit areas exposed to direct shortwave 

irradiance from the sun (Lindberg and Grimmond, 2011a). Tmrt peaks around noon and early afternoon when the sun is at its 

highest position during the day. Areas in front of sunlit south-facing walls (northern hemisphere) are exposed to high radiant 35 

load (Lindberg et al., 2016; Wallenberg et al., 2020), due to high amount of shortwave irradiance from the sun, but also 

reflected shortwave irradiance from adjacent walls, as well as emitted longwave irradiance from nearby warm surfaces 

(Lindberg et al., 2016; Thorsson et al., 2017). A proven method to tackle the issue of high daytime Tmrt on clear days is through 

shading by e.g. buildings or vegetation (Lindberg and Grimmond, 2011b; Srivanit and Jareemit, 2020). Buildings are static 

and their geometries challenging to modify, whereas increasing the fraction of vegetation is a favored heat-mitigating strategy 40 

(Konarska et al. 2014; Norton et al., 2015; Lindberg et al., 2016).  

Reducing solar radiation (e.g. Bajsanski et al., 2016; Stojakovic et al., 2020) and Tmrt (e.g. Konarska et al., 2014; Lindberg et 

al., 2016; Zhao et al., 2018; Abdi et al., 2020; Lee et al., 2020; Lee and Mayer, 2020; HosseiniHaghighi et al., 2020) with tree 

shade has been extensively studied. Studies of the effects of vegetation on thermal comfort often focus on either vegetation in 

general, or more specifically on the positioning of trees. Zhao et al. (2018) studied the effects of trees on a neighborhood in 45 

Phoenix (Texas, US) and showed that two trees with equal distance had a higher effect on thermal comfort compared to two 

dispersed trees. Lee et al. (2020) analyzed the distance between trees in combination with tree canopy size and showed that 

the shading effect of trees increases with a lower aspect ratio (height/width ratio, H/W) of surrounding buildings. They also 

showed that a larger tree canopy in combination with an increased distance between the trees had a larger positive effect on 

thermal comfort on the northern sidewalk in an east-west oriented street canyon, compared to the southern sidewalk. This 50 

effect was mainly attributable to a decrease in Tmrt. Trees had, on the other hand, little effect on air temperature regardless of 

whether the position was sunlit or shaded. 

A common denominator within the topic of trees as a mitigating tool, regardless of whether the focus is on distance between 

trees or tree size, is that the tree or trees are located without knowledge of how they optimally should be placed with respect 

to reducing radiant load. The locations of the tree or trees have an effect on the thermal comfort (Abdi et al., 2020; Lee et al., 55 

2020; Srivanit and Jareemit, 2020) and therefore optimized positioning could enhance the mitigating effect. One way of 

addressing this issue is to calculate the optimal positions of the trees using spatial information (insolation and shadow patterns), 

and the possible locations for the trees (i.e. where there are no buildings or other obstructing structures). However, brute-force 

calculations for optimal positions increases exponentially with an increase in number of trees and quickly becomes extremely 

computationally demanding. A different, less demanding method of finding optimal locations for trees is by exploiting 60 

metaheuristic algorithms. Examples of metaheuristic algorithms are genetic or evolutionary algorithms. Such algorithms 

inherit “genes”, e.g. coordinates of positions of trees, from previous “populations”, e.g. an iteration in an algorithm for 

positioning the trees. Stojakovic et al. (2020) utilized an evolutionary algorithm for positioning trees to mitigate insolation in 
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a rectangular city block in Belgrade, Serbia, and clearly showed that locations differ depending on prerequisites like height of 

surrounding buildings. Chen et al. (2008) and Ooka et al. (2008) exploited genetic algorithms to study optimal positions for 65 

trees and tree arrangements using computational fluid dynamics simulations in a hypothetical urban block in Tokyo. Another 

example of a metaheuristic algorithm is the greedy algorithm, utilized by Zhao et al. (2017), to optimize tree locations to study 

shading effects and shade coverage on building facades. This algorithm finds the optimal position for one tree at a time, which 

means that once the position for the first tree is established it cannot be adjusted. A hill climbing algorithm (Luke, 2013) is an 

additional example, where neighboring positions of a tree are explored to identify a better position concerning e.g. shading 70 

and reduction of radiant load.  

Here we present TreePlanter, a model for optimization of tree positions to mitigate heat stress by reducing outdoor radiant load 

in urban settings. The optimization of tree positions is achieved by utilizing a metaheuristic hill climbing algorithm to reduce 

Tmrt. TreePlanter is incorporated in the Urban Multi-Scale Environmental Predictor climate service tool (UMEP; Lindberg et 

al., 2018), to facilitate usage by other researchers, and practitioners such as urban planners and landscape architects 75 

(http://umep-docs.readthedocs.io/). 

2 Methods 

TreePlanter make use of output data generated by the SOlar and LongWave Environmental Irradiance Geometry (SOLWEIG) 

model (Lindberg et al., 2008). SOLWEIG is a 2.5D-model able to estimate spatial variations of Tmrt using commonly-available 

meteorological forcing data (incoming shortwave radiation, air temperature and relative humidity) and surface information 80 

such as a digital surface model (DSM) including the elevation of buildings and ground (e.g. Fig. 3b). Developments in 

SOLWEIG enable inclusion of 3D vegetation data (Lindberg and Grimmond, 2011b) and variations in ground surface cover 

(Lindberg et al., 2016). SOLWEIG has been subject of evaluation in several studies (e.g. Lindberg and Grimmond, 2011b; 

Lindberg et al., 2016; Lau et al., 2016; Chen et al., 2016; Kántor et al. 2018; Gál and Kantor, 2020). Furthermore, SOLWEIG 

is a popular radiation model, utilized extensively in applied studies (e.g. Lindberg et al., 2013; Lau et al., 2014; Jänicke et al., 85 

2015; Thom et al., 2016; HosseiniHaghighi et al., 2020). 

TreePlanter uses the gridded Tmrt and shadow patterns output from SOLWEIG, as well as information on the locations of 

buildings, and the meteorological forcing data used by SOLWEIG. Example outputs from SOLWEIG are shown in Fig. 3c 

and 3d. The figures show output of Tmrt and shadow patterns, respectively, for 1700 LST on June 22 1983. By comparing Tmrt 

with shadow patterns, it is evident that radiant load in shaded areas is substantially lower compared to sunlit areas. Output data 90 

from SOLWEIG is crucial for running the particular model described here. However, in theory, any raster data of Tmrt and 

shadow patterns could be used. 

A planting area (study area) is defined inside the spatial extent of the output data from SOLWEIG. This planting area can 

cover either the entire spatial extent of the output data, or be delimited to a smaller area to confine positioning of trees to areas 

http://umep-docs.readthedocs.io/
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within the model domain that are not occupied by buildings or existing trees. Furthermore, it is not possible to position trees 95 

within one radian of the tree canopy diameter from buildings or other trees. See Sect. 5.1 for further description.  

2.1 Model pre-processing 

A general and simplified flowchart of the model pre-processing is shown in Fig. 1a. First, a general 3D tree form is designed 

from input tree morphology data: tree type (deciduous or conifer), tree height, trunk zone height (height from ground to canopy, 

i.e. bare trunk) and canopy diameter. The meteorological forcing data (same as for the SOLWEIG run) is used to estimate Tmrt 100 

for a point that is shaded by a tree with a transmissivity (𝜏) to shortwave radiation for specified time steps (specified by the 

meteorological data). Additionally, the specified time steps from the meteorological data are used to generate corresponding 

shadows in a fictitious flat environment (i.e. no buildings or trees), using the general 3D tree shape produced from the input 

tree morphology data (hereafter referred to as shadowstree).  

With the generated shadowstree and calculated Tmrt for a point shaded by a tree for each time step, Tmrt in the tree shadows for 105 

each time step can be estimated (hereafter referred to as Tmrt.tree). By iterating over every position in the planting area where a 

tree can potentially be located and moving only one tree, it is possible to estimate the difference in Tmrt between Tmrt.tree and 

sunlit conditions in the output from SOLWEIG (hereafter referred to as Tmrt.solweig) for each position for each time step. The 

comparison take into account shadows from surrounding buildings and existing vegetation (hereafter referred to as 

shadowssolweig) and their physical structures, i.e. pixels in Tmrt.tree are removed where there are shadows from existing buildings 110 

or vegetation. In short, only sunlit pixels in Tmrt.solweig that can be shaded by the generated tree for a given position are used in 

the comparison. The product from the comparison between Tmrt.solweig and Tmrt.tree is a new raster with an estimated difference 

in Tmrt between sunlit and tree shade (hereafter referred to as ΔTmrt) for every position in the study area where it is possible to 

locate a tree. This raster gives a potential decrease in Tmrt and is estimated from simply one tree, which means that the estimated 

potential decrease in Tmrt for each position is without any interference of tree shadows from any of the other trees, i.e. 115 

combination of several trees if the model is used to locate optimal positions for more than one tree. The output ΔTmrt raster 

from the model initialization is used subsequently in the model to find optimal positions for several trees. To avoid possible 

spatial boundary effects, five percent of the y extent and x extent are removed at all sides in the input data from SOLWEIG 

(Tmrt.solweig and shadowssolweig).  
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Figure 1 Flowchart of the model (a) showing the model pre-processing and (b) showing the optimization of tree locations. The flowchart 

consists of tables (e.g. tree morphology and meteorological data), processes (e.g. GENERATE TREE, which is an algorithm that generates 

a general 3D tree form from input tree morphology table data) and raster grids. Some grids can have more than one layer, where each layer 

represents one time step (e.g. TREE SHADOW, where each layer represents shadow pattern for a specific time step). The end product is a 

table with the positions of the trees. 125 

2.2 Algorithms in the model 

In the model initialization, described in Sect. 2.1, only one tree is used to calculate ΔTmrt for every possible location. In theory, 

it would be possible to calculate ΔTmrt for any number of trees for all possible combinations of locations. However, brute-force 

calculations with more than one tree would substantially increase the computational time as the number of combinations would 

increase exponentially. One way to avoiding brute-force calculations, but still find suitable solutions within limited time or 130 

with limited computational power, is the use of metaheuristic algorithms (Luke, 2013). Metaheuristic algorithms are not 

guaranteed to find the best solution, but nevertheless, they are helpful when brute-force calculations are too extensive and, 

with a given number of iterations or amount of time, metaheuristic algorithms can lead to a satisfactory result to an optimization 

problem. The model described in this paper utilizes a hill climbing algorithm (Luke, 2013) to find optimal positions, in 

combination with two ways of assigning starting positions for new trees: random and genetic (random and genetic starting 135 

positions are described in Sect. 2.2.2). The basic principle in TreePlanter, with a hill climbing algorithm, is that the ΔTmrt raster 

is explored step-wise for better positions, and if shadowstree of two or more trees overlap, adjustments are applied. This means 

that the ΔTmrt raster can be explored freely, and the estimated difference in Tmrt at each position applies, only to be adjusted if 



 

6 

 

there is an interference, i.e. overlapping tree shadows. In this way, the number of calculations is significantly reduced compared 

to the brute-force approach. The exploration of the ΔTmrt raster is conducted until no better positions can be established for the 140 

trees, which means that the trees are in their local optimal positions based on their starting positions. After this, the model 

restarts a new iteration. The model is set to restart for i number of iterations. The iterations are necessary to initiate new starting 

positions for the trees. In this way, the trees can avoid finding the same local optimums. Here, a local optimum is defined as a 

position for a tree, where if it were in any of its neighboring positions, it would have less mitigating effect on Tmrt (described 

in more detail in Sect. 2.2.1). Local optimums are, however, not necessarily the best positions in the ΔTmrt raster, as there can 145 

be many local optimums within this raster. A large number of iterations will increase the number of unique starting positions 

and combinations of starting positions by several trees. This in turn means that more of the ΔTmrt raster and its local optimums 

will be explored. 

Following is an example of how the hill climbing algorithm can decrease number of calculations, compared to brute-force 

calculations. An area with 𝑛 = 500 possible locations for trees, where optimal positions for 𝑘 = 5 trees are studied, would 150 

require 
𝑛!

(𝑛−𝑘)!𝑘!
= 2.5 ∗ 1011  brute-force calculations, considering all possible combinations. Using the hill climbing 

algorithm, it is possible to run the model for a given number of iterations. Running it with e.g. 𝑖 = 5000 iterations, where in 

every iteration each tree would move imaginably 𝑚 = 100 times, would estimate to approximately 𝑘 ∗ 𝑚 ∗ 𝑖 = 2.5 ∗ 106 

calculations, which is substantially faster in comparison to the 2.5 ∗ 1011 required with brute-force calculations. 

A flowchart of the second part of the model, the tree locator, is shown in Fig. 1b. Input data to the model are the ΔTmrt (ΔTmrt 155 

in Fig. 1b), Tmrt.tree and shadowstree rasters from the model initialization, as well as Tmrt.solweig and shadowsolweig rasters from 

SOLWEIG. Pseudocode for the algorithms in Sect. 2.2 is presented in Fig. 2. The model is run for i number of iterations as 

stated in line 4. Starting positions are determined in line 5 (see Sect. 2.2.2). The ΔTmrt raster is then explored until all trees are 

in their local optimums. In line 11 total potential decrease in Tmrt in the area shaded by the moving trees, integrated over all 

time steps used, is estimated. The tree locations will continue to change as long as Tmrt mitigation continues to increase in 160 

efficiency, as seen in lines 12-14. When there are no better locations for the trees and all are in local optimums the iteration 

stops, tree locations with corresponding decrease in Tmrt are saved (line 15-17), and a new iteration commences (line 4). When 

the model has finished all iterations, it returns the locations of the trees from the iterations with largest decrease in Tmrt (line 

18).  
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Figure 2 Pseudocode of the tree locator algorithm in the model. 

2.2.1 An iteration of the Hill climbing algorithm 

The fundamental procedure of the hill climbing algorithm is that the model begins with k number of starting positions for k 

number of trees, and then cycles through these trees repeatedly to attempt to move trees to a better position. For each tree, the 

algorithm searches the adjacent eight pixels for a higher difference in Tmrt compared to the tree’s current position, and 170 

potentially moves the tree one pixel, and then performs the search for the next tree. When the search/move has been performed 

for all trees, the algorithm cycles over all trees again. In this way, the raster is explored until local optimums are determined 

for each tree in relation to the other moving trees. If two trees are in such a proximity to each other that their shadows overlap, 

the overlap is adjusted for, i.e. the decrease in Tmrt is counted only once. This means that shadows can overlap if this would 

provide a more favorable shading effect. When all trees have found their optimal positions for an iteration of the hill climbing 175 

algorithm, it saves the positions and the corresponding decrease in Tmrt. A new iteration of the hill climbing algorithm then 

commences with new starting positions (Sect. 2.2.2), and the model continues for i number of iterations. In the end of the 

model run the iteration with greatest decrease in Tmrt is determined and the corresponding tree positions will be used as output.  

If two or more tree shadows overlap, an adjustment of the decrease in Tmrt is necessary, or the decrease in the overlapping 

shadows would be accounted for more than once. Testing for potential overlaps is conducted in different ways in TreePlanter. 180 

A first test is executed by comparing distances between the trees, where large distances can rule out any possible overlap. 

Here, large distance is defined as the largest shadow created from a tree within the modeled time span. If distances, on the 
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other hand, are close enough for potential overlap, additional calculations are executed to determine the exact number of 

overlapping pixels, from which adjustments of reduction in Tmrt are estimated.  

Another functionality in the model, connected to adjustment, is nudging. Nudging is initiated if two or more shadows are 185 

overlapping or next to each other, creating a large continuous shadow. When initiated, it will try to move the trees 

simultaneously in the same direction, to see if there are better positions in their vicinity. For example, if two trees have a 

combined continuous shadow, it will search their adjacent west pixels simultaneously, then search the northwest pixels, et 

cetera, until all eight adjacent directions have been explored. This is to prevent trees from occupying a position, when there 

are potentially better positions for them if one of them is relocated.  190 

2.2.2 Starting positions for iterations 

Two methods to derive starting positions are available in the model: random and genetic. Depending on the size of the model 

domain, number of starting positions can be extensive. For example, a 100 x 100 planting area would have 10000 possible 

locations, and thus same amount of possible starting positions for the trees. Building shadows would largely influence the Tmrt 

for some pixels. Pixels where the decrease in Tmrt is zero, i.e. pixels that are already shaded, are excluded. Furthermore, trees 195 

cannot be within one tree canopy diameter of each other when they start, as this would mean that their canopies would be 

overlapping.  

In the random algorithm for starting positions, each tree is assigned a random starting position in the ΔTmrt raster at the 

beginning of each iteration. That is, if the model is executed with 3000 iterations, the trees will start with new random positions 

in each individual iteration. The algorithm for random starting positions was evaluated against a genetic algorithm for starting 200 

positions. Compared to the random starting algorithm, the genetic algorithm inherits starting positions from local optimums of 

the previous population. This means that starting positions of the next model iteration will be based on the best positions of 

the previous iteration. In the first iteration, each tree is assigned a random starting position based on the ΔTmrt raster. In the 

second iteration, the positions will be determined randomly from the y and x coordinates of the local optimal positions (local 

optimums) in the previous iterations. Here, a tree can have its y coordinate from one tree and x coordinate from another tree. 205 

Mutation of either the y or the x position will occur if trees have reached positions without improvement in decrease in Tmrt 

for three consecutive iterations. In this sense, mutation means that the y or the x position (randomly decided which one that 

will mutate) is set to a random position in the planting area. Mutation can also occur if the starting positions for the trees are 

too close to each other, i.e. the trees have converged to a very confined area and the starting position for a tree is within one 

diameter of the other trees 50 times in a row. 210 

2.3 Summary of the model 

This section gives a short summary of the model in a chronological order: 
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1. SOLWEIG is executed for a given number of time steps based on meteorological data (incoming shortwave 

irradiance, air temperature and relative humidity) and other necessary gridded input data, to simulate Tmrt 

(Tmrt.solweig) and shadow (shadowssolweig).  215 

2. A planting area is determined within the spatial extent of the output data from SOLWEIG, e.g. a square in an urban 

area. 

3. A tree form is generated based on tree height, canopy diameter and trunk zone height (height between ground and 

canopy).  

4. The effect of the tree form in step 2 on radiant load is calculated (Tmrt.tree and shadowstree) based on the same 220 

meteorological data as in step 1. This is determined for a flat unobstructed area. 

5. Based on the Tmrt and shadow patterns from step 1 (Tmrt.solweig and shadowssolweig) and step 3 (Tmrt.tree and shadowstree) 

a difference in Tmrt is estimated (ΔTmrt) for each position in the planting area  

6. The user decides the number of trees (k) to optimize locations for in respect of Tmrt mitigation.   

7. Give each tree a random starting position in the gridded planting area.  225 

8. Execute hill climbing algorithm. Adjust for potential overlap by any of the k trees.  

9. Save optimal positions of trees and corresponding decrease in Tmrt. 

10. Repeat from step 7 for i number of iterations, with either the random or genetic starting algorithm, where i number 

of iterations is set by the user. 

11. Output of tree positions for iteration with greatest decrease in Tmrt. 230 

2.4 Greedy algorithm 

As explained in Sect. 2.2, the best solution cannot be known unless brute-force calculations are applied. Therefore, the hill 

climbing algorithm has been evaluated against a “greedy” algorithm. Zhao et al. (2017) used a greedy algorithm for strategic 

tree placement for optimized tree shade coverage to decrease solar exposure on facades and in turn lower building energy 

use. The results by Zhao et al. (2017) showed that the greedy algorithm determined locations where tree shade coverage was 235 

optimized, while simultaneously had low negative effect of tree shade on rooftop solar panels. The greedy algorithm is 

elemental in that optimal positions for trees are determined one at a time, based on the ΔTmrt raster described in Sect. 2.1. 

When a position is determined for a tree, this position and the pixels covering the canopy and a surrounding buffer of one 

radian of the tree canopy are occupied. Furthermore, spatial patterns of Tmrt.solweig and shadowssolweig are updated to include 

spatial Tmrt and shadow patterns of the newly added tree, which means that a tree shade of a subsequent tree will not have a 240 

mitigating effect in those areas. The greedy algorithm can be described as ranking positions, where the first tree will be 

located in the position where the highest potential decrease in Tmrt can be achieved, the second tree in the second ranking 

position (taking into account the shading from the first tree), et cetera.  Tree locations determined by a greedy algorithm for 
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mitigation of Tmrt are used here to evaluate tree locations determined by the hill climbing algorithm, as the greedy algorithm 

is expected to always find tree locations with high potential decrease in Tmrt. 245 

A short summary of the greedy algorithm is as follows: 

1. Step 1-5 in Sect. 2.3. 

2. Determine best position in ΔTmrt for one tree. 

3. Update Tmrt.solweig and shadowssolweig to include Tmrt.tree and shadowstree based on the position in step 2. Remove all 

positions within one canopy diameter of the tree location as a future possible location for a tree. 250 

4. Recalculate ΔTmrt with the updated Tmrt.solweig and shadowssolweig.  

5. Repeat from step 2 for k trees. 

3 Model evaluation 

3.1 Model domain and forcing data 

The case study area is located in Gothenburg, Sweden, centered to the square Järntorget (Fig. 3), a hub for public transport 255 

(latitude 57.6997°, longitude 11.9530°). Being a hub for public transport with surrounding blocks occupied by restaurants and 

small shops, makes it one of the busiest areas in Gothenburg. The southern part of the square was selected for the model 

evaluation. The square is intersected by tram tracks seen in the northern and western part of Fig. 3a, with bike lanes in the 

eastern part. Within the potential planting area, there is a fountain, which is excluded as a possible location for new trees. The 

input geodata consists of a DSM, a DEM (Digital Elevation Model) including ground heights and a CDSM (Canopy Digital 260 

Surface Model) including vegetation height. Only vegetation higher than 2 meters is present in the CDSM (Fig. 3b). All gridded 

geodata have a pixel resolution of 1 meter. The geodata originates from the Building and Planning Office in Gothenburg. 

Hourly meteorological data (shortwave radiation, air temperature and relative humidity) used were from the nearby Swedish 

Meteorological and Hydrological Institutes weather station number 92513 (WMO 2513). The meteorological data represents 

a typical clear summer day in Sweden close to summer solstice (June 22 1983).  265 
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Figure 3 Map of case study area with (a) Orthophoto RGB 0.25 m © Lantmäteriet (2018) where the dashed black line determines the planting 

area for possible tree locations and (b) DSM and CDSM. Plots (c) and (d) show examples of output from SOLWEIG, where (c) is Tmrt and 

(d) is shadow pattern for 1700 LST on June 22 1983. 

3.2 Tree locations generated by TreePlanter 270 

The model was evaluated for 0900-1600 LST and 1300-1600 LST for three different tree sizes (see table Table 1 for description 

of tree sizes), as well as an evaluation with four, five and six trees with tree size large (Table 1). The first period (0900-1600 

LST) is used to test the model over a longer time span with solar azimuth shifting from east to west. The second period (1300-

1600 LST) covers a time interval when excessive radiant load and heat stress is in general most pronounced, when solar 

radiation potentially is high, and surrounding heated surfaces emits large amounts of longwave radiation. 275 

Table 1 Table with different tree sizes used for model evaluation. 

Tree size Tree height (m) Canopy diameter (m) Trunk zone height (m) Transmissivity (𝜏) 

Small 5 3 2 0.03 
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Medium 8 5 2 0.03 

Large 12 7 3 0.03 

The positions of the trees were determined using the genetic algorithm and 20000 iterations. Running the model with 20000 

to ensures that tree locations are satisfactory (see Sect. 4). The rasters with mean Tmrt were produced by running SOLWEIG 

but with an updated CDSM containing the optimized tree locations as well as updated sky view factors (SVF). The difference 

maps were produced by comparing SOLWEIG outputs of Tmrt with and without the optimized trees, i.e. before (sunlit) and 280 

after (shaded). In addition, summary statistics have been calculated by running SOLWEIG with updated SVF and CDSM 

including the trees established by TreePlanter. 

3.2.1 Optimal locations for trees with different sizes 0900-1600 LST 

Figure 4a shows the location of five small trees over the period 0900-1600 LST. TreePlanter locates the trees close to the west 

building. Since the south-facing façade of the west building is sunlit most of the time steps during the studied time period, this 285 

is where the model identifies optimal positions for the trees. The relatively small trees also cast relatively small shadows, 

which allow the trees to be located close to each other, as well as close to the building. This results in approximately evenly 

spaced trees aligned along the south and east-facing façades, where their shade allow for a decrease in average Tmrt of up to 23 

°C (Fig. 4b).  

Locations for medium trees (Table 1) are shown in Fig. 4c. Here, the trees are more scattered, and optimal positions are 290 

established between the two buildings. The area in front of the south-facing façade of the west building is now shaded by only 

one tree, compared to the previous example, where this area was shaded by 2-3 trees. Continuing, the area in front of the east-

facing façade is now less shaded than in the previous example. On the other hand, there is now an increased shaded area 

extending to the east building, because of the greater tree size with their corresponding increased tree shades (Fig. 4d).  

When tree size is increased further (large, Table 1), the trees are dispersed even more (Fig. 4e). The area in front of the south-295 

facing façade of the west building is now less shaded than in previous examples, and the area in front of the east-facing façade 

is barely shaded at all. Furthermore, two trees are at the northern border, shading areas outside the planting area. Another two 

trees are shading parts of the fountain. This results in a mitigating effect outside the planting area (Fig. 4f). 
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Figure 4 Mean Tmrt for 0900-1600 LST on June 22 1983, with locations of (a) five small trees, (c) five medium trees and (e) five large trees 300 

in green (see Table 1). (b), (d) and (f) are corresponding differences in Tmrt between tree shade and sunlit for (a), (c) and (e) respectively. 

The positions are determined with the genetic starting algorithm and 20000 iterations.  
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3.2.2 Optimal locations for trees with different sizes 1300-1600 LST 

The model was also run for 1300-1600 LST, with same tree sizes as in Fig. 4, to study the tree locations during this time period. 

The corresponding results are presented in Fig. 5.  305 

The results from the model run with small trees (Table 1) are shown in Fig. 5a. One striking difference compared to Fig. 4a is 

that all trees except one are concentrated around the east building instead of the west building. One tree end up shading the 

area in front of the south-facing façade of the west building. In Fig. 5b it is possible to see a decrease in average Tmrt of up to 

26 °C for almost all areas shaded by the trees.  

When tree size is increased to medium, all trees end up in the eastern part of the study area (Fig. 5c). The locations established 310 

by the model provide shade around the entire previously-sunlit area of the east building, and a large decrease in Tmrt, as seen 

in Fig. 5d.  

In the last example, using large tree size (Fig. 5e), the trees are more or less in the same locations as in Fig. 5c, and similar 

assumptions can be made as in the previous example. However, they are now positioned slightly further south, as their shadows 

extend further because of the higher tree height. It is also visible that they are farther apart, as the diameter of the tree canopy 315 

is larger, and thus the tree shade increases in width as well. In this example, however, the area shaded by the trees is now 

continuous for all trees (Fig. 5f), compared to Fig. 5d. That is, the area where the tree shadows have an effect covers almost 

all areas along the south and western sides of the east building. 
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Figure 5 Mean Tmrt for 1300-1600 LST on June 22 1983, with locations of (a) five small trees, (c) five medium trees and (e) five large trees 320 

in green (Table 1). (b), (d) and (f) are corresponding differences in Tmrt between tree shade and sunlit for (a), (c) and (e) respectively. The 

positions are determined with the genetic starting algorithm and 20000 iterations.  
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3.2.3 Optimal locations depending on number of trees 

One aim with TreePlanter and the hill climbing algorithm is to see if the combined and continuous shadow of several trees 

could influence the positioning of trees. In other words, can e.g. the combined and continuous shadow of two trees shade an 325 

area equivalent to that shaded by one tree, but from different positions. To investigate this, the model was executed with 

varying number of trees (four, five and six) with tree size large (Table 1). The results from the model run with four trees (Fig. 

6a), show that the tree shading the area in front of the southwest-facing corner in Fig. 5e is now missing. Furthermore, the 

westernmost tree is located slightly more south. Other than that, no large difference is visible. The missing tree, of course, has 

an effect on the amount of area with a decrease in Tmrt, as seen in Fig. 6b. When increasing the number of trees to six, it is 330 

possible to see that the three trees shading the south- and west-facing façades (Fig. 6c) are in same positions as in Fig. 5e. 

However, when comparing with figure 6a, only one tree is in the same position (the central one in fig. 5a, shading the south 

facing façade). All other trees are in different positions. The trees in the western part, along the border of the planting area, are 

now located further south and only the very north part of this border is still sunlit. For all model runs it is possible to see a 

large decrease in Tmrt (Fig. 5f, 6b and 6d).  335 
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Figure 6 Mean Tmrt for 1300-1600 LST on June 22 1983, with locations of (a) four large trees and (c) six large trees in green (see Table 1 

for detailed tree sizes). (b) and (d) are corresponding differences in Tmrt between tree shade and sunlit for (a) and (c). The positions are 

determined with the genetic starting algorithm and 20000 iterations. 

4 Model performance 340 

The model performance and runtime are dependent on a combination of spatial extent and the pixel resolution of the study 

area, i.e., the number of model grid points within a domain. Factors such as tree size, number of trees and time steps also affect 

model performance. The model was executed with the same model domain and forcing data as in Sect. 3.1, but with varying 

tree size, number of trees, time steps, model iterations and domain pixel resolution, to investigate these dependencies. In the 

performance analysis a ratio of the potential decrease in Tmrt between the hill climbing algorithm and the greedy algorithm was 345 

used to quantify the mitigation benefits of the hill climbing algorithm. The model performance tests were executed on an Intel 

Core i7-7700 CPU @ 3.60 Ghz with 16 GB RAM @ 2400 Mhz. Figure captions include number of potential locations for 

trees, which differs depending on tree size due to the fact that a tall tree generates a more extensive ground shadow compared 

to a short tree. Mean model runtime (s) for all model performance tests are presented in Table 2. Initialization time is excluded 

and disk I/O is negligible. 350 

Table 2 Table showing mean model runtime (s) for 100 iterations for two starting algorithms (random and genetic) with different time 

periods, number of trees and tree sizes. The difference in model runtime (%) corresponds to a change in model runtime with the genetic 

starting algorithm compared to the random algorithm. A negative (positive) value corresponds to a decrease (increase) in model runtime 

with the genetic starting algorithm. 

Time period Trees Tree size Random (s) Genetic (s) Difference (%) 

0900-1000 5 Small 8.4 4.9 -42.1 % 

0900-1000 5 Large 10.0 7.7 -23.3 % 

1300-1600 5 Small 9.7 6.1 -36.9 % 

1300-1600 5 Medium 11.6 8.3 -28.7 % 

1300-1600 5 Large 11.8 9.6 -19.1 % 

0900-1600 5 Small 14.1 12.7 -9.7 % 

0900-1600 5 Medium 26.5 19.3 -27.0 % 

0900-1600 5 Large 38.8 25.9 -33.3 % 

1300-1600 2 Large 1.7 1.0 -40.5 % 

1300-1600 3 Large 4.1 2.7 -34.1 % 

1300-1600 4 Large 7.6 5.3 -30.2 % 

1300-1600 5 Large 11.8 9.6 -19.1 % 

1300-1600 6 Large 16.7 17.7 6.5 % 

1300-1600 7 Large 22.0 36.0 63.9 % 

1300-1600 8 Large 29.0 72.7 150.6 % 
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4.1 Tree size 355 

All three tree sizes in Table 1 were used for the performance analysis on tree size. The model was run with five trees for each 

tree size, and both starting algorithms (random and genetic) and 10, 100, 500, 1000, 2000, 3000, 10000 and 20000 iterations.  

The results from the performance analysis on tree size for seven hourly time steps (0900-1600) LST are shown in Fig. 7. The 

results indicate that the hill climbing algorithm have established positions with high mitigating potential already after five 

iterations. After 100 iterations, all trees are at positions similar to or better than the greedy algorithm, regardless of starting 360 

algorithm. However, some divergence can be seen, for example for tree size small and 3000 iterations. 

Noticeable in Table 2 is that a larger tree size decreases the speed of the model, but with 5 trees the genetic starting algorithm 

is faster compared to the random starting algorithm. The difference in model runtime between the two starting algorithms also 

increases with tree size, from -9.7 % with small trees to -33.3 % with large trees.  

 365 

Figure 7 Heat map showing the ratio of potential decrease in Tmrt between the hill climbing algorithm and the greedy algorithm for the three 

different tree sizes (small, medium and large; see Table 1) for different number of model iterations, for 0900-1600 LST on June 22 1983. 

Two starting algorithms were used; random and genetic. Each model run was executed with five trees. Potential locations for trees are 1709 

for small trees, 1603 for medium trees and 1481 for large trees. A ratio > 1 indicates a larger Tmrt decrease with the hill climbing algorithm. 

Note that cell color where ratios ~1.0 is determined using an extended number of decimal places.  370 
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4.2 Number of trees 

An increase in number of trees increases the complexity of the model and influences the performance and speed as the 

probability of overlapping tree shadows would increase, regardless of tree size. The model was executed with two, three, four, 

five, six, seven and eight trees with tree size large (Table 1), with three time steps (1300-1600 LST), with corresponding results 

presented in Fig. 8. As illustrated, the potential decrease in Tmrt is high after 5-10 iterations, and after 500 iterations mitigation 375 

benefits for position with the genetic starting algorithm always exceed those from the greedy algorithm. There is also a 

tendency for a higher ratio with a higher number of trees. 

Model speed decreases with an increase in number of trees for both random and genetic, as shown in Table 2. The speed 

performance of the genetic algorithm outcompetes the random algorithm for all runs except six, seven and eight trees. With 

six, seven and eight trees model runtime increases, for eight trees quite extensively with a difference of around 150 % between 380 

the random and genetic with 20000 iterations. 

 

Figure 8 Heat map showing the ratio of potential decrease in Tmrt between the hill climbing algorithm and the greedy algorithm for two, 

three, four, five, six, seven and eight large (Table 1) trees for different number of model iterations, for 1300-1600 LST on June 22 1983. 

Two starting algorithms were used; random and genetic. Potential locations for trees are 1481. A ratio > 1 indicates a larger potential decrease 385 

with the hill climbing algorithm. 
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4.3 Time steps 

The model was also tested for different time steps; one (0900-1000 LST), three (1300-1600 LST) and seven (0900-1600 LST), 

to analyze performance and speed, with two different tree sizes: small and large (Table 1).  

The time-step performance analysis for small trees (Fig. 9a), similar to previous examples, found positions with high potential 390 

decrease in Tmrt relatively fast, after 100-500 iterations, and with the genetic starting algorithm, positions are always better 

compared to the greedy algorithm after 500 iterations (ratio > 1.0), with the exception of 3000 iterations 0900-1600 LST. For 

the random starting algorithm, however, some anomalies were found for 0900-1000 LST and 0900-1600 LST and 2000 and 

3000 iterations. 

Considering speed with tree size small, there is a large increase in model runtime for the longer time period (0900-1600 LST) 395 

compared to the two other model runs as seen in Table 2 (0900-1000 and 1300-1600 LST). Furthermore, differences in speed 

between genetic and random are highest with one time step (-42.2 %) 

The time-step performance analysis for large trees (Fig. 9b) found adequate positions after 100 iterations, but similarly to the 

small trees, there are some anomalies with the random starting positions, e.g. for 100 iterations 0900-1000 LST and 100, 500 

and 1000 iterations 1300-1600 LST. 400 

When analyzing model runtime, it is clear that this increases with number of time steps, similar to that of small trees. However, 

largest difference between starting algorithms is with seven time steps (0900-1600 LST, -33.3 %). 
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Figure 9 Heat maps showing the ratio of potential decrease in Tmrt between the hill climbing algorithm and the greedy algorithm for (a) five 

small trees with different time steps and (b) five large trees with different time steps, on June 22 1983 (see Table 1 for detailed tree sizes). 405 

Two starting algorithms were used: random and genetic. Potential locations for trees are 1709 for small trees and 1481 for large trees. A 

ratio > 1 indicates a larger potential decrease with the hill climbing algorithm. 

4.4 Model domain size 

Model performance analysis was conducted with special attention to model domain size, here represented by changing pixel 

resolution. Four different pixel resolutions were evaluated: 2, 1, 0.5 and 0.25 meters. The pixel resolution was tested for three 410 

trees with tree height = 10 meters, canopy diameter = 5 meters and trunk zone height = 3 meters. As expected with a 2D 

modelling approach, the model runtime increased exponentially with higher pixel resolution, from 17 seconds with a 2 meter 

pixel resolution to 44, 185 and 1290 seconds for 1, 0.5 and 0.25 meters, respectively.  

4.5 Tree locations – Hill climbing algorithm vs. Greedy algorithm 

As shown in the results for the performance analysis, the hill climbing algorithm, with a high number of iterations, gives equal 415 

or marginally higher potential decrease in Tmrt compared to the greedy algorithm. This suggests that the resulting locations for 

trees are different in the two algorithms. This is illustrated in Fig. 10. The examples from the hill climbing algorithm are with 

20000 iterations, for which the hill climbing algorithm always determined positions that had higher potential decrease in Tmrt 

than the greedy algorithm.  

In all cases, some trees are in the same locations for both the hill climbing and greedy algorithms, but the hill climbing 420 

algorithm clusters the trees more closely together than the greedy algorithm. In Fig. 10a, the locations for the two western trees 

are the same, two central trees are only slightly different, but the greedy algorithm places a tree near the east building rather 

than near the western building. Similar observations can be made in Fig. 10b-d, with some locations the same, some similar, 

and one tree placed differently. In Fig. 10d the most interesting difference is in the east part of the planting area. Here, the 

greedy algorithm finds an optimal position in between the two trees found by the hill climbing algorithm, and places a tree by 425 

the west building instead. Comparable results are visible in Fig. 10e, where one of the tree locations by the greedy algorithm 

is at the very northwest corner of the planting area.  
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 430 

Figure 10 Locations for trees from the hill climbing algorithm with the genetic starting algorithm and 20000 iterations, and the greedy 

algorithm. The left column (figures a, c and e) and the right column (figures b, d and f) are for 0900-1600 LST and 1300-1600 LST, 

respectively, on June 22 1983. Figures (a) and (b) are with small trees, (c) and (d) with medium trees and (e) and (f) with large trees. The 

underlying map shows mean Tmrt for the respective time periods from which the locations were determined. 
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 435 

A summary of statistics for the different model runs is presented in Table 3. Here, SVF has been recalculated using a CDSM 

including the new trees, after which the simulation of Tmrt has been repeated. This simulation is compared to the previous 

simulation where new trees are excluded, i.e. the original simulation. The results from the model runs (Fig. 7-9) indicated that 

the hill climbing algorithm, with 20 000 iterations, had higher potential decrease in Tmrt compared to the greedy algorithm in 

all cases. Here, on the other hand, results are different. Comparing the results of the greedy algorithm with the results of the 440 

hill climbing algorithm, the tree shade for locations based on the hill climbing algorithm have a larger decrease in average Tmrt 

in its shaded area (Δ°C in shadow (°C)) with small trees for 0900-1600, small trees 1300-1600 and large trees 1300-1600. 

However, locations found with the hill climbing algorithm always have a larger average decrease per shaded area (Δ°C shadow 

area-1 (°C m-2)) as a result of fewer pixels shaded but with a similar decrease in its shaded area as that of the trees positioned 

with the greedy algorithm. Total change in average Tmrt for the entire raster (Raster Δ°C (°C)) between simulations differs 445 

marginally when locations are based on hill climbing versus greedy algorithm. This difference, which is always larger 

compared to the difference calculated exclusively for the shaded area, is the result of changes in SVF in the vicinity of the new 

trees, and has an effect on radiation. Examining total change in average Tmrt for the entire raster per canopy area (Δ°C canopy 

area-1 (°C m-2)) it is evident that decrease in Tmrt is very similar regardless of tree size. 

Table 3 Table showing difference in average Tmrt (°C) between SOLWEIG simulation without new trees, and SOLWEIG simulation with 450 

new trees and recalculated SVF for the two algorithms, different tree sizes, different time periods and number of trees. The differences in 

Tmrt are for the shaded area (m2) of the new trees  (°C) with corresponding shadow area (m2) and decrease per shaded pixel, and decrease for 

the entire raster (°C) with corresponding canopy area (m2) and decrease per canopy area (°C m-2). 

Algorithm Time period Trees Tree size 

Δ°C in shadow (°C) Shadow area (m2) Δ°C shadow area-1 (°C m-2) Raster Δ°C 

(°C) 

Canopy area 

(m2) 

Δ°C canopy area-1 

(°C m-2) 

Greedy 0900-1600 5 Small -1412.10 138 -10.23 -1745.94 45 -38.80 

Hill climbing 0900-1600 5 Small -1534.11 132 -11.62 -1743.59 45 -38.75 

Greedy 0900-1600 5 Medium -4040.68 380 -10.63 -4427.87 105 -42.17 

Hill climbing 0900-1600 5 Medium -3899.84 351 -11.11 -4457.12 105 -42.45 

Greedy 0900-1600 5 Large -7670.51 875 -8.77 -7933.23 185 -42.88 

Hill climbing 0900-1600 5 Large -7388.42 794 -9.31 -7898.14 185 -42.69 

Greedy 1300-1600 5 Small -1358.92 81 -16.78 -1648.90 45 -36.64 

Hill climbing 1300-1600 5 Small -1371.81 76 -18.05 -1643.54 45 -36.52 

Greedy 1300-1600 5 Medium -3788.00 236 -16.05 -4138.16 105 -39.41 

Hill climbing 1300-1600 5 Medium -3767.56 225 -16.74 -4114.40 105 -39.18 

Greedy 1300-1600 5 Large -6892.36 453 -15.21 -7310.08 185 -39.51 

Hill climbing 1300-1600 5 Large -6922.94 434 -15.95 -7271.21 185 -39.30 

Hill climbing 1300-1600 4 Large -5492.64 361 -15.22 -5836.44 148 -39.44 

Hill climbing 1300-1600 6 Large -8327.50 526 -15.83 -8748.15 222 -39.41 
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4.6 Occurrences of tree positions 

Occurrences maps, showing where trees were located after each iteration in a model run with the random starting algorithm 455 

and 20000 iterations, are shown in Fig. 11. The preferred positions are relatively warm, where mitigation from tree shade is 

high. The general pattern is that preferred positions lie in arcs around one tree-diameter from buildings, along the northern and 

eastern borders of the planting area, or close to a fountain. Within these regions there are a few highly-preferred pixels. 

Furthermore, south of the buildings, two rows of preferred positions can be seen in almost all figures. The highest occurrence 

is for small trees in front of the west building (72.6 %). 460 
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Figure 11 Occurrence maps showing percentage of times pixels were found to be an optimal tree position based on model runs with five 

trees, the random starting algorithm, and 20000 iterations. Grey indicates zero occurrences. Maps (a) and (b) are for small trees, (c) and (d) 

are for medium trees and (e) and (f) are for large trees. The left column (a, c and e) is for 0900-1600 LST and the right column (b, d and f) 

is for 1300-1600 LST. 465 
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5 Discussion 

The aim of the TreePlanter is to find locations for the trees where they would have optimal potential to reduce Tmrt. Trees end 

up e.g. shading areas in front of sunlit walls, areas which are known as exposed to high radiant load (Thorsson et al., 2011, 

Lindberg et al., 2016; Wallenberg et al., 2020). During the hottest time of the day in the case study, Tmrt under the trees dropped 

by as much as 26 °C from optimized positioning of trees (1300-1600 LST, Fig. 5). Such a sharp drop can have a profound 470 

effect on thermal (dis)comfort, making an area available for pedestrians, with less negative health effects on warm and clear 

summer days.  

However, some differences in tree locations were found, depending on time of day, tree size and number of trees. Analyzing 

time of day, it possible to see that trees are, in general, located in the western part of the planting area during the longer time 

period (0900-1600 LST) in Fig. 4, whereas they end up in the eastern part during the shorter time period (1300-1600 LST) in 475 

Fig. 5. The differences in locations for trees are explained by spatial Tmrt patterns. The hours before noon would increase the 

amount of sunlit areas in front of west-facing facades integrated into TreePlanter. Thus, mitigation in these areas becomes 

more important. This shows the importance of timescale for planning of tree locations, and in this sense, season could also be 

an interesting aspect. Konarska et al. (2014), for example, discussed the importance of deciduous trees for mitigation of high 

radiant load in summer, as deciduous trees would allow higher transmissivity of solar irradiance in winter when leaves have 480 

dropped. Nevertheless, deciduous trees would block approximately 50 % of the incoming shortwave irradiance without leaves 

(Konarska et al., 2014). This means that optimized locations for trees in summer could have negative effect on thermal comfort 

in winter. 

Tree size was also found to influence tree locations. The main finding is that, when tree size and hence shadow size were 

increased, the trees were dispersed as the model strives for the largest mitigating effect, which is mainly achieved by utilizing 485 

the entire tree shadows. This is most evident in Fig. 4 (0900-1600 LST), where small trees are aligned along the west building, 

but medium and large trees are dispersed, covering areas between the buildings. This leads to two trees, with tree size large, 

mitigating radiant load outside the planting area, where there in reality are tram tracks (Fig. 4e-f). The effects of tree size on 

tree locations is also visible in Fig. 5 (1300-1600 LST). In this case, however, it is rather that the shadow has a higher effect 

in a different location depending on tree size. One of the small trees was positioned in front of the west building. When tree 490 

size was increased to medium or large, tree shadows of all five trees have enhanced effect at the east building. This suggests 

that a larger tree shade, as in Fig. 5c, is more beneficial in different locations compared to smaller tree shades, and smaller 

exposed areas can remain exposed. Thus, tree size can be an important factor when optimized mitigation of high radiant load 

is desired. Tree size in this sense can also resemble stages in the tree’s life, i.e. juvenile or mature. Thus, it can be important 

for planners and others to keep in mind that an optimal position for a tree might differ depending on the age (size) of the tree. 495 

Tree locations also changed depending on the number of trees. This is in clear contrast to the greedy algorithm, where tree 

positions are fixed when a new tree is added. TreePlanter enables tree locations to be influenced by each other, which means 

that none of the locations are fixed while the hill climbing algorithm is still cycling through the trees, even if a single tree has 
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reached an optimal position. This is realized with the nudging effect, which will enable two or more trees to explore if their 

combined and continuous shadow can find a more favorable and efficient mitigation of Tmrt. An example of this is apparent in 500 

Fig. 5e-f and Fig. 6, where the trees (at the east border of the planting area) have different locations with four (Fig. 6a-b) and 

five (Fig. 5e-f) trees compared to six trees (Fig. 6c-d). Another example of how nudging and non-static locations are important 

when optimizing positions for trees is when comparing positions between the hill climbing algorithm and the greedy algorithm, 

shown in Fig. 10. Here, it is evident that static locations, as with the greedy algorithm, can result in scattered tree locations. 

Even though locations established with the greedy algorithm are very efficient for mitigation of high Tmrt, they are inherently 505 

different compared to those established with the hill climbing algorithm. The locations established with the hill climbing 

algorithm had higher Tmrt mitigation (although the difference was small). However, when Tmrt was recalculated in SOLWEIG 

with updated SVF including the new trees, the tree locations established with the greedy algorithm in some few cases had 

higher mitigating effect compared to those established with the hill climbing algorithm. This can to some extent be explained 

by changes in SVF near a tree, which influences radiation patterns in these areas in addition to the shaded area. Furthermore, 510 

shading patterns were different and tree shade from trees positioned with the greedy algorithm had larger tree shadows, which 

logically results in a larger total decrease in Tmrt. Average decrease in Tmrt in one pixel can be as large as 26 °C. Therefore, 

only a few extra shaded pixels can result in a larger total decrease in Tmrt with tree locations established with the greedy 

algorithm. On the other hand, the tree locations determined by the hill climbing algorithm provided more efficient Tmrt 

mitigation per shaded area. Still, importantly, tree locations found by the hill climbing algorithm are closer together. The 515 

occurrences map in Fig. 11 show that the locations established with the greedy algorithm were also found by the hill climbing 

algorithm. However, with the nudging function, allowing a continuous shadow of several trees to explore the ΔTmrt raster, 

space is used more efficiently. In conclusion, from a planning perspective, it can be noteworthy that these two algorithms (hill 

climbing and greedy) can result in considerably different tree locations. For this reason, they could potentially complement 

each other, serving as two alternatives. 520 

In the model performance analysis, in Sect. 4, potential decrease in Tmrt with the hill climbing algorithm and its two starting 

algorithms was evaluated against potential decrease in Tmrt with the greedy algorithm. The greedy algorithm was expected to 

always find tree locations that provided high (even if not optimal) Tmrt mitigation. This expectation was supported by the 

results presented here, for example in Fig. 10, where tree locations determined by the greedy algorithm were always in areas 

exposed to high radiant load. Zhao et al. (2017), similarly, demonstrated optimized tree shade coverage with a greedy 525 

algorithm, but used the algorithm to decrease solar exposure on facades. Thus, the ratio between the hill climbing and greedy 

algorithms gives a good measure of the performance of the hill climbing algorithm. From the results in Fig. 7-9, it is evident 

that the hill climbing algorithm finds acceptable locations already after one iteration as none of the results show a ratio lower 

than 0.9. After 100-500 iterations, tree locations established by the hill climbing algorithm show an equal or higher potential 

mitigating effect than the greedy algorithm, in almost all cases. There are, however, some exceptions, especially with the 530 

random starting algorithm. Running the hill climbing algorithm with the genetic algorithm, on the other hand, results in tree 

locations with a potential mitigating effect equal to, or higher, than the greedy algorithm after 500 iterations for all cases except 
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0900-1600 LST with small trees with 3000 iterations. Running the model with 20000 iterations, on the other hand, always 

resulted in tree locations with equal or higher potential mitigating effect compared to the greedy algorithm, regardless of 

starting algorithm. The exceptions, seen for example in Fig. 7 with small trees and 3000 iterations, is an example of the fact 535 

that, as explained in Sect. 2, metaheuristics are not guaranteed to find an absolutely optimal solution to a problem. Adding to 

this, it is not possible to prove that any of the locations established by the hill climbing algorithm are absolutely optimal, unless 

extensive and computationally demanding brute-force calculations are performed.  

The results from the comparison between the genetic and random starting algorithms are in line with those by Stojakovic et al. 

(2020). Although their approach was different from the one presented in this paper in that they did not use a hill climbing 540 

algorithm, they did use a genetic algorithm. In their method, tree locations were determined from tree locations from a previous 

iteration. Their results showed that tree locations with the genetic algorithm had a higher mitigating effect compared to 

randomly positioned trees. This can be compared to the results found in this paper, where tree locations with a high potential 

mitigating effect are sometimes found with less iterations with the genetic algorithm compared to the random algorithm. 

Adding to this, Stojakovic et al. (2020) found convergence after approximately 3000 iterations. Here, some of the examples 545 

show convergence already after 500 iterations, indicating that exploration with the hill climbing algorithm in combination with 

a genetic algorithm for starting positions could be a beneficial approach.     

When model runtime was evaluated, it was quite clear that when time steps, tree size or number of trees increased, so did 

model runtime (Table 2). When time step was increased, the number of necessary calculations increased, mainly when tree 

shadows overlap. This was further reinforced when tree size was increased. An increase in tree size increases the area shadowed 550 

by the tree, regardless of time of day, as long as the solar elevation is above the horizon. A larger shadow increases the 

possibility of tree shadows overlapping, and overlapping shadows need adjustment to find optimal locations. Increasing the 

number of trees also adds to the probability of overlapping shadows. Increasing model domain size (by changing pixel 

resolution) resulted in an exponential increase in model runtime, from very fast for low resolution (2 meter) to relatively long 

model runtime with a high resolution (0.25 meter). As model pixels become smaller, the number of possible locations for trees 555 

increases substantially, leading to increased model runtime. The four factors described above all influence the model 

complexity and computational time. The largest influence comes from the number of time steps. The increase in computational 

time is considered to be an effect of overlapping tree shadows that need adjustment. Increasing tree size and the number of 

trees further increases the possibility of overlapping shadows. Additionally, an increase in the number of time steps would 

increase the time to adjust, as well as a larger shadow of integrated time steps. Moreover, larger model domains can 560 

substantially increase model runtime.  

When evaluating and comparing the two starting algorithms, the genetic algorithm improved model runtime in all cases except 

when the number of trees was increased to six, seven and eight, for which model runtime increased. On the other hand, the 

genetic algorithm determined optimal positions at an earlier stage compared to the random algorithm. This, however, needs 

further testing, but the enhanced speed of the genetic algorithm can reasonably be explained by two factors. One being that 565 

warm areas, i.e., local optimums with high Tmrt are in close vicinity to each other, mean that subsequent generations (iterations) 
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potentially start closer to local optimums compared to random starting positions. The other factor could be the geometry of the 

urban setting studied here, where sunlit areas follow the x-axis or the y-axis. As an example, the two small buildings inside 

the study area are at approximately same y-positions, with the right hand being located at a slightly higher position. The area 

in between the buildings is located at approximately same x-position. Thus, if a tree inherits the y-position from a tree that in 570 

the prior run ended up in front of one these buildings, it would probably not have to explore too many pixels in order to a find 

a new local optimum. Likewise, if a tree inherits its x-position from a tree with a local optimum between the two buildings, it 

would not have to move far to find an optimal position. The random starting algorithm, on the other hand, could have trees 

starting in positions where exploration of the ΔTmrt raster would take longer in order to find a local optimum. These factors 

can possibly also explain the decrease in model runtime with the genetic starting algorithm when number of trees were set to 575 

seven or eight. The trees would start closer to each other, and chance of overlapping shadows increases.  

As described above, model runtime differs depending on tree size, the numbers of trees and time steps, and the size of the 

model domain. With the genetic starting algorithm, for five small trees giving 1709 possible locations, and seven time steps 

(0900-1600 LST), each iteration takes approximately 0.13 s. Using same setup, but with the large tree size and 1481 possible 

locations, each iteration takes approximately 0.26 s. For comparison, Stojakovic et al. (2020) utilized Rhinosceros 3D (CAD 580 

modeling software), Grasshopper (add-on to Rhinosceros 3D), and an evolutionary algorithm (inheritance) from Galapagos (a 

plugin for Grasshopper with generic solvers (Rutten, 2013)). With their setup, for five trees (two sizes simultaneously, three 

with a canopy diameter of 8 m and two with 17 m), ten time steps and 625 possible locations for trees, they had a mean iteration 

runtime of around 9 s. This suggests that the 0.26 s for five large trees and seven time steps in the model presented in this paper 

is highly efficient.  585 

Genetic algorithms have been used successfully in previous research on optimization problems e.g. locations for hospitals in 

Hong Kong (Li and Yeh, 2005), locations for train stations in Leicester, UK (Ahmed et al., 2013), spatial land use allocation 

planning in Guitiriz, Spain (Porta et al., 2013) and tree locations (Stojakovic et al., 2020). The results presented in this paper 

show how random starting positions and a genetic algorithm to determine starting positions can be used together with a hill 

climbing algorithm for optimizing tree locations. The benefit of using a hill climbing algorithm is that it enables thorough 590 

exploration of potential tree locations and at the same time simplifies any potential adjustment for potentially overlapping tree 

shadows. Using the genetic algorithm to determine starting positions, in most cases, improved model runtime and convergence 

compared to randomly determined starting positions.  

Even if model runtime is relatively fast, it needs improvement for the hill climbing algorithm to become a generic tree location 

finding tool. Real world applications will likely have more trees and larger areas of interest than this study. This will require 595 

an increase in the number of iterations, as the number of possible locations would increase. Running TreePlanter with many 

iterations, several trees and in a large area is time consuming. The examples shown here are relatively fast. However, as seen 

with the genetic algorithm and six, seven or eight trees, model runtime increases quite extensively. A greedy algorithm, as an 

alternative to the hill climbing algorithm, is included in TreePlanter to support larger studies (see Sect. 5.2). A thorough 
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evaluation of the algorithms included in the model as well as their pros and cons are aspects for future studies. How do their 600 

results compare? Under what circumstances are the different algorithms applicable? 

5.1 Model limitation and potential 

In SOLWEIG, as well as TreePlanter presented in this paper, there is no option for individual tree parameterization. For 

example, transmissivity is set to one general value for all trees. The default in SOLWEIG is 3 % for summer (Konarska et al., 

2014). Continuing, the model and the examples presented in this paper only include radiant load. However, there are other 605 

factors that can be affected from adding more trees, e.g. wind and evapotranspiration, which are not included. While 

evapotranspiration from trees has been shown to have a negligible effect on the thermal comfort, trees affecting pedestrian-

level wind can have a large effect on outdoor thermal comfort (Lee and Mayer, 2020). There are also other factors, connected 

to plant physiology, that need consideration when planting a tree in an urban area, such as root spacing, soil conditions, climatic 

growing conditions and water availability (Vogt et al., 2017), which are not examined here. 610 

Not included in the current version of TreePlanter is a recalculation of SVF between iterations. Omitting recalculation of SVF 

has a minor effect on the total radiant conditions under the tree as well as the influence on the radiant conditions in the 

surrounding environment, when the moving trees block parts of the sky. View factors influence e.g. the amount of diffuse 

shortwave irradiance reaching an area as well as influencing the longwave irradiance under and around the trees. These effects 

are relatively small, however, whereas including recalculations in the model would increase runtime considerably. We thus do 615 

not foresee including SVF recalculations in the model. See Lindberg and Grimmond (2011) for a more detailed discussion. 

Speak et al. (2020) studied the shading effect of single trees in Bolzano, Italy. They found that leaf area density and canopy 

diameter are key in mitigating surface temperatures, and concluded that strategic planting of urban trees with cautious selection 

of species can help mitigate surface temperatures. Antoniadis et al. (2020), similarly, discussed strategic planting and 

positioning of trees, to alleviate heat stress in urban schoolyards. The model presented in this paper can aid in the strategic 620 

planting of trees based on Tmrt, as it enables the possibility of positioning trees and changing canopy diameters, tree height and 

trunk zone height. The possibility of changing transmissivity of shortwave irradiance through the canopy can be used as an 

analogy for leaf area density. Furthermore, it allows for analysis of days with different meteorological data, and even a 

possibility of combining days from different seasons. Moreover, with modifications, the methodology described in this paper 

could be used for other optimization purposes, e.g., mitigation of incoming solar irradiance with respect to harmful UV. 625 

Future possible developments include the possibility to position trees of different sizes simultaneously. Furthermore, studies 

on the effects of locations during different weather conditions and seasons are expected as well as evaluating if locations are 

feasible with respect to e.g. root spacing, pipes, etc. 

5.2 Tool accessibility 

To facilitate use and accessibility to other researchers and service providers, TreePlanter is available as a tool as part of the 630 

UMEP climate service tool in the open-source geographical information system QGIS (https://qgis.org). The Graphical User 
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Interface (GUI) from the Processing Toolbox in QGIS is presented in Fig. 12. For simplification, the pre-processed input data 

required from SOLWEIG for TreePlanter will be provided through a tick box in the SOLWEIG GUI.   

Moreover, a vector polygon layer that determines a planting area where it is possible to plant trees within the extent of the 

SOLWEIG output is required (see first paragraph in Sect. 2). This option can be used to avoid roads, statues, water bodies or 635 

other obstructing objects that are not shown in the building raster and would prevent trees from being planted in such locations. 

The extent of the Planting area can be set to the same size as the extent of the output data from SOLWEIG. In this case, a 

buffer zone will be enforced to avoid edge effects. Another alternative in the tool will be to disable shading outside of the 

study area. 

Optional settings can be set under Advanced Parameters. These include options to use either the random or the genetic starting 640 

algorithms, as well as number of iterations. Furthermore, an option to use a greedy algorithm, instead of the hill climbing 

algorithm is included. The greedy algorithm is faster, which can be useful when requesting positions for a larger number of 

trees in extensive model domains. However, as shown in the results and mentioned in the discussion, tree locations can differ 

considerably between the hill climbing algorithm and the greedy algorithm.  

The output from the TreePlanter is an updated raster CDSM and a vector point file with the positions of the new trees. 645 
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Figure 12 Graphical user interface of the TreePlanter 1.0 in QGIS 

6 Concluding remarks 

The TreePlanter model presented in this paper has several advantages for future studies of mitigation of Tmrt and analysis of 

shadow patterns in urban areas. Conclusions from the model performance analysis and the case study are: 650 

 Modelling and optimization of positioning of trees with respect to mitigation of Tmrt is very complex and 

computationally extensive. TreePlanter and its metaheuristic hill climbing and greedy algorithms can give guidance 

in this issue.  

 Both algorithms investigated (hill climbing and greedy) find tree locations that result in substantial decrease in Tmrt, 

and thus increase thermal comfort in exposed areas on clear, hot days. The locations, however, can differ 655 

considerably between the two algorithms. 
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 Tree locations depend primarily on tree size and time of day. Tree size indicates that juvenile and mature trees have 

different optimal positions, which can be important in e.g. urban planning.  

 The hill climbing algorithm incorporates the combined shading effects of several trees simultaneously, which are 

not addressed in the greedy algorithm. 660 

 The model presented in this paper can give advice to urban planners and others in mitigating and improving thermal 

comfort in outdoor urban settings. 
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