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Abstract.  

Understanding soil moisture dynamics at the sub-kilometre scale is increasingly important especially with continuous 

development of hyper-resolution land-surface and hydrological models. Cosmic Ray Neutron Sensors (CRNS) are able to 10 

provide estimates of soil moisture at this elusive scale and networks of these sensors have been expanding across the world 

over the previous decade. However, each network currently implements its own protocol when processing raw data into soil 

moisture estimates. As a consequence, this lack of a harmonized global dataset can ultimately lead to limitations in the global 

assessment of the CRNS technology from multiple networks.  Here we present crspy, an open-source python tool that is 

designed to facilitate the processing of raw CRNS data into soil moisture estimates in an easy and harmonized way. We outline 15 

the basic structure of this tool discussing the correction methods used as well as discussing the metadata that crspy can create 

about each site. Metadata can add value to global scale studies of field scale soil moisture estimates by providing additional 

routes to understanding catchment similarities and differences. We demonstrate that current differences in processing 

methodologies can lead to misinterpretations when comparing sites from different networks and having a tool to provide a 

harmonized dataset can help to mitigate these issues. By being open source, crspy can also serve as a development and testing 20 

tool for new understanding of the CRNS technology as well as being used as a teaching tool for the community. 

1 Context and Background 

Soil moisture exerts a large influence on hydrological (Van Loon et al., 2015), biogeochemical (Schlesinger et al., 2015), and 

climatic processes (Dobriyal et al., 2012; Koster et al., 2004), agricultural systems (Fontanet et al., 2018; Dutta et al., 2014), 

landslide modelling (Zhuo et al., 2019) and earth system sciences (Fang and Lakshmi, 2014; Bonan, 2008). Its accurate 25 

measurement is important to advance our understanding of these areas of research. In-situ point scale soil moisture estimates, 

such as Time Domain Reflectometry (TDR), can provide higher temporal resolution; however spatial resolution is still limited, 

on the order of centimetres. Soil heterogeneity can lead to uncertainties when upscaling to the field scale (Western et al., 1999), 

which would be required for regional or larger scale hydrological modelling. Alternatively, satellite remote sensing products 

such as Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) can provide global estimates of 30 

soil moisture at a coarser spatial (~40km resolution) and temporal (~3 days) scale, and at much shallower depths (~5cm) 
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(Entekhabi et al., 2010; Kerr et al., 2001).  It is accepted that we will require a finer spatial resolution than currently achievable 

through remote sensing estimates for tasks such as increasing our understanding of sub-kilometre land-atmosphere interactions, 

or towards the improvements of farming practices (such as through the process of irrigation scheduling), and so there is a need 

for additional processing of ancillary data for the downscaling of these products (Portal et al., 2020; Alemohammad et al., 35 

2018). In addition, the recent push for hyper resolution global modelling means we require measurements at a finer spatial 

resolution, on the order of sub-kilometer scales (Wood et al., 2011). Bierkens et al., (2015) discussed the implications of 

moving from a more standard resolution ~50km model to a hyper-resolution model that is sub-kilometre.  The study further 

discussed the need to move from sub-grid paradigms, that represent a conceptualized form of earth system dynamics from 

within the standard 50km resolution model, to explicit dynamics of earth system processes at scales < 50km. This requires a 40 

greater understanding of environmental functions at sub-kilometre, spatial scales, which in turn requires accurate 

measurements of environment states at the same scales.  

 

Cosmic-Ray Neutron Sensors (CRNS) is a relatively new technology that allows estimates of soil moisture at the field scale 

(~600m diameter) at hourly temporal resolution. Zreda et al., (2008) demonstrated that fast neutrons are mainly moderated by 45 

hydrogen atoms, which allows us to infer changes in water content in the soil profile. A tube attached to the sensor, filled with 

a gas such as helium or boron trifluoride, is able to detect fast neutrons that pass through it by inducing a voltage difference. 

Desilets et al., (2010) introduced an equation used to convert neutron counting rates into gravimetric soil moisture which has 

been further improved upon by Dong et al., (2014) and Hawdon et al., (2014) (equation 1). This equation forms the core to 

using cosmic-ray neutron sensors for, now, volumetric soil moisture estimates in the field: 50 

 

𝜃𝑣𝑜𝑙 = [
𝑎0

𝑁𝑟𝑎𝑤 ∙ 𝑓𝑝 ∙ 𝑓𝑖 ∙ 𝑓ℎ ∙ 𝑓𝑣

𝑁0
− 𝑎1

−  𝑎2 −  𝐿𝑊 − 𝑊𝑆𝑂𝑀] 𝜌𝑏𝑑                                                                                               (1) 

 

where 𝜃𝑣𝑜𝑙  is volumetric soil moisture (cm3/cm3); 𝑎0, 𝑎1 , 𝑎𝑛𝑑 𝑎2  are coefficients obtained from neutron particle physics 

modelling (Zreda et al., 2008; Desilets et al., 2010) and assumed to be constants; 𝐿𝑊 is the lattice (chemically-bounded 55 

mineral) water (%), 𝑊𝑆𝑂𝑀 is the water equivalent of soil organic carbon (g/cm3), and 𝜌𝑏𝑑 is the bulk density of the dry soil 

(g/cm3). 𝑁𝑟𝑎𝑤 is the measured raw, uncorrected, neutron count identified over the given integration time, usually set to one 

hour.  𝑓𝑝, 𝑓𝑖 ,  𝑓ℎ, 𝑎𝑛𝑑 𝑓𝑣 represent correction factors applied to 𝑁𝑟𝑎𝑤 to account for additional influences on the neutron signal 

other than soil moisture; they are correctios for air pressure, incoming neutron intensity, atmospheric water vapour and above 

ground biomass, respectively.  𝑁0  is the theoretical neutron count found in absolutely dry conditions (i.e., the maximum 60 

number of neutrons that can be found at the site without the direct presence of hydrogen). This term is unique to each site and 

is found through the calibration process, explained in detail in Section 2.2.  
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The detection of background neutrons in the atmosphere, as a method to infer estimates of field scale soil moisture, was first 

described in Zreda et al., (2008). In that study, the authors demonstrated that neutron intensity above the surface was inversely 65 

correlated with the amount of moisture in the soil below. This was developed further in Desilets et al., (2010), where the initial 

form of equation 1 was first described and applications of this technology continued to be explored within the earth sciences 

community (Desilets 2011; Franz et al., 2012; Rivera Villarreyes et al., 2011). A large-scale network of these sensors was 

subsequently deployed across the United States leading to the Cosmic-Ray Soil Moisture Observing System (COSMOS) 

(Zreda et al., 2012).  70 

 

After the establishment of the first national-scale network in the US (Zreda et al., 2012), other countries such as in Australia 

(Hawdon et al., 2014), Germany (Bogena et al., 2013), and the UK (Evans et al., 2016) established their individual national 

networks, as well as additional sensors located in smaller networks or individual sites. Sensors from these networks have in 

some cases been running for up to 10 years, which can be potentially valuable for the understanding of soil hydrology. As 75 

these networks have grown so has the literature surrounding best practices for calibration and correction of the sensor signals, 

allowing us to have a lower uncertainty in CRNS soil moisture estimates (Franz et al., 2012; Rosolem et al., 2013; Hawdon et 

al., 2014; Baatz et al., 2015; Schrön et al., 2017).  As consequence of improvements to the signal correction and sensor 

calibration, a divergence in methods is noticeable among different networks. Each network inevitably implements its own 

protocol when correcting the neutron signal to give soil moisture estimates leading to a less harmonized dataset among 80 

networks.  

 

This lack of a harmonized global dataset can ultimately lead to limitations in the global assessment of this technology from 

multiple CRNS networks. Discrepancies in processing methodology can leave questions around information obtained, and 

uncertainty propagated, from analysis and comparison of sensors in different networks, such as whether soil moisture signals 85 

can be attributed solely to environmental differences or processing differences. By not necessarily following all recommended 

correction steps, the estimated soil moisture products from these sensors or even networks can be seen as sub-optimal, 

potentially undermining their true value. An example of the impact of evaluation sub-processed cosmic-ray soil moisture data 

from the US network against land surface models is presented by (Dirmeyer et al. 2016). There is a consensus to follow certain 

steps and guidelines which are not uniformly applied across all networks. Known corrections to account for changes in 90 

atmospheric pressure, neutron intensity, atmospheric water vapour and aboveground biomass are applied differently and on 

occasion not at all on some networks which could lead to different estimates of soil moisture (Zreda et al., (2012), Hawdon et 

al., (2014), Evans et al., 2016). For example, Rosolem et al., (2013) demonstrated the influence on the neutron signal that 

occurs from changes in atmospheric water vapour over time. When comparing processed soil moisture estimates with, and 

without this additional signal correction, they demonstrated a difference of up to 0.1 cm3/cm3 at a site at Park Falls, USA. 95 

Additionally, Hawdon et al., (2014) demonstrated the different approaches available in correcting neutron counts for incoming 

cosmic-ray intensity and showed that there is a noticeable difference in neutron counts and ultimately soil moisture depending 
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on the chosen method. Schrön et al., (2017) provided an improved approach to CRNS calibration demonstrating that their 

revised approach improves accuracy of soil moisture estimates. For example, at the UK site, the authors found that the Root-

Mean-Squared-Error (RMSE) of soil moisture estimates from the CRNS was reduced from 5.3% volumetric, using the 100 

conventional calibration approach, to 1.4% volumetric, using the revised calibration approach. Improvements in accuracy were 

identified at all the sites they analysed, however currently this revised approach is not applied across the networks. 

 

In order to mitigate this ongoing issue of lack of harmonization in the soil moisture estimates from the CRNS technology, we 

present here an open-source python tool to process raw CRNS data into soil moisture estimates, using the most current methods 105 

identified in the literature. It is designed to allow a user to apply consistent data processing methods across sensors that may 

be located in different networks. Section 2 will describe the structure of the tool along with the relevant correction and 

calibration methods. It will also describe the site metadata creation process which is an additional aspect to crspy that is built 

to facilitate data analysis of many sites. Section 3 will discuss the implications of differing processing methodologies on soil 

moisture estimates, as well as the benefits of creating detailed metadata for post processing analysis. 110 

2 The crspy tool 

The Cosmic Ray neutron Sensor Python tool (crspy, pronounced “crispy”): is a tool written in Python3 that has been developed 

to facilitate the processing of the global networks of CRNS data in a uniform and harmonized way. It is available through an 

open-source repository and can be installed into a user’s python environment. The tool is designed to allow the easy 

implementation of the most up to date correction factors and calibration processes to any CRNS site globally, ultimately 115 

allowing for any user to access a harmonized dataset. Although it is designed for multiple sites from varied networks, crspy is 

versatile enough to process a single site as well. It is being provided to help facilitate research in the CRNS community and is 

not intended to state whether one networks processing methods are superior to another. It is the authors’ opinion, however, 

that it is important for the community to consider creation of a best practice, as this will allow comparison of sensor data 

around the world in the future. In addition, crspy is structurally designed to accommodate new corrections and processing steps 120 

that may become available in the future in an easy manner. By being open source, crspy can also serve as a development and 

testing tool for new understanding incorporating to the CRNS technology as well as used as a teaching tool for the community. 

 

Figure 1 is a visual representation of the processes within crspy that converts raw sensor data into corrected soil moisture 

estimates. Due to the varied nature of input data, such as when different networks label data differently, it is first necessary for 125 

a user to correctly format input data following crspy’s naming convention (see Table A1 in Appendix). Additionally, to 

organise the various input and output datasets a specific working directory folder structure is necessary. This allows crspy to 

automatically handle the numerous sources of data. After installing the package a user can build this folder structure easily 

with the function crspy.initial(wd) where wd is a string representing the working directory location.  
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Figure 1. The structure of crspy demonstrating all the modules that are used in creating soil moisture estimates. (1) represents the 

metadata table which is a collection of site descriptors (e.g., soil texture, site elevation) (see section 2.4). (2), (3) and (4) corresponds 

to the ERA5-Land data collection and use for gap filling, data tidying and for the computation of correction factors (see Section 2.1). 

(5) represents the calibration process (if this option is selected) (see Section 2.2). (6) highlights the quality assessment steps 135 
undertaken (see Section 2.3). Finally, (7) represents the step where soil moisture estimates are calculated from the neutron counting 

rates (refer to equation 1). 

 

2.1 Data processing and correction 

To obtain soil moisture estimates, we need to apply equation 1 at each time step in the data. The values will be obtained from 140 

time varying sensor data, external data products, static site-specific values and static values that are not site-specific. The 

coefficients [𝑎0 𝑎1 𝑎2] are constants with values of 0.0808, 0.372 and 0.115, respectively, defined in Desilets et al., (2010). 

These values are fitting constants that describe the shape of the relationship between neutron counts and soil moisture, obtained 

from neutron particle physics modelling, and are the same for all sites. These values are stored in the name_list.py file, 

which stores constant values for crspy. 145 
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Site-specific soil properties  

The site-specific soil parameters described in Equation 1 are 𝐿𝑊, 𝑊𝑆𝑂𝑀 (obtained from soil organic carbon) and 𝜌𝑏𝑑. Due 150 

to the open data policies of many of the CRNS networks this data is usually available online (see data availability statement). 

These values should be defined prior to running the main crspy function and are stored and read from the metadata file. 

The parameter 𝐿𝑊 corresponds to the lattice water (%), which represents the hydrogen contained in the mineral structures of 

the soil (Hawdon et al., 2014). As fast neutrons are mitigated by hydrogen atoms, regardless of their source, this will have an 

overall impact on the neutron count rate. This value is usually obtained through analysis of soil samples taken from the footprint 155 

of the site sensor (Franz et al., 2012). The parameter 𝑊𝑆𝑂𝑀 represents the water equivalent of soil organic matter (g/cm3). 

Soil organic carbon (SOC) is obtained through analysis of soil samples and represents the total organic carbon in the soil at 

the site. Hawdon et al., (2014) discuss the need to convert this value into a water equivalent. This is completed on the 

assumption that organic matter in the soil is cellulose which means that proportionally the water equivalent of this can be found 

by: 160 

 

𝑊𝑆𝑂𝑀 = 𝑆𝑂𝐶 ∗ 0.556                                        (2) 

 

The parameter 𝜌𝑏𝑑 represents the dry soil bulk density (g/cm3) and is a site-specific static value. It is obtained through analysis 

of soil samples and is used in the conversion of gravimetric soil moisture to volumetric soil moisture values. If dry soil bulk 165 

density data is unavailable for a site, crspy includes the option to obtain this value from the global data source SoilGridsv2 

(see Section 2.4). In case of missing data, crspy takes advantages of built-in routines to fill out the information. In that case, if 

𝜌𝑏𝑑 or 𝑆𝑂𝐶 (used to calculate 𝑊𝑆𝑂𝑀) are missing, then crspy will use the estimates collected from SoilGridsv2, which is 

collected in the metadata process. Currently there is no way to estimate 𝐿𝑊 at sites that we know and so here a user should 

input a value of 0. Notice that the other site-specific static value is the 𝑁0 number. This number is found through the calibration 170 

process which is described in greater detail in section 2.2. 

 

Time varying values and correction methods 

The remaining values required to obtain 𝜃𝑣𝑜𝑙  are 𝑁𝑟𝑎𝑤  and  𝑓𝑝, 𝑓𝑖 ,  𝑓ℎ,  𝑓𝑣  which all vary with time. It is ultimately the 

relationship between 𝑁𝑟𝑎𝑤  and 𝑁0  which gives us our ability to estimate volumetric soil moisture once the additional 175 

corrections have been applied. The parameter 𝑁𝑟𝑎𝑤 is obtained from the sensor data and will usually be representative of the 

number of neutrons counted over a one-hour time period. This is the measured raw (uncorrected) neutron count; however, we 

know that there are additional impacts on this count rate that require correction which are represented by the 𝑓 factors in 

equation 1. Changes in atmospheric pressure impact the neutron counting rate, the  𝑓𝑝 term corrects for this so that 𝑁𝑟𝑎𝑤 ∗   𝑓𝑝 

gives the neutron count rate as if it were taken at the reference atmospheric pressure. Changes in incoming cosmic-ray intensity 180 

will directly influence neutron count rates as this is the source of fast neutrons and so the  𝑓𝑖 term will correct this to match a 
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reference date in time. Atmospheric water vapour and above ground biomass are additional sources of hydrogen, outside of 

the soil moisture source we are interested in, and so the 𝑓ℎ and  𝑓𝑣 terms adjust the count rate in consideration of this. These 

correction methods have been improved upon since the technologies first implementation with additional sources of 

uncertainty identified and equations designed to mitigate their impact.  185 

 

There are occasional data availability issues observed at some sites. For example, meteorological variables are a necessary part 

of converting neutron counts to soil moisture estimates because they are needed to account for the numerous impacts on the 

signal, such as pressure corrections and atmospheric water vapour corrections. On occasion, some of the sites do not measure 

all the necessary variables considered to be essential to correct for additional sources on the neutron signal. External relative 190 

humidity sensors are essential in correcting for changes in atmospheric water vapour but are not always included in site data. 

When data is unavailable through in-situ site sensors, ERA5-Land (Muñoz Sabater, J., 2019) data are used to fill values. ERA5-

Land is a dataset, based upon the ERA5 reanalysis data, that combines modelled data with real world observations, resulting 

in a gridded, global hourly product at 9km resolution, provided publicly by the European Centre for Medium-Range Weather 

Forecasts (ECMWF). Previous iterations of the ERA reanalysis datasets (such as ERA-Interim) have proved useful by other 195 

global networks for the task of gap filling missing data, such as in the FLUXNET community (Vuichard and Papale, 2015). 

We are implementing a similar approach used by the FLUXNET community in crspy, and consequently to the global CRNS 

database, as we envision the potential to a merged database incorporating both flux tower and CRNS soil moisture data in the 

future. As the two measurement technologies show similar temporal and spatial footprints, their combined use can eventually 

lead to a better understanding of land-atmosphere interactions at the field scale, for example (Iwema et al., 2017). It is important 200 

to note that although the resolution is spatially coarser when compared with CRNS sites, the ERA5-Land dataset was chosen 

as a source for gap filling for three main reasons: (1) it covers the lifetime of all the CRNS sites around the world which ensures 

all historical data to be used for gap-filling if necessary; (2) the dataset is produced at hourly resolution which matches the 

standard resolution of CRNS sites; (3) this is an open data source which aligns with our desire to develop a full open-source 

tool for CRNS data processing. 205 

 

The ERA5-Land dataset includes key variables such as precipitation, temperature, and dewpoint temperature which can be 

used to correct for influence on the neutron signal, such as using dewpoint temperature when relative humidity sensors are not 

available at the site (Rosolem et al., 2013). Our choice also follows previous studies that demonstrated that ERA-Interim tended 

to perform best when compared with other global reanalysis products (Decker et al., 2012). ERA5, which ERA5-Land is 210 

derived from, has benefitted from a decade of research when compared to ERA-Interim and has been shown to be a great 

improvement (Hersbach et al., 2020). 

 

 

 215 
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(i) Atmospheric Pressure correction ( 𝒇𝒑)  

Changes in atmospheric pressure can have an impact on neutron counting rates measured by the CRNS (Zreda et al., 2012, 

Hawdon et al., 2014). This is attributed to the fact that higher atmospheric pressure reduces neutron counting rates as there are 

more particles in the air column that can slow fast neutrons down. In crspy this is corrected with the equation: 220 

 

 𝑓𝑝 = exp(𝛽(𝑝 − 𝑝0))                                                                                                                                                               (3)           

                                                                                                

where  𝑓𝑝 is the pressure correction factor (defined in Equation 1), 𝛽 is a coefficient to account for mass attenuation length at 

the site, 𝑝 is the atmospheric pressure at the site (hPa) and 𝑝0 is a reference atmospheric pressure (hPa) for the site, commonly 225 

taken as the mean pressure for the site’s elevation. The 𝛽  coefficient and the reference atmospheric pressure value are 

calculated for each location as a function of the latitude, elevation, and cut-off rigidity at the site as described in Desilets et al., 

(2021). 

 

(ii) Incoming High-Energy Neutron Intensity ( 𝒇𝒊) 230 

It is important to correct for incoming neutron intensity as this will have a direct impact on neutron counting rates. Changes in 

the incoming cosmic-ray intensity will affect the number of fast neutrons in the atmosphere as increased cosmic-ray intensity 

will lead to an increased counting rate created through the cascade of reactions (Desilets et al., 2006). We use the data from 

the Neutron Monitoring Data Base (NMDB) available online, providing a collection of neutron monitoring sites from around 

the world. The NMDB provides neutron counting rates at hourly resolution from monitoring stations around the world, its data 235 

is considered the official distribution from each site principal investigator. The correction method currently varies across 

networks. For example, the COSMOS (USA) originally corrected the data by comparing neutron intensity to a pre-defined 

reference date, in that case, assumed to be 01 May 2011. The Jungfraujoch neutron monitoring station in Switzerland was used 

as a reference site. The calculation for this is shown as follows: 

 240 

 𝑓𝑖′ =
𝐼0

𝐼𝑚
                                                                                                                           (4) 

 

where 𝐼𝑚  is the incoming cosmic-ray intensity at sensor measurement time and 𝐼0 is incoming neutron intensity at the decided 

reference date and  𝑓𝑖′ here is used to define this particular incoming cosmic-ray intensity correction factor, to avoid confusion 

with  𝑓𝑖 from equation 1.  245 

 

The default approach in crspy, however, is to use the approach outlined in Hawdon et al., (2014) where the Jungfraujoch 

monitoring station is used but an additional correction for differences in site cut-off rigidity is applied with: 
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𝑅𝑐𝑐𝑜𝑟𝑟 =  −0.075(𝑅𝑐 − 𝑅𝑐𝑗𝑢𝑛𝑔) + 1                                      (5) 250 

 

where 𝑅𝑐𝑐𝑜𝑟𝑟 is the correction for differences in cut-off rigidity (GV), 𝑅𝑐 is the cut-off rigidity at the sensor location and 

𝑅𝑐𝑗𝑢𝑛𝑔 is the cut-off rigidity at the Jungfraujoch monitoring station (which has a value of 4.49 GV). This is applied at each 

time step to give a final corrected value with: 

 255 

 𝑓𝑖 = ( 𝑓𝑖′ − 1)𝑅𝑐𝑐𝑜𝑟𝑟 + 1                         (6)  

 

The Australian CosmOz network uses a different approach which does not always use the Jungfraujoch as the reference 

monitoring station. Instead, this network will change the reference station based on the stations which has the closest cut-off 

rigidity (GV) to the sensor site from the Neutron Monitor Database (Hawdon et al., 2014). This option is also available in 260 

crspy when running the main processing function crspy.process_raw_data(fileloc, 

intentype=”nearestGV”) by invoking intentype with the “nearestGV” option. This involves identifying the NMDB 

site with the nearest cut-off rigidity and applying equation 4.  

 

(iii) Atmospheric Water Vapour ( 𝒇𝒉) 265 

Hydrogen atoms can slow down fast neutrons leading to a reduction in the count rate with increasing atmospheric water vapour. 

This signal needs to be removed to ensure that neutron counting rates are attributed to soil moisture and not moisture in the 

air. This is corrected at each time step with the following equation (Rosolem et al., 2013): 

 

 𝑓ℎ =  1 + 0.0054 × 𝜌𝑣                                                                                                                                  (7) 270 

 

where  𝑓ℎ is the atmospheric water vapour correction factor and 𝜌𝑣 is absolute humidity (g m-3). Some sites do not have 

external relative humidity sensors that can be used to calculate vapour pressure, which can be used to calculate absolute 

humidity along with temperature. When this is the case then ERA-5 Land data can be utilised by converting dewpoint 

temperature (oC) to vapour pressure (kPA) (for further information on the steps to obtain absolute humidity from standard 275 

meteorological variables, please refer to the appendix section in Rosolem et al., 2013). 

 

(iv) Above Ground Biomass (AGB) ( 𝒇𝒗) 

Similar to other sources of hydrogen, biomass can also affect the neutron counting signal. There have been numerous attempts 

to identify the relationship between AGB and neutron count rates (e.g. Rivera Villarreyes et al., (2011), Baatz et al., (2015), 280 

Heidbüchel et al., (2016) and Tian et al., 2016). Unlike other sources of hydrogen, AGB is sometimes not available from local 

samples at each site.  In order to reduce the impact of AGB on the measured neutron signal, crspy currently uses static estimated 
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for each site from the European Space Agency (ESA) Climate Change Initiative (CCI) global dataset and apply the correction 

method based on the work of Baatz et al., (2015), who found a linear relationship between above ground biomass and neutron 

counting rates.  285 

 

 The following equation is used: 

 

 𝑓𝑣 =
1

1−(0.009∗𝑎𝑔𝑏)
                                              (8) 

 290 

where  𝑓𝑣 is the above ground biomass correction factor and 𝑎𝑔𝑏 is the dry above ground biomass at the site (kg/m2). The ESA 

CCI database provides above ground biomass estimates as a global gridded data product at 100m resolution (Santoro and 

Cartus, 2019). As the ESA CCI data currently used is a static value in time, it will not impact the soil moisture estimates, in 

principle, because the correction is applied on both the 𝑁𝑟𝑎𝑤 and 𝑁0 numbers, hence mitigating any impact. Nevertheless, we 

have included this routine in crspy in this form as we anticipate improvements to dynamical above ground biomass corrections 295 

in the future, at which point crspy can be updated to include the latest theory that can be applied across all sites (Wahbi et al., 

2018; Vather et al., 2020; Fersch et al., 2020). Further improvements to be able to dynamically account for biomass changes 

at all CRNS sites will be important for reliable estimation of soil moisture dynamics, especially when analysing sites with 

land-use changes or cropping cycles. 

2.2 Sensor calibration 300 

The above steps give us all the values in equation 1 necessary to provide a soil moisture estimate, except for 𝑁0.  A required 

step in processing, and eventually using the data, is to calibrate the CRNS to the specific conditions found at the site of interest. 

Without this step, the soil moisture can potentially have significant biases and deemed unusable. Alternatively, the uncalibrated 

measurement can only give you a rough idea about the dynamics of the soil wetness conditions in relative terms. The calibration 

step typically requires multiple soil samples (typically 100s) taken from within the sensor footprint and oven dried to get an 305 

accurate representation of soil moisture at the calibration time. These samples are then weighted and averaged to give a field 

scale soil moisture estimate of the sensor footprint (note that we use dry soil bulk density, 𝜌𝑏𝑑, sampled within the footprint to 

estimate volumetric water content in cm3 cm-3). The crspy tool uses the soil moisture averaging method obtained from field 

samples proposed by Schrön et al (2017), which is based upon the original work of Köhli et al., (2015). The method provides 

an updated approach for weighting soil moisture samples taken within the footprint that considered spatial distance from the 310 

sensor of each sample as well as the influences of pressure and humidity during the sampling period. This allows for a more 

accurate estimate of independent soil moisture within the CRNS footprint for the calibration step. Schrön et al. (2017) 

suggested improved sampling strategies which included samples closer to the sensor (< 5m radius from the sensor) and sample 

locations guided by knowledge of local hydrological features. The data required for the calibration step includes the date of 
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the sample, an integer to represent each soil moisture profile (a core of soil taken from within the sensor footprint), the depth 315 

of each sample within each profile, the distance from the sensor, and the volumetric soil moisture of the sample. Again, these 

should be named following the template requirements by crspy (see Table A2 in Appendix). 

 

With regards to number of calibration days, crspy is flexible enough to process both single-day or multiple-day calibration 

campaigns. Multiple calibration campaigns were shown to improve the CRNS signal (Iweema et al., 2015). For the case of 320 

multiple-day calibration, all calibration days should be presented in a single table, ensuring that the correct dates of each sample 

period are provided, and following the same formatting and naming requirements used for single-day calibration.  

Finally, when running crspy for a single site, the user is able to turn on or off the calibration process. This is included because 

calibration only needs to be done once, as 𝑁0 does not vary with time. When the calibration step is turned on, crspy will call 

the calibration routine and write the output to the metadata table in the column ‘N0’. If the calibration routine is turned off, 325 

crspy will skip this step and simply read the 𝑁0 number for the site from the metadata. Alternatively, the user can provide the 

𝑁0 coefficient independently in the metadata table and skip the calibration step completely by always having it off in crspy.  

 

2.3 Quality assessment 

All data should be checked for quality to ensure that erroneous data is not included, and crspy includes some automated steps 330 

to begin this process. All networks implement quality assessment on neutron counts in order to remove poor quality data (e.g., 

Zreda et al., 2012; Hawdon et al., 2014; Evans et al., 2015). In crspy, we remove suspicious data points by applying flags to 

neutron counts that fall within four categories, the below rules are consistent with the application in other networks: 

 

1. Counts that differ by 20% from the previous time step are removed 335 

2. Counts below 30% of N0 are removed 

3. Counts above N0 are removed 

4. Battery voltages below 10V are removed 

 

Additionally, crspy will output time series diagnostic plots of all variables used for identifying patterns in data that point 340 

towards potential issues which may require a small subset of the data to be removed manually (this, of course, depends on the 

quality of the data from individual sites and, therefore, cannot be fully automated).  

 

2.4 Metadata 

Metadata is an important piece of information that allows the user to better describe each site characteristics beyond its soil 345 

moisture dynamics. The information can be extremely useful especially when multi-site regional to global CRNS stations are 
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to be analysed simultaneously. The metadata of each site is stored in a tabular format within the folder structure of the working 

directory, a full description of the columns is given in the Appendix (Table A3 in Appendix). It serves two main purposes. 

Firstly, it stores static site-specific variables that are used in computing estimated soil moisture values (e.g., 𝐿𝑊, 𝑆𝑂𝐶 and 𝜌𝑏𝑑 

). To provide an example, 𝜌𝑏𝑑  is necessary to convert gravimetric soil moisture estimates into volumetric soil moisture 350 

estimates in equation 1. The 𝜌𝑏𝑑 value is collected during the calibration campaign at each site and will vary between sites. It 

represents an averaged value taken from the soil samples and it is stored in the metadata. Each site is also be given a country 

code and a site number in the metadata, which is used by crspy to find any required values stored in the metadata. The country 

code is used to help identify geographic locations in analysis and helps when the site numbering of networks may overlap. 

Raw time series data should be titled with the country code and number in the following format: 𝑐𝑜𝑢𝑛𝑡𝑟𝑦_SITE_𝑠𝑖𝑡𝑒𝑛𝑢𝑚.txt. 355 

Where 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 is a capitalised letter code and the 𝑠𝑖𝑡𝑒𝑛𝑢𝑚 is a 3-digit number. For example, sensor data for a site in the UK 

could be titled: UK_SITE_101.txt. This 𝑠𝑖𝑡𝑒𝑐𝑜𝑑𝑒 (i.e., UK_SITE_101) is used to identify each site when organising the 

outputs, as well as a lookup code for constant variable values stored in the metadata. 

 

A second purpose of the metadata is to act as a resource when analysing many sites together. The ability to classify catchments 360 

by physical characteristics can allow us to understand key similarities and differences between sites, an important direction in 

hydrological research (Wagener et al., 2007). To increase the value of the metadata, as well as including data collected at the 

site, global data products have been integrated. These products are all public products that a user can download and store 

within the folder structure of the working directory. We realize that these global datasets are not a direct replacement for the 

invaluable information obtained at the site; however, in many cases, such pieces of information are not available, undermining 365 

any multi-site analysis. We believe the use of the datasets described in detail below can provide us key information at regional 

and global level. In crspy, a simple function is used to extract the information from the data products below when provided 

with the location of the CRNS (i.e., latitude and longitude): 

 

(i) ESA CCI Land Cover and Above Ground Biomass data: The European Space Agency (ESA) Climate Change 370 

Initiative (CCI) provides numerous global data products that are useful in the earth sciences community. Land 

cover data and above ground biomass data are obtained from ESA CCI and stored in metadata for each site for 

analysis through identifying site differences and similarities. Both products are spatial consistent with the CRNS 

sensor range (100m-300m) and are available globally. The usefulness of ESA CCI datasets in land surface 

modelling continues to be established (Li et al., 2017). 375 

(ii) International Soil Reference and Information Centre (ISRIC): The ISRIC provides a global data product that 

gives estimates of soil properties on a 250m resolution grid. This is available as SoilGridv2 which is an updated 

(as of May 2020) iteration of the original SoilGrid product (Hengl et al,. 2017). The properties are estimated from 

collections of ground measurements that are compiled by the World Soil Information Service (WoSIS). WoSIS 

provide standardised soil profile data to facilitate the creation of products such as SoilGrid (Batjes et al., 2020). 380 
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(iii) ERA5-Land: As discussed previously meteorological variables from ERA5-Land data can be downloaded for 

each site. Mean annual precipitation and temperature data is stored, along with derived Köppen-Geiger 

classifications.  

2.5 Running the tool. 

Once the working environment has been prepared the data can be processed with 385 

crspy.process_raw_data(fileloc, Calibration=True, intentype=None). Where fileloc is the 

location of the raw sensor data, the Calibration process can be turned on or off as a Boolean descriptor and intentype can be 

left as None to enact the default process for incoming neutron intensity correction or can be changed to “nearestGV” to 

utilise the alternative method. 

3 Discussion 390 

3.1 Benefits of data harmonization 

As mentioned previously, one of the key purposes of crspy is the easy and harmonized processing of CRNS sites from around 

the globe, as there is currently no true consensus on what correction steps are implemented in different national networks. 

These technical differences can lead to changes in outputs which may result in non-optimal conditions for regional/global 

analysis from multiple countries. Whereas some users may wish to understand changes at one particular site, inter-site 395 

comparisons are limited when each site could be processed in a different way. In this section, we highlight such impacts with 

one example related to the individual sensor corrections steps, and their impact on the final soil moisture estimates. 

 

Table 1 outlines three identified methods that are currently employed across different networks. Method 𝑝_𝑖𝑛𝑡1  is the method 

employed at the COSMOS (USA) network, which lacks the atmospheric water vapour correction and applies an intensity 400 

correction using only the Jungfraujoch neutron monitoring site directly. Method 𝑝_𝑖𝑛𝑡2_𝑎𝑤𝑣 closely resembles the CosmOz 

(Australia) network methodology, which does apply the atmospheric water vapour corrections and an intensity correction that 

differs from method 𝑝_𝑖𝑛𝑡. In this case, the neutron monitoring station used as an incoming neutron intensity reference is 

changed to the nearest station with a similar cut-off rigidity to the CRNS site being corrected. Method 𝑝_𝑖𝑛𝑡3_𝑎𝑤𝑣_𝑎𝑔𝑏 is the 

default crspy method, and resembles the methods used by COSMOS-UK, while also allowing for the above ground biomass 405 

correction to the neutron signal. In this final case, the intensity correction uses Jungfraujoch as its reference site but with an 

additional correction to account for differences in cut-off rigidity between Jungfraujoch and the site (equation 5). 

 

 

 410 
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Table 1. The three identified methods of correcting neutron signals in use. 

  

Method 𝑝_𝑖𝑛𝑡1 Method 𝑝_𝑖𝑛𝑡2_𝑎𝑤𝑣 Method 𝑝_𝑖𝑛𝑡3_𝑎𝑤𝑣_𝑎𝑔𝑏 

 

Atmospheric 
pressure correction 

Yes Yes Yes  

Incoming neutron 
intensity correction 

Jungfraujoch NMDB (no GV 
correction) 

Nearest GV NMDB 
(variable locations) 

(Hawdon et al., (2014)) 

Jungfraujoch NMDB plus 
additional correction for site GV 
(see equation (5) and Hawdon et 

al., 2014) 

 

Atmospheric water 
vapour correction 

None 
Yes (Rosolem et al., 

(2013)) 
Yes (Rosolem et al., (2013))  

Above ground 
biomass correction 

None None Yes (Baatz et al., (2015))    

 

With all these different correction approaches applied independently from each national network, we investigate both the 

impact on the measured neutron counts and consequently the propagated effects on the estimation of soil moisture. Figure 2 

shows two sites with distinct hydroclimatic regimes, both taken from the COSMOS-USA network, that have been processed 415 

in the three identified methods (see highlighted star markers in Fig. 3 and Fig. 4). The Santa Rita Creosote site is shrubland 

dominated with a soil categorized predominantly by sandy loam type located in Arizona, USA. The site has a mean annual 

temperature of 19 oC and a mean annual precipitation of 335 mm, which primarily falls in winter storms and monsoonal 

summers (Köppen-Geiger climate classification BSh, a hot semi-arid climate). Climate data taken from ERA5-Land and 

Köppen-Geiger classification derived from ERA5-Land data using the method outlined in Peel et al., (2007). The Wind River 420 

site is an old-growth mixed conifer forest site in Washington, USA. The site is much wetter than the Santa Rita Creosote site, 

with an annual precipitation of 2,200 mm, and much colder, with an average annual temperature of 8 oC. Precipitation at Wind 

River tends to fall all year round but with slightly lower rates in the summer period (Köppen-Geiger classification is Csb, a 

Mediterranean climate mild with dry, warm summers). Climate data has been extracted from ERA5-Land and Köppen-Geiger 

classification derived from 10 years of ERA5-Land data using the method outlined in Peel et al., (2007). The raw neutron data 425 

from both sites were obtained directly from the COSMOS network, representing the 𝑝_𝑖𝑛𝑡 case in Table 1. In addition, in order 

to compare the impact of the different correction approaches outlined in Table 1, the raw data from the CRNS at both sites, 

have been processed in crspy to give the corrected signals for methods 𝑝_𝑖𝑛𝑡2_𝑎𝑤𝑣 and 𝑝_𝑖𝑛𝑡3_𝑎𝑤𝑣_𝑎𝑔𝑏. 
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 430 

Figure 2. Example of CRNS data obtained at two distinct sites: Santa Rita Creosote (a, c, and e) and Wind River (b, d, and f). 

Neutron counting rates (raw and corrected based on the different strategies outlined in Table 1) are shown in panels (a) and (b). 

Derived soil moisture estimates (cm3 cm-3) are shown at hourly and monthly timescales in panels (c) and (d) and panels (e) and (f), 

respectively. 

It is clear to see the inverse relationship between neutron count rates and soil moisture, most noticeably at Santa Rita Creosote 435 

(Figures 2a and 2c). The soil moisture here tends to be low, such as in June when it was below 0.05 cm3 cm-3, which is to be 

expected in a hot semi-arid environment. Sudden spikes in soil moisture can be attributed to precipitation events, with the 

summer monsoonal precipitation causing a sudden increase in the mean soil moisture values for the months of July, August, 

and September (and, inversely, periods corresponding to decreases neutron counting rates). It is also clear that the method 

chosen has an impact on soil moisture values. This is most notable when comparing the 𝑝_𝑖𝑛𝑡1 method with both the 440 

𝑝_𝑖𝑛𝑡2_𝑎𝑤𝑣 and 𝑝_𝑖𝑛𝑡3_𝑎𝑤𝑣_𝑎𝑔𝑏 methods. During the summer months, the 𝑝_𝑖𝑛𝑡1 method appears to estimate higher soil 

moisture values compared to the other two methods (both appearing to be much more closely aligned to each other). This is 

likely due to the fact that the 𝑝_𝑖𝑛𝑡1 method does not account for changes in atmospheric water vapour. As a consequence, 

during the monsoonal summers when there is more hydrogen in the atmosphere from increased humidity, the relatively high 

water vapor in the atmosphere is incorrectly attributed to additional soil moisture. This is because the CRNS records wrongly 445 

attribute the decrease (attenuation) of neutron counts due to water vapor to an increase in soil moisture, causing an over 
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estimation. For example, even early in March there is a sudden rise in soil moisture from the 𝑝_𝑖𝑛𝑡1 estimates which does not 

appear in the other two methods (Figure 2c). This suggests that rather than a sudden rise in soil moisture, this was actually a 

rise in atmospheric water vapour. This demonstrates the importance of removing external impacts on the neutron signal as they 

could be incorrectly attributed to soil moisture dynamics. The negative effect of neglecting such correction, for example, can 450 

be pronounced even more on monthly estimates of soil moisture due to the aggregated nature of this error (Figure 2e).  

 

The Wind River site is a much wetter site when compared to Santa Rita with its driest month matching Santa Rita Creosotes 

wettest month. It is worth noting in that in the case of Wind River there is a much larger difference between the neutron count 

rate of method 𝑝_𝑖𝑛𝑡3_𝑎𝑤𝑣_𝑎𝑔𝑏 compared to the other methods (Figure 2b). This is because the 𝑝_𝑖𝑛𝑡3_𝑎𝑤𝑣_𝑎𝑔𝑏 method 455 

includes an above ground biomass correction, using the ESA CCI above ground biomass product to calculate a correction. 

Currently, as this correction is applied using a static aboveground biomass value (constant with time), the impact of the 

correction is not translated to differences in estimated soil moisture. This is due to the correction being applied to both the 

neutron counting rate and the 𝑁0 term as well. With dynamic data, that represents changes in above ground biomass over time, 

we would be able to improve our estimates of soil moisture, as the impact of changing above ground biomass could be removed 460 

from the neutron signal. One additional noticeable feature that crspy implements is the capping of soil moisture to more realistic 

values, in this case 0.68 cm3 cm-3. The 𝑝_𝑖𝑛𝑡1 method does not do this and so there are physically impossible values of 

volumetric soil moisture in February and December, as seen in figure 2d. In crspy maximum values for soil moisture are 

estimated by inferring porosity of the soil: 

 465 

𝑠𝑚_𝑚𝑎𝑥 = 1 − (
𝜌𝑏𝑑

𝑑𝑒𝑛𝑠𝑖𝑡𝑦
)                                                                                                                                  (9) 

 

where 𝑠𝑚_𝑚𝑎𝑥 is the maximum volumetric soil moisture value (cm3 cm-3), 𝜌𝑏𝑑 is soil bulk density (g/cm3) and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 is the 

density of ground material (estimated with an assumed density of quartz at 2.65 g/cm3). 

 470 

At the Wind River site, the differences between 𝑝_𝑖𝑛𝑡2_𝑎𝑤𝑣 and 𝑝_𝑖𝑛𝑡3_𝑎𝑤𝑣_𝑎𝑔𝑏 are much more noticeable, especially when 

the soil moisture estimates are aggregated to monthly timescales (Figure 2f). This observed difference is due the fact that these 

methods do not apply the same correction for incoming cosmic-ray intensity (𝑓𝑖 ). Such differences are caused by the choice 

of correction rather than physical controls on soil water dynamics. This can lead to inaccurate comparisons across sites from 

different national/regional networks. For example, identifying useful soil moisture signals that can be used to categorise the 475 

hydrology of sites will be an important tool for understanding differences and similarities with regards to hydrology. Branger 

and McMillan (2020) demonstrated this in their paper looking to identify useful soil moisture signals that can be robust, 

discriminatory, and representative, with research continuing in this area of developing useful diagnostic soil moisture 

signatures (Araki and McMillan, 2020). When reducing large time series data into signatures, such differences can be 
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aggregated which could begin to effect conclusions. However, the authors stress here that it is not within the scope of this 480 

work, nor the intention, to identify which method is better or worse than the other, but rather highlight the potential negative 

impacts of the lack of a harmonized dataset for large-scale global assessment of the CRNS technology. 

 

3.2 Usefulness of crspy metadata 

Metadata can be used to describe the network of CRNSs around the world geographically, climatologically, and hydrologically. 485 

To achieve this, crspy compiles relevant data obtained directly from the sensor, key data descriptors provided from each site 

or network, and from global data products. Wagener et al. (2020) discuss the need for high quality metadata to improve our 

ability to understand the knowledge accumulation in the field of hydrology. The metadata can be valuable in separating relevant 

sites in different groups, for example researchers may be interested in understanding how soil moisture behaves at sites above 

2000m elevation with certain land use types and given particular weather events (Chen et al., 2020); or sites where mean 490 

annual precipitation is above/below a certain threshold; or even grouping sites by different land cover or soil types. So called 

meta-analyses can help a researcher identify which sites should be included in their studies and which can be excluded (Evaristo 

and McDonnell, 2017).  The metadata provided by crspy allows the user to quickly obtain any grouping of interest in an easy 

and accessible way. 

 495 

In order to demonstrate some of the features that can be easily accessed with the help of metadata, we show an example using 

the compiled COSMOS network data for continental USA (CONUS). Some of this data are taken directly from the network 

website and then processed using the crspy.fill_metadata() function. This function collects information from global 

data products at specific site location (i.e., latitude and longitude), as well as using meteorological data from ERA5 Land to 

produce annual meteorological summaries (e.g., mean annual temperature, mean annual precipitation, Köppen-Geiger climate 500 

classification, etc). Figure 3 gives an example of how the metadata can be easily used to show the location of each sensor in 

the continental USA domain (CONUS) based upon the supplied with additional information, in this case, main land cover 

classes obtained from the CCI ESA Land Use data. An important step here is that the user is not required to download and 

process the land cover data separately and individually. crspy incorporates that step for the user seamlessly.  

 505 
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Figure 3. Map showing the location of CRNS sites from the COSMOS network across CONUS. The colours are 

representative of the land cover types obtained from the ESA CCI global database and the stars highlight the location 

of the two sites processed above (i.e., Santa Rita Creosote and Wind River). 

 510 

In addition to locating the CRNS stations and identified the main land cover type, Figure 4 shows a scatter-histogram of the 

sites across CONUS providing additional annual meteorological summaries, namely mean annual temperature and mean 

annual precipitation. The scatterplot still retains the information about the main land cover type obtained from the ESA CCI 

global database. In addition, both meteorological variables are shown as side-histograms and were computed using the ERA5 

Land data. Initial analysis indicates that CRNS classified as shrublands tend to be relatively warmer and drier. Grassland and 515 

forests tend to be wetter while showing a wider range of temperatures. Croplands are slightly warmer than grassland and forests 

but still showing lower temperatures than those observed in shrublands. However, croplands also indicate a slightly wider 

range of wetness, when compared to the grassland and forest sites, as observed from the total annual precipitation. This could 

be useful when deciding which sites should be used in a particular study, such as a study on soil moisture dynamics in 

shrublands with low overall precipitation. Alternatively, it can be used in big data analytics when trying to identify the 520 

dominant mechanisms on soil moisture dynamics globally.  
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Figure 4. Scatter-histogram showing the Continental USA CRNS sites and some of their climatological characteristics. 

The colours represent land use types which has been identified from ESA CCI Land Use global data set. The stars 

highlight the location of the two sites processed above (i.e., Santa Rita Creosote and Wind River). 525 

 

4. Summary 

Soil moisture is an important component of the hydrological cycle and understanding its dynamics at relevant spatiotemporal 

scales is critical especially with recent advances of global land surface and hydrological models. The CRNS technology is able 

to provide estimates of soil moisture at the sub-kilometre scale and at hourly resolution. This is particularly relevant now as 530 

we continue to move towards hyper-resolution global modelling efforts. Over the years, with an increase of adoption to the 

technology, the CRNS community has acquired a better understanding about the benefits and limitations of this relatively 

novel technique. However, due to a lack of data harmonization across networks, undertaking global scale analyses is currently 

very limited and unexploited. Here, we introduced the crspy python package with the aim to facilitate users to process data 

easily with the most current methods, and most importantly, in a harmonized fashion. crspy is an open-source tool aimed to 535 
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integrate the latest developed methodologies for CRNS to be used both for research and teaching activities. It integrates high-

quality global data products (such as ERA5-Land) to ensure that all sites can be included in analysis. This is done in a similar 

way to other well-established global environmental networks such as the Ameriflux and Fluxnet.  

Our examples of application demonstrated that when CRNS data is processed with different methodologies, it can ultimately 

lead to divergences in soil moisture estimates. This could potentially have a negative impact on the analysis and overall 540 

findings, especially when sites across multiple networks are evaluated simultaneously. By harmonizing data processes, we 

envisage that CRNS data will be used more widely by the global modelling and experimental communities, leading to further 

adoption of the technology. The objective of crspy is to provide an open and easy-to-use data processing platform that can 

enable initially. Additionally, crspy data collection relies on the production of an extensive metadata archive. This archive can 

be shared and used within the community to better understand key aspects about soil moisture from typical sampling locations, 545 

to inform on signature behaviour by different groupings. crspy has been developed to open up the debate and use of free and 

public open CRNS data, and we invite the general community to engage with us to improve this platform in future years. 

5 Data availability statement 

Raw CRNS data are publicly available from several sources, including the US COSMOS network 

(http://cosmos.hwr.arizona.edu/), the Australian CosmOz (https://cosmoz.csiro.au/) and UK-COSMOS network 550 

(https://doi.org/10.5285/b5c190e4-e35d-40ea-8fbe-598da03a1185). We acknowledge the NMDB database 

(https://www.nmdb.eu), founded under the European Union's FP7 programme (contract no. 213007) for providing neutron 

count data. ESA CCI data including above ground biomass data and land cover data are available from (http://cci.esa.int/data 

last accessed 26/02/2021). The soil grids data are accessible online from https://soilgrids.org/. The ERA5-Land data are 

provided by ECMWF and are available at https://doi.org/10.24381/cds.e2161bac.  555 

6 Code availability 

The code discussed in this paper can be found at https://doi.org/10.5281/zenodo.4585513. The GitHub repository, where future 

updates will be uploaded can be found at https://github.com/danpower101/crspy. The GitHub repository also includes a wiki 

page which goes into greater detail on how to run the package and includes a walkthrough jupyter notebook 

(run_crspy_workthrough.ipynb) that will walk through processing an example site. 560 
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10 Appendix 

The appendix section consists of 4 tables that outline the naming conventions required for crspy to run as well as the output 575 

table along with a description of each variable. When labelling input data, columns titles should match the styles below in the 

‘COLUMN NAME’ column. This initial step will then allow crspy to run smoothly, as it uses column titles to identify relevant 

data sources. 

 

 580 

 

 

 

 

 585 

 

 

 

https://doi.org/10.5194/gmd-2021-77
Preprint. Discussion started: 7 May 2021
c© Author(s) 2021. CC BY 4.0 License.



22 

 

Table A1. The naming convention for CRNS input data. Networks can occasionally have different naming conventions 

(e.g., temperature is referred to as t1). Changing the column titles to the following format will allow crspy to function 590 

correctly. 

COLUMN NAME UNITS DESCRIPTION 

TIME datetime Datetime of the observation. Format: "yyyy-mm-dd hh:mm:ss" 

MOD count Moderated neutron count for time interval 

UNMOD count Unmoderated neutron count for time interval 

PRESS1 hPa 
Pressure sensor number 1. Usually the older analogue version that is 

somewhat less accurate 

PRESS2 hPa 
Pressure sensor number 2. This will be used primarily and if unavailable 

PRESS1 will be used in place. 

I_TEM Celsius Internal Temperature of the sensor box  

I_RH % Relative humidity inside the sensor box 

BATT Voltage Voltage of the battery 

E_TEM Celsius 
External Temperature at the site. This would be an external reading. If 

not available then ERA5-Land data is used 

E_RH % 
External Relative Humidity at the site. If not available then dewpoint 

temperature is used to find absolute humidity 

RAIN mm 
Rainfall at the site. If local is available this is used - if not available it is 

obtained from ERA5-Land data 
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Table A2. The naming convention for the calibration data. This format should be followed and will allow the calibration 

module to be utilised. 

COLUMN NAME UNITS DESCRIPTION 

DATE 
Date. Format 
"dd/mm/yyy" 

Date that the data was collected from the site 

PROFILE int 
Integer to differentiate profiles. A profile being a single core. The 

core could then have multiple "layers". 

LOC_rad meters Distance from the sensor for each sample in meters. 

DEPTH_AVG cm 
The depth of the soil sample for each layer. Taken as the mid 

point of the layer. 

SWV % 
The volumetric soil moisture of the sample. Should be given as 
decimal (i.e. 0.3). If it is given as a numeric percent (e.g. 30%) 

crspy will attempt to identify this and convert to decimal 
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Table A3. The naming convention of the metadata table. 

COLUMN NAME UNITS DESCRIPTION 
Required 
at start? 

COUNTRY - Country code for location of site e.g. “USA” Yes 

SITENUM - Assigned 3 digit number for site: e.g. 001 Yes 

INSTALL_DATE - Date of site installation No 

LONGITUDE degrees Longitude of site Yes 

LATITUDE degrees Latitude of site Yes 

ELEV m Elevation above sea level of site Yes 

TIMEZONE - Time zone of the site No 

GV gv Cut-off Rigidity of site Yes 

LW % Lattice Water from site specific calibration data Yes 

SOC % Soil Organic Carbon from site specific calibration data Yes 

BD g/cm3 Bulk Density from site specific calibration data Yes 

N0 - 
Theoretic maximum neutron count for site (dry conditions), 

calculated in tool and written. 
No 

AGBWEIGHT kg/m2 
Live woody above ground biomass estimates from ESA CCI 

biomass data 
No 

RAIN_DATA_SOURCE - 
Declaration of the source of rain data. Currently this will be 

either "Local" or "ERA5_Land" 
No 

TEM_DATA_SOURCE - 
Declaration of the source of temperature data. Currently this 

will be either "Local" or "ERA5_Land" 
No 

BETA_COEFF - 
Store of the calculated beta coefficient (see pressure 

calculations) for each individual site 
No 
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REFERENCE_PRESS hPa Reference pressure calculated using elevation No 

BD_ISRIC g/cm3 
Bulk Density estimates taken from the International Soil 

Reference and Information Centre (SoilGrids250m 
https://soilgrids.org/ ) 

No 

SOC_ISRIC g/dm3 Soil Organic Carbon estimates from ISRIC No 

pH_H20_ISRIC pH pH of water estimates from ISRIC No 

CEC_ISRIC mmol(c )/kg Cation exchange capacity at ph7 from ISRIC No 

CFVO_ISRIC cm3/dm3 Coarse fragments from ISRIC No 

NITROGEN_ISRIC cg/kg Nitrogen in soil from ISRIC No 

SAND_ISRIC g/kg Sand in soil from ISRIC No 

SILT_ISRIC g/kg Silt in soil from ISRIC No 

CLAY_ISRIC g/kg Clay in soil from ISRIC No 

*_ISRIC_UC varied 
The uncertainty bounds of each of the ISRIC variables, in 

absolute terms. 
No 

TEXTURE - 
Soil texture identified from Sand/Silt/Clay percentages using the 

USDA soil texture triangle 
No 

WRB_ISRIC - 
World Reference Base (2006) soil class from ISRIC. Provided as a 

table of probable classes - this is the most probable class. 
No 

LAND_COVER - Land Cover type taken from Copernicus data set. No 
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Table A4. crspy final output table from a given CRNS site. Note that there may be additional columns when run as 625 

different networks may have additional variables. 

COLUMN NAME UNITS DESCRIPTION 

DT datetime Datetime of the observation. Format: "yyyy-mm-dd hh:mm:ss" 

MOD counts per hour Moderated neutron count  

UNMOD counts per hour Unmoderated neutron count  

PRESS hPa Atmospheric pressure recorded by the sensors at the site 

TEMP Celsius 
Atmospheric temperature - if sensors are missing ERA5-Land data is 

used 

I_TEM Celsius Internal Temperature of the sensor box  

I_RH % Relative humidity inside the sensor box 

E_TEM Celsius External (atmospheric) temperature 

E_RH % External (atmospheric) relative humidity 

RAIN mm 
Rainfall recorded at the site. If local data is unavailable, then ERA5-Land 

data will be used in its place 

BATT Voltage Voltage of the battery 

fbar - The pressure correction factor 

DEWPOINT_TEMP Celsius Dewpoint temperature - from ERA5-Land data 

SWE mm Snow water equivalent - from ERA5-Land data 

ERA5L_PRESS hPa Atmospheric pressure - from ERA5-Land data 

VP hPa Vapour Pressure - calculated 

NMDB_COUNT counts per hour 
Neutron count rate from neutron monitoring database - usually 

Jungfraujoch 

pv kg/m3 Absolute humidity - calculated 

fawv - The atmospheric water vapour correction factor 

finten - The incoming cosmic-ray intensity correction factor 

fagb - The above ground biomass correction factor 

FLAG - The flag assigned to data in error (see Section 2.3 for definitions) 

MOD_CORR counts per hour 
The corrected neutron count rate after the correction factors have been 

applied 
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MOD_ERR counts per hour The statistical error of the neutron count rate 

SM 
volumetric soil 

moisture cm3 cm-3 
Estimated soil moisture 

SM_PLUS_ERR 
volumetric soil 

moisture cm3 cm-3 

Estimated soil moisture error above the estimated value - this is 
calculated by subtracting the MOD_ERR value (due to the inverse 

relationship) to the MOD_CORR value and calculating what the SM 
would then be 

SM_MINUS_ERR 
volumetric soil 

moisture cm3 cm-3 

Estimated soil moisture error below the estimated value - this is 
calculated by adding the MOD_ERR value (due to the inverse 

relationship) to the MOD_CORR value and calculating what the SM 
would then be 

SM_12h 
volumetric soil 

moisture cm3 cm-3 

The SM value with a 12-hour rolling average applied to it. Minimum 
number of values to calculate the 12-hour average is 6 hours of data 

within the 12-hour window 

D86avg cm 
The depth of the measurement - taken as the depth from which 86% of 

neutrons are estimated to be sourced from (Schron et al., 2017) 

D86avg_12h cm 
The D86 value with a 12-hour rolling average applied to it. Minimum 
number of values to calculate the 12-hour average is 6 hours of data 

within the 12-hour window 
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