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Abstract. Climate model emulators have a crucial role in assessing warming levels of many emission scenarios from 

probabilistic climate projections, based on new insights into Earth system response to CO2 and other forcing factors. This 

article describes one such tool, MCE, from model formulation to application examples associated with a recent model 

intercomparison study. The MCE is based on impulse response functions and parameterized physics of effective radiative 

forcing and carbon uptake over ocean and land. Perturbed model parameters for probabilistic projections are generated from 10 

statistical models and constrained with a Metropolis-Hastings independence sampler. A part of the model parameters 

associated with CO2-induced warming have a covariance structure, as diagnosed from complex climate models of the 

Coupled Model Intercomparison Project (CMIP). Although perturbed ensembles can cover the diversity of CMIP models 

effectively, they need to be constrained toward substantially lower climate sensitivity for the resulting historical warming to 

agree with the observed trends over recent decades. The model’s simplicity and resulting successful calibration imply that a 15 

method with less complicated structures and fewer control parameters offers advantages when building reasonable perturbed 

ensembles in a transparent way. Experimental results for future scenarios show distinct differences between CMIP-consistent 

and observation-consistent ensembles, suggesting that perturbed ensembles for scenario assessment need to be properly 

constrained with new insights into forced response over historical periods. 

1 Introduction 20 

Climate model emulators, or simple climate models, are numerical tools for representing the complex Earth system in 

reduced dimensions using aggregated variables, such as global mean surface temperature (GMST) and global CO2 uptake 

over ocean and land. They offer advantages of ease and transparency, with a wide range of applications in both scientific and 

decision-making contexts (Schwarber et al., 2019). Their computational efficiency allows users to conduct climate 

experiments for a number of emission scenarios with many different model parameters, to derive probabilistic climate 25 

projections. This article describes one such tool, Minimal CMIP Emulator (MCE), intended to emulate state-of-the-art 

atmosphere-ocean general circulation models (AOGCMs) in the Coupled Model Intercomparison Project (CMIP, Meehl et 

al., 2014) with sufficient simplicity and accuracy. 
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One key emulator application is climate assessment of emission scenarios presented in Intergovernmental Panel on Climate 

Change (IPCC) reports. In the case of the 2014 Working Group III Fifth Assessment Report (AR5), over 1000 scenarios 30 

were assessed with a well-established emulator, MAGICC version 6 (Meinshausen et al., 2011), from its 600-member 

parameter ensemble runs (Clarke et al., 2014). The method used was based on Meinshausen et al. (2009) and has a range of 

future temperature increases similar to that of multiple AOGCMs from the CMIP Phase 5 (CMIP5, Taylor et al., 2012). The 

results from ensemble runs were used to classify each scenario by climate indicators associated with warming levels and to 

probabilistically assess consistency with long-term temperature goals for climate change mitigation. The output of the 35 

CMIP5 models constitutes a dominant part of the scientific basis of Working Group I contribution to AR5, and the specific 

emulator plays a crucial role in synthesizing the most comprehensive information on climate projections available at the time. 

However, the climate assessment of AR5 is regarded as indicative as it is based on a single probability distribution (Clarke et 

al., 2014). This is similar to the scenario assessment of the 2018 IPCC Special Report on global warming of 1.5 °C (SR15) 

(Rogelj et al., 2018), where the same method as in AR5 was used for scenario classification but noticeable differences in 40 

radiative forcing and temperature response were identified between the results of MAGICC and of a different emulator, FaIR 

version 1.3 (Smith et al., 2018). FaIR incorporates recent updates of radiative forcing and shows greater non-CO2 

anthropogenic forcing in historical and future periods than MAGICC (Forster et al., 2018). In contrast, current and projected 

warming is generally greater in MAGICC than in FaIR, implying greater climate sensitivity in the former. 

With regard to climate sensitivity, the new CMIP Phase 6 (CMIP6, Eyring et al., 2016) has been providing different 45 

outcomes from CMIP5. Equilibrium climate sensitivity (ECS), a hypothetical value of global warming at equilibrium in 

response to a doubling of the atmospheric CO2 concentration, is generally greater in CMIP6 models than in CMIP5 models, 

mainly attributed to the models’ cloud processes (Zelinka et al., 2020). Transient climate response (TCR), a value of global 

warming at the time of CO2 doubling with an idealized 1%-per-year concentration increase, is also greater in CMIP6 than in 

CMIP5 models, but their relative difference is smaller than that of ECS (Meehl et al., 2020). This characteristic, reflecting 50 

the tendency of realized warming fractions, specifically TCR-to-ECS ratios, is consistent with a theoretical relationship 

between climate feedback strength and thermal response timescales (Tsutsui, 2020). However, modeled historical warming 

generally appears greater in the CMIP5 models than in the CMIP6 models, supported by extremely strong aerosol cooling as 

found in several CMIP6 models (Flynn and Mauritsen, 2020), as well as generally weaker greenhouse gas (GHG) forcing in 

CMIP6 models (Smith and Forster, 2021). 55 

These confusing results require a more advanced and transparent methodology to synthesize new insights into forcing, 

response, and sensitivity, not only from climate modeling but also from other lines of evidence. The Reduced Complexity 

Model Intercomparison Project (RCMIP, Nicholls et al., 2020) is promising, providing the first comprehensive model 

intercomparison of emulators. During Phase 1 of this project, a new framework was established to systematically evaluate 

multiple emulators from scenario experiments that mirror those in CMIP5 and CMIP6, and 15 emulators were compared in 60 

terms of their ability to approximate each of the CMIP6 models, mainly in terms of global mean temperature changes 
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(Nicholls et al., 2020). Phase 2 then focused on probabilistic climate projections and nine models were compared under the 

same set of constraints for model parameter perturbations (Nicholls et al., 2021). 

The MCE has been used in both phases, and the present article provides details of the version used in Phase 2. The MCE 

model consists of prediction equations for thermal response and carbon cycle. Although there are many emulators with 65 

different complexities, their core modules appear to be based on a few pioneering works and are often shared between 

different emulators. The thermal response of the MCE is implemented as a pure impulse response model (IRM), which is the 

most simplified form originated from the one presented in Hasselmann et al. (1993). The carbon cycle of the MCE is based 

on a part of the nonlinear impulse-response model of the coupled carbon-climate system (NICCS, Hooss et al., 2001), which 

may be categorized to be of intermediate complexity among RCMIP participants. One of them, ACC2 (Tanaka et al., 2007), 70 

also adopts the NICCS-based carbon cycle. 

Although complex formulations generally are more capable of emulation, they are not necessarily advantageous for 

emulating individual CMIP models and representing their uncertainty ranges. For thermal response, this has been confirmed 

by the author’s previous studies (Tsutsui, 2017; Tsutsui, 2020), which have demonstrated that a simple IRM can accurately 

emulate a variety of CMIP models in terms of temperature response to CO2 forcing and provide a basis of parameter 75 

sampling that covers model diversity. These findings also imply that less complex emulators are suitable for knowledge 

transfer in a transparent way. From this perspective, key considerations for emulator design are in its subsidiary components, 

such as forcing parameterizations, treatment of non-linear processes involving some state-dependent response properties, and 

parameter constraining for probabilistic projections. 

The remainder of this article is structured as follows. Section 2 describes model formulations and parameter sampling 80 

methods. Section 3 presents the experimental application of probabilistic climate projections. Section 4 discusses emulator 

performance and constraining model parameters. Finally, Section 5 presents the study’s main conclusions. 

2 Model description 

2.1 Impulse response models 

The MCE model is essentially built on impulse response functions for the fraction of the total CO2 emitted that remains in 85 

the atmosphere (termed the airborne fraction), the decay of land carbon accumulated by the CO2 fertilization effect, and 

temperature change to radiative forcing of CO2 and other forcing agents. Under the linear response assumption with regard to 

input forcing 𝐹𝐹, an impulse response model (IRM) expresses the time change of a response variable 𝑥𝑥 by a convolution 

integral: 

𝑥𝑥(𝑡𝑡) = � 𝐹𝐹
𝑡𝑡

0
(𝑡𝑡′)�𝐴𝐴𝑖𝑖

𝑖𝑖

exp�−
𝑡𝑡 − 𝑡𝑡′

𝜏𝜏𝑖𝑖
� 𝑑𝑑𝑡𝑡′, (1) 90 

where 𝑡𝑡 is time, and the sum of exponentials is an impulse response function with parameters 𝐴𝐴𝑖𝑖  and 𝜏𝜏𝑖𝑖  denoting the 𝑖𝑖-th 

component of the response amplitude and time constant, respectively. The time derivative of this equation is given by: 
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𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡

= � �𝐹𝐹(𝑡𝑡)𝐴𝐴𝑖𝑖 −
𝑥𝑥𝑖𝑖(𝑡𝑡)
𝜏𝜏𝑖𝑖

�
𝑖𝑖

, (2) 

or an equivalent box model form that is converted into the original IRM through Laplace transform or eigenfunction 

expansion. The time derivative implemented in the MCE uses an IRM form for land carbon decay and temperature change, 95 

and a box model form for the airborne fraction, to address partitioning of excess carbon between the atmosphere and ocean 

mixed layer. Figure 1 illustrates the MCE's components in a box-model form representing heat or carbon reservoirs. Since 

each component is formulated on its own impulse response functions, the boxes are separately defined between the thermal 

response and carbon cycle modules. 

 100 
Figure 1: Schematic diagram of the box models equivalent to the MCE's impulse response models. Bidirectional arrows represent 
heat and carbon fluxes within each module of the thermal response and carbon cycle. The two modules are connected through CO2 
forcing and climate feedback mechanisms. 

The IRM for the airborne fraction defines five components, one of which has infinity time constant, paired with an amplitude 

corresponding to an asymptotic long-term fraction. In the current configuration, the remaining four time constants are fixed 105 

at 236.5, 59.52, 12.17, and 1.271 years, adjusted to a specific three-dimensional ocean carbon cycle model in Hooss et 

al. (2001). The corresponding amplitudes assume perturbations at reference values of 0.24, 0.21, 0.25, and 0.1, respectively, 

with a reference long-term airborne fraction of 0.20. These reference values and perturbation ranges are set empirically so 

that resulting carbon budgets—cumulative land and ocean CO2 uptake—agree with those of historical observations and 

CMIP experiments. 110 

As described below, IRM parameters are converted into a set of parameters for an equivalent box model dealing with carbon 

exchange between four layers. In this conversion, the response of the shortest timescale component is interpreted as 
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equilibration between the atmosphere and ocean mixed layer, which are combined into a composite layer in the box model, 

as shown in the ocean carbon cycle in Fig. 1. Figure 2 shows response to an idealized instantaneous input of 100 GtC 

without land carbon uptake and climate feedback. In this case, the airborne fraction decreases from 0.9 to a long-term 115 

equilibrium of about 0.2 at a gradually decreasing rate. The asymptotic long-term airborne fraction is slightly greater than an 

assumed value, depending on the size of pulse input, due to the buffering mechanism of sea water. 

 
Figure 2: Response of the airborne fraction to an initial input of 100 GtC without land CO2 uptake and climate feedback. The line 
shows the case of reference amplitudes, and shading shows the range of the 5th–95th percentiles of the ‘Prior’ ensemble, described 120 
in 3.1. 

The IRM for land carbon defines four carbon pools, representing ground vegetation, wood, detritus, and soil organic carbon, 

with distinct overturning times (𝜏𝜏𝑖𝑖). The forcing term (𝐹𝐹) is net primary production (NPP) enhanced by the effect of CO2 

fertilization, generally expressed by 𝛽𝛽𝐿𝐿𝑁𝑁0 , where 𝛽𝛽𝐿𝐿  is a fertilization factor that depends on the atmospheric CO2 

concentration, and 𝑁𝑁0 is base annual NPP in GtC per year. The response amplitude (𝐴𝐴𝑖𝑖) is rewritten as �̃�𝐴𝑏𝑏𝑖𝑖𝜏𝜏𝑖𝑖, where �̃�𝐴𝑏𝑏𝑖𝑖 125 

denotes a decay flux after an initial carbon input. Based on Joos et al. (1996), the IRM parameters of the four carbon pools 

are set to 2.9, 20, 2.2, and 100 years for 𝜏𝜏𝑖𝑖, and 0.70211, 0.013414, −0.71846, and 0.0029323 years−1 for �̃�𝐴𝑏𝑏𝑖𝑖, respectively. 

Figure 3 illustrates response to unit forcing in this configuration. 
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Figure 3: Response of land carbon to instantaneous unit input (a), and accompanying flux from carbon pools (b). 130 

In addition, the MCE deals with temperature dependency for the time constants of wood and soil organic carbon, indicating 

the tendency for warming to accelerate the decomposition of organic matter. This is one of the climate-carbon cycle 

feedback processes and is implemented with an adjustment coefficient varied along a logistic curve with respect to surface 

warming, as illustrated in Fig. 4. This scheme has a parameter to control the asymptotic minimum value of the coefficient. 

The figure shows three curves with different control parameters, corresponding to the 5th, 50th, and 95th percentiles of the 135 

‘Prior’ ensemble, described in 3.1, adjusted to be consistent with the variation of CMIP Earth system models (ESMs). In the 

IRM form, land accumulated carbon is proportional to ∑ �̃�𝐴𝑏𝑏𝑖𝑖𝑖𝑖 𝜏𝜏𝑖𝑖2, expressing the remaining carbon at an equilibrium state 

under unit continuous input, and the decrease in the time constants affects accumulated carbon quadratically. 

 
Figure 4: Adjustment coefficient as a function of surface temperature change to multiply the time constants for the decay of wood 140 
and soil organic matter. The three curves are functions corresponding to the 5th, 50th, and 95th percentiles of the ‘Prior’ ensemble, 
described in 3.1, with different asymptotic minimum values, as described in the legend. The temperature at which a curve has the 
maximum gradient is fixed at 3.5 °C. 
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The IRM of the temperature change defines three components with typical time constants of approximately 1, 10, and > 100 

years. Although the temperature response is usually well represented by two separated time constants of approximately 4 and 145 

> 100 years (e.g., Held et al., 2010, Geoffroy et al., 2013), dividing fast response is advantageous when considering 

instantaneous forcing changes, such as volcanic eruptions (Gupta and Marshall, 2018) and geoengineering mitigation, and 

using three time constants appears a practically optimal choice (Cummins et al., 2020). Separating the intermediate time 

constant is also beneficial for representing a pattern effect—warming response affected on a decadal or multi-decadal 

timescale by the changing pattern of surface warming (e.g., Andrews et al., 2015). The response amplitude is rewritten by 150 

�̃�𝐴𝑖𝑖/(𝜆𝜆𝜏𝜏𝑖𝑖), where �̃�𝐴𝑖𝑖 is normalized so that the component sum is unity, and 𝜆𝜆 is the climate feedback parameter in Wm−2°C−1, 

defined as the derivative of the outgoing thermal flux with respect to temperature change. These IRM parameters can be 

adjusted to emulate individual CMIP models with sufficient accuracy, as demonstrated in Tsutsui (2020), which serves a 

basis to build a perturbed parameter ensemble. 

2.2 Carbon uptake over ocean 155 

The box model converted from the IRM for the airborne fraction is as follows: 
𝑑𝑑𝑐𝑐0
𝑑𝑑𝑡𝑡

= −
𝜂𝜂1
ℎ𝑠𝑠
𝑐𝑐𝑠𝑠 +

𝜂𝜂1
ℎ1
𝑐𝑐1 + 𝑒𝑒 − 𝑓𝑓, (3) 

 𝑑𝑑𝑐𝑐1
𝑑𝑑𝑡𝑡

=
𝜂𝜂1
ℎ𝑠𝑠
𝑐𝑐𝑠𝑠 −

𝜂𝜂1 + 𝜂𝜂2
ℎ1

𝑐𝑐1 +
𝜂𝜂2
ℎ2
𝑐𝑐2, (4) 

𝑑𝑑𝑐𝑐2
𝑑𝑑𝑡𝑡

=
𝜂𝜂2
ℎ1
𝑐𝑐1 −

𝜂𝜂2 + 𝜂𝜂3
ℎ2

𝑐𝑐2 +
𝜂𝜂3
ℎ3
𝑐𝑐3, (5) 

 𝑑𝑑𝑐𝑐3
𝑑𝑑𝑡𝑡

=
𝜂𝜂3
ℎ2
𝑐𝑐2 −

𝜂𝜂3
ℎ3
𝑐𝑐3, (6) 160 

where 𝑐𝑐𝑘𝑘 is the amount of excess carbon in layer 𝑘𝑘, ℎ𝑘𝑘 is the layer depth, 𝜂𝜂𝑘𝑘 is the exchange coefficient between layer 𝑘𝑘 − 1 

and layer 𝑘𝑘, 𝑒𝑒 is anthropogenic emissions, and 𝑓𝑓  is natural uptake over land. The parameters ℎ𝑘𝑘  and 𝜂𝜂𝑘𝑘  are set through 

numerical optimization for the box model to be equivalent to the IRM form. The top layer, indexed with “0,” is the 

composite atmosphere-ocean mixed layer, and the three sub-surface layers are indexed with “1,” “2,” and “3” in the order of 

ocean depth. The amount of excess carbon in the top layer (𝑐𝑐0) is partitioned into atmospheric and ocean components, 165 

denoted by 𝑐𝑐𝑎𝑎 and 𝑐𝑐𝑠𝑠, subject to chemical equilibrium at the ocean surface. The carbon exchange between the top layer and 

the first sub-surface is expressed in terms of 𝑐𝑐𝑠𝑠. 

 For a given time series of CO2 emissions (emission-driven) or atmospheric CO2 concentrations (concentration-driven), time 

integration is performed. In the latter case, 𝑐𝑐0 and its partition within the composite layer are diagnostically determined, and 

the top-layer equation is dropped. 170 
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The partition of 𝑐𝑐0  is solved through numerical computation with regard to hydrogen ion concentration associated with 

changes in dissolved inorganic carbon concentration (DIC) under the assumption of constant alkalinity (Alk). DIC, defined 

as the sum of [CO2], [HCO3
−] and [CO3

2−], where [𝑥𝑥] denotes the concentration of a substance 𝑥𝑥 in mol L−1, is expressed as: 

DIC = �1 +
𝐾𝐾1

[H+] +
𝐾𝐾1𝐾𝐾2
[H+]2

� [CO2], (7) 

where 𝐾𝐾1  and 𝐾𝐾2  are equilibrium constants for bicarbonate and carbonate, defined as 𝐾𝐾1 = [H+][HCO3
−]/[CO2] and 𝐾𝐾2 =175 

[H+][CO3
2−]/[HCO3

−]. [CO2], defined as the sum of [CO2(aq)] and [H2CO3(aq)] is related to the partial pressure of CO2 

(𝑝𝑝CO2 ) with equilibrium constant 𝐾𝐾0 , as in 𝐾𝐾0 = [CO2]/𝑝𝑝CO2 . Alkalinity, here considering borate ions as well as 

bicarbonate and carbonate ions, is represented as: 

Alk =
𝐾𝐾1[H+] + 2𝐾𝐾1𝐾𝐾2

[H+]2
[CO2] +

𝐾𝐾𝑏𝑏𝐵𝐵𝑇𝑇
𝐾𝐾𝑏𝑏 + [H+] +

𝐾𝐾𝑤𝑤
[H+] −

[H+], (8) 

where 𝐵𝐵𝑇𝑇  is total borate concentration [B(OH)3] + [B(OH)4−], and 𝐾𝐾𝑏𝑏 and 𝐾𝐾𝑤𝑤 are equilibrium constants for borate and water, 180 

defined as [H+][B(OH)4−]/[B(OH)3] and [H+][OH−]. 

The values of Alk, 𝐵𝐵𝑇𝑇 , and the equilibrium constants of 𝐾𝐾0, 𝐾𝐾1, 𝐾𝐾2, 𝐾𝐾𝑏𝑏, and 𝐾𝐾𝑤𝑤 are set based on Dickson et al. (2007). The 

equilibrium constants depend on water temperature, and carbon uptake decreases with temperature, representing a climate-

carbon cycle feedback process. This temperature dependency is implemented as a linear regression for empirical expressions, 

as shown in Fig. 5. 185 

 
Figure 5: Temperature-dependent equilibrium constants of 𝑲𝑲𝟎𝟎, 𝑲𝑲𝟏𝟏, 𝑲𝑲𝟐𝟐, 𝑲𝑲𝒃𝒃, and 𝑲𝑲𝒘𝒘 (a–e) in the MCE model (solid lines), which 
approximate empirical expressions in Dickson et al. (2007) (D07, dotted lines). Values at a reference seawater temperature of 
13.5 °C (dots) are assigned to those in the MCE’s preindustrial state. 
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The amount of excess carbon that can be accumulated in the ocean is proportional to a change in DIC from its preindustrial 190 

value. This carbon uptake potential and its temperature dependency are illustrated in Fig. 6. CO2-induced global warming 

increases the airborne fraction in two ways—through the buffering mechanism of seawater and through temperature 

dependency of chemical equilibrium. The former is shown as a decreasing change rate of the DIC with regard to atmospheric 

CO2 concentration (Fig. 6(a)), while the latter is shown as reduction in rates of carbon uptake potential with temperature, 

which also depends on the concentration (Fig. 6(b)). The reduction rate is approximately proportional to the warming level, 195 

typically about 4 % per 1 °C at doubling CO2. 

 
Figure 6: DIC in the ocean mixed layer as a function of atmospheric CO2 concentration (a) and changes in ocean carbon uptake 
potential, measured by increase in DIC from preindustrial levels, due to 1 °C and 2 °C warming (b). The preindustrial CO2 
concentration is assumed to be 284.317 ppm and preindustrial DIC is about 2.17 mmol L−1. 200 

2.3 CO2 fertilization 

The land carbon uptake term 𝑓𝑓 in Eq. (3) is calculated from Eq. (2), rewritten as: 

𝑓𝑓(𝑡𝑡) = � �𝛽𝛽𝐿𝐿(𝑡𝑡)𝑁𝑁0�̃�𝐴𝑏𝑏𝑖𝑖𝜏𝜏𝑖𝑖 −
𝑐𝑐𝑏𝑏𝑖𝑖
𝜏𝜏𝑖𝑖
�

𝑖𝑖

, (9) 

where 𝑐𝑐𝑏𝑏𝑖𝑖 is the 𝑖𝑖-th component of accumulated carbon by CO2 fertilization. The base NPP (𝑁𝑁0) is set to 60 GtC/y and the 

fertilization factor (𝛽𝛽𝐿𝐿 ) is formulated with a sigmoid curve with regard to CO2 concentration 𝐶𝐶(𝑡𝑡) , as described in 205 

Meinshausen et al. (2011). This implementation is connected to a conventional logarithmic formula: 

𝛽𝛽𝐿𝐿 = 1 + �̂�𝛽𝐿𝐿ln �
𝐶𝐶(𝑡𝑡)
𝐶𝐶(0)� , (10) 

such that the sigmoid and logarithmic curves are equal in terms of an increase ratio at 680 ppm relative to 340 ppm, and the 

latter factor �̂�𝛽𝐿𝐿 is used as a control parameter. Figure 7 illustrates three curves with different control parameters in the MCE 

model. 210 
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Figure 7: CO2 fertilization factor as a function of atmospheric CO2 concentration with different control parameters (𝜷𝜷�𝑳𝑳) of 0.17, 
0.45, and 0.69, corresponding to the 5th, 50th, and 95th percentiles of the ‘Prior’ ensemble described in 3.1. The colored lines show 
sigmoid curves used in the MCE model and the black dashed lines show reference logarithmic curves. 

2.4 Effective radiative forcing 215 

The forcing term in the IRM for temperature change is assumed to be effective radiative forcing (ERF), defined as top-of-

atmosphere (TOA) radiative imbalance due to a change in a forcing agent through rapid adjustments in the stratosphere and 

troposphere prior to a response in surface temperature (Myhre et al., 2013, Sherwood et al., 2015). Forcing, defined as such, 

serves as a good predictor of surface temperature change. 

CO2 forcing is evaluated with the following quadratic formula, in terms of the logarithm of CO2 concentration: 220 

𝐹𝐹C(𝑥𝑥) = (𝛽𝛽C − 1)�𝐹𝐹�C(𝑥𝑥) − 2𝐹𝐹C(2)� �
2𝐹𝐹�C(𝑥𝑥)
𝐹𝐹C(2) − 1� + 𝛽𝛽C𝐹𝐹�C(𝑥𝑥) (11) 

𝐹𝐹�C(𝑥𝑥) = 𝛼𝛼Cln �
CO2(t)
CO2(0)� , (12) 

where 𝑥𝑥  is the ratio of CO2 concentrations to a preindustrial level, 𝛼𝛼C  is a scaling parameter in Wm−2 , and 𝛽𝛽C  is an 

amplification factor defined as 𝐹𝐹C(4) = 𝛽𝛽C × 𝐹𝐹�C(4). This scheme was presented in Tsutsui (2017) to emulate the CMIP’s 

core CO2 increase experiments for instantaneous quadrupling and 1%-per-year increase, referred to as abrupt-4xCO2 and 225 

1pctCO2, respectively. Thus, the scheme is valid in the range of 1 ≤ 𝑥𝑥 ≤ 4. The two control parameters are diagnosed 

consistently with IRM parameters for individual CMIP models (Tsutsui 2020). The current diagnosing procedure solves 

numerical optimization to approximate the first 150-year and 140-year time series from abrupt-4xCO2 and 1pctCO2 

experiments, respectively, in terms of TOA energy imbalance and the surface air temperature anomaly, respectively. The 

quadratic term is activated when the concentration exceeds a two-times level (𝑥𝑥 > 2), and 𝛽𝛽C is set to unity in the range 𝑥𝑥 ≤230 

2 so that 𝐹𝐹C is equivalent to 𝐹𝐹�C. The forcing amplification is expected to be valid in the range 𝑥𝑥 ≤ 4 and the quadratic term is 
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dropped beyond a four-time level. Figure 8 illustrates example outputs of the CO2 forcing scheme in a range of 5th–95th 

percentiles of the ‘Prior’ ensemble for control parameters. 

 
Figure 8: Effective radiative forcing (ERF) of CO2 as a function of the ratio of CO2 concentrations to a preindustrial level. The 235 
scaling parameter 𝜶𝜶𝐂𝐂 is set to three different values, corresponding to the 5th, 50th, and 95th percentiles of the ‘Prior’ ensemble, 
described in 3.1. For each 𝜶𝜶𝐂𝐂 value, the amplification factor 𝜷𝜷𝐂𝐂 is varied between the 5th and 95th percentiles (shaded area), and is 
set to two specific values of the 50th percentile (solid line) and unity (dashed line, no amplification). 

The forcing of CH4 and N2O is evaluated with the expressions given in Etminan et al. (2016). The forcing of halogenated 

gases is simply calculated as changes in concentration from preindustrial levels multiplied by radiative efficiencies assessed 240 

in the latest IPCC report (at the time of this manuscript preparation AR5, Myhre et al., 2013). 

The current MCE model does not support non-CO2 gas cycles and ERF schemes for other forcing agents, such as aerosols, 

tropospheric and stratospheric ozone, solar radiation, and volcanic eruptions. Experiments considering non-CO2 forcing 

require prescribed concentrations for long-lived GHGs and prescribed ERF for others. 

2.5 Parameter sampling 245 

Probabilistic runs use an ensemble of perturbed model parameters designed to encompass the variation of multiple CMIP 

models with additional constraints with regard to assessed ranges of key climate indicators. In general, a series of candidate 

values of an uncertain parameter is generated from its statistical model and, if necessary, sampled from the series with an 

acceptance algorithm for given constraints. The latter process is Bayesian updating from a prior probability distribution to a 

posterior and here uses a Metropolis-Hastings (MH) independence sampler. As mentioned above, uncertain parameters 250 

include IRM amplitudes for the airborne fraction, control parameters for land carbon decay timescales and CO2 fertilization, 

IRM parameters for temperature change, and control parameters for the CO2 forcing scheme. 

In a Bayesian framework, some difficulties arise from setting appropriate prior distributions and dealing with large-

dimension likelihood functions. Although the latter can be avoided by using the Markov chain Monte Carlo (MCMC) 

approach, its implementation, typically based on the MH algorithm, is not necessarily straightforward in exploring a large-255 
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dimension parameter space with the detailed balance that underlies MCMC. One of the relevant issues is sampling efficiency. 

Goodwin and Cael (2021), for example, generated a prior by varying a set of ~25 model parameters independently with a 

very large size of ~109 and constrained it by an acceptance algorithm with an observation-based likelihood function. 

Although the prior ensemble size can be reduced by improving the acceptance algorithm (Goodwin, 2021), it appears to need 

~107 to get a posterior for typical application, such as climate sensitivity estimation and probabilistic climate projections. 260 

The current MCE’s approach is one way to deal with the above difficulties. Setting a prior with statistical models 

representing a CMIP multi-model ensemble allows the use of an efficient MH independence sampler, where the size of a 

prior series for typical applications is expected to be ~104, or at most ~105. It is also convenient that this sampler is free from 

adjustment unlike random walk-based MCMC implementation that requires step-size adjustment. One thing to note is that 

the independence sampler is suitable when the proposed prior series encompasses the target posterior series, and the 265 

acceptance rate of sampling is high to some extent. However, this requirement is not met for the case presented below. This 

problem is addressed in the implementation of the MH algorithm in Section 3 and further discussed in Section 4. 

The carbon cycle parameters are individually generated from a uniform distribution with a given mean and perturbation 

range. The means and ranges are determined on a trial basis so that ranges of carbon budgets in historical and scenario 

experiments are consistent with those from multiple CMIP ESMs. Since the sum of IRM amplitudes for the airborne fraction 270 

is unity, their perturbed values are normalized as such, subject to a modified distribution with more samples about the mean 

resulting from the operation. 

The temperature response and CO2 forcing parameters are synthetically generated from a multivariate normal distribution 

reflecting the variation of multiple CMIP AOGCMs. The IRM for temperature change has three pairs of time constant (𝜏𝜏𝑖𝑖) 

and dimensional amplitude (𝐴𝐴𝑖𝑖), and the CO2 forcing scheme has two control parameters (𝛼𝛼C and 𝛽𝛽C). A total of eight 275 

parameters have been diagnosed for each of the multiple CMIP models, revealing characteristic covariance structures, such 

as a noticeable negative correlation between feedback strength (1/𝜆𝜆) and a realized warming fraction (typically TCR-to-ECS 

ratio), and a weakly negative correlation between the forcing scale (𝛼𝛼C ) and feedback strength (Tsutsui, 2020). The 

multivariate normal distribution is built on principal components (PCs) of these diagnosed parameters, as described in 

Tsutsui (2017). 280 

The eight parameters to be fed into PC analysis can include some derived parameters from the following expressions: 

𝐴𝐴𝑖𝑖 =
�̃�𝐴𝑖𝑖
𝜆𝜆𝜏𝜏𝑖𝑖

, ��̃�𝐴𝑖𝑖
𝑖𝑖

= 1, (13) 

ECS =
𝛼𝛼Cln(2)

𝜆𝜆
, (14) 

ECSG =
𝛼𝛼C𝛽𝛽Cln(2)

𝜆𝜆
, (15) 

TCR = ECS �1 −��̃�𝐴𝑖𝑖
𝑖𝑖

𝜏𝜏𝑖𝑖
𝑡𝑡70

�1 − exp �−
𝑡𝑡70
𝜏𝜏𝑖𝑖
��� , (16) 285 
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where ECS is defined using a diagnosed forcing of CO2 doubling, while ECSG uses CO2 quadrupling with a factor of 0.5 as 

in Gregory et al. (2004). Eq. (16) is derived from time integration of Eq. (1) to the 70th year (𝑡𝑡70) along a 1 %-per-year 

increasing path that defines TCR. One possible set consists of TCR, �̃�𝐴0/�̃�𝐴2, �̃�𝐴1/�̃�𝐴2, 𝜏𝜏0, 𝜏𝜏1, 𝜏𝜏2, 𝛼𝛼C, and 𝛽𝛽C, applied with 

logarithmic transformation, except for 𝛼𝛼C . This set was adopted in the experiments described below. The logarithmic 

transformation is intended to allow fair normality of PC scores, as a basis for fitting a multivariate normal distribution, and to 290 

make generated candidates positive. 

Probabilistic runs can also use different scaling factors to adjust individual non-CO2 ERF time series. This is a simple 

implementation to deal with non-CO2 forcing uncertainties, typically assessed as a range at a reference time point. The 

scaling factor is perturbed with a suitable statistical model fitted to the range. 

All uncertain parameters and ERF scaling parameters are not necessarily independent. The current sampling procedure 295 

incorporates covariance between the eight parameters relevant to temperature change in response to CO2 forcing. However, 

the procedure assumes no other correlations, implying that uncertainties of the CO2-induced temperature response are 

independent from those of the carbon cycle and non-CO2 forcing. 

3 Application examples 

3.1 Scenario experiments 300 

To demonstrate a typical application of the MCE model, a number of scenario experiments that mirror those of CMIP6 were 

conducted, including idealized abrupt-4xCO2 and 1pctCO2, and historical-future scenarios based on the Shared 

Socioeconomic Pathways (SSPs, Riahi et al., 2017). In the latter experiments, the model was initialized for the year 1850 and 

driven with GHG concentrations and other prescribed ERF, both provided from the RCMIP (Nicholls et al., 2020). 

For each scenario, two sets of 600-member ensemble runs were conducted; one was perturbed to be consistent with a CMIP 305 

multi-model ensemble and the other was further constrained according to the RCMIP Phase 2 protocol (Nicholls et al., 2021), 

here labeled ‘Prior’ and ‘Constrained’, respectively. ‘Prior’ refers to 25 CMIP5 and 38 CMIP6 AOGCMs for the PC analysis 

input, and to 8 CMIP5 and 11 CMIP6 ESMs diagnosed in Arora et al. (2020) for simulated carbon budgets in the 1pctCO2 

experiment. Diagnosed forcing/response parameters of the multiple AOGCMs are presented in the MCE’s code repository. 

The uncertain carbon cycle parameters for 'Prior' were generated from the above-mentioned statistical models, as shown in 310 

Figs. 1, 3, and 6, and were processed by the MH sampler to constrain accumulated land carbon at doubling CO2 along the 

1%-per-year pathway. In this case, 1pctCO2 scenario runs with a set of proposed parameters were conducted to obtain data 

fed into the sampler. This single constraint was selected as it works inclusively for other relevant constraints through a trade-

off relationship between ocean and land in terms of accumulated carbon. 

RCMIP Phase 2 defines a number of constraints for climate indicators, including ERF levels, carbon budgets, recent 315 

warming trends, and climate sensitivity metrics of ECS, TCR, and transient climate response to cumulative CO2 emissions 

(TCRE). Here, TCRE is defined as the ratio of the TCR to implied cumulative CO2 emissions at the time of CO2 doubling 
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along the same 1 %-per-year trajectory as that for TCR. These constraints use literature-based assessed ranges, referred to as 

a “proxy assessment” to distinguish these from the formal IPCC assessment. The ‘Constrained’ uncertain parameters were 

sampled from those of ‘Prior’ through a sequence of the MH sampler with a subset of RCMIP constraints, as follows: (1) 320 

CO2 ERF in 2014 relative to 1750 evaluated in Smith et al. (2020), (2) TCR estimated in Tokarska et al. (2020, Table S3, 

both constrained), and (3) GMST in the period 1961–1990 relative to the period 2000–2019 from the HadCRUT.4.6.0.0 

dataset (Morice et al., 2012) and ocean heat content (OHC) in 2018 relative to 1971 from the dataset of von Schuckmann et 

al. (2020). In this case, in addition to 1pctCO2 runs, historical scenario runs with a set of proposed parameters were 

conducted to obtain data fed into the sampler. 325 

The IRM for temperature change is transformed into a three-layer heat exchange model in physical space (Fig. 1). The top 

layer is representative of fast-responding Earth system components—the atmosphere and Earth's surface including a part of 

the ocean mixed layer. However, when diagnosing the CO2 forcing and response parameters, the top layer temperature was 

treated as global mean surface air temperature (GSAT) in practice. As in HadCRUT GMST was defined as a surface air 

ocean blended temperature change; here, a factor of 1.04 was used to convert observed GMST change into the MCE’s GSAT 330 

change. Likewise, as the MCE’s three layers cannot be allocated to specific climate system components, a factor of 1.08 was 

used to convert observed OHC change into the MCE’s total heat content change. 

Besides CO2 forcing, the RCMIP constraints include the ranges of non-CO2 forcing over a historical period for CH4, N2O, 

halocarbons (aggregated into “Montreal gases” (CFCs/HCFCs/halons) and other “F-gases” (HFCs/PFCs/SF6)), aerosols 

(aggregated), tropospheric ozone, stratospheric ozone, stratospheric water vapor from CH4, and albedo change due to land 335 

use and black carbon aerosols on snow and ice. Ranges are based on AR5 (Myhre et al., 2013), except for those for CH4 and 

aerosols, which consider recent updates (Etminan et al., 2016; Smith et al., 2020). To incorporate these uncertainty ranges in 

historical-future scenarios, the scaling factors to adjust individual non-CO2 ERF time series were perturbed using normal or 

skewed normal distributions fitted to the prescribed ranges. 

The RCMIP constraints are provided as likely ranges and optionally very likely ranges, corresponding to 17–83% and 5–95% 340 

according to the IPCC’s likelihood terms in italics. These ranges were applied to generate uncertain parameter proposals and 

to build the MH sampler requiring probability densities for a target distribution. 

Although a number of indicators were prepared for the RCMIP constraints, a very limited number of those were used here 

partly because the prior was designed to match some of them like the forcing constraints, and partly because the proxy 

assessment ranges are not necessarily consistent with each other. The sequence of the MH sampler for the above three items, 345 

which relaxes the detailed balance required for MCMC, was established to deal with anyhow those constraints, and needs to 

be improved using fully consistent assessment ranges. 

Other details of the constraining procedures and experimental specifications are provided in the MCE’s code repository (see 

Code and data availability at the end). 
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3.2 Results: climate indicators 350 

Figure 9 illustrates relationships between key indicators associated with the carbon budget and climate sensitivity of the two 

ensembles in comparison with the CMIP models. The carbon budget is measured by the amount of accumulated carbon and 

its allocation to ocean and land reservoirs. Here, total accumulation and the ocean allocation ratio at doubling and 

quadrupling CO2 levels are used as key indicators. The CMIP ESMs indicate a clear negative correlation between the two 

quantities (Fig. 9 (a) and (b)), reflecting much greater uncertainties relating to land carbon. This feature is well represented 355 

by the MCE parameter ensembles. Although there are some model differences between CMIP5 and CMIP6 eras, such as a 

reduced model spread in the latter associated with nitrogen cycle implementation (Arora et al., 2020), the MCE ensembles 

currently do not distinguish between the two. The carbon indicators of the ‘Constrained’ ensemble do not differ significantly 

from those of ‘Prior’ but are distributed toward higher total accumulations, attributed to warming differences that affect 

carbon cycle-climate feedbacks. 360 
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Figure 9: Relationships between key indicators associated with carbon budget and climate sensitivity in comparison with CMIP 
models. Contours indicate kernel density levels at which the circles cover 90% and 66% of members. The legend indicates the 
number of the CMIP models. (a) The fraction of ocean accumulated carbon and ocean and land totals in the 70th year of 1pctCO2. 365 
(b) Same as panel (a), but in the 140th year. (c) Effective radiative forcing (ERF) of CO2 doubling and climate feedback parameter. 
(d) Transient climate response (TCR) and equilibrium climate sensitivity diagnosed from abrupt-4xCO2 (ECSG). The dashed line 
is located where the ratio of TCR to ECSG is 0.6 as a reference. 

In contrast, climate sensitivity differences are most prominent and well characterized with key indicators’ distributions on 

two-dimensional domains: the ERF of CO2 doubling derived from 𝛼𝛼C vs. the climate feedback parameter (𝜆𝜆) (Fig. 9 (c)), and 370 

TCR vs ECSG (Fig. 9 (d)). While the ‘Prior’ distributions cover the CMIP AOGCMs effectively, the ‘Constrained’ are 

confined to lower sensitivity values—greater 𝜆𝜆 and smaller TCR and ECSG, attributed to the observed GMST and OHC 

constraints. The ‘Prior’ distribution of the CO2 forcing agrees well with the CMIP distribution, which shows a weakly 

positive correlation with the climate feedback parameter. In contrast, the ‘Constrained’ forcing levels are confined to an 

upper half of the CMIP AOGCMs, attributed to the historical CO2 forcing constraint, and the forcing-feedback correlation 375 

becomes weak. Transient sensitivity is not necessarily proportional to equilibrium sensitivity, and greater CMIP6 sensitivity 

is more evident in ECSG than in TCR. The inherent relationship between feedback strength and response timescales is 

responsible for the tendency, together with the forcing amplification effect represented by 𝛽𝛽C . The PC analysis-based 

statistical model captures such covariance structure effectively. 

Figure 10 illustrates historical GMST and OHC of the MCE’s two ensembles in comparison with their observations, from 380 

which constraining data are considered for recent warming trends. In the figure, the time series are adjusted relative to the 

reference period 1961–1990 for GMST and the reference year 1971 for OHC. While the ‘Prior’ series are well above the 

observed warming during the target period 2000–2019 for GMST and during the target year 2018 for OHC, the ‘Constrained’ 

agree well with recent trends. The observation-based constraining results in lower climate sensitivity in the latter ensemble. 

However, considerable uncertainties remain with regard to longer trends and unforced climate variability. In an earlier period, 385 

observed GMST was rather close to ‘Prior’, and the ‘Constrained’ trend appears underestimated. The OHC trend cannot be 

validated owing to its limited observation period. Assessment of forced response in the historical period, which is currently 

not available, would allow more reliable parameter sampling. Some variation in the historical forcing time series, in 

particular for aerosols (Smith et al., 2021), would also be worth to be explored. 
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 390 
Figure 10: (a) Historical global mean surface temperature (GMST) relative to 1961–1990 and (b) historical ocean heat content 
(OHC) relative to 1971 in the period 1850–2019 compared with observation data from HadCRUT4.6.0.0 for GMST and von 
Schuckmann et al. (2020) for OHC. The black dots indicate the levels at two different periods or years used for the observation 
constraints. 

The greater warming in ‘Prior’ is not only due to its greater climate sensitivity, but also partly due to non-CO2 forcing 395 

differences, as shown in Fig. 11. The scaling factors of the non-CO2 forcing agents are independently perturbed in the ‘Prior’ 

ensemble and probabilistically selected through the series of the MH sampler. Although the sampling process does not 

directly refer to forcing levels of non-CO2 agents, it can modify their distributions to be consistent with other constraints. 

This modification is found for non-CO2 GHGs and ozone time series (Fig. 11 (b)), and the most dominant contribution is of 

Montreal-gases (not shown). The ERF of Montreal-gases rapidly increases from the 1960s and levels off from the 1990s, and 400 

the sampling results imply that this tendency is not consistent with the recent warming trend. Total ERF fluctuates with 

changes in solar irradiance and volcanic eruptions, for which the RCMIP’s prescribed forcing was used without their 

efficacy uncertainties. 
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Figure 11: Historical effective radiative forcing (ERF) in the period 1850–2019 for total ERF (a) and aggregated components (b). 405 
The ensembles' medians are shown by lines, and the 5–95% range of the 'Constrained' ensemble is shown for the total by shading. 

Figure 12 displays the ranges of climate indicators from the two ensembles associated with carbon cycle, climate sensitivity, 

warming trends, and historical ERF changes, in comparison with their proxy assessment ranges. The consistency between 

modeled and proxy ranges can be most distinctively shown for warming trends by GMST and OHC changes (Fig. 12 (k) and 

(l)), with ‘Prior’ ranges substantially wider and higher than assessed ranges but comparable ‘Constrained’ ranges. The 410 

consistency of sensitivity indicators, including TCRE, (Fig. 12 (h)–(j)) is complex because the proxy assessment ranges 

(black error bars) themselves are not necessarily consistent with each other, as discussed in the next section, and narrowed 

from the AR5-assessed ranges (grey error bars). Overall, consistency is better for ‘Prior’ ranges, although ‘Constrained’ 

ranges, considerably narrowed and lowered, are still within the AR5-assessed ranges. The ranges of the carbon cycle 

indicators (Fig. 12 (a)–(g)), including accumulated carbon and implied cumulative emissions in the historical period 1750–415 

2011, are not significantly different between the two ensembles and broadly agree with assessed ranges. Ensemble runs for 

the extended historical period starting from 1750 were conducted for calibration. The ranges of the ERF indicators (Fig. 12 

(m)–(t)) are consistent with assessed ranges, except for ‘Prior’ CO2 and ‘Constrained’ Montreal gases, as mentioned above. 

Other minor changes from ‘Prior’ to ‘Constrained include a reduced range for aerosols and lowered ranges for stratospheric 

and tropospheric ozone. 420 
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Figure 12: Distributions of climate indicators: (a) accumulated carbon over ocean at doubling CO2 in 1pctCO2; (b) same as (a) but 
over land; (c) same as (a) but at quadrupling CO2; (d) same as (c) but over land; (e) accumulated carbon over ocean in 1750–2011; 
(f) same as (e) but over land; (g) implied cumulative emissions in 1750–2011; (h) equilibrium climate sensitivity diagnosed with 
CO2 quadrupling forcing (ECSG); (i) transient climate response (TCR); (j) transient climate response to 1000 GtC cumulative CO2 425 
emissions (TCRE); (k) global mean surface temperature (GMST, air-ocean blended) in 2000–2019 relative to 1961–1990; (l) ocean 
heat content (OHC) in 2018 relative to 1971; (m) effective radiative forcing (ERF) of CO2 in 2014 relative to 1750; (n) ERF of CH4 
in 2011 relative to 1750; (o) same as (n) but of N2O; (p) same as (n) but of ‘Montreal gases’ (CFCs/HCFCs/halons); (q) same as (n) 
but of ‘F-gases’ (HFCs/PFCs/SF6); (r) same as (m) but of aerosols; (s) same as (n) but of stratospheric O3; (t) same as (n) but of 
tropospheric O3. Error bars and pairs of triangle markers indicate likely ranges (17–83%) and very likely ranges (5–95%), 430 
respectively. The black and grey error bars indicate proxy assessment ranges and AR5-assessed ranges, respectively. The proxy 
ranges are based on 5–95% ranges of the CMIP Earth system models in (a)–(d), but otherwise taken from the RCMIP Phase 2 
protocol that partly includes the AR5-assessed ranges. 
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3.3 Results: projected warming 

Figure 13 illustrates temperature response in two SSP scenarios, SSP1-2.6 and SSP2-4.5, where warming is measured by an 435 

increase in global mean surface air temperature (GSAT) relative to 1850–1900, and the period up to 2100 is presented. In the 

scenario labeled ‘SSPn-x.x’, ‘n’ (1–5 numbers) identifies different socioeconomic development pathways, and ‘x.x’ 

expresses a nominal forcing level in Wm−2 at the end of the 21st century. The shaded areas indicate 33–66% ranges. The 

upper bound corresponds to the level to which warming is likely (66–100%) to be limited at the time, while the lower bound 

corresponds to the level which warming is likely to exceed. These thresholds are shown in Table 1 for peak and end-of-440 

century (end-21C) warming for eight SSP scenarios, where the end-21C period is set to 2081–2100, in accordance with the 

AR5. 

 
Figure 13: Global mean surface air temperature (GSAT) changes relative to 1850–1900 in SSP1-2.6 (a) and SSP2-4.5 (b) scenarios 
from ‘Prior’ and ‘Constrained’ ensembles. Medians and 33–66% ranges at each time point are shown by lines and shading. The 445 
error bars indicate medians and likely (17–83%) ranges of global mean surface temperature (GMST, air-ocean blended) changes 
in 2017. For a visual purpose the two error bars are slightly shifted from the reference year of 2017 on the horizontal axis. 

 
Table 1: Critical global mean surface air temperature (GSAT) change relative to 1850–1900 in different Shared Socioeconomic 
Pathway (SSP) scenarios. Warming levels at peak during the 21st century and averaged over the period 2081–2100 (end-21C) are 450 
shown for those likely to be limited (66 percentile) and likely to exceed (33 percentile) from ‘Prior’ and ‘Constrained’ ensembles. 

 SSP1-1.9 SSP1-2.6 SSP4-3.4 SSP5-3.4* SSP2-4.5 SSP4-6.0 SSP3-7.0 SSP5-8.5 

Likely limited to 
at peak 

2.08 2.34 2.34 3.10 3.51 4.25 5.20 6.15 

1.39 1.60 2.09 2.16 2.43 2.96 3.70 4.44 

Likely limited to 
at end-21C 

1.82 2.27 3.05 2.78 3.38 4.01 4.72 5.54 

1.20 1.54 2.07 1.90 2.36 2.82 3.34 3.98 
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Likely exceed at 
peak 

1.68 1.89 2.50 2.54 2.83 3.47 4.30 5.17 

1.24 1.41 1.84 1.92 2.14 2.61 3.25 3.94 

Likely exceed at 
end-21C 

1.44 1.82 2.47 2.23 2.76 3.29 3.86 4.64 

1.04 1.34 1.83 1.65 2.08 2.48 2.94 3.55 

Units: °C; * Overshoot type pathway; Upper: ‘Prior’ ensemble; Lower in italic: ‘Constrained’ ensemble 

 

Regarding consistency with target warming levels, such as two degrees above preindustrial levels, the ‘Constrained’ 

ensemble agrees relatively well with the AR5 assessment (Collins et al., 2013) for each of the comparable Representative 455 

Concentration Pathways (RCPs, van Vuuren et al., 2011) such as RCP2.6 with SSP1-2.6. For example, AR5 states that end-

21C temperature change above 2 °C is unlikely (0–33%) under RCP2.6, which implies that temperature is likely limited to 

2 °C. This assessment is consistent with the SSP1-2.6 result from ‘Constrained’ (likely limited to 1.51 °C) but not from 

‘Prior’ (likely limited to 2.27 °C). Some threshold temperatures in ‘Constrained’ are not consistent with AR5, such that the 

temperature in SSP2-4.5 likely exceeds 2.06 °C, while in AR5 it is more likely than not (> 50–100%) to exceed 2 °C in 460 

RCP4.5. There is a similar difference in the possibility of limiting to 4 °C in SSP5-8.5 and RCP8.5. AR5 assessed these 

cases with medium confidence rather than high confidence, implying that the reduced likely ranges (as in ‘Constrained’) can 

update the AR5 assessment more authentically. However, at present, the ‘Constrained’ ensemble does not incorporate 

possible uncertainties, as discussed in the next section. It should also be noted that SSP forcing is not exactly the same as 

corresponding RCP forcing, leading to noticeable temperature differences between the comparable scenarios (Nicholls et al., 465 

2020). 

There are also some issues with handling of historical warming. The AR5 refers to a specific level of 0.61 °C from 

HadCRUT data for the period 1986–2005, which is added to the CMIP5 projected warming. However, HadCRUT warming 

is defined as an air-ocean blended temperature and is thereby somewhat underestimated for the GSAT definition (Schurer et 

al., 2018) with which modeled future warming is evaluated. In any case, the AR5 assessment is effectively constrained by 470 

observed warming, which may be responsible for its better agreement with the ‘Constrained’ ensemble. Figure 13 indicates 

medians and likely (17–83%) ranges of temperature changes in 2017 by the GMST (air-ocean blended) definition, 1.30 

[0.96–1.81] °C in 'Prior' and 0.90 [0.80–1.01] °C in 'Constrained'. The latter warming levels are also closer to the SR15 

assessment of 1.0 [0.8–1.2] °C for human-induced warming (Allen et al., 2018), despite some bias towards the lower end of 

the assessed range. 475 
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4 Discussion 

4.1 Performance as an emulator 

It has already been confirmed that the MCE reproduces many different CMIP models effectively in terms of thermal 

response to idealized CO2 forcing changes, as demonstrated in Nicholls et al. (2020). The forcing and response parameters 

are adjusted to emulate two of the CMIP’s basic experiments for step-shaped (abrupt-4xCO2) and ramp-shaped (1pctCO2) 480 

forcing increases. The forcing scheme uses different functions depending on concentration levels: a quadratic expression in 

terms of logarithmic concentrations in the range from two to four times the base level, smoothly connecting to linear 

expressions outside this range. This flexibility suits the CMIP models’ tendency to deviate from logarithmic concentration 

proportions at higher concentrations, leading to better emulation not only for responses to quadrupling increases commonly 

used in basic experiments, but also for responses to considerably lower increases in many mitigation scenarios. 485 

However, the scheme assumes constancy of the climate feedback parameter; emulation accuracy will therefore be decreased 

in scenarios where state dependency of feedbacks emerges. A typical example appears in a cooling scenario. The RCMIP 

Phase 1 results include a case in which the MCE fails to emulate a halving CO2 experiment, while successfully emulating 

both doubling and quadrupling (See Figure 2 of Nicholls et al., 2020). It is also known that state dependency becomes 

significant when the time integration of the step response continues over multi-centennial to millennial timescales (Knutti 490 

and Rugenstein, 2015; Rohrschneider et al., 2019). As CMIP models tend to deviate from linearity between the TOA energy 

imbalance and the surface temperature anomaly so that additional warming occurs with time, the MCE would result in 

underestimated warming in such a case. In practice, this issue is not significant up to the time horizon of 2100, commonly 

used in mitigation scenarios, in particular for lower than doubling CO2 levels. 

For non-CO2 forcing, additivity is assumed across different agents, except for overlapping effects for CH4 and N2O, as 495 

parameterized in Etminan et al. (2016). The forcing amplification for CO2 is not extended to total forcing. These are 

reasonable assumptions for most mitigation scenarios where non-CO2 components are presumably not extreme. 

The carbon cycle module has a mixture of fixed and adjustable parameters, including those for several feedback mechanisms 

from temperature changes. The current configuration successfully works to represent the CMIP ESMs’ ranges in terms of 

carbon budget in the idealized 1 %-per-year CO2 increase experiment. However, it has not yet been verified that each of the 500 

ESMs can be accurately emulated. 

Diagnosing the carbon cycle parameters to individual ESMs is a main issue to be addressed in future. Accumulated carbon in 

response to atmospheric CO2 input has a trade-off relationship between ocean and land, and both components have their own 

mechanisms of climate-carbon cycle feedbacks, which are also subject to the magnitude of temperature response. This 

implies that calibrating the MCE parameters for each ESM requires a series of pulse-response experiments designed to allow 505 

each of the ocean and land contributions to be isolated, with and without temperature feedback. Besides the standard 1%-per-

year increase experiment, the CMIP6 provides idealized ESM experiments, including 1%-per-year increase variants with 

different configurations and a variety of pathways to zero emissions (Jones et al., 2019; Keller et al., 2018). The extent to 



23 
 

which different ESMs are emulated for these scenarios needs to be verified with calibrated parameters, leading to further 

insights into carbon-cycle behavior in terms of amount of emissions, hysteresis effects after attaining zero emissions, and 510 

state dependency. 

While the covariance of MCE parameters is incorporated for the CMIP models’ variability of CO2 induced warming, the 

carbon cycle parameters and the non-CO2 scaling factors are independently sampled. There may exist other covariance 

between key indicators. As different types of aerosol schemes constitute a major source of model variations, incorporating 

covariance associated with aerosol forcing would improve parameter sampling, leading to more appropriate indicator ranges. 515 

The results shown in the previous section are outputs from concentration-driven experiments, where implied emissions are 

available for CO2 only. Likewise, the emission-driven option is currently limited to CO2. The two types of experiments are 

equivalent within numerical errors associated with a time integration scheme, for which Runge-Kutta 4th order is used. 

However, implied emissions tend to be noisy when pulse-like non-CO2 forcing is given, owing to the temperature 

dependency implemented in carbon cycle modules. This is the case in historical experiments including volcanic forcing. 520 

4.2 Further improvement on constraints 

The ‘Constrained’ ensemble was applied to that compared in the RCMIP Phase 2 exercise, where the MCE is recognized as 

one of two models that have commonly used the target constraints, implying successfully constrained, among nine 

participant models with different degrees of complexity (Nicholls et al., 2021). The MCE is a relatively simple emulator, 

conceivably cited with a simple thermal response, an intermediate-complexity carbon cycle, simply parameterized non-CO2 525 

GHG forcing, and no other Earth system components. This simplicity and the successful results obtained imply that a 

method with less complicated structures and fewer control parameters offers advantages when building reasonable parameter 

ensembles, despite less capacity to emulate detailed Earth system components. 

Several issues require clarification with regard to the differences between ‘Prior’ and ‘Constrained’ ensembles. It should be 

emphasized that the constraints used in the RCMIP are preliminary, wherein the formal IPCC Sixth assessment is not yet 530 

available (at the time of this manuscript preparation). Since the results from the 'Constrained' ensemble heavily depend on 

recent warming trends from specific datasets, its future projections and uncertainty ranges would differ from those based on 

formally assessed trends from multiple lines of evidence. 

The current proxy constraints such as the ones for the three climate sensitivity ranges of ECSG, TCR, and TCRE adopted 

from individual studies are not necessarily consistent with each other. The range of ECSG is based on multiple lines of 535 

evidence, including feedback process understanding, historical records, and paleoclimate records (Sherwood et al., 2020). 

Here, ECSG, rather than ECS, is referred to, assuming that process understanding is largely based on the CMIP’s quadrupling 

CO2 experiments. The range of TCR is based on 30 and 22 AOGCMs from the CMIP5 and CMIP6, both constrained by 

warming trends during recent decades (Tokarska et al., 2020). In contrast to these observations and modeling studies, the 

range of TCRE is based on 11 CMIP6 ESMs (Arora et al., 2020). Improved ensembles based on comprehensively assessed 540 

constraints would increase reliability of probabilistic projections, leading to better insights into future warming. 
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In comparison with the AR5 assessment, the ‘Constrained’ ensemble has considerably low-biased climate sensitivity, but 

nevertheless indicates comparable future warming across different scenarios. As stated above, this inconsistency can be 

partly explained on the basis of the AR5 method for warming levels that adds up observed historical warming to CMIP5-

modeled future projections. With regard to consistency throughout the whole period, the emulator approach would be more 545 

desirable. In any case, it is necessary to impose appropriate weighting on CMIP models to be emulated, in particular, when 

the model ensemble has a wide spread and some outliers in terms of reproducibility of past and current climates (Cox et al., 

2018; Tokarska et al., 2020). The MH sampler with observed warming constraints corresponds to an indirect method for 

such weighting. As the present results decisively depend on surface temperature and OHC observations during recent 

decades, their validity as a constraint needs to be discussed from a broad perspective across forcing, response, and sensitivity. 550 

The current constraining assumes observed warming as entirely forced response. Recent findings from warming attribution 

studies may support this, suggesting that human-induced warming is similar to observed warming (Allen et al., 2018). 

However, the attribution depends on temporal and spatial patterns of forced response in multiple AOGCMs as well as their 

diagnosed forcing, leading to a complicated situation in which constraining data and AOGCMs to be constrained are 

mutually dependent. Besides, there remain substantial uncertainties of response patterns to changes in individual forcing 555 

factors owing to the diversity of AOGCMs (Jones et al., 2016). Moreover, the new CMIP6 models appear to have marked 

differences in the magnitude of internal variability underlying attribution studies (Parsons et al., 2020). The GMST 

constraint does not consider such uncertainties and may be replaced with broader ranges from new insights into forced 

response. 

Furthermore, it is also necessary to constrain forced response on a centennial timescale. Besides the HadCRUT data 560 

available since 1850, the OHC data, limited to the late 20th century, may include delayed response components on a much 

longer timescale. In fact, major volcanic eruptions occurred frequently in the 18th and 19th centuries. The initial year of 1850 

is commonly used as a proxy preindustrial time point to avoid difficulties that arise from limited observations and major 

eruptions (Allen et al., 2018). However, the pre-1850 volcanic impact on the deep ocean should be examined carefully. In 

fact, it has been recognized in historical runs with the MCE that the OHC increase during the late 20th century significantly 565 

depends on the initial year, while the surface warming does not. A series of volcanic eruptions in the period 1750–1850 

appears to contribute to heating after the period and amplifies heat content increase since 1850. The results suggest that 

human-induced OHC increase should be distinguished from observed total increase for better constraints. 

Aerosol cooling is one of the key factors influencing temperature changes in the latter half of the 20th century, resulting in 

different ranges of other climate indicators. The present method relies on the prescribed ERF time series prepared for the 570 

CMIP6, which is scaled to the proxy assessment range in 2014 (Fig. 12 (r)). Although this procedure assures that cooling 

magnitude is constrained to the given range at the specific time point, the base time series is fixed. The constraint, adopted 

from Smith et al. (2020), is the outcome of the Radiative Forcing Model Intercomparison Project (RFMIP, Pincus et al., 

2016), one of the CMIP6-endorsed model intercomparisons. A better insight into aerosol forcing may update its historical 

time series, thereby leading to improvement of forced response and other climate indicators, including climate sensitivity. 575 
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Technical issues exist when sampling from the ‘Prior’ ensemble with observed warming constraints, associated with their 

distinct differences. The proxy ranges of the constraints are much more biased and localized compared to the ‘Prior’ 

distributions, leading to inefficient sampling. The acceptance rate in the present case reached only about 1 %, requiring ~105 

member calibration runs to obtain a 600-member ‘Constrained’ ensemble. Besides the efficiency issue, the sampling process 

should be visually monitored to verify whether the acceptance/rejection is reasonable. As the MH independence sampler 580 

compares a probability density ratio of the next state to the current between candidate and target densities, care is to be 

exercised at the distributions’ tail regions where relatively large approximation errors may exist. The present method 

introduced ad hoc criteria to avoid acceptance with an unexpectedly large density ratio. As mentioned in 3.1, and confirmed 

from Figure 12, the current method does not technically meet the MCMC requirement, but still generates a reasonable 

ensemble that generally satisfies the RCMIP constraints. In anyway, methodological issues should be addressed using 585 

improved constraints. 

5 Conclusions 

A new climate model emulator, MCE, was developed, and its probabilistic climate projections for representative scenarios 

were demonstrated and thoroughly discussed. The MCE is based on impulse response functions and several parameterized 

physics including key climate-carbon cycle feedbacks and may be categorized as a relatively low complexity model among 590 

recent model intercomparison participants. It has an advantage when building reasonable perturbed ensembles transparently, 

despite its lower capacity to emulate detailed Earth system components. Perturbed ensembles can cover complex climate 

models’ diversity effectively, reflecting their covariance structure of diagnosed forcing-response parameters associated with 

CO2-induced warming. Probabilistic projections constrained with several ranges of climate indicators, including CO2 and 

other forcing factors and observed warming trends over recent decades, suggest that complex climate models generally 595 

overestimate climate sensitivity. The sampling procedure implemented for parameter constraining, based on a Metropolis-

Hastings algorithm, effectively works as weighting given to complex models. 

Results from climate assessments for future scenarios in terms of their compatibility with climate mitigation goals are 

preliminary, and experiments should be conducted with newly assessed constraining data. There are considerable 

uncertainties about forced components of historical warming as well as different forcing factors, and consistency of assessed 600 

ranges among different climate sensitivity metrics. These are main issues to be clarified in the forthcoming new assessment. 

There is some room for improvement in emulator functionality. The carbon cycle module has not been configured to 

individual complex models, full emissions-driven experiments have not been supported, and perturbed parameter ensembles 

have not reflected full covariance structures of complex models. These issues are to be addressed in future work. 

 605 
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