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Abstract. The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a 

subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and 

often for a limited number of locations. In this paper, we propose a method that provides information on the accuracy of the 10 

model in general, while all dimensional information for posterior analysis of the specific tasks is retained. The main goal of 

the method is to perform clustering of the multivariate model errors. The clustering is done using the K-means algorithm of 

unsupervised machine learning. In addition, the potential application of the K-means clustering of model errors for learning 

and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the Baltic 

Sea. The model results are evaluated with the measurement data of temperature and salinity from more than one million casts 15 

by forming a two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that 

consist of four clusters was determined using the Elbow cluster selection criteria and based on the analysis of the different 

number of error clusters. In this particular model, the error cluster with good quality of the model with a bias of 0.4 °C (std=0.8 

°C) for temperature and 0.6 g kg-1 (std=0.7 g kg-1) for salinity made up 57% of all comparison data pairs. The prediction of 

centroids from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 20 

000 error pairs in the learning dataset. 

1 Introduction 

Ocean general circulation models are valuable tools for hindcasting and forecasting ocean state. The values of the simulated 

fields depend on the quality of the modeling products. Assessment of model quality is a basic step that is taken before the 

model results are used for evaluation of the ocean state or other specific purposes. For instance, product quality assessment is 25 

routinely done for all products of the Model Forecast Centers within the Copernicus Marine Environment Monitoring Service 

(CMEMS, 2016) and the National Oceanic and Atmospheric Administration (NOAA, https://www.esrl.noaa.gov/fiqas/, 

https://sats.nws.noaa.gov/~verification/; https://www.ncdc.noaa.gov/sotc/global/202101). 

Common statistical metrics for a single prognostic variable (e.g., bias, root mean square difference, correlation coefficient, 

standard deviations) are used to assess the model skills (Murphy et al., 1989; Murphy, 1995; Wȩglarczyk, 1998; Jolliff et al., 30 

2009; Dybowski et al., 2019). Taylor diagrams (Taylor, 2001) or target diagrams (Joliff et al., 2009) are usually implemented 

for compact visualisation of the model performance statistics. Stow et al. (2009) studied 149 papers based on numerical 

modeling. They found that the majority (68%) of the model validation works were based on visual comparison and comparing 

simple statistics such as bias and variance, 9% of the works calculated the correlation coefficient and roughly 11% of the works 

implemented various cost-function techniques (e.g., Holt et al. 2005; Eilola et al., 2009). 35 

Ocean general circulation model output consists of a set of variables in space and time, i.e., 4-dimensional fields (i.e., three 

spatial dimensions and time). Similarly, measurement data has 4-dimensional distribution but is irregular in space and time. 

The amount of observational data has increased tremendously over the past decades. Temperature and salinity are widely used 

state variables for the assessment of the accuracy of general circulation models. These variables “integrate” temporal and 
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spatial dynamics of the circulation in the water basin that has been modeled. Temperature and salinity are usually measured 40 

simultaneously, have 4-dimensional distribution and form a major share of the data in the databases. The classical approach is 

that statistical metrics are calculated independently for each variable used for validation. Usually, time series data or profile 

data is extracted at fixed location, where the number of measurements is sufficiently large. In these cases, the measurements 

at the locations, which are seldomly visited, are not used for the validation, but these measurements can form significant 

amount of the data in the databases. Also, the model performance statistics are calculated for preselected geographical areas 45 

in which case all data that falls into that area and time window is included. In that case, a single set of the model performance 

statistics characterizes the model performance in that area. Even if all available data with sufficient spatio-temporal coverage 

is used for multivariate comparison, the end result is a single metric or limited set of metrics that characterize the general 

quality of the model. Then, the same metrics of model goodness of fit is assigned to every grid point and time. The shortcoming 

of this approach is that detailed spatial and temporal distribution of model errors is lost.  50 

Ideally, researchers like to know the model accuracy for the whole model domain and time period considered. Therefore, we 

suggest a new method based on the machine learning K-means clustering algorithm (Hastie et al., 2009; Jain, 2010) that takes 

advantage of a large set of available data and retains detailed spatial and temporal distribution of model errors that can be used 

for the posterior analysis of model accuracy. This method belongs to the category of multivariate comparison. According to 

Hastie et al. (2009): “The K-means algorithm is one of the most popular iterative descent clustering methods. It is intended for 55 

situations in which all variables are of the quantitative type”. Indeed, other clustering methods could be implemented, e.g., 

hierarchical clustering.  

The intuitive prerequisite for using any clustering approach is that the dataset should have a natural cluster structure (Jain, 

2010). Prior knowledge about model accuracy and distribution of model errors in space and time is usually missing. If there is 

a large number of data for comparison, then the distribution of model errors might not show visually identified clusters. If 60 

more than two variables are used for model quality assessment, then the visualisation of the errors for the identification of the 

clusters becomes more complicated.  

In this study, we will show that implementing the K-means clustering algorithm for the analysis of model temperature and 

salinity errors provides meaningful information about model accuracy. The method is not limited to the set of two variables. 

The only requirement is that all variables should be simultaneously measured. Preprocessing can be done to make data 65 

simultaneous, i.e., averaging over some space domain and time. Clustering procedure using the K-means algorithm includes 

quantitative metrics for general assessment of the model performance. Posterior analysis of error clusters is an essential part 

of the proposed method and enables us to understand model data misfit and to explain the errors in relation to the dynamic 

features of the natural water basin under consideration. 

Additionally, we implement the learning-predicting sequence in the form of clustering stability tests. The learning period 70 

consists of the model run for a certain period and error clustering. The learning period is for determining the number of clusters 

and the coordinates of the centroids. Based on the error clustering of the learning period, we can presume that a similar error 

distribution is valid for the forward model simulation results. During the predicting period, new available errors are added to 
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the clusters. The coordinates of the centroids and other metrics are updated. In the operational applications, the value of this 

process lies in the fact that the exploitation of model simulation results can start before new validation is completed. 75 

We apply proposed K-means clustering methods for the assessment of the model quality of the General Estuarine Transport 

Model (GETM; Burchard and Bolding, 2002) of the Baltic Sea. In this particular application, the model is used for the hindcast 

simulation of the general circulation of the Baltic Sea in 1966–2006 (Maljutenko and Raudsepp, 2019). 

The Baltic Sea (Fig. 1a) is a wide non-tidal estuary-type marginal sea with a longitudinal salinity between 0 and 20 g kg-1 

(Leppäranta and Myrberg, 2009; Omstedt et al. 2014). General circulation in the Baltic Sea is cyclonic due to pressure gradient 80 

forcing (Meier, 2007). The longitudinal salinity gradient is maintained by saline water inflows from the North Sea through 

Danish straits and freshwater input by rivers. Large volumes of saline water are transported to the Baltic Sea by the Major 

Baltic Inflows (MBI) that occur seldom (Mohrholz, 2018). The other smaller inflows occur almost every winter (Mohrholz, 

2018; Raudsepp et al., 2018). Due to gravitational flow, inflowing saline water spreads downstream into the Baltic Sea along 

the cascade of deep basins—the Bornholm Basin, Gdansk Basin and the Eastern Gotland Basin. Saline water mixing with fresh 85 

water inflow from the rivers forms a Baltic haline conveyor belt (Döös et al., 2004). The saline water of the Gotland basin is 

pushed into the western Gotland Basin and the Gulf of Finland. During the MBIs, dense inflow water spreads along the bottom 

while other large volume inflows renew the halocline layer of the Baltic Sea. The permanent halocline in the Baltic Sea is at a 

depth of 60-80 m (Väli et al., 2013). The Gulf of Bothnia and the Gulf of Riga do not have a permanent halocline (Raudsepp, 

2001). The Gulf of Finland has a very dynamic halocline due to intensive estuarine circulation (Maljutenko and Raudsepp, 90 

2019), occasional stratification collapses due to reverse estuarine circulation (Elken et al., 2014; 2003) and winter mixing. 

Seasonal thermocline at a depth range of 10-30 meters starts to develop in spring, reaches its maximum strength in summer 

and erodes in autumn. In the gulf-type regions of freshwater influence, like the Gulf of Finland (Maljutenko and Raudsepp, 

2019) and the Gulf of Riga (Soosaar et al., 2014), seasonal thermocline coincides with seasonal halocline in spring and summer. 

During maximum river runoff in spring, river bulge affects the salinity distribution in the coastal sea (Soosaar et al., 2016; 95 

Maljutenko and Raudsepp, 2019). In general, the wind-driven and thermohaline circulation of the Baltic Sea and the water 

exchange with the North Sea determine the stratification in the Baltic Sea (Lehmann and Hinrichsen, 2000). 

Salinity fronts are formed in the straits that connect different sub-basins of the Baltic Sea: between Kattegat and  southwestern 

Baltic Sea, the Gulf of Riga and the Baltic Proper, the Gulf of Bothnia and the Baltic Proper. The Danish straits and Kattegat 

are situated in a region with a very dynamic and strong front that separates the brackish Baltic sea water and the saline North 100 

Sea water (Nielsen, 2005). The Baltic Sea water of low salinity is transported towards the North Sea in summer, but saline 

water of the North Sea inflows to the Baltic Sea in winter (Mohrholz, 2018). A dynamic front is present in the transition area 

between the northeastern Baltic Proper and the Gulf of Finland, although that is a wide and deep area. 

The Baltic Sea is seasonally ice-covered. Inter-annually variable and dynamic ice coverage (Raudsepp et al., 2020) has 

considerable effect on the evolution of the thermohaline fields in the Baltic Sea. 105 
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2 Materials and Methods 

2.1 Model simulation 

The General Estuarine Transport Model (GETM; Burchard and Bolding, 2002) is a numerical 3D circulation model initially 

developed for coastal and estuarine applications (Gräwe et al., 2015; Holtermann et al., 2014). The hindcast simulation of the 

general circulation of the Baltic Sea was carried out for the period of 1966–2006 (Maljutenko and Raudsepp, 2019; 2014). 110 

Model open boundary was located in Kattegat, where sea level elevation, temperature and salinity are prescribed. Model 

horizontal resolution was set to one nautical mile, which was consistent with the horizontal resolution of the digital bathymetry 

of the Baltic Sea (Seifert and Kayser, 1995). Vertically, 40 bottom-following adaptive layers were used, which resulted in a 

vertical resolution of less than 5 m. 

 115 

 

Figure 1: Spatial (a), temporal (b), seasonal (c) and vertical (d) distribution of the number of measurements in the dataset. The 
horizontal bins have a resolution of 25x25 km (a), temporal and seasonal bins have monthly resolution (b,c), and vertical bins have 
a resolution of 5 m (d). 

 120 

The initial conditions of salinity and temperature were compiled using observation data from the Baltic Environmental 

Database (BED; http://nest.su.se/bed) (Gustafsson and Medina, 2011; Wulff et al., 2013). Atmospheric forcing was prepared 

from the BaltAn65+ reanalysis dataset (Luhamaa et al., 2011). The heat fluxes are parameterized using bulk formulation 
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(Kondo, 1975). Monthly river runoff data from the 37 largest rivers from the E-HYPE hydrology model (Donnelly et al., 2016) 

were used. We have stored daily mean values of temperature and salinity and used them for the analysis. 125 

2.2 Dataset 

We use salinity and temperature measurements for the Baltic Sea from the EMODnet Chemistry database (SMHI, 2018). From 

the original dataset, we have extracted 1 376 674 measurements, which met the following conditions: 1) time range of 1966-

2005; 2) spatial range of the model domain, excluding coastal observations, which fell outside the model grid; 3) S and T 

values exist simultaneously; 4) S is in the range of 0 ... 35 g kg-1; 5) T is in the range of -2.5 ... 30 °C. 130 

The spatial and temporal distribution of the validation data is presented in Fig. 1. The spatial density of the data is visualized 

on the 25 km2 grid (Fig. 1a). Spatially, there are only a few horizontal cells of 25 km2 that do not have any measurements. 

Vertically, the number of measurements decreases monotonically from the surface to the bottom following the hypsographic 

curve of the Baltic Sea (Jakobsson et al., 2019) (Fig. 1d). The measurements at the standard depth stick out from the overall 

curve. Since the end of the 1980s, the number of monthly measurements increased continuously more than an order of 135 

magnitude compared to the preceding period (Fig. 1b). Seasonally, the number of winter and early spring measurements is 

smaller than the number of summer measurements (Fig. 1c). Gathering data during winter is very complicated due to seasonal 

ice coverage of the Baltic Sea (Raudsepp et al., 2020).  

2.3 K-means clustering 

The K-means clustering algorithm is a widely used algorithm in unsupervised machine learning (Hastie et al., 2009; Jain, 140 

2010). We use a K-means clustering algorithm for the cluster analysis of temperature and salinity errors. In the current study, 

two dimensional error space is defined from simultaneous salinity and temperature errors {dS,dT}∈R2, where dS≡(Smod - 

Sobs ) and dT≡(Tmod - Tobs). In general, the method can be extended to the n-dimensional error space. The distribution of 

the errors in the {dS,dT}∈R2 error space is presented in Fig. 2a. Before calculating K-means, the error space has been 

normalized by the standard deviation of temperature and salinity errors.  145 

The first step of the method is to determine the number of clusters and an initialization. For practical reasons (Hastie et al., 

2009), a regular pattern of initial centroids was chosen for this study (Fig. 2b), although we have run the algorithm with 

randomly spaced clusters. When we start with only one cluster, we can choose its location at {dS=-1,dT=-1}. Using two 

clusters means that we start with the locations corresponding to 1 and 2 marked on Fig. 2b. With the increase in the number of 

clusters, we use corresponding initial locations of the clusters marked with numbers 1, 2, 3, etc. Other more advanced methods 150 

for the selection of initial centroids (Celebi et al., 2013) could be implemented just as well. The squared Euclidean distance 

was used as the measure of the distance between data points and the centroid coordinates of the cluster. The squared Euclidean 

distance measured from the cluster centroid is the most commonly used partitioning criterion for continuous data (e.g. 

Kononenko and Kukar, 2007; Hastie et al., 2009). For practical reasons, the number of iterations was limited to 100, which 

ensured the convergence of the clustering algorithm. A disadvantage of the K-means clustering algorithm is the lack of a 155 
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unique way of defining the optimal number of clusters. For the final selection of the number of clusters, we used the Elbow 

method (e.g., Bholowalia and Kumar, 2014; Yuan and Yang, 2019). The coordinates of the centroids in {dS,dT} error space 

provide mean bias of the errors belonging to the cluster k. Standard deviations of dS and dT are calculated for the 

characterisation of the variability of the errors within a cluster. 

 160 

Figure 2.  Logarithmic distribution of the number of salinity and temperature error pairs (model minus observation) in the 2-
dimensional error space (a). Error bins have a resolution of 1 °C for temperature and 1 g kg-1 for salinity. The bias is shown with 
the center of the white cross and the standard deviations with the major semi-axes of the blue ellipse. The green cross shows the 
center of the coordinate axes. Coordinates of initial centroids of K-means in the normalized 2-dimensional error space (b). 

 165 

In general, the errors retain their 4-dimensional structure, i.e., {dS,dT} (t,x,y,z), while assigned to specific clusters. Any kind 

of analysis can be done using the clustered errors. 

2.4 Normalization 

Each error pair belongs to a fixed cluster k but retains their 4-dimensional structure, i.e., {dS,dT}k (t,x,y,z). For the visualization 

of model accuracy, some reduction of dimensionality of the error pairs is needed.  170 

For the spatial distribution of errors, we take the error pairs as independent of time and vertical coordinate, i.e., {dS,dT}k (x,y). 

For each horizontal grid cell (i,j) of 25 km2, we have a number of points (error pairs) 𝑛௜,௝
௞  that belong to cluster k. The total 

number of points that belong to the grid cell is 𝑁௜,௝ = ∑ 𝑛௜,௝
௞௄

௞ୀଵ , where K is the number of clusters. For normalization, we 

divide each 𝑛௜,௝
௞  with 𝑁௜,௝ and plot the horizontal maps for each k. 
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For vertical distribution of errors, we take error pairs as dependent only on the vertical coordinate {dS,dT}k (z). Then 𝑛௟
௞ is the 175 

number of points in layer l and cluster k. Total number of points in the layer l is 𝑁௟ = ∑ 𝑛௟
௞௄

௞ୀଵ . Normalization is done for each 

layer with 𝑁௟. Subsequently, the profiles of the normalized error points show the share of each cluster of errors. 

For temporal distribution of errors, we take error pairs as dependent only on time {dS,dT}k (t). Then 𝑛∆௧
௞  is the number of 

points in the time interval ∆t and cluster k. Total number of points in the time interval ∆t is 𝑁∆௧ = ∑ 𝑛∆௧
௞௄

௞ୀଵ . Normalization is 

done for each time interval ∆t with 𝑁∆௧. Then the time series of the normalized error points shows the share of each cluster of 180 

errors at a specific time. 

There is no need to do normalization when we look at time series in a fixed spatial location or plot the Hovmöller diagram of 

error clusters. 

3 Results 

3.1 Clustering procedure 185 

We start by clustering bulk data covering the entire modeling period and domain. Error representation does not provide a clear 

understanding on how many clusters should be predefined or how the clusters will form. The initial location of the centroids 

is selected according to the scheme shown on Fig. 2b. The coordinates of the centroid of one cluster (Fig. 3a) provide a model 

bias of 0.64 °C for temperature and 0.26 g kg-1 for salinity (Table 1). The corresponding standard deviations were 1.5 °C and 

2.0 g kg-1, respectively. The root-mean square difference was 1.67 °C for temperature and 2.04 g kg-1 for salinity. The 190 

corresponding linear correlation coefficients were 0.97 and 0.95, respectively.  

Increasing the number of clusters results in the splitting of the error space into clusters with centroids close to the zero point 

(Fig. 3). A representative structure of distribution of the errors emerges in the case of four clusters (Fig. 3d). We can confirm 

the choice of four clusters by implementing cluster selection criteria. The distance between points and designated centroids 

reduces exponentially with the increase in the number of clusters (Fig, 4). The rate of distance reduction with the increasing 195 

number of clusters shows local minima at K=4.  

The K=4 clustering distributes 1 376 674 error data pairs into the following four clusters, each with N(k) = {263230, 196615, 

134326, 782503} datapoints. Cluster k=1 characterizes the set of errors with the basic feature of “underestimated salinity” 

(Table 1). This cluster is present already in the case of three clusters (Fig. 3c). Increasing the number clusters splits this cluster 

into two clusters (e.g., for K=9, it splits into clusters k=1,5). Cluster k=2 envelops the errors of “overestimated salinity”. This 200 

cluster changes into cluster k=4 (K=5), then splits into two clusters (K=8) and three clusters (K=9). Cluster k=3 of 

“overestimated temperature” is established already in the case of three clusters. Increasing the total number of clusters does 

not result in a split of the cluster. However, the centroid shifts towards high temperature bias (Table 1). The cluster k=4 

represents “good match” of the model and measurements. The bias is about 0.4 °C for temperature and 0.6 g kg-1 for salinity 
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(Table 1). The standard deviations are below one for both parameters. Increasing the number of clusters results in the splitting 205 

of this cluster along the axis of temperature error, while salinity error remains small. 

 

Figure 3. The distribution of clusters in the error space for a different number of predefined clusters, K=1-9. The numbers of the 
clusters correspond to the numbers of the clusters in Table 1. The biases are marked with the center of the ellipsoid and the standard 
deviations with the major semi-axes. The error space has been zoomed in for better visualization of the clusters. The full range of 210 
error space and distribution of the clusters is shown in Fig. A1 in Appendix A. 
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Table 1. The coordinates of the centroids and the standard deviations of salinity and temperature errors within the clusters for a 
different set of predefined clusters, K=1-9. The numbers of the clusters and the colors in column k correspond to the numbers and 
colors of the clusters in Fig. 3. The brighter background colors of MEAN and STD columns correspond to parental and descendant 215 
clusters of the K=4 cluster distribution. 

 

 
K k 

MEAN 
{dSₖ,dTₖ} 

STD 
{dSₖ,dTₖ}  nk k 

MEAN 
{dSₖ,dTₖ} 

STD 
{dSₖ,dTₖ} 

1 1 0.26 0.64 2.03 1.55  

7 

1 -2.97 -0.53 1.42 0.82 

     2 0.89 1.89 0.88 0.66 

2 
1 -0.49 -0.19 1.69 0.95  3 -0.85 6.01 2.28 1.61 

2 1.21 1.69 2.02 1.52  4 3.8 0.38 1.66 1.05 

     5 -2.41 2.33 1.44 0.93 

3 

1 -1.35 -0.51 1.57 0.99  6 0.37 0.38 0.69 0.42 

2 1.3 0.66 1.52 0.85  7 -0.01 -1.07 0.89 0.85 

3 -1.03 3.54 1.97 1.73      

     

8 

1 -2.9 -0.53 1.37 0.82 

4 

1 -1.96 -0.72 1.63 1.07  2 2.67 0.87 0.8 0.78 

2 3.44 0.6 1.59 1.16  3 -0.66 6.09 2.15 1.62 

3 -1.07 3.78 2.04 1.73  4 5.55 -0.35 2.09 1.23 

4 0.44 0.57 0.69 0.81  5 -2.89 2.56 1.6 1.04 

     6 0.27 0.36 0.64 0.42 

5 

1 -2.81 -0.37 1.42 1.07  7 0.09 -1.12 0.91 0.85 

2 0.42 1.54 0.95 0.66  8 0.48 1.97 0.77 0.67 

3 -1.52 4.89 2.33 1.76      

4 3.63 0.52 1.63 1.08  

9 

1 -3.13 -0.47 1.37 0.83 

5 0.3 -0.22 0.72 0.77  2 2.67 1.41 0.87 0.62 

     3 -0.63 6.12 2.12 1.62 

6 

1 -3.13 -0.06 1.43 1.07  4 5.79 -0.22 2.08 1.23 

2 0.36 1.95 1.08 0.65  5 -3.01 2.68 1.59 1.05 

3 -1.59 5.35 2.41 1.72  6 2.02 -0.27 0.78 0.59 

4 3.66 0.51 1.63 1.08  7 -0.36 -1.09 0.79 0.88 

5 -0.3 -1.1 0.96 0.87  8 0.31 1.98 0.72 0.67 

6 0.46 0.34 0.68 0.44  9 0.22 0.4 0.6 0.41 
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Figure 4. Sum of square distances (black bars) between normalized pairs of error points and their designated centroids for different 
numbers of initial centroids. The first (red bars) and the second (blue bars) order forward differences calculated from the sum of 220 
square distances. 

3.2 Analysis of the clusters 

Retrieving spatial coverage of K=4 cluster errors shows that the model has “good match” in the whole model domain (Fig. 

5b). The share of the other errors remains less than 0.3. The model “overestimates salinity”, “underestimates salinity” and has 

“good match” at the Danish straits. “Underestimated salinity” errors have a share of about 0.2 in the deep basins of the Baltic 225 

proper, i.e., the Bornholm Basin, Gdansk Basin, eastern Gotland Basin, northern Baltic Proper, western Gotland Basin and 

western Gulf of Finland. The model “overestimates temperature” at the transition area between the northeastern Baltic proper 

and the Gulf of Finland, in some coastal locations and within river plumes. The latter indicates that river water temperature is 

overestimated in the present model implementation. 

Vertical distribution of the error clusters confirms that the share of “good match” errors ranges between 0.5 and 0.9 of all data 230 

(Fig. 5e). In the surface layer, we have “overestimated salinity” and “underestimate salinity” in almost 50% of cases. In 

comparison with horizontal distribution of errors, a large part of these errors probably belongs to the Danish straits (Fig. 5b). 

The “overestimated temperature” has a considerable share centered at a depth of 25 meters. The “underestimated salinity” has 

a high share at the depth range of 60-100 m. The share of “underestimated salinity” once again increases in the deep layer of 

the Baltic Sea.  235 
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Figure 5. The distribution of the error clusters for K=4 (a). The colormap shows the logarithmic distribution of the number of salinity 
and temperature error pairs (model minus observation) in the 2-dimensional error space (a). Error bins have a resolution of 1 °C 
for temperature and 1 g kg-1 for salinity (a). The spatial (b), vertical (c), temporal (d) and seasonal (e) distribution of the share of 
error points belonging to the four different clusters (b). The share, p(k) represents the share of the error points belonging to the 240 
cluster k, is calculated as explained in Section 2.4. The horizontal bins have a resolution of 25x25 km (b), vertical bins have a 
resolution of 5 m (c), temporal and seasonal bins have monthly resolution (d,e). The lines (d) have been smoothed using a running 
mean with a 12-point window size. Line colors correspond to the colors of the clusters on (a). 

A decrease in time of a “good match” coincides with an increase of the share of “underestimated salinity” and “overestimated 

salinity” (Fig. 5c). Seasonally “overestimated salinity” has a higher share in summer, while “underestimated salinity” has a 245 

higher share in winter (Fig. 5d). Combining horizontal (Fig. 5b) and seasonal distribution of errors (Fig. 5d), we could conclude 
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that the salinity is overestimated in the Danish straits in summer and underestimated in winter. In addition, we would like to 

note that the share of “good match” decreases and “underestimated salinity” increases abruptly at the end of the 1980s, when 

the number of the measurements becomes larger in the database. The “overestimated temperature” has an almost constant 

share of 0.1 in time (Fig. 5c). The elevated share of “overestimated temperature” errors in summer confirms that the model 250 

overestimates the temperature in the seasonal thermocline (Fig. 5d). For comparison, we have provided a similar analysis of 

the errors for K=3 and K=5 in Appendix B.  

 

Figure 6  Hovmöller diagram of the distribution of error points of K=4 at the BY15 monitoring station (a). Vertical distribution of 
the share of error points belonging to the four different clusters (b). The share, p(k) represents the share of the error points belonging 255 
to the cluster k, is calculated as explained in Section 2.4. Time series of observed (black circles) and simulated (color dots) 
temperature (c,d) and salinity (e,f) on the surface (c,e) and bottom (d,f) at the BY15. Colors of dots and lines correspond to the colors 
of the clusters on Fig. 5a. 

We extract error profiles from Gotland Deep station BY15, which is widely used for the validation of the physical and 

biogeochemical models of the Baltic Sea. In the upper layer of 60 m, the model has “good match” (Fig. 6a,b). There are isolated 260 



14 
 

occasions of 10% in total when the model “overestimates temperature” in the seasonal thermocline (Fig. 6b). At the depth 

range 60-100 m, the share of model “underestimating salinity” increases. From a depth of 100 m, the proportion of the model 

that "underestimates salinity" gradually increases with depth. The Howmüller diagram shows that there are extended time 

periods when the model “underestimates salinity” (Fig. 6a). In the surface layer, the model has “good match”, although model 

salinity starts to deviate from the measurements from 1995 onwards (Fig. 6c,e) . At the bottom, the model reproduces 265 

temperature very well at the end of 1970s and beginning of 1980s, but as salinity is underestimated, the errors belong to the 

cluster of “underestimated salinity” (Fig. 6d,f). In general, the model has “good match” in the water column from 1991 to 2003 

(Fig 6a,f). Dynamically, this corresponds to the end of the stagnation period and recovery of the bottom salinity and 

strengthening of the permanent halocline. 

 270 

Figure 7. Learning (a-c) and predicting (d-f) of the K=4 clusters. The learning and predicting datasets have a share of 1% (a) and 
99% (c), 20% (b) and 80% (e), 99% (c) and 1% (f) of the full dataset, respectively. Blue crosses mark the location of initial centroids 
and blue lines connect initial and final locations (marked with numbered diamonds) of the centroids. 

3.3 Learning of the clusters 

As the first step, the whole 4-dimensional {dS,dT} dataset is divided randomly into two separate sets for learning and 275 

predicting. The dataset for the learning of the error clusters is initiated from a set of a different number of clusters according 
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to initial distribution of the centroids shown on Fig. 2b. Resulting centroids of the learning dataset are then used to initiate the 

centroids for the clustering of the predicting dataset. The mean length of shifts between learning and predicting centroids is 

used to evaluate the effect of dataset size on predicting the representative error clusters. We have used different learning and 

predicting datasets with sizes ranging from a share of 10-4 to 0.9999 of the total dataset of 1 376 674 error pairs. For a statistical 280 

ensemble of randomly selected datasets, the average distances are calculated from 30 trials. The learning and predicting 

procedure is illustrated in Fig. 7 for K=4. 

If the learning dataset makes up 10-95 % of the total dataset (>100 000 comparison points), then the difference between the 

learned and predicted centroids does not change significantly (Fig. 8). The clustering of K=4 is most sensitive to the choice of 

initial centroids. Therefore, the distance between learned and predicted centroids is larger compared to other choices of K. 285 

Below 1% of the learning data size (<10 000 comparison points), the difference in distance between learned and predicted 

datasets is >0.03 normalized standard deviation. Thus, the size of the learning dataset is significant for predicting the error 

clusters. The rough estimate of the number of comparison points is about 100 000 for the current model, which shows relatively 

stable centroids and the stability of the model accuracy. 

 290 

Figure 8. The average normalized distance of shifts of predicting centroids relative to learned centroids as function of the share of 
the learning dataset. Averaging has been done from 30 trials. Different lines correspond to different numbers of initial clusters, K=3-
7. The share of the learning dataset in the ranges of 10-4-0.1  and  0.9-0.9999  are shown in logarithmic scale. 
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3.4 Interpretation of the clusters 

The total number and the spatio-temporal coverage of the comparison points (Fig. 1) indicate that the model performs well 295 

over the Baltic Sea and the simulation period considered (Fig. 5). The share of model errors with a bias of {dS,dT}={0.44 g 

kg-1,0.57 °C} and with a standard deviation of {dS,dT}={0.69 g kg-1,0.81 °C} (Table 1) is between 0.5 and 0.9. 

In addition, we can highlight the areas where the model accuracy is lower and the dynamical features are not so well reproduced 

by the model. Essentially, seasonal thermocline and permanent halocline are not reproduced by the model as well as the layers 

with small vertical gradients of salinity and temperature. The accuracy of the model in reproducing seasonal thermocline has 300 

a peak share of “overestimated temperature” of 0.25 (bias of 3.78 °C and standard deviation of 1.73 °C) at a 25 m depth. The 

error share of 0.25 is observed in the layer of 60-90 meters, which corresponds to the depth range of the permanent halocline. 

The model “underestimates salinity” (bias of -1.96 g kg-1 and standard deviation of 1.63 g kg-1) there. 

Model accuracy is relatively low in the Danish straits. The model has “underestimated salinity” in winter and “overestimated 

salinity” in summer (bias of 3.44 g kg-1 and standard deviation of 1.59 g kg-1) there. The “underestimated salinity” errors in 305 

the deep basins of the Baltic Sea (Fig. 5b) are caused by the spreading of inflowing North Sea water downstream in the cascade 

of the deep basins. These inflows mainly take place in winter, while outflow of the Baltic Sea water dominates in summer. 

Clustering of model errors could provide information about the accuracy of external fields that are used for the forcing and for 

the boundary conditions of the model. The “overestimated temperature” at the river plume areas (Fig. 5b) may indicate a 

mismatch of river water temperature that takes the value from a grid cell adjacent to the river mouth. Although the air-sea 310 

fluxes are correctly reproduced by the model, as indicated by “good match” at the surface (Fig. 5c), the following downward 

flux of heat could be too strong, as the share of “overestimated temperature” is relatively high between the depth of 10-40 

meters in summer (Fig 5c,d). 

4. Summary 

Ideally, researchers like to know the model accuracy over the whole model domain and time period simulated. Commonly 315 

used methods provide a limited set of metrics (e.g., bias, standard deviation, root mean square error, correlation coefficient) 

for the assessment of overall quality of the model. In this study, we have proposed a new method for the assessment of model 

skills. The aim of using the method is the clustering of multivariate model errors. Model errors consist of differences between 

model values and the measured multivariate data. The main advantage of this method is the possibility to use clustered errors 

for the analysis of the spatio-temporal accuracy of the model. 320 

The method was tested in the validation of the circulation model results of the 40-year period in the Baltic Sea. Temperature 

and salinity were used for validation, because they are essential parameters of the physical model, and this data has been the 

most extensively measured in the Baltic Sea. This method enables us to use all available observations, with the only restriction 

being the need to measure multivariate data simultaneously. In model validation, the problem usually lies in the spatio-temporal 

distribution of measurement data over the 4-dimensional model domain. In our case, the measurement data was sufficient and 325 
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with good spatial and temporal coverage. In total, we had more than 1 300 000 pairs of measured temperature and salinity 

values. In many cases, reduction of available data or homogenization of the data is needed prior to the calculation of model 

errors, and clustering is applied to have simultaneous multivariate data. The number of measurements should be sufficiently 

large to determine stable clusters. In our case, about 100 000 randomly selected data pairs showed relatively stable centroids 

and the stability of the model accuracy. 330 

We have applied the K-means unsupervised machine learning algorithm for the assessment of the quality of general circulation 

models by clustering temperature and salinity errors. The model output fields are 4-dimensional, and the 4-dimensional 

distribution of the errors was retained after the clustering was completed. As a result, cluster numbers were assigned to each 

error pair. In addition, the errors belonging to one cluster had their bias determined by the location of the centroid in the error 

space. Further on, common statistical metrics (e.g., standard deviation, root mean square error, correlation coefficient) can be 335 

calculated for each cluster and variable. In general, any other partitional clustering algorithm can be used instead of K-means 

for the clustering of multivariate model errors. Although the tests with the balanced iterative reducing and clustering using 

hierarchies (Zhang et al., 1996), the Gaussian mixture model and K-nearest neighbor algorithm (e.g. Hastie et al., 2009) were 

performed (results not shown), we have implemented the K-means algorithm because of its simplicity and robustness. The 

outcome clusters have direct information on the model bias. The output clusters can be used for the calculation of classical 340 

statistical metrics. The resulting clusters contain information about common statistical metrics. 

The K-means clustering algorithm has a well-known deficiency. There is no unique way to determine the number of clusters. 

We used Elbow methods, which gave good results. The selection of four clusters was supported by the analysis of the error 

clusters in relation to the geographical distribution of the errors, the physical process and the features. The analysis showed 

that the “underestimated salinity” cluster was mainly in the Danish straits, within the halocline layer and along the pathway of 345 

transport of saline water in the Baltic Sea. “Overestimated temperature” had a high share in the seasonal thermocline. 

“Overestimated salinity” accounted for the model errors in the Danish straits. For confidence, the analysis was complemented 

with using three and five clusters. Thus, the analysis of the error clusters enables to shed light on the physical processes and 

features where model performance should be improved. 

The clustering was done for the entire Baltic Sea and the whole simulation period. In comparison, conventional model 350 

validation with station measurements of temperature and salinity is presented in Maljutenko and Raudsepp (2014, 2019). The 

analysis of clusters of errors at specific locations enables us to assess the quality of the model at these locations in the context 

of the overall quality of the model. Multivariate model quality assessment shows that if one parameter is well reproduced by 

the model but the other parameter is poorly reproduced at the same time, then the quality might not be good. 

In addition to model quality, error clustering can provide implicit information about the quality of prescribed input variables 355 

and forcing fields. Error clustering has shown that the temperature of river runoff water could be overestimated. This is 

especially relevant in the case of biogeochemical models, where discharges of different nutrients and other state variables, 

which have to be prescribed, are usually poorly known. There are problems in the prescribed salinity of the inflowing North 

Sea water at the open boundary of the model in the Kattegat. In addition, these errors are transported into the model domain 
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of southwestern Baltic Sea. However, atmospheric fields necessary for the calculation of the air-sea heat fluxes do not produce 360 

significant errors. 

The proposed method could be applied for the assessment of the quality of global ocean general circulation models. By the 

end of the year 2020, there were approximately 3800 ARGO floats profiling the world ocean for salinity and temperature, with 

a spatial resolution of approximately 1 float for every 3 degrees of latitude and longitude. The annual total number of profiles 

added to the database is over 100 000, which takes the total available number of profiles to over 2 000 000 (Argo, 2020). This 365 

huge validation data set probably needs some computational solution, i.e., implementation of parallel computing or specific 

methods on how to deal with big data within the K-means clustering. In the context of operational oceanographic models, the 

model validation can be done in “real time” by implementing the learning-predicting sequence. The ARGO data, which is 

available within 24 hours of collection, could be added to the learned clusters for the updating of the coordinates of centroids 

and statistical metrics. 370 

The proposed method can be applied to different geoscientific models. The shortlist consists of biogeochemical models, 

atmospheric models, wave models, hydrological models, geodynamic models. An application of the method for the assessment 

of a coupled physical and biogeochemical model of the Baltic Sea is presented in Kõuts et al. (2021). The method can be 

implemented in a multivariate high-dimensional error space as well as in a univariate error space. In addition to the validation 

of numerical models, the method can be used for the assessment of remote sensing data and models. 375 
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Appendix A 

 

Figure A1. The distribution of clusters in the error space for a different number of predefined clusters, K=1-9. The numbers of the 
clusters correspond to the numbers of the clusters in Table 1. The locations of the centroids are marked with cluster numbers and 
the standard deviations with the whiskers. 380 
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Appendix B 

In the case of three clusters, the largest share of errors belongs to the cluster k=2 with a bias of {dS,dT}={1.3 g kg-1,0.66 °C} 

and with a standard deviation of {dS,dT}={1.52 g kg-1,0.85 °C} (Fig. B1). This cluster provides the main contribution to the 

clusters of “good match” and “overestimated salinity” when a larger number of clusters is used. The share of the errors of this 

cluster is between 0.6 and 0.9. Cluster k=1 with a bias of {dS,dT}={-1.35 g kg-1,-0.51 °C} and with a standard deviation of 385 

{dS,dT}={1.57 g kg-1,0.99°C} is the cluster of “underestimated salinity”, which retains these features throughout the 

increasing of the number of clusters. Spatially, “underestimated salinity” has a significant share in the Danish straits and on 

the pathway of inflowing saline water through the deep basins of the Baltic Sea. Vertically, these errors have a large share of 

0.5 in the layer of 60-110 m, which corresponds to the permanent halocline of the Baltic Sea, and below 200 m, which is the 

bottom layer of the Gotland Deep. The share of “underestimated salinity” is relatively high in the whole water column below 390 

the halocline. Seasonally, these errors are significant in winter, when saline water inflows through the Danish straits to the 

Baltic Sea occur. Cluster 1 with a bias of {dS,dT}={-1.03 g kg-1,3.54 °C} and with a standard deviation of {dS,dT}={1.97 g 

kg-1,0.73 °C} has a steady share of errors of 0.1. The errors of “overestimated temperature” are significant in the depth range 

of 10-50 m and during summer. These errors account for the model accuracy in reproducing seasonal thermocline. 

In the case of 5 clusters, the clusters k=2 with a bias of {dS,dT}={0.42 g kg-1,1.54 °C} and with a standard deviation of 395 

{dS,dT}={0.95 g kg-1,0.66 °C} and k=5 with a bias of {dS,dT}={0.3 g kg-1,-0.22 °C} and with a standard deviation of 

{dS,dT}={0.72 g kg-1,0.77 °C} dominate over the others (Fig. B2). These clusters are formed as a split of the “good match” 

cluster with partial contribution from the “underestimated salinity” cluster and the “overestimated salinity” cluster of K=4. 

The clusters k=1 with a bias of {dS,dT}={-2.81 g kg-1,-0.37 °C} and with a standard deviation of {dS,dT}={1.42 g kg-1,1.07 

°C} and k=4 with a bias of {dS,dT}={3.63 g kg-1, 0.52 °C} and with a standard deviation of {dS,dT}={1.63 g kg-1,1.08 °C} 400 

share errors of “underestimated salinity” and “overestimated salinity”. These errors dominate in the Danish straits, indicating 

the difficulties for the model in matching fluctuating water salinity close to the model boundary. Cluster k=3 with a bias of 

{dS,dT}={-1.52 g kg-1,4.89 °C} and with a standard deviation of {dS,dT}={2.33 g kg-1,1.76 °C} accounts for “overestimated 

temperature” errors in the seasonal thermocline during summer. 
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 405 

Figure B1. The distribution of the error clusters for K=3 (a). The colormap shows logarithmic distribution of the number of salinity 
and temperature error pairs (model minus observation) in the 2-dimensional error space (a). Error bins have a resolution of 1 °C 
for temperature and 1 g kg-1 for salinity (a). The spatial (b), vertical (c), temporal (d) and seasonal (e) distribution of the share of 
error points belonging to the four different clusters (b). The share, p(k) represents the share of the error points belonging to the 
cluster k, is calculated as explained in Section 2.4. The horizontal bins have a resolution of 25x25 km (b), vertical bins have a 410 
resolution of 5 m (c), temporal and seasonal bins have monthly resolution (d,e). The lines (d) have been smoothed using a running 
mean with a 12-point window size. Line colors correspond to the colors of the clusters on (a). 
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Figure B2. The distribution of the error clusters for K=5 (a). The colormap shows logarithmic distribution of the number of salinity 
and temperature error pairs (model minus observation) in the 2-dimensional error space (a). Error bins have a resolution of 1 °C 415 
for temperature and 1 g kg-1 for salinity (a). The spatial (b), vertical (c), temporal (d) and seasonal (e) distribution of the share of 
error points belonging to the four different clusters (b). The share, p(k) represents the share of the error points belonging to the 
cluster k, is calculated as explained in Section 2.4. The horizontal bins have a resolution of 25x25 km (b), vertical bins have a 
resolution of 5 m (c), temporal and seasonal bins have monthly resolution (d,e). The lines (d) have been smoothed using a running 
mean with a 12-point window size. Line colors correspond to the colors of the clusters on (a). 420 
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