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Abstract. The inaccuracy of anthropogenic emission inventory on a high-resolution scale due to insufficient basic data is one 

of the major reasons for the deviation between air quality model and observation results. A bottom-up approach, as a typical 15 

emission inventory estimation approach, requires a lot of human labor and material resources, and a top-down approach focuses 

on individual pollutants that can be measured directly and relies heavily on traditional numerical modelling. Lately, deep neural 

network has achieved rapid development due to its high efficiency and non-linear expression ability. In this study, we proposed 

a novel method to model the dual relationship between emission inventory and pollution concentration for emission inventory 

estimation. Specifically, we utilized a neural network based comprehensive chemical transport model (NN-CTM) to learn the 20 

complex correlation between emission and air pollution. We further updated the emission inventory based on backpropagating 

the gradient of the loss function measuring the deviation between NN-CTM and observations from surface monitors. We first 

mimicked the CTM model with neural networks (NN) and achieved a relatively good representation of CTM with similarity 

reaching 95%. To reduce the gap between CTM and observations, the NN model would suggest an updated emission of NOx, 

NH3, SO2, VOC and primary PM2.5 which changes by -1.34%, -2.65%, -11.66%, -19.19% and 3.51%, respectively, on average 25 

of China in 2015. Such ratios of NOx and PM2.5 are even higher (~10%) particularly in Northwest China where suffers from 

large uncertainties in original emissions. The updated emission inventory can improve model performance and make it closer 

to observations. The mean absolute error for NO2, SO2, O3 and PM2.5 concentrations are reduced significantly by about 

10%~20%, indicating the high feasibility of NN-CTM in terms of significantly improving both the accuracy of emission 

inventory as well as the performance of air quality model. 30 
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1 Introduction 

The clean air policies have been implemented by China government since 2010 which has been effectively reducing the 

pollutant concentrations such as sulfur dioxide (SO2), nitrogen oxides (NOx) (Zheng et al., 2018). Nevertheless, China still 

faces challenges in addressing O3 and PM2.5 pollutions. Particularly, the level of ozone (O3) in China has increased by 1.3% 

from 2013 to 2017 (Li, 2019); moreover, concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 35 

2.5 μm) in most Chinese cities still far exceed the World Health Organization (WHO) recommended values (<10 μgm−3), 

leading to frequent heavy pollution events (Guo et al., 2014; Richter et al., 2005; Vesilind et al., 1988). Such high pollutant 

concentration may substantially affect human health given air pollution has being ranked fifth in global risk factors for 

mortality (Institute, 2019). 

A prerequisite of effectively controlling air pollution lies in accurate knowledge of the related emission sources. A well-40 

established emission inventory should summarize the amount of pollutants emitted into atmosphere from all sources in a 

specific region and time span (Institute, 2019). A typical bottom-up approach is adopted to develop the emission inventory 

through investigation of emission sources in Air Benefit and Cost and Attainment Assessment System Emission Inventory 

(ABaCAS-EI) (Zheng et al., 2019) and Multi-resolution Emission Inventory (MEIC) (He, 2012) developed by Tsinghua 

University, wherein the activity rate of each source is multiplied with emission factor (Vallero and Daniel, 2018). Such 45 

technology-oriented bottom-up emission inventory can reflect the types of technology operated in China but has limitation in 

actual application because of its need for labor power and material resources, especially in cities where it is hard to support 

thorough investigation (Xing et al., 2020b). What's more, varied assumptions for activity rate and emission factor from 

different studies result in large uncertainties (Aardenne and Pulles, 2002). Therefore, the development of a method for efficient, 

low-cost, and sufficiently accurate grid-emission information is being considered. 50 

The top-down method, as another typical emission inventory estimation approach, can be used to constrain emission estimation 

by combining observation results from surface monitors and satellite retrievals. Brioude et al. (2012) has estimated emissions 

of anthropogenic CO, NOx and CO2 in the Los Angeles Basin using the FLEXPART Lagrangian particle dispersion model 

based on the top-down method. Recently, Yang et al. (2021) linked the bottom-up MAPLE model with the top-down CGE 

model to evaluate deep decarbonization pathways' (DDP) comprehensive impacts in China. However, most of previous studies 55 

merely focused on individual pollutants that can be measured directly (Brioude et al., 2012; Xing et al., 2020a; Yang et al., 

2021) and relied on traditional numerical modelling. 

On the contrary, neural networks (NN), as a more efficient tool, can also model complex nonlinear relations in the atmospheric 

system thus converting precursor emissions into ambient concentrations. Due to its ability of end-to-end learning, NN can 

automatically extract key features of input data and capture the behaviour of target data, thus has been widely used in 60 

atmospheric science recently (Fan et al., 2017; Tao et al., 2019; Wen et al., 2019; Xing et al., 2020a; Xing et al., 2020c). For 

example, many studies (Fan et al., 2017; Tao et al., 2019; Wen et al., 2019) combined recurrent NN (RNN) and convolutional 

NN (CNN) to capture spatial and temporal features in air pollution related questions since RNN has a strong capability in 
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mining temporal patterns from time series data (Cho et al., 2014; Chung et al., 2014; Hochreiter and Schmidhuber, 1997) with 

certain ability to handle missing values efficiently (Fan et al., 2017) and CNN exhibits potentials in leveraging spatial 65 

dependencies, e.g., in meteorological prediction (Krizhevsky et al., 2012). Furthermore, Xing et al. (2020d) applied NN to the 

surface response model (RSM), thus significantly enhancing the computational efficiency, demonstrating the utility of deep 

learning approaches for capturing the nonlinearity of atmospheric chemistry and physics. The application of deep learning 

improves the efficiency of air quality simulation and can quickly provide data support for the formulation of emission control 

policies, so as to adapt to the dynamic pollution situation and international situation. But the use of deep NN to estimate 70 

emission inventory is more complex compared to traditional machine learning problems, because there is no precise emission 

observation that can be used as supervision for model training. 

To address all these issues, we proposed a novel method based on dual learning (He et al., 2016), which leverages the primal-

dual structure of artificial intelligence (AI) tasks to obtain informative feedbacks and regularization signals, thus enhancing 

both the learning and inference process. In terms of emission inventory estimation, if we have a precise relationship from 75 

emission inventory to pollution concentrations, we can use the pollution concentrations as a constraint to get accurate emission 

inventory. In particular, we proposed to employ a neural network based chemical transport model (NN-CTM) with a delicately 

designed architecture, which is efficient and differentiable compared to the chemical transport model (CTM). Furthermore, 

when a well-trained NN-CTM can accurately reflect the direct and indirect physical and chemical reactions between emission 

inventory and pollutant concentrations, the emission inventory can be updated by backpropagating the gradient of the error 80 

between observed and NN-CTM predicted pollutant concentrations. Figure 1 shows the framework of this study. 

The method used for this study is described in Section 2. Section 3 takes China emission inventory estimation as an example 

to demonstrate the superiority of our method. In section 4, we make a conclusion and discuss some possible future work. 

 

 85 

Figure 1: Framework of this study. 
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2.Method 

2.1 Main Framework 

The task of emission inventory estimation can be naturally formalized into a typical dual learning framework. Concretely, we 90 

denote 𝑥𝑡  as the data of emission volumes and meteorological conditions and 𝑦𝑡 as the corresponding pollutant concentration 

at time t. In addition, we denote the mapping function from emission to pollutant concentration as f and that from pollutant 

concentration to emission as 𝑔. Since the transformation from emission to pollutant concentration is a continuous process in 

time, approximately, we have the following equations: 

𝑦𝑡 = 𝑓(𝑥[(𝑡 − 𝑘 + 1): 𝑡]) ,                                                                        (1) 95 

𝑥𝑡 = 𝑔(𝑦[(𝑡 − 𝑘 + 1): 𝑡]) ,                                                                        (2) 

where 𝑥[𝑖: 𝑗] is defined as {𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑗} for convenience, so is 𝑦[𝑖: 𝑗]. 

The formulas above are based on two assumptions: 

1. The pollutant concentration is only dependent on the emission and meteorological conditions in the past 𝑘 time steps, 

e.g., hours or days. 100 

2. There is a bijection relationship between emission and pollutant concentration. This is a necessary prerequisite for 

the existence of function 𝑔. 

The first assumption will hold true as long as setting a sufficiently large 𝑘. The second assumption may not be true unless we 

introduce more external constraints on emission inventory, since there exists information loss in the process from emission to 

pollutant concentration.  105 

 

 
Figure 2: The whole process of emission inventory estimation. 
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In fact, it is quite difficult to learn the function 𝑔 directly without emission observations as supervision. Hence, we employ 110 

dual learning framework to learn function 𝑔  indirectly through leveraging function 𝑓 . The framework of this process is 

illustrated in Figure 2. In particular, the whole process of emission inventory estimation includes the following steps: 

1. Use the existing emission inventory which is still not accurate enough as the initial emission data �̂�. 

2. Given 𝒳, calculate the corresponding predicted pollutant concentration data �̂�. 

3. Calculate the loss between the observed values of pollutants 𝒴 and the predicted pollutant concentrations �̂�. 115 

4. Adjust the estimated emission inventory �̂� by backpropagating the gradient of the loss based on function 𝑓. 

5. Repeat steps 2-4 until achieving sufficient accuracy for predicted concentration. 

Although the chemical transport model (CTM) system can handle the transition from emission to pollutant concentration, it is 

not differentiable, which makes it quite hard to update emission inventory through backpropagation algorithm in the dual 

learning framework. In order to establish a differentiable CTM, we propose to build a neural network based chemical transport 120 

model (NN-CTM) as the system approximation. More details will be described in the following subsections. 

2.2 Deep Neural Network based Chemical Transition Model Approximation 

Pollutant concentration is usually estimated using CTM which uses emission inventory as input. In the dual learning 

framework, this input will be updated in turn based on observed concentrations through the backpropagation algorithm. This 

requires the CTM to be differentiable. To this end, we propose to use deep neural networks to approximate the CTM system. 125 

Concretely, to learn this neural network based chemical transport model (NN-CTM), we apply a supervised learning approach 

that leverages the training data whose input is the same as that of CTM and corresponding label is the output of CTM. The 

whole architecture is shown in Figure 3. 
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Figure 3: NN-CTM structure. 𝒄 represents channel, which consists of emission inventory and meteorological data. 𝒉, 𝒘 represent 

the height, width of input. 𝒈𝒆 is geographic information. We employ long short term memory (LSTM) to capture the temporal 

information, and U-Net to capture the spatial information. CNN represents convolution network. P-ReLU (He et al., 2015b) is a 135 
nonlinear activation function. MLP means multiple layers of perceptrons with threshold activation. The model structure is also 

named as LSTM-U-Net. 

 

The input data of our NN-CTM are similar to that of CTM, including emission inventory, meteorology and geographical data. 

The first two are time-dependent data, while the last one, denoted as 𝑔𝑒, is static data. In the Eulerian grid based CTM system, 140 

for each time step 𝑡 , the dynamic input data 𝑥𝑡  is a matrix with dimension 𝑤 × ℎ × 𝑐 . The concentration is simulated 

continuously in a continuous time sequence. Unlike CTM, the NN-CTM cannot deal with too long data sequences. Thus, we 

just use the data from past 𝑘 time steps (i.e, 𝑥[𝑡 − 𝑘 + 1: 𝑡]) as input for the pollutant concentration estimation 𝑦𝑡. At the same 

time, we add 𝑦𝑡−𝑘 as supplementary input data into the network. Same as CTM, the output 𝑦𝑡 of NN-CTM is a matrix with 

dimension 𝑤 × ℎ × 𝑙, where 𝑙 is the number of concerned pollutant species. 145 

The NN-CTM consists of three branches: two CNN branches for 𝑦𝑡−𝑘 and 𝑔𝑒, and one long short term memory (LSTM) 

(Hochreiter and Schmidhuber, 1997) with U-Net (Ronneberger et al., 2015) branch. The CNN branches are used to extract 

features for 𝑦𝑡−𝑘 and geographical information. We employ parametric rectified linear unit (P-RELU) (He et al., 2015b) as the 

non-linear activation function in these branches to improve model fitting with nearly zero extra computational cost and little 

overfitting risk. We adopt the architecture of combining LSTM and U-Net based on the understanding of temporal-spatial 150 

relationship in emission inventory. In temporal dimension, pollutants are the accumulation of historical emissions. In spatial 
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dimension, adjacent grids will affect each other because of meteorological and diffusion factors. The LSTM layer is used to 

aggregate information from time series data 𝑥[𝑡 − 𝑘 + 1: 𝑡]. The aggregated sequence of hidden states h𝑡−𝑘+1, … , h𝑡 will be 155 

concatenated and entered into U-Net block. U-Net is a widely adopted pixel-to-pixel model which can effectively utilize 

neighbour information. In U-Net, the stacked of convolution can get the neighbour information with a bigger receptive field 

(e.g. stacking 5×5 convolution and 5×5 convolution can get a 9×9 convolution), the non-linear function (P-RELU) is 

employed to improve model fitting with nearly zero extra computational cost and little overfitting risk, and the batch 

normalization and dropout are employed to enhance the robustness of the model. We calculate that the receptive field of our 160 

model is 38×38 grid. In other words, the predicted pollutant concentration is related to its surrounding 38 ×38 grid’s 

information, which represents the transmission between different grids. Meanwhile, the closer the distance, the greater the 

contribution. We employ 2-layers U-Net as shown in Figure 4 to capture the spatial information between grids.  

 

 165 
Figure 4: U-Net structure (2-layers). The model structure yields a u-shaped architecture. 3×3 conv is a convolution  (Huang et al., 

2016) function. P-ReLU (Huang et al., 2016) is a nonlinear activation function. Max pooling is a down sample function. Up 

convolution (Zeiler et al., 2010) is a deconvolution function, which is also named as up sample function. 

 

In the training process, we take (𝒳𝐶𝑇𝑀 , 𝒴𝐶𝑇𝑀) as training dataset, where 𝒳𝐶𝑇𝑀  is the input data of the CTM system while 𝒴𝐶𝑇𝑀 170 

is the corresponding output. Since relative changes in pollutant concentrations are the metric often used by policymakers, we 

adopt an objective function that measures the relative loss between NN-CTM predicted and CTM-simulated pollutant 

concentrations. We denote the output of NN-CTM as �̂�𝑁𝑁, and have: 

𝐿(�̂�𝑁𝑁 , 𝒴𝐶𝑇𝑀) =
1

𝑁ℎ𝑤𝑙
∑ ∑ (|�̂�𝑖,𝑗,𝑐

(𝑛)
− 𝑦𝑖,𝑗,𝑐

(𝑛)
|)𝑖,𝑗,𝑐

𝑁
𝑛=1  ,                    (3) 

𝑔𝑤 =
𝜕𝐿(�̂�𝑁𝑁,𝒴𝐶𝑇𝑀)

𝜕𝑤
 ,                         (4) 175 
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where 𝑁 is the number of samples, 𝑖 ∈ [1, ℎ], j∈ [1, 𝑤] and 𝑐 ∈ [1, 𝑙], and 𝑦𝑖,𝑗,𝑐
(𝑛)

 represents the concentration of pollutant 𝑐-th 

in grid with location (𝑖, 𝑗) in the 𝑛-th sample. The parameters of NN-CTM will be updated based on the gradients given by 

𝑔𝑤, and the Adaptive Moment (Adam) estimation (Kingma and Ba, 2014) is used as optimizer. 

Model robustness. We ensure the robustness of the model from three aspects: 1) Model structure. Inspired by computer vision 

tasks, we adopt the batch-normalization (Ioffe and Szegedy, 2015), dropout (Srivastava et al., 2014), L2 regularization (Zhang 180 

et al., 2016) to improve the generalization and robustness. 2) Early stop. When we train the NN-CTM, we split the data into 

train dataset and validation dataset, and we stop the model training when the evaluation in validation dataset does not improve 

within 1000 iterations. 3) Data augmentation. During training, we employ the noise injection, random rescaling, random 

rotation method to avoid the overfitting in training dataset. 

2.3 Emission Inventory Estimation Based On NN-CTM 185 

Given a well-trained NN-CTM whose approximation accuracy is high enough for predicting pollutant concentrations, the 

emission inventory can be updated based on the error between observed and NN-CTM predicted pollutant concentrations. The 

observation data will help update the surrounding grids’ emission inventory within the receptive field. However, in extreme 

circumstances, if we have no observation data, our method will not work as we have no more information to adjust the emission 

inventory. If the observation data is denser, the emission inventory estimation is more accurate as it can consider more 190 

observation data. 

In particular, we make the relationship between emission and pollutant concentration more robust by fixing the trained LSTM-

U-Net model parameter. Then by training NN-CTM parameter, we adjust the input emission inventory to minimize the loss 

between NN-CTM output and observation. Such loss can be formally defined as: 

𝐿(�̂�𝑁𝑁 , 𝒴𝑜𝑏𝑠
∗ ) =

1

𝑁ℎ𝑤𝑙
∑ ∑ 𝑀𝑖,𝑗(|�̂�𝑖,𝑗,𝑐

(𝑛)
− 𝑦𝑖,𝑗,𝑐

∗(𝑛)
|)𝑖,𝑗,𝑐

𝑁
𝑛=1  ,                                                              (5) 195 

𝑔𝑒 =
𝜕𝐿(�̂�𝑁𝑁,𝒴𝑜𝑏𝑠

∗ )

𝜕𝑒
 ,                                         (6) 

where 𝒴𝑜𝑏𝑠
∗  represents observed pollutant concentration (we use average value in case of multiple observation stations in a 

grid), 𝑀𝑖,𝑗  is a binary indicator variable indicating whether or not there is a site monitoring equipment in grid (𝑖, 𝑗). The 

emission inventory will be updated by backpropagating the gradient 𝑔𝑒 . The stochastic gradient descent (SGD) method 

(Bottou, 2010) is used as optimizer. 200 

Meanwhile, aiming at ensuring the reasonableness and effectiveness of estimated emission inventory, we set two constrains: 

1) The update rate of emission inventory to be a maximum of 200% compared with the prior emission for each grid. There 

exist biases in meteorological conditions and chemical mechanism, which determines that we cannot attribute all the errors to 

the emission inventory. If the update ratio is very large, the NN-CTM cannot well reflect the correlation of the unseen data. 
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Furthermore, the prior emission is accurate to a certain extent in terms of the spatial and temporal dimensions. 2）The updated 

emission inventory must be positive. 

3. Experiments and Results Analysis 

In this section, we apply our proposed method for emission inventory estimation in China in 2015. In the following, we will 

first describe the data and CTM configuration. After that, we will show experimental results in terms of the accuracy of NN-210 

CTM. Then, we conduct further analysis on the prior emission inventory and our emission inventory estimation results.  

3.1 Data and CTM Configuration 

The prior emission inventory ABaCAS-EI with high spatial and temporal resolution is based on the bottom-up method, 

including primary pollutants such as NOx, ammonia (NH3), SO2, volatile organic compounds (VOC) and primary PM2.5. 

ABaCAS-EI is a grid-unit-based emission inventory including sources of power, cement, steel industries, and mobile sources. 215 

It also takes into consideration of technical progress and more stringent emission standards (Zheng et al., 2019). The prior 

emission inventory is initially used for NN-CTM training and then updated as per the proposed method of dual learning. 

Geographical data is a fixed attribute of one grid, like land type, mountains, depressions or elevation, etc. and in this study is 

obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) with 15s resolution (Friedl et al., 2002). 

Meteorological conditions are simulated from the Weather Research and Forecasting model (WRF, version 3.7). WRF 220 

configuration includes Morrison microphysics scheme (Morrison et al., 2009), RRGM radiation scheme (Mlawer et al., 

1998; Mlawer et al., 1997), Pleim-Xiu land surface scheme (Pleim and Xiu, 1995; Xiu and Pleim, 2001), ACM2 

planetary boundary layer (PBL) physics scheme (Pleim, 2007) and Kain-Fritsch cumulus cloud parameterization (Kain, 

2004), which matches our previous studies (Ghil and Malanotte-Rizzoli, 1991; Wikle, 2003). Data assimilation is adopted in 

WRF simulations based on observation data for the upper air and surface from National Centers for Environmental Prediction 225 

(NCEP) datasets. The simulated temperature, humidity, wind speed and direction have good agreement with the observations 

from the National Climatic Data Center (NCDC, https://www.ncdc.noaa.gov/data-access/land-based-station-data/) (Ding et 

al., 2019; Liu et al., 2019; Zhao et al., 2013). 

The Community Multiscale Air Quality Model (CMAQ, version 5.2) configured with the AERO6 aerosol module (Appel et 

al., 2013) and the Carbon Bond 6 (CB6) gas-phase chemical mechanism (Sarwar et al., 2008) is chosen as the representative 230 

CTM to simulate pollutant concentrations (Appel et al., 2018; Byun, 1999). Hourly observation data for air pollution (including 

SO2, NO2, O3 and PM2.5) is obtained from the China National Environmental Monitoring Centre 

(http://beijingair.sinaapp.com/), which are used for adjusting emission inventory. 

The simulation domain covers mainland China and portions of surrounding countries with a 27km × 27km  horizontal 

resolution (with ℎ = 182  and 𝑤 = 232) and 14 vertical layers from ground to 100 hPa. Simulations are performed in January, 235 
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April, July, and October 2015 to represent winter, spring, summer, and autumn, respectively. A 5-day simulation spin-up was 

performed to minimize the effects of initial conditions. Pollutant concentrations are analysed at monthly averages. 

3.2 NN-CTM Learning and Evaluation 

Training parameters. The parameter of NN-CTM was optimized using Adam optimizer with a mini-batch size of 8. A learning 240 

rate of 0.001 was used. To reduce the risk of over-fitting, we applied weight regularization on all trainable parameters during 

training and fine-tuning. The NN-CTM was trained for 30000 epochs. 

Metrics. Model performance was evaluated using mean absolute error (MAE) calculated using the following equation:  

𝐿(�̂�𝑁𝑁 , 𝒴𝐶𝑇𝑀  ) =
1

𝑁ℎ𝑤𝑙
∑ (|�̂�𝑖,𝑗,𝑐

(𝑛)
− 𝑦𝑖,𝑗,𝑐

(𝑛)
|)𝑛,𝑖,𝑗,𝑐  ,                                                 (7) 

Where 𝑁, ℎ, 𝑤, 𝑙 are the number of samples, height, width and the number of observed pollutants in each grid, respectively, 245 

further 𝑛 ∈ [1, 𝑁], 𝑖 ∈ [1, ℎ], 𝑗 ∈ [1, 𝑤] and 𝑐 ∈ [1, 𝑙]. 

Evaluation. We examined the performance of NN-CTM to check whether it has learnt the relationship between emission and 

pollutant concentration.  

We trained NN-CTM on the data of first 22 days in January, April, July and October 2015 and tested it on the remaining 

successive 8 days of each month. As listed in Table 1, NN-CTM (with LSTM-U-Net) can well reproduce the spatial and 250 

temporal relation with a small MAE of 0.27, 0.17, 1.39 ppbv and 1.46 μg m−3 for NO2, SO2, O3 and PM2.5, respectively, on 

average of four months. Results suggest that the NN-CTM can well reproduce the CTM within an acceptable bias, thus can be 

used for emission adjustment. Such bias (<4%) is much smaller than that of simulation compared to observations which are 

normally more than 10% even 20%. 

 255 

Table 1: Evaluation of NN-CTM simulation in China (mean absolute error between CTM and NN-CTM). LSTM-U-Net is our 

proposed method. And then, to compare the model performance, we select another professional deep neural network method 

residual network (ResNet) (He et al., 2015a). 

Model NN-CTM (with LSTM-U-Net) NN-CTM (with ResNet) 

Variables 
PM2.5  

(μg m−3) 

O3 

(ppbv) 

NO2 

(ppbv) 

SO2 

(ppbv) 

PM2.5  

(μg m−3) 

O3 

(ppbv) 

NO2 

(ppbv) 

SO2 

(ppbv) 

Jan.  1.65 1.39 0.34 0.25 1.65 1.44 0.36 0.26 

Ari.  1.74 1.46 0.25 0.16 1.73 1.64 0.26 0.18 

Jul.  1.04 1.38 0.23 0.12 1 1.45 0.25 0.13 

Oct.  1.43 1.34 0.27 0.16 1.53 1.44 0.29 0.17 

Average  1.46 1.39 0.27 0.17 1.48 1.49 0.29 0.19 

Error (Unit: %) 3.6 3.9 1.9 2.2 3.7 4.3 2.1 2.5 
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In order to further verify the superiority of our model architecture, we employed the ResNet (He et al., 2015a), another widely 

adopted deep NN method in image processing. Compared to ResNet, the performance of NN-CTM (with LSTM-U-Net) was 

superior, with improved MAE of 0.02, 0.02, 0.10 ppbv and 0.02 μg m−3 for NO2, SO2, O3 and PM2.5, respectively, on average 

of four months, as listed in Table 1. 

3.3 Emission Inventory Updating and Analysis 265 

A well trained NN-CTM is used to update the emission inventory through back propagation using stochastic gradient descent 

SGD (Bottou, 2010) optimizer with a mini-batch size of 2. The learning rate is 0.1. The optimization of emissions is achieved 

after 10000 epochs. 
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 270 
Figure 5: Emission rates of NOx, NH3, SO2, VOC and primary PM2.5 in P-Emis and their changes in N-Emis. 

 

For convenience, we denote the emission inventory from ABaCAS-EI as prior emissions (P-Emis) and the updated emission 

inventory as NN-emission (N-Emis), which is constrained by station observations. Compared with P-Emis, N-Emis has 

adjusted emission rates of NOx, NH3, SO2, VOC and primary PM2.5 as per the difference between simulated concentrations 275 

and the observed values of pollutants in each grid, as shown in Figure 5. Average emission rates of NH3, SO2 and VOC in 

most grids tend to decrease, while that of primary PM2.5 tend to increase except for in the Yangtze River Basin, which may be 

related to the non-included dust emission. Changes in emission rate of NOx vary a lot by region, and such changes are 

concentrated in urban areas. The distribution of N-Emis for each grid is consistent with P-Emis, indicating that the deep 
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learning method in this study can identify the distribution of emission sources and focus on the calibration in high-emission 

areas. 

Annual anthropogenic emissions in China for NOx, NH3, SO2, VOC and primary PM2.5 in P-Emis are 20.44, 10.39, 14.40, 

23.05 and 7.19 Mt, respectively (Liu et al., 2020), while in N-Emis changed by -1.34%, -2.65%, -11.66%, -19.19% and 3.51%, 

respectively. 285 

 

Table 2: Change ratios of N-Emis compared with P-Emis in four months. Unit: %. 

Month 
Variables 

NOx NH3 SO2 VOC PM2.5 

Jan. 3.72 1.88 -12.38 -25.36 4.64 

Apr. -1.49 -2.56 -8.96 -18.27 4.69 

Jul. -11.68 -2.29 -11.42 -12.8 1.8 

Oct. 3.6 -4.61 -13.32 -19.03 2.4 

Average -1.34 -2.65 -11.66 -19.19 3.51 

 

The sensitivity of change ratios to different seasons varies. Table 2 lists the change ratios of N-Emis compared to P-Emis in 

four months. As for N-Emis, NOx increases in January and October by about 3.5~4.0%, while it decreases by more than 10% 290 

in July. Emission of NH3 increases in January while decreases in other three months with the highest decrease registered in 

October. Emission of SO2 tends to decrease in all four months with ratios around 10%. Emission of VOC also tends to decrease 

but with a larger magnitude of about 20% compared to SO2, which may be related to the overestimation of O3. Emission of 

primary PM2.5 tends to increase by less than 5% in four months. 

Such changes in emissions are based on mathematical algorithms and thus cannot be explained by physical and chemical 295 

processes. The NN method tries to give a solution to make simulation results of all pollutant species closer to observations by 

compensating the errors in emission inventory. For example, concentrations of PM2.5 obtained using P-Emis are generally 

lower than the observed level, so the emission of primary PM2.5 will be increased during the adjustment. SO2 tends to be 

overestimated using P-Emis, so the adjustment tends to decrease. However, because sulfate is an important component of 

PM2.5, the adjustment of SO2 will be restricted by the underestimation of PM2.5. Concentrations of O3 obtained using P-Emis 300 

are generally higher than the observed level, so it tends to reduce the emissions of NOx and VOC, which are precursors of O3, 

during the adjustment. It is worth noting that the adjustment range of NOx is much lower than of VOC, because only the 

observed concentration of NO2 is used as a constraint. Such results are consistent with our previous study (Xing et al., 2020a). 

In order to further analyse the change of emissions at a regional level, we calculated the four-month average emissions of P-

Emis and change ratios of N-Emis for five emission species in the Beijing-Tianjin-Hebei region (BTH), the Yangtze River 305 

Delta (YRD), the Pearl River Delta (PRD), the Sichuan Basin (SCH) and northwest China (NWC), as highlighted in Figure 6. 
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The first four areas were selected because they are the main population clusters, and NWC was selected because there are so 

few observation sites in this area that the constraints are relatively insufficient. 

 

 310 
Figure 6: Five typical regions of China : Beijing-Tianjin-Hebei region (denoted as BTH), the Yangtze River Delta (denoted as YRD, 

covering Jiangsu, Zhejiang and Shanghai), the Pearl River Delta (denoted as PRD, covering Guangdong), the Sichuan Basin (denoted 

as SCH, covering Sichuan and Chongqing) and northwest China (denoted as NWC, covering Xinjiang), and their month-average 

emissions of four months in P-Emis (with unit of kt except for VOC with Mmol) and change ratios in N-Emis (with unit of %). 

 315 

The adjustment of emission varies greatly by seasons and regions. Seasonal details are listed in Table 3. The four-month 

average changes of N-Emis in BTH are highest for SO2 and VOC emissions reaching about -20% while that of NOx, NH3 and 

primary PM2.5 vary by less than 5%. In YRD, NOx and VOC emissions record the highest extent of changes with -14.73% for 

NOx and 12.54% for VOC. The range of changes in other emission species is less than 5% (all decrease). Emission of primary 

PM2.5 in PRD increases by about 7%, which is the largest change ratio among four urban regions. Emission of NH3 in PRD 320 

changes the least compared with other regions. In SCH, emissions of SO2 and VOC decrease the most (change ratio) compared 

with other emission species (>20%). Emission of primary PM2.5 in SCH, which decreases by 5.95%, shows an opposite trend 

to that in PRD. As for in NWC, emissions of NH3 and VOC show a small decrease (<5%), while emissions of NOx and primary 

PM2.5 have a large percentage increase compared with other regions (10%), thus particularly indicating the large inaccuracy in 

emission inventory in NWC. 325 

 

Table 3: Emissions and change ratios in five typical regions of four months. 

Month Variables Version 
Regions 

BTH YRD PRD SCH NWC 
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Jan. 

NOx 
P-Emis (kt) 68.05 70.56 37.07 43.29 10.26 

N-Emis (%) -7.19 6.24 4.55 2.65 8.74 

NH3 
P-Emis (kt) 28.65 24.42 6.5 24.84 5.52 

N-Emis (%) 0.67 0.59 8.3 5.13 8.64 

SO2 
P-Emis (kt) 90.13 40.16 21.72 150.67 34.06 

N-Emis (%) -11.93 -11.38 -13.92 -26.14 -1.5 

VOC 
P-Emis (Mmol) 0.81 0.99 0.25 0.28 0.05 

N-Emis (%) -5.53 -12.73 -37.52 -36.39 2.61 

PM2.5 
P-Emis (kt) 4.66 2.22 1.14 3.6 0.85 

N-Emis (%) 1.27 10.14 15.59 -0.8 9.61 

Apr. 

NOx 
P-Emis (kt) 52.43 67.17 35.21 39.05 8.72 

N-Emis (%) 8.93 -15.05 -5.22 -7.8 14.59 

NH3 
P-Emis (kt) 85.56 90.34 70.52 192.37 56.06 

N-Emis (%) -3.63 -2.6 -0.18 -1.78 -0.43 

SO2 
P-Emis (kt) 33.93 34.44 20.43 110.74 20.2 

N-Emis (%) -28.14 -0.92 -14.17 -22.97 6.77 

VOC 
P-Emis (Mmol) 0.38 0.85 0.23 0.19 0.05 

N-Emis (%) -28.87 13.71 -25.61 -29.06 -2.29 

PM2.5 
P-Emis (kt) 1.81 1.96 0.94 1.79 0.62 

N-Emis (%) -5.12 -3.93 4.34 -8.89 9.54 

Jul. 

NOx 
P-Emis (kt) 50.51 72.03 36.61 41.35 9.01 

N-Emis (%) -10.62 -29.84 -11.46 -11.94 6.86 

NH3 
P-Emis (kt) 108.78 114.78 89.82 245.68 71.16 

N-Emis (%) -5.41 -2.7 -1.1 -0.9 0.08 

SO2 
P-Emis (kt) 35.65 36.95 21.26 115.74 17.51 

N-Emis (%) -38.45 -4.18 -19.26 -19.71 12.71 

VOC 
P-Emis (Mmol) 0.39 0.92 0.24 0.21 0.05 

N-Emis (%) -22.87 23.85 -21.29 -16.47 8.85 

PM2.5 
P-Emis (kt) 2.34 3.18 1.06 2.27 0.72 

N-Emis (%) 0.88 -4.94 4.17 -5.4 6.91 

Oct. 

NOx 
P-Emis (kt) 54.83 70.11 37.11 40.84 9.96 

N-Emis (%) 14.56 -19.99 -9.62 -1.5 25.41 

NH3 
P-Emis (kt) 50.43 53.4 41.24 110.75 32.28 

N-Emis (%) -0.53 -4.52 1.54 -3.79 -2.54 

SO2 
P-Emis (kt) 35.68 36.08 21.52 116.47 21.74 

N-Emis (%) -39.8 -2.73 -19.63 -27.43 -2.39 

VOC 
P-Emis (Mmol) 0.4 0.89 0.25 0.19 0.06 

N-Emis (%) -38.33 27.98 -20.39 -34.42 -16.41 

PM2.5 P-Emis (kt) 1.94 1.95 1.15 1.85 1.04 
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N-Emis (%) 0.26 -4.86 3.8 -13.68 9.32 

 

3.4 Accuracy Improvements of CTM Simulation for pollutants with N-Emis 

We use the CTM to evaluate the accuracy of P-Emis and N-Emis. The configuration of CTM keeps constant. 330 

Generally, simulations using P-Emis tend to underestimate the PM2.5 concentrations and overestimate the O3 concentrations 

on average of four months in China, which are consistent with our previous studies (Ding et al., 2019; Liu et al., 2019). The 

underestimation of PM2.5 using P-Emis usually appears in Northern and South eastern China, and sometimes occurs in some 

provinces of the Yangtze River Basin. The simulations of O3 using P-Emis are generally overestimated at observation sites. 

Such errors can be narrowed when using N-Emis. We calculated the MAE for each simulation to compare the performances 335 

considering all observation sites. After using adjusted emissions (i.e., N-Emis), the MAE for NO2, SO2, O3 and PM2.5 

concentrations reduced significantly from 7.39 to 5.91 (20.03%), 3.64 to 3.22 (11.54%), 14.33 to 11.56 (19.33%) ppbv and 

18.94 to 16.67 (11.99%) μg m−3 , respectively, average for total 612 observation stations, as shown in Figure 7. Such 

improvements prove the advantages of using N-Emis compared with P-Emis. Spatial distributions of comparison between 

simulations and observations in 612 sites can be found in Figure 8. The model performance of most stations has been improved, 340 

and a small number of stations with worsen performance show the link between compound pollutants. For example, stations 

with larger deviations between PM2.5 simulation results and observations tend to have greatly improved O3 performance, and 

vice versa. 

 

 345 
Figure 7. The MAE of NO2 (ppbv), SO2 (ppbv), O3 (ppbv) and PM2.5 (μg m-3) concentrations based on P-/N-Emis. 
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Figure 8: The MAE of NO2 (𝐩𝐩𝐛𝐯), SO2 (𝐩𝐩𝐛𝐯), O3 (𝐩𝐩𝐛𝐯) and PM2.5 (𝛍𝐠 𝐦−𝟑) concentrations based on P-/N-Emis. 

 350 

Difference of monthly simulations using N-emis & P-Emis as input can be used to estimate the seasonal impacts of emission 

changes. Concentrations of O3 and PM2.5 tend to increase in July while decrease in other months on average for China. 

Concentrations of NO2 and SO2 tend to decrease in four months, which are consistent with the direct trend of emission 

adjustments. 

We also calculated the average concentrations of four pollutants in five typical regions to quantify the degree of improvement 355 

in pollutant concentrations after adjusting the emission inventory, as listed in Table 4. Changes in NO2 and SO2 concentrations 

are consistent with adjustments in emissions but are more sensitive, i.e. a small change (~10%) in emission results in a larger 

proportional change (~20%) in concentration. The reduced SO2 emission is an important reason for the improvement of PM2.5 

overestimations in the Yangtze River Basin. PM2.5 concentrations in NWC show the highest increase (15%) compared with 

other regions. As the emission inventory in NWC has great potential for improvement (subject to production methods and the 360 

acquisition of basic data), the qualitative changes in PM2.5 concentrations brought about using NN method seem meaningful. 

The increase and decrease of NOx and VOC emissions directly control the variance in O3 concentration. Effect of using N-

Emis on O3 concentration is not obvious, with a change range of less than 5% in typical regions. Although the adjustment ratio 

of emissions of O3 precursors is considerable, the O3 concentration doesn't change by much. The same can be linked to the 

complex relationship of precursor emissions of NOx and VOC which might not change simultaneously and in the same 365 

direction (e.g. increase NOx and decrease in VOC or vice-versa) thus resulting in only a slight change in O3 concentration. 
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 370 

Table 4: Four-month average concentrations of NO2, SO2, O3 and PM2.5 in five typical regions using different emission inventories. 

Variables Version 
Regions 

BTH YRD PRD SCH NWC 

NO2 (ppbv) P-Emis  15.69 13.31 6.25 4.82 0.31 

 N-Emis  11.85 10.79 5.29 4.45 0.33 

SO2 (ppbv)  P-Emis  6.97 4.32 1.89 4.88 0.26 

 N-Emis  5.77 3.95 1.67 3.2 0.37 

O3 (ppbv)  P-Emis  34.79 41.63 40.16 41.94 41.42 

 N-Emis  35.51 39.7 38.43 40.06 41.47 

PM2.5 (μg m−3)  P-Emis  46.28 44.29 22.6 25.96 2.02 

 N-Emis  45.28 41.66 22.08 23.71 2.33 

 

4. Conclusion and Discussion 

In this study, we pioneer the use of machine learning to re-formulate the problem of emission inventory estimation. It creates 

a new perspective that the data-driven approach can be applied to automatically improve the quality of the emission inventory, 375 

avoiding manual intervention and empirical error. We proposed a differential neural network based chemical transport model 

(NN-CTM), which achieves a relatively good representation of CTM. And then, we employed backpropagation algorithm to 

update the emission inventory based on the deviation between observed and NN-CTM predicted pollutant concentrations. In 

terms of method, we have proposed a novel emission inventory estimation method based on dual learning which consists of 

dual-loop of emission-to-pollution and pollution-to-emission. Results indicate that our NN based method with adjusted 380 

emission inventory performed better than using prior emissions. 

Compared with previous studies, our framework employs dual learning mechanism where in the simulated concentrations are 

compared to ground observation and the gradient is back propagated to update the emission inventory in each epoch. Results 

show that new emissions after the adjustment can improve the model performance in simulating the concentrations close to 

observations. The mean absolute error for NO2, SO2, O3 and PM2.5 concentrations reduced significantly by 10% to 20%. This 385 

application uses a constant biogenic emission inventory, so the potential errors in biogenic emissions are also included in the 

learning of anthropogenic emissions. 

Our method can be naturally extended to other fundamental problems, such as CO2 and other greenhouse gas emission 

inventory estimation, and has broad application prospects, such as building a real-time emission monitoring system based on 

real-time pollutant observation data. 390 
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Code/Data availability 

The codes for machine learning are available in https://doi.org/10.5281/zenodo.4607127 (Huang et al., 2021), including demo 

case for this study with input data from Ding et al. (2016) and the China National Environmental Monitoring Centre 

(http://beijingair.sinaapp.com/). CMAQv5.2 is an open-source and publicly available model developed by the United States 395 

Environmental Protection Agency, which can be downloaded at https://doi:10.5281/zenodo.1167892 (Appel et al., 2018). 

Author Contribution 

Lin Huang and Song Liu conceived the research project; Zeyuan Yang analyzed the data; Jia Xing, Jia Zhang, Jiang Bian, 

Siwei Li, Shuxiao Wang and Tie-Yan Liu provided valuable discussions on research and paper organization; Lin Huang, Song 

Liu, Zeyuan Yang, Shovan Kumar Sahu, Jia Xing, Jia Zhang and Jiang Bian wrote the paper with contributions from all the 400 

authors. 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgement 

This work was supported in part by the National Natural Science Foundation of China (41907190, 51861135102) and the 405 

National Key R&D program of China (2017YFC0213005). This work was completed on the “Explorer 100” cluster system of 

Tsinghua National Laboratory for Information Science and Technology. 

  



 

20 

 

 

References 

Aardenne, J. V. and Pulles, T.: Uncertainty in emission inventories: What do we mean and how could we 410 

assess it?, 2002. 
Appel, K., Pouliot, G., Simon, H., Sarwar, G., Pye, H., Napelenok, S., Akhtar, F., and Roselle, S.: 
Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model 
version 5.0, Geoscientific Model Development, 6, 883-899, 2013. 
Appel, K. W., Napelenok, S., Hogrefe, C., Pouliot, G., Foley, K. M., Roselle, S. J., Pleim, J. E., Bash, J., 415 

Pye, H. O. T., and Heath, N.: Overview and Evaluation of the Community Multiscale Air Quality 
(CMAQ) Modeling System Version 5.2, In: Mensink C., Kallos G. (eds) Air Pollution Modeling and its 
Application XXV. ITM 2016. Springer Proceedings in Complexity. Springer, Cham, doi: 
https://doi.org/10.1007/978-3-319-57645-9_11, 2018. 69-73, 2018. 
Bottou, L.: Large-Scale Machine Learning with Stochastic Gradient Descent, Physica-Verlag HD, 2010. 420 

Brioude, J., Angevine, W. M., Ahmadov, R., and Kim, S.-W.: Top-down estimate of surface flux in the 
Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of 
CO, NOx and CO2 and their impacts, Atmospheric Chemistry and Physics Discussions, doi: 
10.5194/acpd-12-31439-2012, 2012. 2012. 
Byun, D.: Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling 425 

system, EPA/600/R-99/030, 1999. 1999. 
Cho, K., Merrienboer, B. v., Bahdanau, D., and Bengio, Y.: On the Properties of Neural Machine 
Translation: Encoder-Decoder Approaches, Computer Science, 2014. 2014. 
Chung, J., Gulcehre, C., Cho, K., and Bengio, Y.: Empirical Evaluation of Gated Recurrent Neural 
Networks on Sequence Modeling, Computer Science, 2014. 2014. 430 

Ding, D., Xing, J., Wang, S., Liu, K., and Hao, J.: Estimated contributions of emissions controls, 
meteorological factors, population growth, and changes in baseline mortality to reductions in ambient 
PM2.5 and PM2.5-related mortality in China, 2013–2017, Environmental Health Perspectives, doi: 
10.1289/EHP4157, 2019. 2019. 
Ding, D., Yun, Z., Jang, C., Lin, C. J., Wang, S., Fu, J., and Jian, G.: Evaluation of health benefit using 435 

BenMAP-CE with an integrated scheme of model and monitor data during Guangzhou Asian Games, J 
Environ, 42, 9-18, 2016. 
Fan, J., Li, Q., Hou, J., Feng, X., Karimian, H., and Lin, S.: A spatiotemporal prediction framework for 
air pollution based on deep RNN, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 4, 15, 2017. 440 

Friedl, M. A., Mciver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, 
C. E., Gopal, S., Schneider, A., and Cooper, A.: Global land cover mapping from MODIS: algorithms 
and early results, Remote Sensing of Environment, 83, 287-302, 2002. 
Ghil, M. and Malanotte-Rizzoli, P.: Data Assimilation in Meteorology and Oceanography, Advances in 
Geophysics, 33, 141-266, 1991. 445 

Guo, S., Hu, M., Zamora, M. L., Peng, J., and Zhang, R.: Elucidating severe urban haze formation in 
China, Proceedings of the National Academy of Sciences of the United States of America, 111, 17373, 
2014. 
He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T.-Y., and Ma, W.-Y.: Dual learning for machine 
translation, Proceedings of the 30th International Conference on Neural Information Processing Systems, 450 

Barcelona, Spain, 820–828, 2016. 
He, K.: Multi-resolution Emission Inventory for China (MEIC): model framework and 1990-2010 
anthropogenic emissions, 2012. 

带格式的: EndNote Bibliography

域代码已更改



 

21 

 

 

He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, Computer 
Science, 2015a. 2015a. 455 

He, K., Zhang, X., Ren, S., and Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level 
Performance on ImageNet Classification, Computer Science, 2015b. 2015b. 
Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Computation, 9, 1735-1780, 1997. 
Huang, G., Liu, Z., Laurens, V. D. M., and Weinberger, K. Q.: Densely Connected Convolutional 
Networks, 2016. 2016. 460 

Huang, L., Liu, S., Yang, Z., Xing, J., Zhang, J., Bian, J., Li, S., Sahu, S. K., Wang, S., and Liu, T.-Y.: 
The Inventory Optimization Code for Exploring Deep Learning in Air Pollutant Emission Estimation 
Scale. Zenodo, 2021. 
Institute, H. E.: State of global air 2019. Health Effects Institute Boston, M. (Ed.), 2019. 
Ioffe, S. and Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing 465 

Internal Covariate Shift, JMLR.org, 2015. 2015. 
Kain, J. S.: The Kain–Fritsch convective parameterization: an update, Journal of Applied Meteorology, 
43, 170-181, 2004. 
Kingma, D. and Ba, J.: Adam: A Method for Stochastic Optimization, Computer Science, 2014. 2014. 
Krizhevsky, A., Sutskever, I., and Hinton, G.: ImageNet Classification with Deep Convolutional Neural 470 

Networks, 2012. 
Li, G.: Report on the completion of environmental conditions and environmental protection targets for 
2018, (in Chinese), 2019. 2019. 
Liu, S., Xing, J., Westervelt, D. M., Liu, S., Ding, D., Fiore, A. M., Kinney, P. L., Zhang, Y., He, M. Z., 
and Zhang, H.: Role of emission controls in reducing the 2050 climate change penalty for PM2. 5 in 475 

China, Science of The Total Environment, 2020. 144338, 2020. 
Liu, S., Xing, J., Zhang, H., Ding, D., Zhang, F., Zhao, B., Sahu, S. K., and Wang, S.: Climate-driven 
trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and 
secondary organic aerosol in China in the 2050s, Atmospheric Environment, 218, 117020, 2019. 
Mlawer, E., Clough, S., and Kato, S.: Shortwave clear-sky model measurement intercomparison using 480 

RRTM, 1998, 23-27. 
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for 
inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave, Journal of 
Geophysical Research: Atmospheres, 102, 16663-16682, 1997. 
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics on the development of 485 

trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes, 
Monthly weather review, 137, 991-1007, 2009. 
Pleim, J. E.: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: 
Model description and testing, Journal of Applied Meteorology and Climatology, 46, 1383-1395, 2007. 
Pleim, J. E. and Xiu, A.: Development and testing of a surface flux and planetary boundary layer model 490 

for application in mesoscale models, Journal of Applied Meteorology, 34, 16-32, 1995. 
Richter, A., Burrows, J. P., Nüss, H., Granier, C., and Niemeier, U.: Increase in nitrogen dioxide over 
China observed from space. Nature, Nature, 437, 129-132, 2005. 
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image 
Segmentation, Computer Science, 2015. 2015. 495 

Sarwar, G., Luecken, D., Yarwood, G., Whitten, G. Z., and Carter, W. P. L.: Impact of an Updated Carbon 
Bond Mechanism on Predictions from the CMAQ Modeling System: Preliminary Assessment, Journal of 
Applied Meteorology & Climatology, 47, 3-14, 2008. 

带格式的: EndNote Bibliography



 

22 

 

 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: A Simple Way 
to Prevent Neural Networks from Overfitting, Journal of Machine Learning Research, 15, 1929-1958, 500 

2014. 
Tao, Q., Liu, F., Li, Y., and Sidorov, D.: Air Pollution Forecasting Using a Deep Learning Model Based 
on 1D Convnets and Bidirectional GRU, IEEE Access, 7, 76690-76698, 2019. 
Vallero and Daniel: Translating Diverse Environmental Data into Reliable Information, 2018. 25-41, 
2018. 505 

Vesilind, P. A., Peirce, J. J., and Weiner, R. F.: Chapter 18 - Air Pollution, Elsevier Inc., 1988. 
Wen, C., Liu, S., Yao, X., Peng, L., Li, X., Hu, Y., and Chi, T.: A novel spatiotemporal convolutional 
long short-term neural network for air pollution prediction, Science of the Total Environment, 654, 1091-
1099, 2019. 
Wikle, C. K.: Atmospheric modeling, data assimilation, and predictability, 2003. 2003. 510 

Xing, J., Li, S., Ding, D., Kelly, J. T., and Hao, J.: Data Assimilation of Ambient Concentrations of 
Multiple Air Pollutants Using an Emission-Concentration Response Modeling Framework, Atmosphere, 
11, 1289, 2020a. 
Xing, J., Li, S., Jiang, Y., Wang, S., Ding, D., Dong, Z., Zhu, Y., and Hao, J.: Quantifying the emission 
changes and associated air quality impacts during the COVID-19 pandemic in North China Plain: a 515 

response modeling study, Atmospheric Chemistry and Physics Discussions, 2020, 1-28, 2020b. 
Xing, J., Zheng, S., Ding, D., Kelly, J. T., and Hao, J.: Deep Learning for Prediction of the Air Quality 
Response to Emission Changes, Environmental Science and Technology, XXXX, 2020c. 
Xing, J., Zheng, S., Ding, D., Kelly, J. T., Wang, S., Li, S., Qin, T., Ma, M., Dong, Z., Jang, C., Zhu, Y., 
Zheng, H., Ren, L., Liu, T.-Y., and Hao, J.: Deep Learning for Prediction of the Air Quality Response to 520 

Emission Changes, Environmental Science & Technology, 54, 8589-8600, 2020d. 
Xiu, A. and Pleim, J. E.: Development of a land surface model. Part I: Application in a mesoscale 
meteorological model, Journal of Applied Meteorology, 40, 192-209, 2001. 
Yang, X., Pang, J., Teng, F., Gong, R., and Springer, C.: The environmental co-benefit and economic 
impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models, 525 

Renewable and Sustainable Energy Reviews, 136, 110438, 2021. 
Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R.: Deconvolutional networks, 2010. 
Zhang, C., Be Ngio, S., Hardt, M., Recht, B., and Vinyals, O.: Understanding deep learning requires 
rethinking generalization, 2016. 
Zhao, B., Wang, S., Wang, J., Fu, J. S., Liu, T., Xu, J., Fu, X., and Hao, J.: Impact of national NOx and 530 

SO2 control policies on particulate matter pollution in China, Atmospheric Environment, 77, 453-463, 
2013. 
Zheng, B., Tong, D., Li, M., Liu, F., and Zhang, Q.: Trends in China's anthropogenic emissions since 
2010 as the consequence of clean air actions, Atmospheric Chemistry and Physics, 18, 14095-14111, 
2018. 535 

Zheng, H., Zhao, B., Wang, S., Wang, T., Ding, D., Chang, X., Liu, K., Xing, J., Dong, Z., and Aunan, 
K.: Transition in source contributions of PM 2.5 exposure and associated premature mortality in China 
during 2005–2015, Environment International, 132, 2019. 
 

带格式的: EndNote Bibliography

带格式的: EndNote Bibliography


