
Referee 1 
 
 
This manuscript explores improvements in the rapidly advancing field of data-driven 
weather prediction (DDWP). Broadly, DDWP seeks to train empirical weather-prediction 
models based on deep learning architectures, such as convolutional neural networks, that 
have proved very successful in fields such as image processing. This work fits within the 
WeatherBench forecasting challenge, which aims to forecast the global 500hPa 
geopotential height field, given the same field at an earlier time. 
 
One of the leading approaches for DDWP is to use a convolutional U-NET architecture in 
which the first (“encoding”) half projects the higher-resolution geopotential height field 
onto one or more lower-resolution “latent spaces” or “encoding spaces” and the second 
(“decoding”) half of the U-NET upsamples the results, via many convolutional layers, to 
the original space. Broadly, the convolutional blocks are learning how to project 
geopotential height features forward in time, with the different levels of the U-NET 
allowing different scales to be projected using different convolutional blocks. The first 
advance is, at the lowest-level encoding space of the U-NET, to add an “equivariance preserving 
spatial transformer”; the resulting network is known as U-STN and improves 
forecast quality over the U-NET. The spatial transformer appears to permit additional 
capabilities for rotation, scaling and translation of the encoded geopotential height 
features within the empirical model, which are helpful for improving the forecast 
performance. The addition of the spatial transformer is justified as providing additional 
capabilities to preserve equivariance to important symmetries in the fluid dynamics of the 
atmosphere and therefore to provide a more physics-aware neural network. I would like to 
see more justification for this interpretation, and more precision in its discussion (see 
below). 
 
The second advance in the manuscript is to couple a data assimilation algorithm to the 
DDWP model. Currently the Weather Bench framework provides high-quality gridded initial 
conditions from which to run DDWP forecasts, therefore missing a major step in the 
broader challenge of weather forecasting, which is to create those gridded initial 
conditions by assimilating the diverse and sparse (non-gridded) weather observations. To 
explore this side of the problem, noise is added to the gridded initial conditions, which are 
then assimilated every 24h using an ensemble data assimilation algorithm. An interesting 
aspect is to use the low-cost DDWP to create much larger ensembles (around 4000 members) 
than are possible in typical NWP (around 50 - 100 members). This allows a 
novel ensemble DA algorithm to be used (one that can be coded in a few lines of python), 
apparently without the problems of covariance localisation that are required with smaller 
ensembles. A second application of DA is also presented, where it is used to merge 
forecasts from DDWP models with different integration lengths. 
 
This is novel and interesting work, which may have substantial impact on the development 
of DDWP, and hence it is worthy of eventual publication. However, there are a few major 
issues to consider beforehand, including the previously mentioned issues around the 
physical interpretation. 



 
Authors’ response: 
 
We thank the referee for their positive evaluation of our manuscript. Based on the referee’s 
suggestion we have revised our manuscript in blue. The referee’s insightful suggestions have 
sufficiently improved the clarity of the manuscript. Herein, we provide point-by-point responses 
to the referee’s comments.  
 
Referee’s comment: 
 
1) The idea of equivariance is introduced precisely in Wang et al. (2020), for example, as 
applying to a function f(x) given a symmetry group g. The function is equivariant to g if 
the result of applying any of the symmetries (or transformations) from the group is the 
same whether applied to the functions inputs or outputs: f(g x) = g f(x). The same paper 
lists the symmetries of the Navier-Stokes equations as space and time translation, 
uniform motion, reflect/rotation and scaling. By contrast, the current manuscript is in 
places vague about what it means by equivariance, and it does not anywhere show 
whether it is preserved in the models presented. The presentation and analysis of the 
results relating to equivariance needs to be improved: 
 
(i) Through the manuscript there are statements referring to the U-STN as “the 
equivariance-preserving DDWP introduced here” (line 118). However, the baseline U-NET 
is also likely to be equivariance-preserving, at least to translation and reflection. The 
improved U-STN may add equivariance to a certain set of symmetries (the authors 
suggest reflection, rotation and scaling). The point being that both the U-NET and the USTN 
are likely equivariance-preserving to some degree, but neither of them in a complete 
way to all possible symmetries. In terms of analysis, it would be important to more 
precisely specify or confirm which symmetries are preserved, or to acknowledge if the 
exact set of symmetries preserved is unknown. In terms of presentation, to describe the USTN 
as equivariance-preserving and to imply the U-NET is not could be misleading, and 
the title might also be changed to better reflect this. 
 
Authors’ response: 
 
We thank the referee for raising this interesting point about symmetry groups. In the manuscript, 
we have explained that equivariance-preserving networks do not impose a priori symmetry inside 
the networks and rather optimizes parameters to learn the symmetry. It is also true that U-STN 
does not learn all symmetries. In our U-STN, we have implemented rotational, translational, and 
scaling transformation through six parameters in the 𝑇(𝜃) matrix (defined in section 3.1.2) 
connected to the latent space of the network. It does not impose rotational invariance, i.e., it does 
not enforce the output to remain invariant to rotation in the input. The spatial transformer module 
learns the transformation (only on the encoded latent space) such that the latent space decodes to 
the correct output (which may have undergone rotational, translational, or scaling transformation) 
during training. The U-NET, like a regular CNN, is invariant to translation. In the U-STN, we have 
only performed rotational, translational, and scaling transformation on the latent space of the 
encoder which we have further clarified in the revised manuscript between Lines 150-152. We 



have changed the title to remove the word equivariance-preserving (and spatial transformers) and 
have kept the word geometric deep learning. Equivariance is a topic of interest in the geometric 
deep learning community [1] and we have thus added a reference to a recent survey in geometric 
deep learning (Bronstein et al., 2021) in Table 1.  
 
Referee’s comment: 
 
(ii) This work adds an affine transformation and an interpolation (manuscript equations 1 
and 2) in the latent space of the encoder; this is referred to as a “spatial transformer” and 
described as creating a new coordinate system, which is then passed to the decoding part 
of the U-NET. On line 138 - 139 it is said “The spatial transformer module ensures that the 
latent space that is encoded is equivariance-preserving”. First, given the definition of 
equivariance, it is hard to see how a latent space could be equivariance-preserving. 
Rather, it would be the relevant function, i.e. the spatial transformer, that is equivariance 
preserving. In any case, this assertion needs to be properly backed up. As a concrete 
example, to be equivariance-preserving to rotations, it would need to be shown that all 
rotations of features in the encoding space (the input to the spatial transformer) would 
provide identical results to those performed in the transformed space acted on by the 
decoder (the output of the spatial transformer). 
 
Authors’ response: 
 
We thank the referee for their insightful comment. By saying that the “latent space” is equivariance 
preserving, we meant to say that the nonlinear function that operates on the latent space of the U-
NET captures the transformation given by 𝑇(𝜃) between the input of the latent space and the output 
of the decoder and is clarified in Line 149 in the revised manuscript. However, given the 
complexity of the feature space in the Z500 field, it is difficult to interpret whether the 
transformation in the latent space of the U-NET leads to physically meaningful transformations in 
the decoded output. For a simpler dataset such as the rotating MNIST, spatial transformer networks 
have been shown to capture meaningful rotational features in Jaderberg et al., [2]. We show that, 
in data-driven forecasting of weather, the spatial transformation (in the latent space) allows us to 
obtain a better prediction horizon as compared to the U-NET (without such a transformation). 
However, we agree with the referee that such interpretations of the transformation in the latent 
space should be pursued further in future studies. We have revised our manuscript between Lines 
262-265 to reflect the difficulty in interpreting the precise effect of the transformation induced by 
𝑇(𝜃) in complex physical flows such as the large-scale circulation.  
 
 
 
 
 
 
 
 
 
 



 
 
 
Referee’s comment: 
 
(iii) An alternative explanation for the success of the U-STN would be to think of the 
spatial transformer as being able to learn a transformation that is helpful to propagating 
the encoding-space version of the geopotential height field forward in time. The spatial 
transformer is described by a single 2x3 transformation matrix, T(theta), with 6 trainable 
parameters (manuscript equation 2), followed by an interpolation This can only learn to 
perform one transformation, and for example, it might have learnt a particular 
combination of rotation and translation helpful to propagating the encoding space 
equivalents of Rossby waves forward in time. To better understand what is going on from a 
physical point of view, it would be really helpful if the authors could present the 6 
parameters of T(theta) and try to interpret their effect in these terms: what does the 
learned transformation do (e.g rotation, scaling, translation?), does it make physical 
sense? 
 
Authors’ response: 
 
We thank the referee for their insightful comment. Firstly, we agree with the referee that 𝑇(𝜃) 
learns only one transformation between the latent space of the network and the decoded output 
which is a combination of rotation, translation, and scaling. It is difficult to precisely interpret how 
the transformation given by 𝑇(𝜃) in the latent space captures specific features in a complex flow 
field such as Z500. We have tried interpreting the parameters, 𝜃, but because 𝑇(𝜃) is only applied 
to the latent space, it is very difficult to perform any interpretations as to which features are 
captured in the complex Z500 field. We agree with the referee that with further development in 
geometric deep learning [1], such exercises in interpretation, especially in complex physical flows 
should be undertaken in the future. We believe however, that we should first start with simpler 
atmospheric models such as quasi-geostrophic flow where such analysis towards interpretation 
should be performed. We are currently working towards such interpretation through a hierarchy of 
simpler atmospheric/ocean models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Referee’s comment: 
 
2) The level of methodological detail in the manuscript is not fully sufficient to allow 
replication of the results or to communicate the approach at a sufficient level of detail. The 
neural networks being used are not fully described in the manuscript. A better example 
would be Weyn et al. (2020) who have shown how it is possible to properly document a 
complex network structure within a paper, such as by providing a table describing the 
layers, tensor sizes, etc.. It would also be helpful to have more details on the technical 
implementation such as the use of Python, Keras and Tensorflow, for example. 
 
Authors’ response: 
 
We thank the referee for their helpful suggestion. Following the referee’s suggestion, we have 
added Table 2 in the revised manuscript where we have documented the detailed difference 
between U-NET and U-STN architecture and the framework in which they have been 
implemented.  
 
 
 
 
Referee’s comment: 
 
3) Some source code is provided on Xenodo, and it helped me a lot in understanding the 
work. However, it still left a lot unclear, and I believe it may only be a sample from all the 
code used by the authors while performing their work. For example, the training details 
appear to have been placed within a Jupyter notebook (Unet_STN.ipynb), but it is not fully 
clear whether this applies to all three examples in the manuscript, and to both the U-NET 
and the U-STN, and to the three different training time ranges (1,3 or 12 h), which is 
unlikely. The definition of the U-STN network in the Jupiter notebook is very different from 
the ones in the EnKF examples, which is confusing - see attached file “u_stn_diff.txt”. It is 
not clear whether the U-net definition is provided at all. I would have expected a 
standardised definition of the networks in a separate file that could be used by all different 
configurations. Generally, the code package could be made more helpful to other people 
by better documentation and/or comments, better code structure and standardisation, and 
by the provision of some or all of the relevant data files - in particular the network weights 
of the U-NET and U-STN. 
 
Authors’ response: 
 
We thank the referee for going through our code in such details and providing helpful suggestions 
to improve the readability of our code. We have worked on organizing our source code more 
carefully and have now provided the networks’ weights and biases. We have uploaded the same 
on Zenodo and updated our Github.  
 
 
 



Referee’s comment:  
 
Minor issues 
1) Line 24: “…promising results with fully data-driven weather prediction (DDWP) models 
that are trained on variables representing the large-scale circulation obtained from 
numerical models or reanalysis products (Scher, 2018; Weyn et al., 2019, 2020; 
Chattopadhyay et al., 2020d, a; Rasp et al., 2020; Arcomano et al., 2020; Chantry et al., 
2021; Grönquist et al., 2021; Watson-Parris, 2021; Scher and Messori, 2021)”. Not all of 
the citations here are presenting the DDWP of the large-scale circulation - for example, 
Watson-Parris (2021) and Chantry et al. (2021) are opinion pieces and Grönquist et al. 
(2021) concerns postprocessing. This is a helpful bibliography and I am not suggesting the 
removal of any of the citations. Rather it might be worth giving a few more words to 
categorise these works more precisely. Further, this list is missing a key reference in Rasp 
and Thuerey (2020), which is discussed by the authors just afterwards. 
 
 
 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have revised Lines 25-31 to incorporate this 
suggestion.  
 
 
 
 
 
 
 
 
Referee’s comment: 
 
2) Line 30: “… DDWP models may not suffer from some of the biases of physics-based, 
operational numerical weather prediction (NWP) models …”. It seems unnecessarily 
restrictive to mention only bias here; the aim is to reduce model uncertainty in general. 
 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have revised Line 34 to incorporate this 
suggestion and referred to the “biases of physics-based, operational numerical weather prediction 
(NWP) models” as model errors in general. 
 
 
 
 



Referee’s comment: 
 
3) Line 40: “… to equip these DDWP models with data assimilation (DA) …”. As written, 
the role of data assimilation is left uncertain. Although DA is introduced more fully later in 
the introduction, it could still be helpful to give slightly more clarity here, for example “to 
run these DDWP models within a data assimilation framework to provide the initial 
conditions for the forecasts”. 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have revised Lines 46-47 in the revised 
manuscript to incorporate this suggestion.  
 
 
Referee’s comment: 
 
4) Line 68 gives the first mention of the U-NET architecture in the paper; a citation or two 
might be handy, and/or a pointer to the parts of the paper that describe what it is. 
 
 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have now added a reference to the original 
U-NET paper in Line 75 in the revised manuscript. 
 
 
 
 
Referee’s comment: 
 
5) Line 74: “DA algorithm that corrects the trajectory of the atmospheric states every 6 h  with 
observations from remote sensing and in-situ measurements” - every 6h is overly 
restricitve, ERA5 for example is produced on a 12h cycle. 
 
 
 
 
Authors’ response: 
 
We thank the referee for pointing this out. We have revised the manuscript (Line 81) to say that 6 
h is an example time interval at which DA is performed.  
 
 
 
 



 
 
Referee’s comment: 
 
6) Line 117 “The baseline DDWP model used here is a U-NET similar to the one used in 
Weyn et al. (2020)” - as in main point 2, I would have found it helpful to have more 
description of the baseline U-NET, and it would be nice to know more precisely what is 
different compared to Weyn et al. 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have revised the manuscript between Lines 
179-184 to briefly talk about the difference between the architectures of the two U-NETs. 
However, we want to emphasize that we are not presenting a benchmark DDWP model that 
competes with the DDWP model in Weyn at al., [4]. In this manuscript, we are providing a proof-
of-concept for a specific spatial transformation module in the latent space that may improve the 
performance of any DDWP architecture, and we have considered U-NET as an example.   
 
 
 
 
 
 
 
 
Referee’s comment: 
 
7) Line 118 mentions the deep spatial transformer in the method section for the first time; 
a citation to the original source would be helpful here, and also in section 3.1.2 where it is 
described in more detail. 
 
Authors’ response: 
 
We have added the reference to the original paper in Line 142. 
 
Referee’s comment: 
 
8) In the bibliography, the citation to Esteves et al. (2018) is mostly in lowercase. 
 
Authors’ response: 
 
Thank you. We have fixed the reference.  
 
Referee’s comment: 
 
9) Line 152 - 153: “All codes for these networks (as well as DA) have been made publicly 



available on GitHub (see the Code Availability statement).” The codes are provided on 
Zenodo (not GitHub) but as described in main point 3, they do not appear to be complete. 
 
Authors’ response: 
 
The codes in the Github repository are complete but we have only uploaded the U-STN for one Δ𝑡 
where that variable can be changed to incorporate any other Δ𝑡. We have now organized our source 
code so that it is readable and has more clarity. We thank the referee for taking the time to go 
through our codes and providing us with useful suggestions.  
 
Referee’s comment: 
 
10) Line 164 - please give a few words of explanation on the meaning of “unscented” 
 
Authors’ response: 
 
We have now added a reference to unscented transformations in Line 187. 
 
Referee’s comment: 
 
11) Line 184: in the DA algorithm, the singular vector decomposition of the analysis error 
covariance matrix is used to generate perturbations to create a new ensemble. However, 
in this work the ensemble is not propagated forward in time hour-by-hour, but is 
generated using the analysis error valid at “t” to represent the forecast error at “t+23dt”, 
which is strictly incorrect. The forecast error at 23h is going to be much larger than the 
analysis error at 0h, therefore the ensemble created in the current work is most likely an 
underestimate of the spread of the background error. This needs to be discussed in the 
manuscript. 
 
Authors’ response: 
 
We thank the referee for pointing this out. Carrying the ensembles for 24 h is computationally 
expensive especially since the ensemble size is very large (4096). We agree that the ensemble 
spread is an underestimate of the background error in this work and have highlighted that in the 
revised manuscript in Lines 212-213. However, we have performed experiments by propagating 
the ensembles as well and have not found a significant difference in performance. This has also 
been reported in the revised manuscript in Lines 211-212.   
 
 
 
 
 
 
 
 
 



Referee’s comment: 
 
12) Equations 6 and 8 have identical right hand sides, but are labelled as different things 
(P_a and P_ab respectively). So something must be missing from the RHS to explain why 
they are different, or else P_a and P_ab are the same. 
 
Authors’ response: 
 
Thank you for pointing out this typo. We have fixed the equations in the revised manuscript.  
 
Referee’s comment: 
 
10) I found Figure 2 and 7 slightly confusing. The positioning of the states Z(t), Z(t+ dT) 
and so on below the U-STN1 blocks is confusing if the x-axis represents time; the small 
blue arrows are not helpful (suggesting that the states are external data coming into the 
process) and not consistently applied either. It could be more helpful to more clearly show 
the relation of the U-STN1 blocks to their inputs and outputs. 
 
Authors’ response: 
 
Thank you for this helpful suggestion. We have slightly changed the schematic to adjust the time 
stamps of the U-STN blocks.  
 
 
Referee’s comment: 
 
11) The forecast verification in Figure 3 is based on 30 random initial conditions (line 
249). Seeing as it is so cheap to run the DDWP models, why not provide the results based 
on the full 2018 test period, to obtain more statistical significance?  It is also odd to see 
the strong variability in skill, particularly in the U-STN12, from one verification time to the 
next. This might suggest that the verification is not as statistically significant as suggested 
by the standard deviation range provided. Verification of NWP forecasts is usually much 
smoother as a function of forecast range. Even for DDWP forecasts such as shown in Weyn 
et al. (2020, their figs 4 and 5) this usually seems to be the case. 
 
Authors’ response: 
 
We have conducted a Kolmogorov-Smirnov test between the difference of the mean ACC of U-
STN12 and U-NET12. The difference is not statistically significant between 12 h and 36 h, it is 
statistically significant between 36 h and 240 h.  
 
 
 
 
 
 



Referee’s comment: 
 
12) Another point on the comparison of U-STN12 to U-NET12, it would be really helpful to 
establish the quality of the U-NET12 baseline - how competitive is it with other DDWP 
models? 
 
 
Authors’ response: 
 
We have revised the manuscript between Lines 275-280 to compare between other baselines such 
as CNN and linear regression. However, we would like to emphasize that, in this paper, we do not 
intend to present the best DDWP model but rather a proof-of-concept on the advantage of using 
an equivariance-preserving module in the latent space and a framework to integrate DA with 
DDWP. Moreover, herein we present Table. 1 which compares the quality of performance of U-
STN12, U-NET12 and the CNN and linear regression model in WeatherBench [5].  
 
Table 1.  A comparison between U-STN12 and U-NET12 presented in this manuscript and the 
linear regression and CNN models from WeatherBench [5]. Here, we have used the RMSE values 
of direct linear regression and CNN prediction at day 3 and day 5. Here “direct” refers to the 
models trained to predict Z500 directly at 3 and 5 days instead of iteratively predicting every hour.   
 
 
Models  RMSE (𝑚!𝑠"!) at 3 

days 
RMSE (𝑚!𝑠"!) at 5 
days 

Linear regression (direct) from WeatherBench 693 783 
CNN (direct) from WeatherBench 626 757 
U-STN12 (our model) 294 490 
U-NET12 (our baseline model) 310 517 

 
 
Referee’s comment: 
 
13) Line 261-262: “The reason behind the further improvement of the performance after 
DA is the de-noising capability of neural networks (Xie et al., 2012)” - this seems overly 
confident given that it has not been demonstrated in the manuscript: “A likely reason 
behind the further improvement …” would be a fairer description. 
 
Authors’ response: 
 
Thank you. We have revised the manuscript in Lines 298-300 based on the referee’s suggestion.  
 
 
 
 
 
 



Referee’s comment: 
 
14) Section 4.3 gives an example of the use of DA to merge forecasts of different lengths. 
I find this section helpful as an illustration of the skill variations obtained with cycled 
(autoregressive) predictions versus direct predictions. However, instead of using DA, why 
not just throw away the cycled U-STN1 state at t+12dt and replace it by the forecast from 
U-STN12? It would be good to see if the DA can actually improve on that; in other words 
whether the cycled U-STN1 is bringing some additional information that is worth 
preserving. 
 
Authors’ response: 
 
We agree with referee’s point. The directly predicted state at 𝑡 + 12Δ𝑡 would probably be skillful 
as well. In fact, Liu et al., [3] had used interpolation instead of DA to obtained skillful 
autoregressive prediction with a multi-step framework. Further, not using DA would reduce the 
computational cost of the framework as well. However, the skill of the prediction by using the 
predicted state at 𝑡 + 12Δ𝑡 from U-STN12 also depends on the value of initial noise as well. A 
fair comparison would require conducting further systematic experiments to see how the effect of 
noise affects recycling the state at  𝑡 + 12Δ𝑡 in comparison to performing DA with it. In this paper, 
we show that performing DA with it is simply one way to recycle the obtained state and there may 
well be other methods such as interpolation (as shown in Liu et al., [3]) or simply using the state 
itself for further predictions that may yield skillfull predictions. 
 
Referee’s comment: 
 
16) Conclusions / discussion: on the benefits of DDWP for DA algorithms, item 2 line 314: 
being able to generate an ensemble large enough to provide fully-sampled background 
error covariance matrix is a major benefit here. However, the state vector size in the 
current work (2048) is still quite small compared to what might be expected in a more 
sophisticated DDWP approach, let alone NWP, where the state vector size is approaching 
10^8. It should be acknowledged and discussed that the ability to use the SPEnKF 
algorithm, and to dispense with localisation, is not just the speed of the model (the 
DDWP) but the small size of the state vector. 
 
 
Authors’ response: 
 
Thank you. We have revised the text accordingly between Lines 356-357. 
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Referee 2 
 
The present manuscript introduces a new deep learning framework to forecast global geopotential 
height. More specifically, the authors introduce a U-NET (Sec 3.1, Fig 1) using circular 
convolutions (Sec 3.1.1) and augment it with an equivariance-preserving module (U-STN, Sec 
3.1.2) to improve the overall accuracy of the forecast (Fig 3) and the consistency of the predicted 
patterns (Fig 4). They couple the resulting network with a sigma-point Ensemble Kalman filter 
(SPEnKF, Sec 3.2) that allows to assimilate "noisy observations" every 24 hours (Fig 5) or "virtual 
observations" every 12 hours produced by the same network run with a longer timestep (Fig 7). 
Evaluated using hourly, coarse-grained (Sec 2), ERA5 [2] meteorological reanalysis of 500-hPa 
geopotential height (Z500) from WeatherBench [3], the equivariance preserving network using 
the SPEnKF to assimilate both "virtual" and "noisy observations" improves the performance of 
the same framework only assimilating "noisy observations" (Fig 8+9). 
 
The manuscript is generally well-written, well-referenced, logically structured; its figures are 
clear and its (surprisingly simple) code is accessible on GitHub 
(https://github.com/ashesh6810/DDWP-DA) and properly shared via Zenodo 
(DOI10.5281/zenodo.4646676). Given the methodological novelty and applicability of the U-
STN+SPEnKF framework to data-driven weather forecasting, I recommend eventually 
publishing the present manuscript in Geoscientific Model Development (GMD). That being said, 
the article’s impact may be hindered by incomplete benchmarking 1.1, a lack of testing on other 
meteorological variables 1.2, little justification of the equivariance-preserving module 1.3, and 
overly technical writing that may not be appropriate for GMD’s audience 1.4. More details 1 
and minor comments 2 are given below. I am optimistic that once improved, the manuscript will 
be a welcome addition to GMD and a helpful contribution to the sub-field of data-driven weather 
forecasting. 
 
We thank the referee for their positive and constructive comments on the contribution of this 
manuscript to the field of data-driven weather forecasting. Their comments have helped us 
immensely in improving the clarity of the manuscript. All changes in the revised manuscript have 
been highlighted in blue. Herein, we present point-by-point responses to the referee’s comments.  
 
Referee’s comment: 
1 Major Issues 
1.1 Benchmarking 
[L220-244, Fig3] The manuscript’s premise is that adding the equivariance-preserving module 
may improve the accuracy of data-driven weather forecasting, which is demonstrated by training 
a U-NET with and without the equivariance-preserving module and showing the resulting 
improvement in accuracy (as measured by the anomaly correlation coefficient) for lead times 
between 12 and 240 hours. This raises several issues: 

• Despite using a well-defined benchmark (WeatherBench, [3]), the root mean squared error 
(RMSE) in is never calculated for the predictions without data assimilation (U-NET/U-
STN), which prevents objective comparison with the baselines listed in Figure 2/Table 2 of 
[3]. I recommend at least calculating the RMSE in Z500 for lead times of 3 and 5 days to 
put the manuscript’s results into the context of existing results (e.g., do U-NET/U-STN beat 
the simple linear regression leading to RMSEZ500 (3days)  693	𝑚!𝑠"! without data 



assimilation? If the authors consider that only Z500 should be used as a predictor, then 
how do U-NET/U-STN perform compared to the linear regression equivalent that only uses 
Z500 as a predictor?). 

 
  Author’s response: We thank the referee for raising the question of comparing our data-driven 
model with the existing models in the WeatherBench [1] benchmark. We have, in our manuscript, 
reported the RMSE values of both U-STNx and U-NETx models (where x is 1, 6, and 12) in Figure 
6 (left panel). We show that the best U-STNx model, i.e., U-STN12 have RMSE of 30𝑚 or 
294	𝑚!𝑠"! (30𝑚 × 9.8𝑚𝑠"! where 𝑔 = 9.8	𝑚𝑠"! is the acceleration due to gravity) in Z500 at 
3 days of lead time and 50𝑚 or 490	𝑚!𝑠"! at 5 days of lead time without data assimilation (DA). 
Herein, Table 1, we present the comparison of U-STN12 with the models in WeatherBench [1] for 
lead time of 3 and 5 days from Figure 2 (of the WeatherBench [1] paper) as indicated by the 
referee.  
 
Table 1.  A comparison between U-STN12 presented in this manuscript and the linear regression 
and CNN models from WeatherBench [1]. Here, we have used the RMSE values of direct linear 
regression and CNN prediction at day 3 and day 5. Here “direct” refers to the models trained to 
predict Z500 directly at 3 and 5 days instead of iteratively predicting every hour.   
 
Models  RMSE (𝑚!𝑠"!) at 3 

days 
RMSE (𝑚!𝑠"!) at 5 
days 

Linear regression (direct) from WeatherBench 693 783 
CNN (direct) from WeatherBench 626 757 
U-STN12 (our model) 294 490 

 
 
As shown in Table 1, U-STN12 outperforms both linear regression and CNN models presented in 
WeatherBench. We have revised the manuscript to reflect this fact in Lines 275-280 in section 4.1. 
A short comparison between U-STN12 and the models in WeatherBench [1] has been provided in 
those above mentioned line numbers. However, we emphasize here, that the objective of our paper 
is not to present the best data-driven weather prediction (DDWP) model. Instead, we intend to 
show that a spatial-transformer module inside any DDWP architecture may improve the 
performance of the model and is shown by considering U-NET as an example architecture. While 
exploring all DDWP architectures is beyond the scope of this manuscript, other studies such as 
Wang et al., 2020 [2] has also shown the usefulness of equivariance-preserving architecture in 
spatio-temporal prediction of turbulent flow. Furthermore, we show in this paper, that a DDWP 
model can be integrated with DA without loss in stability of the DA algorithm or any indication 
of filter divergence which we have further explained in section 4.2. With such an integration of 
DDWP and DA, we also propose a proof-of-concept for a novel multi-step framework for 
improving the performance of the DDWP+DA model in section 4.3.  
 
Referee’s comment: 
 

• Once put into the WeatherBench context, it remains unclear whether U-STN systematically 
improves upon U-NET or if the result depends on the single set of (hyperparameters, 
weights, biases) explored in this manuscript. For instance, the only sensitivity explored in 



Figure 3 is that to initial conditions while the only sensitivity explored in Figure 6 is that 
to the timestep 𝛥𝑡 I recommend more thoroughly testing the addition of the equivariance-
preserving module across: 

              - Different weights and biases for a fixed set of hyperparameters by retraining U-NET/U-         
STN with different weights initializations and callbacks 
             - Different hyperparameters by changing the convolutional and dense layers 
characteristics (number, width, kernel size) within the U-NET/U-STN architectures 
             - Different architectures altogether: Would an equivariance-preserving module help an 
artificial neural network (with or without bottlenecks), simple linear models, etc.? 
In summary, I recommend conducting sensitivity tests to determine whether the paper’s key 
conclusions hold across architectures, hyperparameters, and different weights/biases. 
 
Authors’ response: 
 
We thank the referee for pointing out this very practical need for thorough hyperparameter 
optimization (HPO) when presenting the performance of a model. In this manuscript, we have 
performed HPO thoroughly through extensive trial and error. We have independently optimized 
the hyperparameters of U-NETx and U-STNx. Specifically, we have considered the effect of 
changing the: 
 

• Weight initialization (e.g., Gaussian random, log-normal, and Xavier) and seen that the 
generalization error (RMSE during validation) of the architecture is not sensitive to the 
initialization. 

 
• The size of the convolution kernel (5 × 5), number of dense layers in the STN module (4), 

and the number of neurons in each of the 4 dense layers (500, 200, 100, 50) have been 
chosen after significant trial and error over these reported numbers.  
 

• The equivariance-preserving module has been shown to be useful in convolutional 
architectures (regular encoder-decoder in Jaderberg et al., 2015 [3], U-NET in Wang et al., 
2020 [2], and convolutional Res-Net in Wang et al., 2020 [2]). In most complex spatio-
temporal modeling, 2D fields of states or observables are used to train the deep learning 
models. Such models are inherently convolutional in nature to account for the 2D fields on 
which they are trained. Fully-connected neural networks lose information about spatial 
correlation of the 2D fields and would perform poorly in predicting 2D fields. Hence, the 
advantage of equivariance inside such architectures may not be apparent. However, the 
theory of equivariance, as clearly explained in Wang et al, 2020 [2] and more recently in 
geometric deep learning by Bronstein et al., 2021 [3] is applicable to any architecture. More 
thorough analysis on the choice of architecture can be performed through very 
computationally expensive neural architectures search (NAS) as shown in Liu et al., 2018 
[4]. An application of NAS in geophysical fluid dynamics has been shown in Maulik et al., 
2020 [5] on the Argonne Leadership Computing Facility. However, owing to limited 
computational resources, NAS could not be performed in this study.  
 

We have revised the manuscript in section 3 to clarify the extensive trail-and-error that has been 
performed on the hyperparameters of the architecture (Lines 175-178 and Caption of Table 2) and 



have also cited the work on NAS for geophysical turbulence in Lines 160-162. We further 
emphasize here, that our objective is not to present the most performant deep learning architecture 
as the DDWP model, but to provide a proof-of-concept of the advantage of equivariance and then 
show the possibility of integration of DDWP with DA which builds into our novel multi-step 
framework for DDWP+DA.  
 
 
 
 
 
 
 
Referee’s comment: 
 
1.2 Testing the Framework on Other Meteorological Variables 
 

• Given that the manuscript’s conclusions should apply to data-driven weather forecasting 
in general, I recommend testing the framework on a few more meteorological variables, 
especially given how easy it is to download variables from WeatherBench and how short 
the manuscript’s repository code is. Natural choices would be variables benchmarked in 
WeatherBench, i.e. 850-hPa temperature (T850), 2m temperature (T2M) and total 
precipitation (TP). 

 
• At the very least, the authors should discuss how appropriate equivariance-preserving 

spatial transformers are for thermodynamic variables like T850, which (in contrast to 
dynamic variables like Z500) directly respond to the strong planetary gradient in solar 
insolation. I recommend adding at least T850 to clarify the generality of the results e.g. 
presented in Figure 3. 

 
 
Authors’ response: 
 
We thank the referee for pointing out this question about the generalizability of the architecture to 
predict on other meteorological variables. We agree with the referee that it is relatively easy to test 
the architecture on other variables. Following the referee’s suggestion, we have conducted 
experiments to determine how well we can predict T850 with U-STN12 as compared to U-NET12. 
In Figure 1, shown here, we report the ACC of T850 with U-STN12 and U-NET12 (with U-STN12 
outperforming U-NET12) which shows an improved prediction horizon as compared to Z500. This 
is likely due to the slow-moving nature of T850. We would like to clarify that in this experiment, 
we have used both Z500 and T850 as input to U-STN12 in 2 separate channels. We have revised 
the manuscript to add this information in the text in section 4.1 in Lines 271-274. However, in this 
manuscript, we intend to show a proof-of-concept wherein DA has been integrated with a DDWP 
model. In order to show that, we have taken Z500, simply as an example.  
 
 
 



 

 
 
 

Figure 1. Anomaly correlation coefficient (ACC) calculated between T850 anomalies of ERA5 
and T850 anomalies predicted using USTN12 and U-NET12 from 30 noise-free, random initial 
conditions. The solid lines and the shadings show the mean and the standard deviation over the 
30 initial conditions. 
 
As shown in Figure 1, U-STN12 performs well in terms of predicting T850 and outperforms U-
NET12 as well. In general, as shown in multiple papers (cited inside the manuscript) including 
the WeatherBench paper, deep learning architectures can be used to predict on several 
meteorological variables and our finding is consistent with those studies.  
 
 
Referee’s comment: 
 
1.3 Justifying and Explaining Equivariance 
 

• In the other reference cited by the authors to justify using the spatial transformer module 
[4], the invariance under spatiotemporal translation, uniform motion, rotation/reflection, 
and scaling is justified for the Navier-Stokes and heat equation. However, when it comes 
to atmospheric dynamics, strong asymmetries exist in the horizontal (including but not 
limited to the Coriolis parameter for dynamical quantities, the solar insolation for 
thermodynamical quantity, and the land mass for all quantities). Therefore, I recommend 



carefully justifying why it would be appropriate to use an equivariance-preserving module 
in the text of subsection 3.1.2. 

   
 
 
 
 
Authors’ response: 
 
 
We thank the referee for raising this important question of whether rotation, reflection, or 
translational symmetries exist in atmospheric dynamics. We agree with the referee that it indeed 
does not have to be the case. In fact, equivariance is a property that accounts for the lack of 
symmetry in rotation and tracks the rotational features in the spatio-temporal flows. Conventional 
CNNs tend to enforce rotational symmetry while equivariance-preserving module ensures that the 
symmetry is not preserved. The affine transformation inside the module tries to learn the rotation 
and scaling of features as the input is passed through the U-STN. We have further added a more 
comprehensive and recent review in geometric deep learning by Brochstein et al., 2021 [3] that 
explains the theory of equivariance and its application in deep learning in the revised manuscript.  
In the revised manuscript, between Lines 63-65, we clearly explain how equivariance ensures that 
an a priori rotational symmetry is not imposed within the architecture (at least in the latent space, 
in our architecture). We have further highlighted this and justified the use of an equivariance-
preserving module in section 3.1.2 between Lines 150-152 in the revised manuscript.  
 
Referee’s comment: 
 

• Similarly, it would be helpful to more clearly justify/explain why equivariance-preserving 
networks would improve the representation of wave-breaking events, which are not 
rotationally nor translationally invariant. I recommend more rigorously justifying that 
claim by e.g., zooming in Figure 4, adding more variables and network configurations, and 
not relying on "As discussed before" when the word "breaking" was simply listed in L120. 

 
Authors’ response: 
 
We thank the referee for their comment. As explained in the previous response, equivariance 
ensures that we do not a priori impose rotational symmetry in the deep learning architecture. It 
accounts for relative change in positions of features that comes from rotation, translation, and 
scaling. However, it is still unclear (and hard to prove) that wavebreaking events can be captured 
simply with an equivariance-preserving module since wavebreaking is a very nonlinear process. 
We simply speculate that an equivariance-preserving network may improve the overall 
performance of prediction so that it captures some wave-breaking events. We have revised the 
manuscript (between Lines 255-259) to reflect this speculation and do not suggest that the 
equivariance-preserving module is either necessary or sufficient to capture wavebreaking, and this 
may very well be just an example. We have removed all lines that may suggest that equivariance-
preserving modules may lead to better representation of wavebreaking.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 Referee’s comment: 
 
1.4 Making the Manuscript more Accessible to GMD’s Audience 
 
1.4.1 Presentation of the Sigma-Point Ensemble Kalman Filter 
 
The authors adapt the Sigma-Point Ensemble Kalman Filter (SPEnKF, [1]) to augment their 
data-driven weather prediction framework with data assimilation (DDWP+DA). I found this 
description hard to follow because it lacks context and justification; I recommend revising the 
text to address the following questions: 
 

• Do the authors strictly follow the derivations/methods of [1] or are there some key 
modifications to couple it to the ML prediction framework? 
 

• Are analysis and "observations" used interchangeably here? In the affirmative, I would 
recommend sticking to one or the other. 
 

• According to [1], SPEnKF is particularly well-suited for non-Gaussian 
background/observation errors (e.g. multiplicative noise). Why then assume that 𝜖 be 
Gaussian, which (if I understand the derivation correctly) leads to Gaussian 
observational errors as H = I? 

 
Additionally: 
[L194] I recommend explicitly stating that representing observational noise using a random 
Gaussian process is a big approximation. [L197] "with a certain level of uncertainty": I 
recommend explicitly stating that the uncertainty will be ideally represented by varying 𝜎#$%. 
[L205] If 𝑃&$ is the cross-covariance matrix between the ensemble and observations, shouldn’t 
the two last 𝑍'(% be 𝑍#$%in equation (8)? 
 
 
 
 
 
 



Authors’ response: 
 
We thank the referee for their helpful suggestion to improve the clarity of our presentation of 
SPEnKF in the manuscript.  
 

• We have followed the method outlined in Ambadan et al., 2011 [6]. 
 

• No, analysis and observations are not used interchangeably. Analysis is obtained from 
Eq. (9) in section 3.2. Observations are generated from the ERA5 data by adding 
Gaussian noise with 0 mean and 𝜎#$% standard deviation. We have clarified this in the 
revised manuscript in Lines 233-234 in section 3.2. 
 

• In this paper, we have considered a simple case where Gaussian observation noise is added 
to the true ERA5 data as is common in most DA literature [7,8,9]. This allows for a simple 
linear 𝑯 operator in the form of the identity matrix 𝑰. Indeed, SPEnKF can account for non-
Gaussian observation noise. Several other types of DA techniques such as particle filters 
[10] can also be used for non-Gaussian observation noise. However, such techniques are 
computationally intractable with high-dimensional systems. A DDWP model for particle 
generation in particle filters can also enable application of particle filters in high-
dimensional systems.  

 
We have revised our manuscript (Line 233) to explain that Gaussian noise in observations is an 
approximation but is used widely in literature and that the uncertainty in the observed state is 
given by 𝜎#$% in Lines 218-219. 
 

• We had a typo in the equations. We have now fixed that in the revised manuscript.   
 
 
Referee’s comment: 
 
1.4.2 Overly technical vocabulary used throughout the manuscript 
 
GMD is targeted at the geosciences community: Although the community is relatively quite 
proficient in computational science, a lot of the vocabulary and technical terms used throughout 
the manuscript makes it difficult to read without ML background. To make the manuscript more 
accessible to the geoscientific community, I recommend: 
 

• Quickly defining technical ML/DA terms used throughout the manuscript the first time 
they are introduced. This includes but is not limited to: convolutional neural network, 
deep spatial transformer, equivariance, Ensemble Kalman filter, encoding/decoding, 
autoregressive models, etc. 
 

• Alternatively, adding a "ML definition" Table to the manuscript. 
 



• Using more intuitive acronyms. For instance, U-STN, SPEnKF, and DDWP+DA are not 
particularly intuitive and may force the readers to go back and forth when reading the 
manuscript. 
 

Also see comments in 2 to improve the manuscript’s accessibility.  
 
 
 
 
Authors’ response: 
 
We thank the referee immensely for their helpful suggestions to improve the clarity and 
accessibility of the manuscript to the geosciences audience. Considering the suggestions, we have 
added a table in the revised manuscript, Table 1, where we have defined (with short descriptions) 
all ML/DA related, and framework related acronyms suggested by the referee. We hope that the 
inclusion of this table would improve the clarity of this manuscript further to the geosciences 
audience.  
 
Referee comment 
 
1.5 Reproducibility 
 
1.5.1 Unet’s architecture 
 
[L113-L122] After checking the U-NET’s architecture at www.github.com/ashesh6810/DDWP-
DA/blob/master/Unet_STN.ipynb (same script as the one shared via Zenodo if I am not 
mistaken), I noticed that Figure 1 was not representative of the architectures used for U-NET/U-
STN, which include additional dense layers after the convolutional layers. Additionally, because 
the authors do not disclose the type of pooling layers used in Figure 1, the architecture of 
the main algorithms used in the manuscript cannot be reproduced from the text. 
 

• As the authors cite [5], I recommend following their Table 1 to transparently share the 
U-NET’s architecture. 

• Additionally, it would be nice to explicitly list the differences between [5] and this 
manuscript’s U-NET, including (but not limited to) the presence of dense layers) to 
facilitate the comparison between the two frameworks. 

 
 
Authors’ response: 
 
We thank the referee for their helpful suggestion on improving the reproducibility of the 
architecture used in this paper. We have slightly revised Figure 1 to include the dense layers 
which are a part of the localization network. The figure is used only as a schematic. We have 
further added Table 2 in the revised manuscript to include the detailed information on the exact 
architecture of U-STNx and U-NETx.  
 



 
• We have further revised the manuscript between Lines 179-184 to highlight the difference 

between the architecture used in Weyn et al., [11] and ours. Here, we would like to 
emphasize that we do not claim that our architecture is more performant as compared to 
that used in Weyn et al., [11], but is simply the one we have chosen based on extensive 
trail-and-error in terms of HPO. Moreover, the architecture presented in Weyn et al., [11] 
uses data on a cubed sphere rather than a rectangular grid so is distinctly different from the 
framework shown in this paper.  
 

 
 
Referee’s comment: 
 
1.5.2 Weights and Biases 
 
The weights and biases of the neural networks are not shared (to my knowledge) in the code’s 
repository, making the manuscript non reproducible. I highly encourage the authors to share the 
weights and biases of their networks for reproducibility purposes. 
 
Authors’ response: 
Thank you for this excellent suggestion. We have now shared the weights and biases HDF5 file 
for reproducibility purposes.  
 
Referee’s comment: 
 
1.5.3 Equivariance-preserving Module 
 
The authors do not provide enough details to help readers implement the spatial transformer 
module. I recommend explicitly stating how to implement this module (the Bilinear Interpolation 
Class at https://github.com/ ashesh6810/DDWP-DA/blob/master/layers.py). This could be done 
by e.g.: 

• adding an "algorithm" in the manuscript’s text, and 
• giving more context for why the spatial transformer module requires adding a bi-linear 

interpolation kernel between the convolutions and the up-sampling. 
 
 
Authors’ response: 
 
We thank the referee for their helpful suggestion. We have cited the original paper that had 
introduced STNs, Jaderberg et al., [12] in Line 142 in section 3.1.2 where details about the need 
for a differentiable interpolation kernel (bilinear interpolation in this case) has been clearly 
explained. The justification for using the interpolation kernel is rather elaborate and we feel that 
such methodological details in the manuscript may distract the readers from a geoscience 
community from the main points of the paper, which is to introduce STN as an equivariance-
preserving module and integrate DDWP models with DA algorithms for weather forecasting. We 
have also provided the code for implementing the bilinear interpolation layer for reproducibility.  



 
 
 
 
 
 
 
 
Referee’s comment 
 
2 Minor Comments 
 
 
[L37-39] Although it has been demonstrated for low-dimensional systems in fluid dynamics, it is 
not trivial that: 

• Incorporating physical constraints into a physics-agnostic data-driven weather 
prediction framework would require less data and hence remedy the short training set 
problem, 

• the equivariance-preserving spatial transformer introduced in this manuscript can be 
used to enforce physical constraints. 

 
 
 
Authors’ response: 
 
We thank the referee for their insightful suggestions.  
 

• We agree with the referee that previous literature in climate dynamics have not shown that 
physical constraints may help training neural networks with less training samples. 
However, a few recent papers have shown that physics-informed neural networks can be 
used to train on the shallow-water equations [13] and on high-dimensional fluid dynamics 
systems [14] with short training sets. It is thus promising to use physical constraints inside 
the neural architectures. We have addressed this in the revised manuscript and have revised 
Lines 42-44 accordingly.  

 
• Preserving equivariance is not analogous to physical constraints in the network. The 

equivariance-preserving module may lead to better representation of rotational, 
translational, and scaling features in the architecture and thus lead to more physically 
consistent predictions. However, there is no guarantee that it would do so all the time. In 
the example shown in this paper, we report improved overall accuracy with the spatial-
transformer module. As described in Kashinath et al. [15], we mention in the manuscript 
that it may be only “one” of the many ways to improve physical consistency in the neural 
architecture (Line 58 in the revised manuscript). 

 
 
 



 
 
 
Referee’s comment: 
 
I recommend rephrasing these introductory sentences or carefully justifying these two claims. 
[L97] Is "data-drivenly" correct? 
[L94-99] These three points, especially the third one, are extremely technical and hard to 
understand without re-reading 
them several times. Would it be possible to rephrase them? 
[L105-110] This section is extremely short: Would it be possible to 

• add more context for why the authors first decided to test the framework on Z500 
specifically, 

• add the number of samples for each training set, and 
• add a short justification for the training/validation/test split chosen by the authors? 

 
 
 
Authors’ response: 
 
We have changed “data-drivenly” to “data-driven” fashion in Line 104. We have slightly re-
phrased point 3 to make it more clear. 
 

• Since Z500 is representative of the large-scale dynamics in the troposphere, responsible 
for influencing near-surface weather, and extremes, we had decided to use Z500 as an 
example. As shown here (based on the referee’s suggestion) we can also get equally good 
prediction performance for T850. Z500 has also been used in Rasp et al., 2020 [1], and 
Weyn et al., 2020 [11]. We have edited the revised manuscript (Lines 113-115) to explain 
our choice of using Z500 as the variable in this study. We have also revised the third point 
in Lines 105-106 based on the referee’s suggestion. 
 

• In the revised manuscript between Lines 117-118, we have explained that training data was 
obtained from years 1979-2015 (~315360 samples), validation data was obtained between 
2016-2017 (17520 samples), and we tested on data from 2018 (8760 samples).  
 

• We had not randomly sorted the entire ERA5 data in order to avoid correlation between 
training and testing sets.  Hence, we had split the training and validation in the fashion 
described above and in Lines 117-118 in the manuscript. 

 
Referee’s comment: 
 
[L154] becomes a U-NET →becomes a standard U-NET? 
 
Authors’ response: 
 
Yes. We have revised Line 163 so that it says “standard U-NET” 



 
 
 
 
Referee’s comment: 
 
[L160] (Over the baseline, U-NET) Benchmarking against another quick fit by the authors is far 
from rigorous: Following the major comment 1.1, would it be possible to add a subsection to 
Section 2 or at least a paragraph in Section 3.3 to describe and justify the paper’s benchmarking 
methods? 
 
Authors’ response: 
 
As suggested by the referee, we have shown in this response (Table 1) how U-STN12 compares 
against the benchmarks in the WeatherBench paper [1]. However, we emphasize that the paper is 
not presenting U-STN12 as a state-of-the-art DDWP for WeatherBench. In fact, we are only 
showing that an equivariance-preserving module instead an architecture may improve its 
prediction performance. Beyond that, we describe the integration of DA with DDWP models in 
section 4.2 and a novel multi-step framework in improve the performance of the DDWP+DA 
model in section 4.3. We have revised the manuscript in section 4.1 (Lines 275-280) to compare 
with the performance of linear regression and CNN from the WeatherBench paper [1]. However, 
since we are not presenting a benchmark for WeatherBench, we would prefer not to put a separate 
section on benchmarking with the WeatherBench models.  
 
 
 
 
Referee’s comment: 
 
[L164] "unscented transformation" requires more context for readers who are not versed in the 
Ensemble Kalman filter 
 
Authors’ response: 
 
We have added a reference to unscented transformations in ensemble Kalman filter in Line 187 
in the revised manuscript. 
 
 
Referee’s comment: 
 
[L177-178] ~50-100 members are used. Missing reference: Are the authors referring to the 
Integrated Forecasting System? 
 
Authors’ response: 
 
Yes, we are. We have now added a reference to Line 201 in the revised manuscript. 



 
 
 
 
Referee’s comment: 
 
[Fig2 caption] "DA ... DDWP" → Consider spelling out acronyms or rephrasing to facilitate the 
caption’s readability. 
 
Authors’ response: 
 
We thank the referee for pointing this out. We have now added Table 1 in the revised manuscript 
that explains the acronyms of the paper. We feel that it would make the captions too long and 
hard to read by spelling out the acronyms in the caption. 
 
Referee’s comment: 
 
𝑘 ∈ [−𝐷,−𝐷 + 1,…𝐷 − 1, 𝐷] →	Do the authors mean 𝑘 ∈ {−𝐷,−𝐷 + 1,…𝐷 − 1, 𝐷} or 
equivalently 𝑘 ∈ [[−𝐷,𝐷]]? 
 
Authors’ response: 
 
Yes, we are. We have changed the text accordingly in Line 217 in the revised manuscript. Thank 
you.  
 
 
 
 
Referee’s comment: 
 
[L262-264] I find this claim confusing: 

• Is ERA5 truly noise-free? 
• Doesn’t the de-noising property come from the fact that U-STN is a deterministic neural 

network, which by definition 
cannot produce noise? 

• Or are the authors referring to the fact that U-STN has a filtering effect that makes the 
normalized output variance smaller than the normalized input variance? If that is the case, 
I recommend clarifying the text and quantitatively justifying this claim about U-STN. 

 
 
Authors’ response: 
 
We thank the referee for these interesting questions. 
 

• Since ERA5 is obtained after data assimilation, we assume that it is noise free. In this 
study, since ERA5 is considered as the truth we have further added noise to ERA5 to 



mimic observations. Generally, DA algorithms are presented with twin experiments, 
where the observations are obtained from adding noise to the truth and the analysis states 
are compared to the truth. 
 

• Yes. Since the U-NET or U-STN is trained on non-noisy data, it is expected to not have 
any ability to represent noise in the output. We have revised the text in the revised 
manuscript between Lines 298-300 to reflect this.  
 

 
Referee’s comment: 
 
[L273-275] This qualitative explanation ignores the fact that errors made by the neural network 
are larger (in physical units) for larger Δ𝑡. Therefore, I recommend clarifying that the error 
accumulation is larger than  the error increase with Δ𝑡.. Would it be possible to quantitatively 
verify that claim (e.g. via a supplemental figure)? 
 
 
Authors’ response: 
 
We thank the referee for this question. Note, all three DDWP models with Δ𝑡 = 1	ℎ, Δ𝑡 = 6	ℎ, 
and Δ𝑡 = 12	ℎ have the same generalization error which is close to 0.003	(for normalized Z500; 
normalization involves removing the mean and dividing by standard deviation of Z500 of the 
training set)  in one time step of prediction. Therefore, the errors are not larger in physical units. 
In fact, this is what makes autoregressive prediction with larger Δ𝑡 more accurate as compared to 
iteratively predicting with a smaller Δ𝑡. However, there is an optimal Δ𝑡 after which generalization 
error would keep increasing with an increase in Δ𝑡. However, there is no apparent theoretical 
understanding as to what this optimal Δ𝑡 depends on for a chaotic system, e.g., neural architecture, 
system’s dynamics, etc. We are currently working towards a theoretical understanding to the non-
trivial dependence of error accumulation and error propagation through deep neural architectures 
for autoregressive prediction. However, at this point of time it is rather difficult to show concrete 
quantitative evidence on how error propagates through data-driven autoregressive models.   
 
 
Referee’s comment: 
 
"variational DA algorithms": Which variational DA algorithms are the authors referring to? 
Ideally, provide references for readers who are less familiar with DA. 
 
Authors’ response: 
 
We thank the referee for pointing this out. By variational DA algorithms, we mean 3D-Var and 
4D-Var. We have added a reference to the same in Line 373 in the revised manuscript. 
 
 
 
 



Referee’s comment: 
 
[L347-348] Would it be possible to add the GitHub repository’s link as it may be more 
convenient than downloading the archived code for some readers? 
 
 
 
 
Author’s response: 
 
We thank the referee for this helpful suggestion. We have added the Github repository in the 
code and data availability statement in Line 384 in the revised manuscript. 
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