
Referee 1 
 
 
This manuscript explores improvements in the rapidly advancing field of data-driven 
weather prediction (DDWP). Broadly, DDWP seeks to train empirical weather-prediction 
models based on deep learning architectures, such as convolutional neural networks, that 
have proved very successful in fields such as image processing. This work fits within the 
WeatherBench forecasting challenge, which aims to forecast the global 500hPa 
geopotential height field, given the same field at an earlier time. 
 
One of the leading approaches for DDWP is to use a convolutional U-NET architecture in 
which the first (“encoding”) half projects the higher-resolution geopotential height field 
onto one or more lower-resolution “latent spaces” or “encoding spaces” and the second 
(“decoding”) half of the U-NET upsamples the results, via many convolutional layers, to 
the original space. Broadly, the convolutional blocks are learning how to project 
geopotential height features forward in time, with the different levels of the U-NET 
allowing different scales to be projected using different convolutional blocks. The first 
advance is, at the lowest-level encoding space of the U-NET, to add an “equivariance preserving 
spatial transformer”; the resulting network is known as U-STN and improves 
forecast quality over the U-NET. The spatial transformer appears to permit additional 
capabilities for rotation, scaling and translation of the encoded geopotential height 
features within the empirical model, which are helpful for improving the forecast 
performance. The addition of the spatial transformer is justified as providing additional 
capabilities to preserve equivariance to important symmetries in the fluid dynamics of the 
atmosphere and therefore to provide a more physics-aware neural network. I would like to 
see more justification for this interpretation, and more precision in its discussion (see 
below). 
 
The second advance in the manuscript is to couple a data assimilation algorithm to the 
DDWP model. Currently the Weather Bench framework provides high-quality gridded initial 
conditions from which to run DDWP forecasts, therefore missing a major step in the 
broader challenge of weather forecasting, which is to create those gridded initial 
conditions by assimilating the diverse and sparse (non-gridded) weather observations. To 
explore this side of the problem, noise is added to the gridded initial conditions, which are 
then assimilated every 24h using an ensemble data assimilation algorithm. An interesting 
aspect is to use the low-cost DDWP to create much larger ensembles (around 4000 members) 
than are possible in typical NWP (around 50 - 100 members). This allows a 
novel ensemble DA algorithm to be used (one that can be coded in a few lines of python), 
apparently without the problems of covariance localisation that are required with smaller 
ensembles. A second application of DA is also presented, where it is used to merge 
forecasts from DDWP models with different integration lengths. 
 
This is novel and interesting work, which may have substantial impact on the development 
of DDWP, and hence it is worthy of eventual publication. However, there are a few major 
issues to consider beforehand, including the previously mentioned issues around the 
physical interpretation. 



 
Authors’ response: 
 
We thank the referee for their positive evaluation of our manuscript. Based on the referee’s 
suggestion we have revised our manuscript in blue. The referee’s insightful suggestions have 
sufficiently improved the clarity of the manuscript. Herein, we provide point-by-point responses 
to the referee’s comments.  
 
Referee’s comment: 
 
1) The idea of equivariance is introduced precisely in Wang et al. (2020), for example, as 
applying to a function f(x) given a symmetry group g. The function is equivariant to g if 
the result of applying any of the symmetries (or transformations) from the group is the 
same whether applied to the functions inputs or outputs: f(g x) = g f(x). The same paper 
lists the symmetries of the Navier-Stokes equations as space and time translation, 
uniform motion, reflect/rotation and scaling. By contrast, the current manuscript is in 
places vague about what it means by equivariance, and it does not anywhere show 
whether it is preserved in the models presented. The presentation and analysis of the 
results relating to equivariance needs to be improved: 
 
(i) Through the manuscript there are statements referring to the U-STN as “the 
equivariance-preserving DDWP introduced here” (line 118). However, the baseline U-NET 
is also likely to be equivariance-preserving, at least to translation and reflection. The 
improved U-STN may add equivariance to a certain set of symmetries (the authors 
suggest reflection, rotation and scaling). The point being that both the U-NET and the USTN 
are likely equivariance-preserving to some degree, but neither of them in a complete 
way to all possible symmetries. In terms of analysis, it would be important to more 
precisely specify or confirm which symmetries are preserved, or to acknowledge if the 
exact set of symmetries preserved is unknown. In terms of presentation, to describe the USTN 
as equivariance-preserving and to imply the U-NET is not could be misleading, and 
the title might also be changed to better reflect this. 
 
Authors’ response: 
 
We thank the referee for raising this interesting point about symmetry groups. In the manuscript, 
we have explained that equivariance-preserving networks do not impose a priori symmetry inside 
the networks and rather optimizes parameters to learn the symmetry. It is also true that U-STN 
does not learn all symmetries. In our U-STN, we have implemented rotational, translational, and 
scaling transformation through six parameters in the 𝑇(𝜃) matrix (defined in section 3.1.2) 
connected to the latent space of the network. It does not impose rotational invariance, i.e., it does 
not enforce the output to remain invariant to rotation in the input. The spatial transformer module 
learns the transformation (only on the encoded latent space) such that the latent space decodes to 
the correct output (which may have undergone rotational, translational, or scaling transformation) 
during training. The U-NET, like a regular CNN, is invariant to translation. In the U-STN, we have 
only performed rotational, translational, and scaling transformation on the latent space of the 
encoder which we have further clarified in the revised manuscript between Lines 150-152. We 



have changed the title to remove the word equivariance-preserving (and spatial transformers) and 
have kept the word geometric deep learning. Equivariance is a topic of interest in the geometric 
deep learning community [1] and we have thus added a reference to a recent survey in geometric 
deep learning (Bronstein et al., 2021) in Table 1.  
 
Referee’s comment: 
 
(ii) This work adds an affine transformation and an interpolation (manuscript equations 1 
and 2) in the latent space of the encoder; this is referred to as a “spatial transformer” and 
described as creating a new coordinate system, which is then passed to the decoding part 
of the U-NET. On line 138 - 139 it is said “The spatial transformer module ensures that the 
latent space that is encoded is equivariance-preserving”. First, given the definition of 
equivariance, it is hard to see how a latent space could be equivariance-preserving. 
Rather, it would be the relevant function, i.e. the spatial transformer, that is equivariance 
preserving. In any case, this assertion needs to be properly backed up. As a concrete 
example, to be equivariance-preserving to rotations, it would need to be shown that all 
rotations of features in the encoding space (the input to the spatial transformer) would 
provide identical results to those performed in the transformed space acted on by the 
decoder (the output of the spatial transformer). 
 
Authors’ response: 
 
We thank the referee for their insightful comment. By saying that the “latent space” is equivariance 
preserving, we meant to say that the nonlinear function that operates on the latent space of the U-
NET captures the transformation given by 𝑇(𝜃) between the input of the latent space and the output 
of the decoder and is clarified in Line 149 in the revised manuscript. However, given the 
complexity of the feature space in the Z500 field, it is difficult to interpret whether the 
transformation in the latent space of the U-NET leads to physically meaningful transformations in 
the decoded output. For a simpler dataset such as the rotating MNIST, spatial transformer networks 
have been shown to capture meaningful rotational features in Jaderberg et al., [2]. We show that, 
in data-driven forecasting of weather, the spatial transformation (in the latent space) allows us to 
obtain a better prediction horizon as compared to the U-NET (without such a transformation). 
However, we agree with the referee that such interpretations of the transformation in the latent 
space should be pursued further in future studies. We have revised our manuscript between Lines 
262-265 to reflect the difficulty in interpreting the precise effect of the transformation induced by 
𝑇(𝜃) in complex physical flows such as the large-scale circulation.  
 
 
 
 
 
 
 
 
 
 



 
 
 
Referee’s comment: 
 
(iii) An alternative explanation for the success of the U-STN would be to think of the 
spatial transformer as being able to learn a transformation that is helpful to propagating 
the encoding-space version of the geopotential height field forward in time. The spatial 
transformer is described by a single 2x3 transformation matrix, T(theta), with 6 trainable 
parameters (manuscript equation 2), followed by an interpolation This can only learn to 
perform one transformation, and for example, it might have learnt a particular 
combination of rotation and translation helpful to propagating the encoding space 
equivalents of Rossby waves forward in time. To better understand what is going on from a 
physical point of view, it would be really helpful if the authors could present the 6 
parameters of T(theta) and try to interpret their effect in these terms: what does the 
learned transformation do (e.g rotation, scaling, translation?), does it make physical 
sense? 
 
Authors’ response: 
 
We thank the referee for their insightful comment. Firstly, we agree with the referee that 𝑇(𝜃) 
learns only one transformation between the latent space of the network and the decoded output 
which is a combination of rotation, translation, and scaling. It is difficult to precisely interpret how 
the transformation given by 𝑇(𝜃) in the latent space captures specific features in a complex flow 
field such as Z500. We have tried interpreting the parameters, 𝜃, but because 𝑇(𝜃) is only applied 
to the latent space, it is very difficult to perform any interpretations as to which features are 
captured in the complex Z500 field. We agree with the referee that with further development in 
geometric deep learning [1], such exercises in interpretation, especially in complex physical flows 
should be undertaken in the future. We believe however, that we should first start with simpler 
atmospheric models such as quasi-geostrophic flow where such analysis towards interpretation 
should be performed. We are currently working towards such interpretation through a hierarchy of 
simpler atmospheric/ocean models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Referee’s comment: 
 
2) The level of methodological detail in the manuscript is not fully sufficient to allow 
replication of the results or to communicate the approach at a sufficient level of detail. The 
neural networks being used are not fully described in the manuscript. A better example 
would be Weyn et al. (2020) who have shown how it is possible to properly document a 
complex network structure within a paper, such as by providing a table describing the 
layers, tensor sizes, etc.. It would also be helpful to have more details on the technical 
implementation such as the use of Python, Keras and Tensorflow, for example. 
 
Authors’ response: 
 
We thank the referee for their helpful suggestion. Following the referee’s suggestion, we have 
added Table 2 in the revised manuscript where we have documented the detailed difference 
between U-NET and U-STN architecture and the framework in which they have been 
implemented.  
 
 
 
 
Referee’s comment: 
 
3) Some source code is provided on Xenodo, and it helped me a lot in understanding the 
work. However, it still left a lot unclear, and I believe it may only be a sample from all the 
code used by the authors while performing their work. For example, the training details 
appear to have been placed within a Jupyter notebook (Unet_STN.ipynb), but it is not fully 
clear whether this applies to all three examples in the manuscript, and to both the U-NET 
and the U-STN, and to the three different training time ranges (1,3 or 12 h), which is 
unlikely. The definition of the U-STN network in the Jupiter notebook is very different from 
the ones in the EnKF examples, which is confusing - see attached file “u_stn_diff.txt”. It is 
not clear whether the U-net definition is provided at all. I would have expected a 
standardised definition of the networks in a separate file that could be used by all different 
configurations. Generally, the code package could be made more helpful to other people 
by better documentation and/or comments, better code structure and standardisation, and 
by the provision of some or all of the relevant data files - in particular the network weights 
of the U-NET and U-STN. 
 
Authors’ response: 
 
We thank the referee for going through our code in such details and providing helpful suggestions 
to improve the readability of our code. We have worked on organizing our source code more 
carefully and have now provided the networks’ weights and biases. We have uploaded the same 
on Zenodo and updated our Github.  
 
 
 



Referee’s comment:  
 
Minor issues 
1) Line 24: “…promising results with fully data-driven weather prediction (DDWP) models 
that are trained on variables representing the large-scale circulation obtained from 
numerical models or reanalysis products (Scher, 2018; Weyn et al., 2019, 2020; 
Chattopadhyay et al., 2020d, a; Rasp et al., 2020; Arcomano et al., 2020; Chantry et al., 
2021; Grönquist et al., 2021; Watson-Parris, 2021; Scher and Messori, 2021)”. Not all of 
the citations here are presenting the DDWP of the large-scale circulation - for example, 
Watson-Parris (2021) and Chantry et al. (2021) are opinion pieces and Grönquist et al. 
(2021) concerns postprocessing. This is a helpful bibliography and I am not suggesting the 
removal of any of the citations. Rather it might be worth giving a few more words to 
categorise these works more precisely. Further, this list is missing a key reference in Rasp 
and Thuerey (2020), which is discussed by the authors just afterwards. 
 
 
 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have revised Lines 25-31 to incorporate this 
suggestion.  
 
 
 
 
 
 
 
 
Referee’s comment: 
 
2) Line 30: “… DDWP models may not suffer from some of the biases of physics-based, 
operational numerical weather prediction (NWP) models …”. It seems unnecessarily 
restrictive to mention only bias here; the aim is to reduce model uncertainty in general. 
 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have revised Line 34 to incorporate this 
suggestion and referred to the “biases of physics-based, operational numerical weather prediction 
(NWP) models” as model errors in general. 
 
 
 
 



Referee’s comment: 
 
3) Line 40: “… to equip these DDWP models with data assimilation (DA) …”. As written, 
the role of data assimilation is left uncertain. Although DA is introduced more fully later in 
the introduction, it could still be helpful to give slightly more clarity here, for example “to 
run these DDWP models within a data assimilation framework to provide the initial 
conditions for the forecasts”. 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have revised Lines 46-47 in the revised 
manuscript to incorporate this suggestion.  
 
 
Referee’s comment: 
 
4) Line 68 gives the first mention of the U-NET architecture in the paper; a citation or two 
might be handy, and/or a pointer to the parts of the paper that describe what it is. 
 
 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have now added a reference to the original 
U-NET paper in Line 75 in the revised manuscript. 
 
 
 
 
Referee’s comment: 
 
5) Line 74: “DA algorithm that corrects the trajectory of the atmospheric states every 6 h  with 
observations from remote sensing and in-situ measurements” - every 6h is overly 
restricitve, ERA5 for example is produced on a 12h cycle. 
 
 
 
 
Authors’ response: 
 
We thank the referee for pointing this out. We have revised the manuscript (Line 81) to say that 6 
h is an example time interval at which DA is performed.  
 
 
 
 



 
 
Referee’s comment: 
 
6) Line 117 “The baseline DDWP model used here is a U-NET similar to the one used in 
Weyn et al. (2020)” - as in main point 2, I would have found it helpful to have more 
description of the baseline U-NET, and it would be nice to know more precisely what is 
different compared to Weyn et al. 
 
Authors’ response: 
 
We thank the referee for this helpful suggestion. We have revised the manuscript between Lines 
179-184 to briefly talk about the difference between the architectures of the two U-NETs. 
However, we want to emphasize that we are not presenting a benchmark DDWP model that 
competes with the DDWP model in Weyn at al., [4]. In this manuscript, we are providing a proof-
of-concept for a specific spatial transformation module in the latent space that may improve the 
performance of any DDWP architecture, and we have considered U-NET as an example.   
 
 
 
 
 
 
 
 
Referee’s comment: 
 
7) Line 118 mentions the deep spatial transformer in the method section for the first time; 
a citation to the original source would be helpful here, and also in section 3.1.2 where it is 
described in more detail. 
 
Authors’ response: 
 
We have added the reference to the original paper in Line 142. 
 
Referee’s comment: 
 
8) In the bibliography, the citation to Esteves et al. (2018) is mostly in lowercase. 
 
Authors’ response: 
 
Thank you. We have fixed the reference.  
 
Referee’s comment: 
 
9) Line 152 - 153: “All codes for these networks (as well as DA) have been made publicly 



available on GitHub (see the Code Availability statement).” The codes are provided on 
Zenodo (not GitHub) but as described in main point 3, they do not appear to be complete. 
 
Authors’ response: 
 
The codes in the Github repository are complete but we have only uploaded the U-STN for one Δ𝑡 
where that variable can be changed to incorporate any other Δ𝑡. We have now organized our source 
code so that it is readable and has more clarity. We thank the referee for taking the time to go 
through our codes and providing us with useful suggestions.  
 
Referee’s comment: 
 
10) Line 164 - please give a few words of explanation on the meaning of “unscented” 
 
Authors’ response: 
 
We have now added a reference to unscented transformations in Line 187. 
 
Referee’s comment: 
 
11) Line 184: in the DA algorithm, the singular vector decomposition of the analysis error 
covariance matrix is used to generate perturbations to create a new ensemble. However, 
in this work the ensemble is not propagated forward in time hour-by-hour, but is 
generated using the analysis error valid at “t” to represent the forecast error at “t+23dt”, 
which is strictly incorrect. The forecast error at 23h is going to be much larger than the 
analysis error at 0h, therefore the ensemble created in the current work is most likely an 
underestimate of the spread of the background error. This needs to be discussed in the 
manuscript. 
 
Authors’ response: 
 
We thank the referee for pointing this out. Carrying the ensembles for 24 h is computationally 
expensive especially since the ensemble size is very large (4096). We agree that the ensemble 
spread is an underestimate of the background error in this work and have highlighted that in the 
revised manuscript in Lines 212-213. However, we have performed experiments by propagating 
the ensembles as well and have not found a significant difference in performance. This has also 
been reported in the revised manuscript in Lines 211-212.   
 
 
 
 
 
 
 
 
 



Referee’s comment: 
 
12) Equations 6 and 8 have identical right hand sides, but are labelled as different things 
(P_a and P_ab respectively). So something must be missing from the RHS to explain why 
they are different, or else P_a and P_ab are the same. 
 
Authors’ response: 
 
Thank you for pointing out this typo. We have fixed the equations in the revised manuscript.  
 
Referee’s comment: 
 
10) I found Figure 2 and 7 slightly confusing. The positioning of the states Z(t), Z(t+ dT) 
and so on below the U-STN1 blocks is confusing if the x-axis represents time; the small 
blue arrows are not helpful (suggesting that the states are external data coming into the 
process) and not consistently applied either. It could be more helpful to more clearly show 
the relation of the U-STN1 blocks to their inputs and outputs. 
 
Authors’ response: 
 
Thank you for this helpful suggestion. We have slightly changed the schematic to adjust the time 
stamps of the U-STN blocks.  
 
 
Referee’s comment: 
 
11) The forecast verification in Figure 3 is based on 30 random initial conditions (line 
249). Seeing as it is so cheap to run the DDWP models, why not provide the results based 
on the full 2018 test period, to obtain more statistical significance?  It is also odd to see 
the strong variability in skill, particularly in the U-STN12, from one verification time to the 
next. This might suggest that the verification is not as statistically significant as suggested 
by the standard deviation range provided. Verification of NWP forecasts is usually much 
smoother as a function of forecast range. Even for DDWP forecasts such as shown in Weyn 
et al. (2020, their figs 4 and 5) this usually seems to be the case. 
 
Authors’ response: 
 
We have conducted a Kolmogorov-Smirnov test between the difference of the mean ACC of U-
STN12 and U-NET12. The difference is not statistically significant between 12 h and 36 h, it is 
statistically significant between 36 h and 240 h.  
 
 
 
 
 
 



Referee’s comment: 
 
12) Another point on the comparison of U-STN12 to U-NET12, it would be really helpful to 
establish the quality of the U-NET12 baseline - how competitive is it with other DDWP 
models? 
 
 
Authors’ response: 
 
We have revised the manuscript between Lines 275-280 to compare between other baselines such 
as CNN and linear regression. However, we would like to emphasize that, in this paper, we do not 
intend to present the best DDWP model but rather a proof-of-concept on the advantage of using 
an equivariance-preserving module in the latent space and a framework to integrate DA with 
DDWP. Moreover, herein we present Table. 1 which compares the quality of performance of U-
STN12, U-NET12 and the CNN and linear regression model in WeatherBench [5].  
 
Table 1.  A comparison between U-STN12 and U-NET12 presented in this manuscript and the 
linear regression and CNN models from WeatherBench [5]. Here, we have used the RMSE values 
of direct linear regression and CNN prediction at day 3 and day 5. Here “direct” refers to the 
models trained to predict Z500 directly at 3 and 5 days instead of iteratively predicting every hour.   
 
 
Models  RMSE (𝑚!𝑠"!) at 3 

days 
RMSE (𝑚!𝑠"!) at 5 
days 

Linear regression (direct) from WeatherBench 693 783 
CNN (direct) from WeatherBench 626 757 
U-STN12 (our model) 294 490 
U-NET12 (our baseline model) 310 517 

 
 
Referee’s comment: 
 
13) Line 261-262: “The reason behind the further improvement of the performance after 
DA is the de-noising capability of neural networks (Xie et al., 2012)” - this seems overly 
confident given that it has not been demonstrated in the manuscript: “A likely reason 
behind the further improvement …” would be a fairer description. 
 
Authors’ response: 
 
Thank you. We have revised the manuscript in Lines 298-300 based on the referee’s suggestion.  
 
 
 
 
 
 



Referee’s comment: 
 
14) Section 4.3 gives an example of the use of DA to merge forecasts of different lengths. 
I find this section helpful as an illustration of the skill variations obtained with cycled 
(autoregressive) predictions versus direct predictions. However, instead of using DA, why 
not just throw away the cycled U-STN1 state at t+12dt and replace it by the forecast from 
U-STN12? It would be good to see if the DA can actually improve on that; in other words 
whether the cycled U-STN1 is bringing some additional information that is worth 
preserving. 
 
Authors’ response: 
 
We agree with referee’s point. The directly predicted state at 𝑡 + 12Δ𝑡 would probably be skillful 
as well. In fact, Liu et al., [3] had used interpolation instead of DA to obtained skillful 
autoregressive prediction with a multi-step framework. Further, not using DA would reduce the 
computational cost of the framework as well. However, the skill of the prediction by using the 
predicted state at 𝑡 + 12Δ𝑡 from U-STN12 also depends on the value of initial noise as well. A 
fair comparison would require conducting further systematic experiments to see how the effect of 
noise affects recycling the state at  𝑡 + 12Δ𝑡 in comparison to performing DA with it. In this paper, 
we show that performing DA with it is simply one way to recycle the obtained state and there may 
well be other methods such as interpolation (as shown in Liu et al., [3]) or simply using the state 
itself for further predictions that may yield skillfull predictions. 
 
Referee’s comment: 
 
16) Conclusions / discussion: on the benefits of DDWP for DA algorithms, item 2 line 314: 
being able to generate an ensemble large enough to provide fully-sampled background 
error covariance matrix is a major benefit here. However, the state vector size in the 
current work (2048) is still quite small compared to what might be expected in a more 
sophisticated DDWP approach, let alone NWP, where the state vector size is approaching 
10^8. It should be acknowledged and discussed that the ability to use the SPEnKF 
algorithm, and to dispense with localisation, is not just the speed of the model (the 
DDWP) but the small size of the state vector. 
 
 
Authors’ response: 
 
Thank you. We have revised the text accordingly between Lines 356-357. 
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