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Abstract. There is growing interest in data-driven weather prediction (DDWP), for example using convolutional neural net-

works such as U-NETs that are trained on data from models or reanalysis. Here, we propose 3 components to integrate with

commonly used DDWP models in order to improve their physical consistency and forecast accuracy. These components are

1) a deep spatial transformer added to the latent space of the U-NETs to preserve a property called equivariance (a concept in

geometric deep learning), which is related to correctly capturing rotations and scalings of features in spatio-temporal data, 2)5

a data-assimilation (DA) algorithm to ingest noisy observations and improve the initial conditions for next forecasts, and 3) a

multi-time-step algorithm, which combines forecasts from DDWP models with different time steps through DA, improving the

accuracy of forecasts at short intervals. To show the benefit/feasibility of each component, we use geopotential height at 500 hPa

(Z500) from ERA5 reanalysis and examine the short-term forecast accuracy of specific setups of the DDWP framework. Re-

sults show that the equivariance-preserving networks (U-STNs) clearly outperform the U-NETs, for example improving the10

forecast skill by 45%. Using a sigma-point ensemble Kalman (SPEnKF) algorithm for DA and U-STN as the forward model,

we show that stable, accurate DA cycles are achieved even with high observation noise. This DDWP+DA framework substan-

tially benefits from large (O(1000)) ensembles that are inexpensively generated with the data-driven forward model in each

DA cycle. The multi-time-step DDWP+DA framework also shows promises, e.g., it reduces the average error by factors of 2-3.

These results show the benefits/feasibilities of these 3 components, which are flexible and can be used in a variety of DDWP15

setups. Furthermore, while here we focus on weather forecasting, the 3 components can be readily adopted for other parts of

the Earth system, such as ocean and land, for which there is a rapid growth of data and need for forecast/assimilation.
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1 Introduction

Motivated by improving weather and climate prediction, using machine learning (ML) for data-driven spatio-temporal fore-

casting of chaotic dynamical systems and turbulent flows has received substantial attention in recent years (e.g., Pathak et al.,20

2018; Vlachas et al., 2018; Dueben and Bauer, 2018; Scher and Messori, 2018, 2019; Chattopadhyay et al., 2020b, c; Nadiga,

2020; Maulik et al., 2021). These data-driven weather prediction (DDWP) models leverage ML methods such as convolutional

neural networks (CNNs) and/or recurrent neural networks (RNNs) that are trained on state variables representing the history

of the spatio-temporal variability, and learn to predict the future states (we have briefly described some of the technical ML

terms in Table 1). In fact, a few studies have already shown promising results with DDWP models that are trained on variables25

representing the large-scale circulation obtained from numerical models or reanalysis products (Scher, 2018; Chattopadhyay

et al., 2020a; Weyn et al., 2019, 2020; Rasp et al., 2020; Arcomano et al., 2020; Rasp and Thuerey, 2021, e.g.,). Chattopad-

hyay et al. (2020d) showed DDWP models trained on general circulation models’ (GCM) outputs can be used to predict

extreme temperature events. Excellent reviews and opinion pieces on the state-of-the-art of DDWP can be found in Chantry

et al. (2021), Watson-Parris (2021), and Irrgang et al. (2021). Other applications of DDWP may include post-processing of30

ensembles (Grönquist et al., 2021) and sub-seasonal to seasonal prediction (Scher and Messori, 2021; Weyn et al., 2021).

The increasing interest (Schultz et al., 2021; Balaji, 2021) in these DDWP models stems from the hope that they improve

weather forecasting because of one or both of the following reasons: 1) trained on reanalysis data and/or data from high-

resolution NWP models, these DDWP models may not suffer from some of the biases (or generally, model error) of physics-

based, operational numerical weather prediction (NWP) models, and 2) the low computational cost of these DDWP models35

enables generating large ensembles for probabilistic forecasting (Weyn et al., 2020, 2021). Regarding (1), while DDWP models

trained on reanalysis data have skills for short-term predictions, so far they have not been able to outperform operational NWP

models (Weyn et al., 2020; Arcomano et al., 2020; Schultz et al., 2021). This might be, at least partly, due to the short training

sets provided by around 40 years of high-quality reanalysis data (Rasp and Thuerey, 2021). There are a number of ways to

tackle this problem, e.g., transfer learning could be used to blend data from low- and high-fidelity data/models (e.g., Ham et al.,40

2019; Chattopadhyay et al., 2020e; Rasp and Thuerey, 2021), and/or physical constraints could be incorporated into the often

physics-agnostic ML models, which has been shown in applications of high-dimensional fluid dynamics (Raissi et al., 2020)

as well as toy examples of atmospheric or oceanic flows (Bihlo and Popovych, 2021). The first contribution of this paper is to

provide a framework for the latter, based on building physical properties called equivariances into convolutional architectures

using deep spatial transformers that would specifically capture translation, rotation, and scaling. The second contribution of45

this paper is to equip these DDWP models with data assimilation (DA), which provides improved initial conditions for weather

forecasting and is one of the key reasons behind the success of NWP models. Below, we further discuss the need for integrating

DA and physical properties such as equivariances with DDWP models and briefly describe what has been already done in these

areas in previous studies.

Many of the DDWP models built so far are physics agnostic and learn the spatio-temporal evolution only from the training50

data, resulting sometimes in physically inconsistent predictions and inability to capture key invariants and symmetries of the
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Term Description

Autoregressive models A model that iteratively predicts states of a system at new time steps by using the predicted state at

the previous time step as input (Lütkepohl, 2013).

CNN Convolutional neural network: a type of neural network in which features are learnt through suc-

cessive convolutions and down-sampling of the input as it maps to the ouput (Goodfellow et al.,

2016).

DDWP Data-driven weather prediction: A framework in which a data-driven model is trained on historical

weather data and predicts future weather without solving physical equations of the atmosphere

(section 3.1).

DDWP+DA Data-driven weather forecasting model as the background forecasting model integrated with

SPEnKF DA algorithm (proposed in this paper in section 3.2).

Encoder-decoder A neural network in which the input is encoded into a low-dimensioanl representation (encoding)

and then decoded back into high-dimensional (often the same dimension as the input) space from

the encoding (Goodfellow et al., 2016).

EnKF Ensemble Kalman filter: A type of DA algorithm in which noisy observations from a system are

ingested sequentially to incrementally provide better initial conditions for a dynamical model to

predict the future states of the system (Evensen, 1994).

Equivariance A property of a function that allows the output (of the function) to change appropriately to a

transformation in the input (Wang et al., 2020; Bronstein et al., 2021). See section 3.1.2 for more

details.

NWP Numerical weather prediction

RNN Recurrent neural network: A type of neural network in which information moves both forward and

backwards through the network (Goodfellow et al., 2016).

SPEnKF Sigma-point ensemble Kalman filter: A type of EnKF, in which ensembles are generated determin-

istically instead of randomly (Tang et al., 2014).

STN Spatial transformer network: A neural network in which an affine transformation and subsequent

interpolation allow the network to be equivariant (Jaderberg et al., 2015).

U-STN U-NET with a spatial transformer connected to the latent space of the network (section 3.1.2)

Unscented transformation A transformation that allows one to generate an optimal number of deterministic ensembles (Wan

et al., 2001). In this paper, this transformation is used in SPEnKF; see section 3.2.
Table 1. List of acronyms and technical ML and DA terms along with their brief descriptions.
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underlying dynamical system, particularly when the training set is small (Reichstein et al., 2019; Chattopadhyay et al., 2020d).

There are various approaches to incorporating some physical properties into the neural networks; for example, Kashinath et al.

(2021) have recently reviewed 10 approaches (with examples) for physics-informed ML in the context of weather/climate

modeling. One popular approach, in general, is to enforce key conservation laws, symmetries, or some (or even all) of the55

governing equations through custom-designed loss functions (e.g., Raissi et al., 2019; Beucler et al., 2019; Daw et al., 2020;

Mohan et al., 2020; Thiagarajan et al., 2020; Beucler et al., 2021).

Another approach–which has received less attention particularly in weather/climate modeling–is to enforce the appropriate

symmetries, which are connected to conserved quantities through the Noether’s theorem (Hanc et al., 2004), inside the neural

architecture. For instance, conventional CNN architectures enforce translational and rotational symmetries, which may not60

necessarily exist in the large-scale circulation; see Chattopadhyay et al. (2020d) for an example based on atmospheric blocking

events and rotational symmetry. Indeed, recent research in the ML community has shown that preserving a more general prop-

erty called “equivariance” can improve the performance of CNNs (Maron et al., 2018, 2019; Cohen et al., 2019). Equivariance-

preserving neural network architectures learn the existence of (or lack thereof) symmetries in the data rather than enforcing

them a priori and better track the relative spatial relationship of features (Cohen et al., 2019). In fact, in their work on fore-65

casting midlatitude extreme-causing weather patterns, Chattopadhyay et al. (2020d) have shown that capsule neural networks,

which are equivariance-preserving (Sabour et al., 2017), outperform conventional CNNs in terms of out-of-sample accuracy

while requiring a smaller training set. Similarly, Wang et al. (2020) have shown the advantages of equivariance-preserving

CNN architectures in data-driven modeling of Rayleigh-Bénard and ocean turbulence. More recently, using two-layer quasi-

geostrophic turbulence as the test case, Chattopadhyay et al. (2020c) have shown that preserving equivariances related to70

translational, rotational, and scaling symmetry groups through a deep spatial transformer architecture (Jaderberg et al., 2015)

improves the accuracy and stability of the DDWP models without increasing the network’s complexity or computational cost

(which are drawbacks of capsule neural networks). Building on these studies, here our first goal is to develop a physically

consistent, autoregressive DDWP model that preserves equivariance using a deep spatial transformer in an encoder-decoder

U-NET architecture (Ronneberger et al., 2015).75

DA is an essential component of modern weather forecasting (e.g., Kalnay, 2003; Carrassi et al., 2018; Lguensat et al.,

2019). DA corrects the atmospheric state forecasted using a forward model (often a NWP model) by incorporating noisy and

partial observations from the atmosphere (and other components of the Earth system), thus estimating a new corrected state of

the atmosphere called “analysis”, which serves as an improved initial condition for the forward model to forecast the future

states. Most operational forecasting systems have their NWP model coupled to a DA algorithm that corrects the trajectory of80

the atmospheric states, e.g., every 6 h with observations from remote sensing and in-situ measurements. State-of-the-art DA

algorithms use variational and/or ensemble-based approaches. The challenge with the former is computing the adjoint of the

forward model, which involves high-dimensional, nonlinear partial differential equations (Penny et al., 2019). Ensemble-based

approaches, which are usually variants of ensemble Kalman filter (EnKF, Evensen, 1994), bypass the need for computing the

adjoint but require generating a large ensemble of states that are each evolved in time using the forward model, which makes85

this approach computationally expensive (Hunt et al., 2007; Houtekamer and Zhang, 2016; Kalnay, 2003).
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In recent years, there has been a growing number of studies at the intersection of ML and DA (Geer, 2021). A few stud-

ies have aimed to use ML to accelerate/improve DA frameworks, for example by taking advantage of their natural connec-

tion (Abarbanel et al., 2018; Kovachki and Stuart, 2019; Grooms, 2021; Hatfield et al., 2021). A few other studies have focused

on using DA to provide suitable training data for ML from noisy/sparse observations (Brajard et al., 2020, 2021; Tang et al.,90

2020; Wikner et al., 2021). Others have integrated DA with a data-driven or hybrid forecast model for relatively simple dy-

namical systems (Hamilton et al., 2016; Lguensat et al., 2017; Lynch, 2019; Pawar and San, 2020). However, to the best of our

knowledge, no study has yet integrated DA with a DDWP model. Here, our second goal is to present a DDWP+DA framework

in which the DDWP is the forward model that efficiently provides a large, O(1000), ensemble of forecasts for a sigma-point

ensemble Kalman filter (SPEnKF) algorithm.95

To provide proof-of-concepts for the DDWP model and the combined DDWP+DA framework, we use sub-daily 500 hPa

geopotential height (Z500) from the ECMWF Reanalysis 5 (ERA5) dataset (Hersbach et al., 2020). The DDWP model is trained

on hourly, 6 h, or 12 h Z500 samples. The spatio-temporal evolution of Z500 is then forecasted from precise initial conditions

using the DDWP model or from noisy initial conditions using the DDWP+SPEnKF framework. Our main contributions in this

paper are three-fold, namely:100

– Introducing the equivariance-preserving encoder-decoder U-NET with a deep spatial transformer architecture for DDWP

modeling and showing the advantages of this architecture over a conventional encoder-decoder U-NET.

– Introducing the DDWP+DA framework, which leads to stable DA cycles without the need for any localization or inflation

by taking advantage of the large forecast ensembles produced in a data-driven fashion using the DDWP model.

– Introducing a novel multi-time-step method for improving the DDWP+DA framework. This framework utilizes virtual105

observations produced using more accurate DDWP models that have longer time steps. This framework exploits the

non-trivial dependence of the accuracy of autoregressive data-driven models on the time step size.

The remainder of the paper is structured as follows. The data are described in Section 2. The encoder-decoder U-NET architec-

ture with the deep spatial transformer and the SPEnKF algorithm are introduced in Section 3. Results are presented in Section 4

and the Discussion and Summary are in Section 5.110

2 Data

We use the ERA5 dataset from the WeatherBench repository (Rasp et al., 2020), where each global sample of Z500 at every

hour is downsampled to a rectangular longitude-latitude (x,y) grid of 32× 64. We have chosen the variable Z500 following

previous work (Weyn et al., 2019, 2020; Rasp et al., 2020) as an example, because it is representative of the large-scale

circulation in the troposphere and influences near-surface weather and extremes. This coarse-resolution Z500 dataset from the115

WeatherBench repository has been used in a number of recent studies to perform data-driven weather forecasting (Rasp et al.,

2020; Rasp and Thuerey, 2021). Here, we use Z500 data from 1979 to 2015 (≈ 315360 samples) for training, 2016–2017

(≈ 17520 samples) for validation, and 2018 (≈ 8760 samples) for testing.
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3 Methods

3.1 The equivariance-preserving DDWP model: U-NET with a deep spatial transformer (U-STN)120

The DDWP models used in this paper are trained on Z500 data without access to any other atmospheric fields that might affect

the atmosphere’s spatio-temporal evolution. Once trained on past Z500 snapshots sampled at every ∆t, the DDWP model takes

Z500 at a particular time t (Z(t) hereafter) as the input and predicts Z(t+ ∆t), which is then used as the input to predict

Z(t+ 2∆t), and this autoregressive process continues as needed. We use ∆t that is 1, 6, or 12 h. The baseline DDWP model

used here is a U-NET similar to the one used in Weyn et al. (2020). For the DDWP introduced here, the encoded latent space125

of the U-NET is coupled with a deep spatial transformer (U-STN hereafter) to preserve equivariance between the latent space

of the network and the decoded output. The preservation of equivariance enables the U-STN to track translation, rotation, and

stretching of the synoptic- and larger-scale patterns, and is expected to improve the forecast of the spatio-temporal evolution of

the midlatitude Rossby waves and their nonlinear breakings. In this section, we briefly discuss the U-STN architecture, which

is schematically shown in Fig. 1. Note that from now on, “x” in U-STNx (and U-NETx) indicates the ∆t that is used, e.g.,130

U-STN6 uses ∆t= 6 h.

3.1.1 Localization network or encoding block of U-STN

The network takes in an input snapshot of Z500, Z(t)32×64, as initial condition and projects it onto a low-dimensional encoding

space via a U-NET convolutional encoding block. This encoding block performs two successive sets of two convolution oper-

ations (without changing the spatial dimensions) followed by a max-pooling operation. It is then followed by two convolutions135

without max-pooling and four dense layers. More details on the exact set of operations inside the architecture are reported in

Table 2. The convolutions inside the encoder block account for Earth’s longitudinal periodicity by performing circular convo-

lutions (Schubert et al., 2019) on each feature map inside the encoder block. The encoded feature map, which is the output of

the encoding block and consists of the reduced Z and co-ordinate system, Z̃8×16 and (xoi ,y
o
i ) where i= 1,2 . . .8× 16, is sent

to the spatial transformer module described below.140

3.1.2 Spatial transformer module

The spatial transformer (Jaderberg et al., 2015) applies an affine transformation T (θ) to the reduced co-ordinate system (xoi ,y
o
i )

to obtain a new transformed co-ordinate system (xsi ,y
s
i ):xsi

ysi

= T (θ)


xoi

yoi

1

 , (1)

where145

T (θ) =

θ11 θ12 θ13

θ21 θ22 θ23

 . (2)
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The parameters θ are learnt through backpropagation. A differentiable sampling kernel (a bi-linear interpolation kernel in this

case) is then used to transform Z̃8×16, which is on the old co-ordinate system (xoi ,y
o
i ), into Z̄8×16, which is on the new

co-ordinate system (xsi ,y
s
i ). The spatial transformer module ensures that the transformation in the encoded latent space is

equivariance-preserving (Esteves et al., 2018). Note that in this architecture, the spatial transformer is applied to the latent150

space and its objective is to ensure that no a priori symmetry structure is assumed in the latent space. The parameters in T (θ)

learn the transformation (translation, rotation, and scaling) between the input to the latent space and the decoded output.

We highlight that in this paper, we are focusing on preserving the SO(3) equivariance group that includes translation, rotation,

and scaling, because those are the ones that we expect to matter the most for the synoptic patterns on a 2D plane. Other

transformations and equivariance groups could be similarly included (Wang et al., 2020). Furthermore, here we focus on an155

architecture with a transformer that acts only on the latent space. More complex architectures, with transformations like Eq. (1)

after every convolution layer, can be used too albeit with a significant increase in computational cost (de Haan et al., 2020; Wang

et al., 2020). Our preliminary exploration shows that for this work, the one spatial transformer module applied on the latent

space of the U-NET yields sufficiently superior performance (over the baseline, U-NET), but further exhaustive explorations

should be conducted in future studies to find the best performing architecture for each application. Moreover, recent work in160

neural architecture search for geophysical turbulence shows that, with enough computing power, one can perform exhaustive

searches over optimal architectures, a direction that should be pursued in future work (Maulik et al., 2020).

Finally we point out that without the transformer module, Z̄ = Z̃, and the network becomes a standard U-NET.

3.1.3 Decoding block

The decoding block is a series of deconvolution layers (convolution with zero-padded upsampling) concatenated with the165

corresponding convolution outputs from the encoder part of the U-NET. The decoding blocks bring the latent space Z̄8×16

back into the original dimension and co-ordinate system at time t+ ∆t, thus outputting Z(t+ ∆t)32×64. The concatenation of

the encoder and decoder convolution outputs allows the architecture to learn the features in the small-scale dynamics of Z500

better (Weyn et al., 2020).

The loss function L to be minimized is170

L(λ) =
1

(N + 1)

t=N∆t∑
t=0

||(Z(t+ ∆t)−U-STNx(Z(t),λ)) ||22, (3)

where N is the number of training samples, t= 0 is the start time of the training set, and λ represents the parameters of the

network that are to be trained (in this case, the weights, biases, and θ of U-STNx). In both encoding and decoding blocks,

the ReLU activation functions are used. The number of convolutional kernels (32 in each layer), size of each kernel (5× 5),

Gaussian initialization, and the learning rate (α= 3×10−4) have been chosen after extensive trial-and-error. All codes for these175

networks (as well as DA) have been made publicly available on GitHub and Zenodo (see the Code Availability statement). A

comprehensive list of information about each of the layers in both the U-STNx and U-NETx architectures is presented in

Table. 2 along with the optimal set of hyperparameters that have been obtained through extensive trial-and-error.
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Layer number Layer type Kenel size number of filters/number of neurons Activation

1 Convolution 5× 5 32 ReLU

2 Convolution 5× 5 32 ReLU

3 Max Pooling – – –

4 Convolution 5× 5 32 ReLU

5 Convolution 5× 5 32 ReLU

6 Max Pooling – – –

7 Convolution 5× 5 32 ReLU

8 Convolution 5× 5 32 ReLU

9 Fully connected – 500 ReLU

10 Fully connected – 200 ReLU

11 Fully connected – 100 ReLU

12 Fully connected – 50 ReLU

13 Affine transformation (only for STN) – – –

14 Bi-linear interpolation (only for STN) – – –

15 Up-sampling – – –

16 Convolution 5× 5 32 ReLU

17 Convolution 5× 5 32 ReLU

18 Up-sampling – – –

19 Convolution 5× 5 32 ReLU

20 Convolution 5× 5 32 ReLU

21 Convolution 5× 5 32 Linear
Table 2. Table presenting information on the U-STNx and U-NETx architecture with the optimal set of hyperparameters that have been

obtained after extensive trial and error. Note that apart from the affine transformation and bi-linear interpolation layer, the U-STNx and

U-NETx architecture are similar. The networks have been implemented in Tensorflow and Keras.

Note that, the use of U-NET is inspired from the works of Weyn et al. (2020), however, the architecture used in this study

is different from that of Weyn et al. (2020). The main differences are in the number of convolution layers and filters used180

in the U-NET along with the spatial transformer module. Apart from that, in Weyn et al. (2020), the mechanism by which

autoregressive prediction is done, is different from this paper. Two time steps (6h and 12h) are predicted directly as the output

by Weyn et al. (2020) using the U-NET. Moreover, the data for training and testing in Weyn et al. (2020) are on the gnomonic

cubed sphere.
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Figure 1. A schematic of the architecture of U-STNx. The architecture preserves equivariance between the input to the latent space and the

decoded output owing to the spatial transformer module implemented through the affine transformation, T (θ), along with the differentiable

bi-linear interpolation kernel. The network integrates Z(t) to Z(t+ ∆t). Note that the schematic does not show the exact number of layers

and number of filters used in U-STNx and U-NETx for the sake of clarity. The information on the number of layers and number of filters

along with the activation function used is shown in Table 2.

3.2 Data assimilation algorithm and coupling with DDWP185

For DA, we employ the SPEnKF algorithm, which unlike the EnKF algorithm, does not use random perturbations to generate

an ensemble but rather uses an unscented transformation (Wan et al., 2001) to deterministically find an optimal set of points

called sigma points (Ambadan and Tang, 2009). The SPEnKF algorithm has been shown to outperform EnKF on particular

test cases for both chaotic dynamical systems and ocean dynamics (Tang et al., 2014) although whether it is always superior to
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EnKF is a matter of active research (Hamill et al., 2009) and beyond the scope of this paper. Our DDWP+DA framework can190

use any ensemble-based algorithm.

In the DDWP+DA framework, shown schematically in Fig. 2, the forward model is a DDWP, which is chosen to be U-

STN1 and denoted as Ψ below. We use σobs for the standard deviation of the observation noise, which in this paper is either

σobs = 0.5σZ or σobs = σZ , where σZ is the standard deviation of Z500 over all grid points and over all years between 1979–

2015. Here, we assume that the noisy observations are assimilated every 24 h (again, the framework can be used with any DA195

frequency, such as 6 h, which is used commonly in operational forecasting).

We start with a noisy initial condition Z(t), and use U-STN1 to autoregressively (with ∆t= 1 h) predict the next time steps,

Z(t+ ∆t), Z(t+ 2∆t), Z(t+ 3∆t), up to Z(t+ 23∆t). For a D-dimensional system (i.e., Z ∈RD), the optimal number of

ensemble members for SPEnKF is 2D (Ambadan and Tang, 2009). Because here D = 32× 64, 4096 ensemble members are

needed. While this is a very large ensemble size if the forward models is a NWP (operationally, ∼ 50− 100 members are used200

(Leutbecher, 2019)), the DDWP can inexpensively generate O(1000) ensemble members, a major advantage of DDWP as a

forward model that we will discuss later in Section 5.

To do SPEnKF, an ensemble of states at the 23rd hour of each DA cycle (24 h is one DA cycle) is generated using a symmetric

set of sigma points (Julier and Uhlmann, 2004) as

Zi
ens(t+ 23∆t) = Z(t+ 23∆t)−Ai,

Zj
ens(t+ 23∆t) = Z(t+ 23∆t) +Aj ,

(4)205

where i, j ∈ [1,2, · · ·D = 32× 64] are indices of the 2D ensemble members. Vectors Ai and Aj are columns of matrix

A = U
√

SUT, where U and S are obtained from the singular value decomposition of the analysis covariance matrix Pa,

i.e., Pa = USVT . The D×D matrix Pa is either available from the previous DA cycle (see Eq. (10) below) or is initialized

as an identity matrix at the beginning of DA. Note that here, we generate the ensemble at one ∆t before the next DA; how-

ever, the ensembles can be generated at any time within the DA cycle and carried forward although that would increase the210

computational cost of the framework. We have explored generating the ensembles at t+ 0∆t (i.e., the beginning) but did not

find any improvement over Eq. (4). It must however be noted that by not propagating the ensembles for 24 h the spread of the

ensembles underestimates the background error.

Once the ensembles are generated via Eq. (4), every ensemble member is fed into Ψ to predict an ensemble of forecasted

states at t+ 24∆t:215

Zk
ens(t+ 24∆t) = Ψ

(
Zk

ens(t+ 23∆t)
)
, (5)

where k ∈ {−D,−D+ 1, · · · ,D− 1,D}. In general, the modeled observation is H
(〈
Zk

ens(t+ 24∆t)
〉
, ε(t)

)
, where H is the

observation operator and ε(t) is the Gaussian random process with standard deviation σobs that represents the uncertainty in

the observation. 〈.〉 denotes ensemble averaging. In this paper, we assume that H is the identity matrix while we acknowledge

that in general, it could be a nonlinear function. The SPEnKF algorithm can account for such complexity, but here, to provide220

a proof-of-concept, we have assumed that we can observe the state, although with a certain level of uncertainty. With H = I,

10



Figure 2. The framework for a synergistic integration of a DA algorithm (SPEnKF) with a DDWP (U-STN1). Once the DDWP+DA frame-

work is provided with a noisy Z(t), it uses U-STN1 to autoregressively predict Z(t+ 23∆t). A large ensemble is then generated using

Eq. (4), and for each member k, Zk
ens(t+ 24∆t) is predicted using U-STN1. Following that, an SPEnKF algorithm assimilates a noisy ob-

servation at the 24th h to provide the estimate (analysis) state of Z500, Ẑ(t+ 24∆t). U-STN1 then uses this analysis state as the new initial

condition and evolves the state in time, with DA occurring every 24 hours.

the background error covariance matrix Pb becomes

Pb = E
[(
Zk

ens(t+ 24∆t)−
〈
Zk

ens(t+ 24∆t)
〉)(

Zk
ens(t+ 24∆t)−

〈
Zk

ens(t+ 24∆t)
〉)T ]

, (6)

where [.]
T denotes the transpose operator and E[.] denotes the expectation operator. The innovation covariance matrix is defined

as:225

C = Pb + R, (7)

where the observation noise matrix R is a constant diagonal matrix of the variance of observation noise, i.e., σ2
obs. The Kalman

gain matrix is then given by

K = PbC−1, (8)

and the estimated (analysis) state Ẑ(t+ 24∆t) is calculated as230

Ẑ(t+ 24∆t) = 〈Z(t+ 24∆t)〉−K
(〈
Zk

ens(t+ 24∆t)
〉
−Zobs(t+ 24∆t)

)
, (9)

11



where Zobs(t+24∆t) is the noisy observed Z500 at t+24∆t; i.e., ERA5 value at each grid point plus random noise drawn from

N (0,σ2
obs). While adding Gaussian random noise to the truth is an approximation, it is a quite common in the DA literature

(Brajard et al., 2020, 2021; Pawar et al., 2020). The analysis error covariance matrix is updated as

Pa = Pb−KCKT. (10)235

The estimated state Ẑ(t+ 24∆t) becomes the new initial condition to be used by U-STN1 and the updated Pa is used to

generate the ensembles in Eq. (4) after another 23 h for the next DA cycle.

Finally, we remark that often with low ensemble sizes, the background covariance matrix, Pb (Eq. (6)), suffers from spurious

correlations which are corrected using localization and inflation strategies (Hunt et al., 2007; Asch et al., 2016). However, due to

the large ensemble size used here (with 4096 ensemble members that are affordable because of the computationally inexpensive240

DDWP forward model) we do not need to perform any localization or inflation on Pb to get stable DA cycles as shown in the

next section.

4 Results

4.1 Performance of physically consistent DDWP: Noise-free initial conditions (no DA)

First, we compare the performance between a U-STN and a conventional U-NET, whose only difference is in the use of the245

spatial transformer module in the former. Using U-STN12 and U-NET12 as representatives of these architectures, Fig. 3 shows

the anomaly correlation coefficients (ACCs) between the predictions from U-STN12 or U-NET12 and the truth (ERA5) for 30

noise-free, random initial conditions. ACC is computed every 12 h as the correlation coefficient between the predicted Z500

anomaly and the Z500 anomaly of ERA5, where anomalies are derived by removing the 1979-2015 time mean of Z500 of the

ERA5 dataset. U-STN12 clearly outperforms U-NET12, most notably after 36 h, reaching ACC=0.6 after around 132 h, a 45%250

(1.75 day) improvement over U-NET12, which reaches ACC=0.6 after around 90 h.

To further see the source of this improvement, Fig. 4 shows the spatio-temporal evolution of Z500 patterns from an example

of prediction using U-STN12 and U-NET12. Comparing with the truth (ERA5), U-STN12 can better capture the evolution

of the large-amplitude Rossby waves and the wavebreaking events compared to U-NET12; e.g., see the patterns over Central

Asia, Southern Pacific Ocean, and Northern Atlantic Ocean on days 2-5. We cannot rigorously attribute the better capturing255

of wavebreaking events to an improved representation of physical features by the spatial transformer. However, the overall

improvement in performance of U-STN12 due to the spatial transformer (which is the only difference between U-STN12 and

U-NET12) may lead to capturing some wavebreaking events in the atmosphere as can be seen from exemplary evidence in

Fig. 4. Furthermore, on days 4 and 5, the predictions from U-NET12 have substantially low Z500 values in the high latitudes

of the Southern Hemisphere, showing signs of unphysical drifts.260

Overall, the results of Figs. 3 and 4 show the advantages of using the spatial transformer enabled U-STNs in DDWP models.

It is important to note that it is difficult to assert whether the transformation with T (θ) in the latent space actually leads to

physically meaningful transformations in the decoded output. However, we see that the performance of the network improves
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Figure 3. Anomaly correlation coefficient (ACC) calculated between Z500 anomalies of ERA5 and Z500 anomalies predicted using U-

STN12 or U-NET12 from 30 noise-free, random initial conditions. The solid lines and the shadings show the mean and the standard deviation

over the 30 initial conditions.

with the addition of the spatial transformer module. Future studies need to focus on more interpretation of what the T (θ)

matrix inside neural networks capture (Bronstein et al., 2021). Note that while here we show results with ∆t= 12 h, similar265

improvements are seen with ∆t= 1 h and ∆t= 6 h (see section 4.3). Furthermore, to provide a proof-of-concept for the

U-STN, in this paper we focus on Z500 (representing the large-scale circulation) as the only state variable to be learnt and

predicted. Even without access to any other information (for example about small scales), the DDWP model can provide

skillful forecasts for some time, consistent with earlier findings with the multi-scale Lorenz 96 system (Dueben and Bauer,

2018; Chattopadhyay et al., 2020b). More state variables can be easily added to the framework, which is expected to extend270

the forecast skills, based on previous work with U-NETs (Weyn et al., 2020). In this work, we have considered Z500 as an

example for a proof-of-concept. We have also performed experiments (not shown for brevity) by adding T850 as one of the

variables to the input along with Z500 in U-NETx and U-STNx and found similarly good prediction performance for the T850

variable.

A benchmark for different DDWP models has been shown in Rasp et al. (2020), with different ML algorithms such as CNN,275

linear regression, etc. In terms of RMSE for Z500 (Fig. 6, left panel, shows RMSE of U-STNx and U-NETx in this paper with

different ∆t), U-STN12 outperforms the CNN model in WeatherBench (Rasp et al., 2020) by 33.2 m at lead time of 3 days,

and 26.7 m at lead time of 5 days. Similarly, U-STN12 outperforms the linear regression in WeatherBench by 39.9 m at lead

time of 3 days and by 29.3 m at lead time of 5 days. Note that in more recent work (Weyn et al., 2020; Rasp and Thuerey,

2021), prediction horizons outperforming the WeatherBench models (Rasp et al. (2020)) have also been shown.280
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Figure 4. Examples of the spatio-temporal evolution of Z500 predicted from a noise-free initial condition (t0) using U-STN12 and U-NET12,

and compared with the truth from ERA5. For the predicted patterns, the anomaly correlation coefficient (ACC) is shown above each panel

(see the text for details).

4.2 Performance of the DDWP+DA framework: noisy initial conditions and assimilated observations

To analyse the performance of the DDWP+DA framework, we use U-STN1 as the DDWP model and SPEnKF as the DA algo-

rithm, as described in Section 3.2. In this U-STN1+SPEnKF setup, the initial conditions for predictions are noisy observations

and every 24 h, noisy observations are assimilated to correct the forecast trajectory (as mentioned before, noisy observations

are generated by adding random noise from N (0,σobs) to the Z500 of ERA5).285

In Fig. 5, for 30 random initial conditions and two noise levels (σobs = 0.5σZ or 1σZ), we report the spatially averaged

root-mean-squared-error (RMSE) and the correlation coefficient (R) of the forecasted full Z500 fields as compared to the truth,

i.e., the (noise-free) Z500 fields of ERA5. For both noise levels, we see that within each DA cycle, the forecast accuracy

decreases between 0 and 23 h until DA with SPEnKF occurs at the 24th hour wherein information from the noisy observation is

assimilated to improve the estimate of the forecast at the 24th hour. This estimate acts as the new improved initial condition to290

be used by U-STN1 to data drivenly forecast future time steps. In either case, the RMSE and R remain below 30 m (80 m) and

above 0.7 (0.3) with σobs = 0.5σZ (σobs = 1σZ) for the first 10 days. The main point here is not the accuracy of the forecast

(which as mentioned before, could be further extended, for example by adding more state variables), but the stability of the

U-STN1+SPEnKF framework (without localization/inflation), which even with the high noise level, can correct the trajectory,
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Figure 5. The top (bottom) panel shows R (RMSE, in meters) between noise-free data from ERA5 and the forecasts from U-STN1+SPEnKF

for two levels of observation noise. Predictions are started from 30 random noisy observations. The lines (shading) show the mean (standard

deviation) of the 30 forecasts. Noisy observations are assimilated every 24 h (indicated by black, dashed vertical lines).

and increase R from ∼ 0.3 to 0.8 in each cycle. Although not shown in this paper, the U-STN1+SPEnKF framework remains295

stable beyond the 10 days and shows equally good performance for longer periods of time.

One last point to make here is that within each DA cycle, the maximum forecast accuracy is not at when DA occurs, but

3-4 h later (this is most clearly seen for the case with σobs = 1σZ in Fig. 5). A likely reason behind the further improvement of

the performance after DA is the de-noising capability of neural networks when trained on non-noisy training data (Xie et al.,

2012).300
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Figure 6. The left (right) panel shows RMSE (R) between noise-free data from ERA5 and the forecasts from U-STNx or U-NETx from 30

random, noise-free initial conditions. No DA is used here. RMSE is in meters. The lines (shading) show the mean (standard deviation) of the

30 forecasts.

4.3 DDWP+DA with virtual observations: A multi-time-step framework

One might wonder how the performance of the DDWP model (with or without DA) depends on ∆t. Figure 6 compares the

performance of U-STNx as well as U-NETx for ∆t= 1, 6, and 12 h for 30 random noise-free initial conditions (no DA). It is

clear that the DDWP models with larger ∆t outperform the ones with smaller ∆t; i.e., in terms of forecast accuracy, U-STN12

> U-STN6 > U-STN1. This trends holds true for both U-STNx and U-NETx, while as discussed before, for the same ∆t, the305

U-STN outperforms the U-NET.

This dependence on ∆t might seem counter-intuitive as it is opposite of what one sees in numerical models, whose forecast

errors decrease with smaller time steps. The increase in the forecast errors of these DDWP models when ∆t is decreased is

likely due to the non-additive nature of the error accumulation of these autoregressive models. The data-driven models have

some degree of generalization error (for out-of-sample prediction), and every time the model is invoked to predict the next time310

step, this error is accumulated. For neural networks, this accumulation is not additive and propagates nonlinearly during the

autoregressive prediction. Currently, these error propagations are not understood well enough to build a rigorous framework

for estimating the optimal ∆t for data-driven, autoregressive forecasting; however, this behavior has been reported in other

studies on nonlinear dynamical systems and can be exploited to formulate multi-time-step data-driven models; see (Liu et al.,

2020) for an example (though without DA).315

Based on the trends seen in Fig. 6, we propose a novel idea for a multi-time-step DDWP+DA framework, in which the

forecasts from the more accurate DDWP with larger ∆t are incorporated as virtual observations, using DA, into the forecasts

of the less accurate DDWP with smaller ∆t, thus providing overall more accurate short-term forecasts. Figure 7 shows a

schematic of this framework for the case where the U-STN12 model provides the virtual observations that are assimilated
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Figure 7. Schematic of the multi-time-step DDWP+DA framework. The U-STN12 model provides forecasts every 12 h, which are assimilated

as virtual observations using SPEnKF into the U-STN1+SPEnKF framework that has a 24 h DA cycle for assimilating noisy observations. At

12th hours, the U-STN12 forecasts are more accurate than those from the U-STN1 model, enabling the framework to improve the prediction

accuracy every 12th hour, thereby improving the initial condition used for the next forecasts before DA with noisy observations (every 24 h).

using the SPEnKF algorithm in the middle of the 24 h DA cycles into the hourly forecasts from U-STN1. At 24th hours, noisy320

observations are assimilated using the SPEnKF algorithm as before.

Figure 8 compares the performance of the multi-time-step U-STNx+SPEnKF framework, which uses virtual observations

from U-STN12, with that of U-STN1+SPEnKF, which was introduced in Section 4.2, for the case with σobs = 0.5σZ . In terms

of both RMSE and R, the multi-time-step U-STNx+SPEnKF framework outperforms the U-STN1+SPEnKF framework, as for

example, the maximum RMSE of the former is often comparable to the minimum RMSE of the latter. Figure 9 shows the same325

analysis but for the case with larger observation noise σobs = σZ , which further demonstrates the benefits of the multi-time-step

framework and use of virtual observations.

The multi-time-step framework with assimilated virtual observations introduced here improves the forecasts of short-term

intervals by exploiting the non-trivial dependence of the accuracy of autoregressive, data-driven models on time step size.

While hourly forecasts of Z500 may not be necessarily of practical interest, the framework can be applied in general to any330

state variable, and can be particularly useful for multi-scale systems with a broad range of spatio-temporal scales. A similar

idea was used in Bach et al. (2021), wherein data-driven forecasts of oscillatory modes with singular spectrum analysis and an

analog method were used as virtual observations to improve the prediction of a chaotic dynamical system.
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Figure 8. Performance of the the multi-time-step U-STNx+SPEnKF framework (with virtual observations at the 12th hour of every 24 h

DA cycle) compared to that of the U-STN+SPEnKF framework for the case with σobs = 0.5σZ . The top (bottom) panel show R (RMSE in

meters). The black, dashed vertical lines indicate DA of noisy observations at every 24 h. Forecasts are started from 30 random, noisy initial

conditions. The lines (shading) show the mean (standard deviation) of the 30 forecasts.

5 Discussion and Summary

In this paper, we propose three novel components for DDWP frameworks to improve their performance. These components335

are: 1) a deep spatial transformer in the latent space to preserve equivariances and encode the relative spatial relationships of

features of the spatio-temporal data in the network architecture, 2) a stable and inexpensive ensemble-based DA algorithm to

ingest noisy observations and correct the forecast trajectory, and 3) a multi-time-step algorithm, in which the accurate forecasts

of a DDWP model that uses a larger time step are assimilated as virtual observations into the less accurate forecasts of a DDWP

that uses a smaller time step, thus improving the accuracy of forecasts at short intervals.340

To show the benefits of each component, we use downsampled Z500 data from ERA5 reanalysis and examine the short-term

forecast accuracy of the DDWP framework. To summarize the findings:
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Figure 9. Same as Fig. 8 but with large observation noise, σobs = σZ .

1. As show in Section 4.1 for noise-free initial conditions (no DA), U-STN12, which uses a deep spatial transformer and

∆t= 12 h, outperforms U-NET12, for example, extending the average prediction horizon (when ACC reaches 0.6)

from 3.75 days (U-NET12) to 5.5 days (U-STN12). Examining a few examples of the spatio-temporal evolution of the345

forecasted Z500 patterns, we can see that U-STN better captures phenomena such as wavebreaking. We further show in

Section 4.3 based on other metrics that with the same ∆t, U-STN outperforms U-NET. These results demonstrate the

benefits of adding deep spatial transforms to convolutional networks such as U-NETs.

2. As shown in Section 4.2, an SPEnKF DA algorithm is coupled with the U-STN1 model. In this framework, the U-STN1

serves as the forward model to data drivenly generate a large ensemble of forecasts in each DA cycle (24 h), when noisy350

observations are assimilated. Because U-STN1 is computationally inexpensive, for a state vector of size D, ensembles

with 2D = 4096 members are easily generated in each DA cycle, leading to stable, accurate forecasts without the need

for localization or inflation of covariance matrices involved in the SPEnKF algorithm. The results show that DA can

be readily coupled with DDWP models when dealing with noisy initial conditions. The results further show that such

coupling is substantially facilitated by the fact that large ensembles can be easily generated with data-driven forward355
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models. Note however that NWP models have a larger number of state variables (O(108)) which would make SPEnKF

very computationally expensive; in such cases, further parallelization of the SPEnKF algorithm would be required.

3. As shown in Section 4.3, the autoregressive DDWP models (U-STN or U-NET) are more accurate with larger ∆t, which

is attributed to the nonlinear error accumulation over time. Exploiting this trend and the ease of coupling DA with DDWP,

we show that assimilating the forecasts of U-STN12 into U-STN1+SPEnKF as virtual observations in the middle of the360

24 h DA cycles can substantially improve the performance of U-STN1+SPEnKF. These results demonstrate the benefits

of the multi-time-step algorithm with virtual observations.

Note that to provide proof-of-concepts, here we have chosen specific parameters, approaches, and setups. However, the frame-

work for adding these 3 components is extremely flexible, and other configurations can be easily accommodated. For example,

other DA frequencies, ∆t, U-NET architectures, or ensemble-based DA algorithms could be used. Furthermore, here we as-365

sume that the available observations are noisy but not sparse. The gain from adding DA to DDWP would be most significant

when the observations are noisy and sparse. Moreover, the ability to generate O(1000) ensembles inexpensively with a DDWP

would be particularly beneficial for sparse observations for which the stability of DA is more difficult to achieve without

localization and inflation (Asch et al., 2016). The advantages of the multi-time-step DDWP+DA framework would be most

significant when multiple state variables, of different temporal scales, are used, or more importantly, when the DDWP model370

consists of several coupled data-driven models for different sets of state variables and processes (Reichstein et al., 2019; Schultz

et al., 2021). Moreover, while here we show that ensemble-based DA algorithms can be inexpensively and stably coupled with

DDWP models, variational DA algorithms (Bannister, 2017) could be also used, given that computing the adjoint for the

DDWP models can be easily done using automatic differentiation.

The DDWP models are currently not as accurate as operational NWP models (Weyn et al., 2020; Arcomano et al., 2020;375

Rasp and Thuerey, 2021; Schultz et al., 2021). However, they can still be useful through generating large forecast ensembles

(Weyn et al., 2021) and there is still much room for improving DDWP frameworks, for example using the three components

introduced here as well as using transfer learning, which has been shown recently to work robustly and effectively across a

range of problems (e.g., Ham et al., 2019; Chattopadhyay et al., 2020e; Subel et al., 2021; Guan et al., 2021).

Finally, we point out that while here we focus on weather forecasting, the three components can be readily adopted380

for other parts of the Earth system, such as ocean and land, for which there is a rapid growth of data and need for fore-

cast/assimilation (e.g., Kumar et al., 2008b, a; Yin et al., 2011; Edwards et al., 2015; Liang et al., 2019).
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