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This paper suggests using K-means as a method for clustering error estimates of the
General Estuarine Transport Model (GETM), an oceanic general circulation model, to
find meaningful spatial structure of model error. Error estimation is done by taking the
difference between true values of daily averaged temperature and salinity found in the
EMODnet Chemistry database and simultaneous values generated by the GETM for a 3
dimensional spatial region (x, y, z) around the Baltic sea and time t. Once error values
for temperature dT = dT (x, y, z, t) and salinity dS(x, y, z, t) are found, their unique pairs
(dT, dS) are plotted in the R2 clustering space. K-means is then performed using the
euclidean metric in R2. Since each pair is uniquely identified by (x, y, z, t), the clustering
result can be evaluated in the original (Lat, Lon) space and time.

It is obvious that the authors have a well-established understanding of the dynamics of
ocean flow and the available models in this field as shown in section 2.1-2.2. Furthermore,
the idea of using error structure to determine where possible biases exist geographically is
meaningful. However, there are several key aspects of the method that has been introduced
that lead to invalid or uninterpretable results of K-means. Because of this, I do not believe
at this time that the study is complete enough for publication. I list the reasons below.
Additionally, I would suggest the authors look into some statistical learning literature such
as The Elements of Statistical Learning, by Jerome H. Friedman, Robert Tibshirani, and
Trevor Hastie.

1. The position of initial centroids for K-means is uniformly distributed and
does not change in the paper. The K-means algorithm is heavily dependent
on the choice of initial centroids. Hence, the algorithm may reach a local minima
for the distance metric but it cannot be said that this minima is the global minima
(or the ”most optimal”). To overcome this dependence, the K-means algorithm is
often run many times with randomly placed centroids. If the clustering outcome
remains consistent, then it is seen as a relatively reliable outcome for the algorithm.

2. There is no obvious ”elbow” in the plot of the distance. Although this
step can be thought of as suggestive, an elbow in the data should correspond to the
number of clusters K = k such that the change in rate forms a jump in the rate
function at K = k+ 1. If the plot of minimum distance over K is connected across
the histograms in figure 4, it has a smooth exponential decay which indicates that
there is no obvious cluster structure for K-means.
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3. Halting the K-means process after 100 iterations does not ”ensure con-
vergence”. Line 141 states that the number of iterations is limited for the numer-
ical implementation of K-means to 100. This is not good numerical practice as it is
not guaranteed that you will reach the local minima for the set of initial centroids
in this number of iterations. Instead, it is numerically common to set a threshold
for example, O(10−4) so that if the change in the distance metric is less than this
for a given number of iterations then it is assumed to converge.

4. K-means requires the clusters in the space to be able to be divided by
hyperplanes (lines in the case of R2) and the distribution of error makes
this difficult. Contrary to the statement made on line 173, error representation
can actually provide some insight on the possible structure of clusters in the R2

error space. It is common in statistics to assume that the error of a model (like that
of temperature and salinity in this case) is the sum of many independent errors,
which by the central limit theorem tend to the normal distribution with mean zero
and variance σ2. Of course there are exceptions to this in the case of dependence
or outliers. Because we can reasonably assume a normal distribution for the errors
of both temperature and salinity, we know if we plot these values on R2 that the
majority of the points will be in the center with the number of observed points
away from the origin decaying by the variance of their normal distribution. For
an illustration, see a projection of the bivariate Gaussian distribution. This is also
seen in figure 2.

The reason I mention the normality of the error distributions for temperature
and salinity is because it is not possible to appropriately divide this type of resulting
cluster structure by hyperplanes unless you increase the number of clusters K to
some very large amount. In fact, the approximation of a circular cluster with a
center can be seen in figure 3 as the number of clusters K increases. Given this,
I would suggest that the authors look at other possibilities of clustering such as
kernel K-means where the divisions can be made in a functional space. This may
also give some reason as to why there is no obvious elbow in the distance vs. K
graph.

5. K-means clustering does not add any information on the structure of the
data. Many of the results in section 3.2 can be found without clustering.
The spatial locations provided in figure 5 and discussed in section 3.2 where over-
and under- estimates of temperature and salinity occur in the model can be found
by setting a threshold of over- and under- estimation, say 2 standard deviations
away from the mean, for each measurement and calculating the proportion of points
in the (lat, lon) space that fall above or below the set thresholds.

6. The process described in 3.3 just describes the continuation of the K-
means algorithm. The K-means algorithm begins with a set of random centroids,
assigns points to the centroids based on their proximity, recalculates the centroids
based on the mean, and continues this way until a local minima of the inter-cluster
distances is reached. If the algorithm is run on a uniformly selected subset of points
coming from a fixed distribution (which is true in this case), the reassignment will
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continue until a local minima is obtained. If more points coming from the same
distribution are added and the end centroids are used, the algorithm will continue
from its final centroids until it reaches the exact clustering structure that is unique
to the starting centroids, this is the case with figure 7 (a) (d). If less points are
added, the structure remains constant (but the same since it corresponds to the
same starting centroids), this is the case with figure 7 (b) (e) and (c) (f). This
does not provide information on the stability of the clusters (line 274-275) which
depends on changing the starting centroids and performing multiple runs of the
K-means algorithm.

Additionally, there are some other minor issues with the article such as grammatical
issues in the switching of ”the” and ”a” as in the first sentence of the abstract, present
tense writing should be used when describing the work done for this article, and some
spelling issues (e.g. line 50). There is a lack of literature on clustering methods with Jain
(2010) being the main reference. As I mentioned, I would suggest starting with the book
by Friedman, Tibshirani, and Hastie for a foundational understanding of unsupervised
learning algorithms.


