
Answers to reviewer 1 comments 

 

We very much appreciate your comments on the unsupervised machine learning aspects of the 
model validation method. We are familiar with the book “The Elements of Statistical Learning. Data 
Mining, Inference, and Prediction” by Trevor Hastie, Robert Tibshirani, Jerome Friedman. 

The model errors do not have obvious clusters unless there are obvious errors in the model. Our 
clustering strategy was to get meaningful spatio-temporal distribution of the model errors based on 
the distribution of data in the clusters. In addition, common statistics that have been used so far in 
the validation of the models can be calculated for each cluster. We wanted to keep the clustering 
procedure relatively simple and easy to implement for a wider audience who are not experts in the 
field of unsupervised machine learning. Another positive aspect of using K-means, instead of other 
algorithms, e.g., kernel K-means, was the relatively low computational time. Usually, in ocean model 
validation we deal with a huge dataset. 

While doing research and preparing the manuscript, our test showed that by using random clusters 
and running the clustering until the clustering outcome remains consistent and using O(10-4) criterion 
for the convergence, changes in the results were minor. We have added the following sentences in 
the manuscript:  

“For practical reasons (Hastie et al., 2009), a regular pattern of initial centroids was chosen for this 
study (Fig. 2b), although we have run the algorithm with randomly spaced clusters.” 

“For practical reasons, the number of iterations was limited to 100, which ensured the convergence 
of the clustering algorithm.” 

 

Considering your concerns: 

1) The position of initial centroids for K-means is uniformly distributed and does not change in the 
paper. The K-means algorithm is heavily dependent on the choice of initial centroids. Hence, the 
algorithm may reach a local minima for the distance metric but it cannot be said that this minima is 
the global minima (or the ”most optimal”). To overcome this dependence, the K-means algorithm is 
often run many times with randomly placed centroids. If the clustering outcome remains consistent, 
then it is seen as a relatively reliable outcome for the algorithm. 

We have made experiments with a) random selection of the initial centroids, b) random selection of 
the initial centroids in the range of min/max data rectangle and c) uniformly distributed initial 
centroids as described in the paper. In all cases, centroids converged almost to the same locations. 
Using uniformly distributed initial centroids was merely a suggestion from which to start and check if 
meaningful clusters in terms of numerical model under consideration occur. We have added the 
following sentence: 

“For practical reasons (Hastie et al., 2009), a regular pattern of initial centroids was chosen for this 
study (Fig. 2b), although we have run the algorithm with randomly spaced clusters.” 

2) There is no obvious ”elbow” in the plot of the distance. Although this step can be thought of as 
suggestive, an elbow in the data should correspond to the number of clusters K = k such that the 
change in rate forms a jump in the rate function at K = k + 1. If the plot of minimum distance over K is 
connected across the histograms in figure 4, it has a smooth exponential decay which indicates that 



there is no obvious cluster structure for K-means. 
 

We agree that there is no obvious elbow in the plot of the distance. But the distance does not have a 
smooth exponential decay. We calculated the first and second derivative of the distance as function 
of the number of clusters, which suggests using 2 or 4 clusters. 

Indeed, we agree that there is no obvious cluster structure in our dataset. It was challenging for us to 
implement the clustering algorithm to the dataset without any obvious clusters. Our aim was to see if 
there are meaningful clusters in the context of the application. 

3) Halting the K-means process after 100 iterations does not ”ensure convergence”. Line 141 states 
that the number of iterations is limited for the numerical implementation of K-means to 100. This is 
not good numerical practice as it is not guaranteed that you will reach the local minima for the set of 
initial centroids in this number of iterations. Instead, it is numerically common to set a threshold for 
example, O(10−4 ) so that if the change in the distance metric is less than this for a given number of 
iterations then it is assumed to converge. 
 

We agree that halting the K-means process after 100 iterations does not ”ensure convergence”. All 
our tests showed that the K-means process converged before 100 iterations. Thus, we used 100 
iterations as an indicative number of iterations. We have changed the text: “For practical reasons, 
the number of iterations was limited to 100, which ensured the convergence of the clustering 
algorithm.” 

4) K-means requires the clusters in the space to be able to be divided by hyperplanes (lines in the case 
of R 2) and the distribution of error makes this difficult. Contrary to the statement made on line 173, 
error representation can actually provide some insight on the possible structure of clusters in the R2 
error space. It is common in statistics to assume that the error of a model (like that of temperature 
and salinity in this case) is the sum of many independent errors, which by the central limit theorem 
tend to the normal distribution with mean zero and variance σ2. Of course there are exceptions to 
this in the case of dependence or outliers. Because we can reasonably assume a normal distribution 
for the errors of both temperature and salinity, we know if we plot these values on R2 that the 
majority of the points will be in the center with the number of observed points away from the origin 
decaying by the variance of their normal distribution. For an illustration, see a projection of the 
bivariate Gaussian distribution. This is also seen in figure 2. 

The reason I mention the normality of the error distributions for temperature and salinity is because it 
is not possible to appropriately divide this type of resulting cluster structure by hyperplanes unless you 
increase the number of clusters K to some very large amount. In fact, the approximation of a circular 
cluster with a center can be seen in figure 3 as the number of clusters K increases. Given this, I would 
suggest that the authors look at other possibilities of clustering such as kernel K-means where the 
divisions can be made in a functional space. This may also give some reason as to why there is no 
obvious elbow in the distance vs. K graph. 

We agree that in case of an “ideal” numerical model the errors should be independent and tend to 
have normal distribution with mean zero and variance σ2. Error distribution in Fig. 2 has the features 
of Gaussian distribution, but in Table 1 for K=1, the means of dS and dT are neither zero nor equal. 
This already provides information about the model quality. Similar argumentation holds for the STD. 



We cannot agree that approximation of a circular cluster is a good approximation, as the error 
distribution is skewed towards positive dT. In addition, if we assume circular clusters, then we lose 
relevant information about the spatial and temporal quality of the model. Very roughly, if we 
presume that cluster k=4 is one cluster and cluster k=1,2,3 is the other cluster in Figure 5, then we do 
not get information on whether salinity is overestimated or underestimated while temperature is 
“correct” in the southwestern Baltic. In addition, we lose information on the vertical and temporal 
structure of the errors.  

5) K-means clustering does not add any information on the structure of the data. Many of the results 
in section 3.2 can be found without clustering. The spatial locations provided in figure 5 and discussed 
in section 3.2 where overand under- estimates of temperature and salinity occur in the model can be 
found by setting a threshold of over- and under- estimation, say 2 standard deviations away from the 
mean, for each measurement and calculating the proportion of points in the (lat, lon) space that fall 
above or below the set thresholds. 

We disagree that K-means clustering does not add any information on the structure of the data. The 
distribution of data is not Gaussian and using an arbitrary number of STD for threshold is not 
justified. In this application, we have shown that clustering provides meaningful information on the 
spatio-temporal distribution of the model errors. This is relevant for the interpretation of the model 
results and for the future improvement of the model. 

6) The process described in 3.3 just describes the continuation of the K-means algorithm. The K-means 
algorithm begins with a set of random centroids, assigns points to the centroids based on their 
proximity, recalculates the centroids based on the mean, and continues this way until a local minima 
of the inter-cluster distances is reached. If the algorithm is run on a uniformly selected subset of 
points coming from a fixed distribution (which is true in this case), the reassignment will continue 
until a local minima is obtained. If more points coming from the same distribution are added and the 
end centroids are used, the algorithm will continue from its final centroids until it reaches the exact 
clustering structure that is unique to the starting centroids, this is the case with figure 7 (a) (d). If less 
points are added, the structure remains constant (but the same since it corresponds to the same 
starting centroids), this is the case with figure 7 (b) (e) and (c) (f). This does not provide information 
on the stability of the clusters (line 274-275) which depends on changing the starting centroids and 
performing multiple runs of the K-means algorithm. 

We completely agree with this comment. We wanted to show the order of magnitude of comparison 
data that is needed for the assessment of the model in the present application. If the numerical 
model performance is stable, i.e., the data comes from the same distribution, then the location of 
the centroids does not change. But if the model quality “drifts away” from its initial quality, then the 
location of the centroids changes, which will be a warning signal for the uses of a continuously run 
model like the near-real-time ocean forecast model. Because of the last argument, we would like to 
keep the section in the manuscript. 

The sentence (line 274-275) “The rough estimate of the number of comparison points is about 100 
000 for the current model, which shows relatively stable centroids and the stability of the model 
accuracy.” is more correct.  

The use of a random location for initial clusters and performing multiple runs did not change the 
results. 



Additionally, there are some other minor issues with the article such as grammatical issues in the 
switching of ”the” and ”a” as in the first sentence of the abstract, present tense writing should be 
used when describing the work done for this article, and some spelling issues (e.g. line 50).  

The manuscript has gone through proofreading and the errors have been corrected. 

There is a lack of literature on clustering methods with Jain (2010) being the main reference.  

We have added the reference to Hastie et al. (2009) as the main reference: “Therefore, we suggest a 
new method based on the machine learning K-means clustering algorithm (Hastie et al., 2009; Jain, 
2010) that takes advantage of a large set of available data and retains detailed spatial and temporal 
distribution of model errors that can be used for the posterior analysis of model accuracy.” 

Also, “The K-means clustering algorithm is a widely used algorithm in unsupervised machine learning 
(Hastie et al., 2009;Jain, 2010).” 

As I mentioned, I would suggest starting with the book by Friedman, Tibshirani, and Hastie for a 
foundational understanding of unsupervised learning algorithms. 

We have added references to the book by Hastie et al. (2009) where appropriate. We have tested 
several other algorithms and added the sentence to the Summary:  

“Although the tests with the balanced iterative reducing and clustering using hierarchies (Zhang et 
al., 1996), the Gaussian mixture model and K-nearest neighbor algorithm (e.g. Hastie et al., 2009) 
were performed (results not shown), we have implemented the K-means algorithm because of its 
simplicity and robustness.” 

Basically, the same results were obtained with different algorithms. 

  



Answers to reviewer 2 comments 

Dear reviewer, thank you for your valuable comments. Below we have addressed all of your 
concerns. 

My primary worries are as follows: 

1. Clustering techniques are frequently used to evaluate atmospheric models, biogeochemical models, 
and so on. The variables in those models are multidimensional and, to an extent, "colossal." Typically, 
the output of an ocean circulation model is not regarded as a massive dataset. To persuade me to 
experiment with various clustering approaches based on machine learning, the interpretation of the 
clusters should be striking. 

We agree that clustering has been used for the evaluation of the atmospheric, hydrological and 
biogeochemical model outputs, but, to our knowledge, not for the evaluation of model skills.  

In the elaboration of the K-means clustering method for assessment of the ocean general circulation 
model (GETM in particular case) skills, we used two essential variables – salinity and temperature. 
These variables “integrate” temporal and spatial dynamics of the circulation in the water basin that 
has been modeled. Usually, temperature and salinity are measured simultaneously. To form the error 
space of the model, the assumption is that different variables are measured simultaneously. We 
already had more than one million data pairs. In the interpretation of the error clusters, we limited 
ourselves to the main physical features of the Baltic Sea. It is known that the circulation models have 
problems in reproducing the highlighted dynamics “poorly simulated thermocline (increasing vertical 
resolution), Baltic inflow problem (increasing bottom inflow), Danish strait problem (too close to open 
boundary), river temperature problem (no easy solution), SST problem (bulk formula)”. These features 
were clearly shown by the K-means clustering method, which shows the applicability of the method 
in the assessment of model quality.  

In the assessment of atmospheric models, the set of simultaneously measured variables could be 
pressure, temperature, humidity, (wind speed), which form a 4-dimensional error space. Indeed, 
then the number of error quadruplets is much larger. In marine biogeochemical models, essential 
variables are nitrate, phosphate and dissolved oxygen, which are usually measured simultaneously. 
These variables somehow “integrate” the biology and chemistry of the model. In the coupled 
physical and biogeochemical models, it is natural to form a 5-dimensional error space (temperature, 
salinity, nitrate, phosphate and dissolved oxygen) for the assessment of the model system, as 
biogeochemistry also depends on the physics. For different models, geographical region and time 
period, the number of multidimensional error points could be very large.  

In the answer to the general comment 3, we show that by using K-means clustering we obtain 
distribution of the model errors in the southwestern Baltic Sea. Sometimes the model overestimates 
salinity (30%) and sometimes underestimates salinity (30%) there (Fig. 5b). We agree that intuitively 
this is what could be expected. If we include Fig 5e, then the data suggests that salinity could be 
underestimated in winter and overestimated in summer. This information could not be obtained with 
conventional methods without focused efforts. We would like to note that these results are obtained 
by performing the K-means algorithm for the entire Baltic Sea only once. 

L230-232 “Vertical distribution of the error clusters confirms that the share of “good match” errors 
ranges between 0.5 and 0.9 of all data (Fig. 5e). In the surface layer, we have “overestimated salinity” 
and “underestimated salinity” in almost 50% of cases. In comparison with horizontal distribution of 
errors, a large part of these errors probably belong to the Danish straits (Fig. 5b).” 

L245-L247 “Seasonally “overestimated salinity” has a higher share in summer, while “underestimated 
salinity” has a higher share in winter (Fig. 5d). Combining horizontal (Fig. 5b) and seasonal 



distribution of errors (Fig. 5d), we could conclude that the salinity is overestimated in the Danish 
straits in summer and underestimated in winter.” 

L303-L304 “Model accuracy is relatively low in the Danish straits. The model has “underestimated 
salinity” in winter and “overestimated salinity” in summer (bias of 3.44 g kg-1 and standard deviation 
of 1.59 g kg-1) there.” 

In the answer to the general comment 3, we show that time-depth distribution of the model errors 
at BY15 can be obtained by performing the K-means clustering algorithm once for the entire Baltic 
Sea and doing posterior analysis of the model errors at a specific location. Obtaining similar 
information using conventional methods is not straightforward.  

L258-268 ”We extract error profiles from Gotland Deep station BY15, which is widely used for the 
validation of the physical and biogeochemical models of the Baltic Sea. In the upper layer of 60 m, 
the model has “good match” (Fig. 6a,b). There are isolated occasions of 10% in total when the model 
“overestimates temperature” in the seasonal thermocline (Fig. 6b). At the depth range 60-100 m, the 
share of model “underestimating salinity” increases. From a depth of 100 m, the proportion of the 
model that "underestimates salinity" gradually increases with depth. The Howmüller diagram shows 
that there are extended time periods when the model “underestimates salinity” (Fig. 6a). In the 
surface layer, the model has “good match”, although model salinity starts to deviate from the 
measurements from 1995 onwards (Fig. 6c,e). At the bottom, the model reproduces temperature 
very well at the end of 1970s and beginning of 1980s, but as salinity is underestimated, the errors 
belong to the cluster of “underestimated salinity” (Fig. 6d,f). In general, the model has “good match” 
in the water column from 1991 to 2003 (Fig 6a,f). Dynamically, this corresponds to the end of the 
stagnation period and recovery of the bottom salinity and strengthening of the permanent 
halocline.” 

2. Prior impacts on clustering approaches, particularly hierarchical clustering methods, should be 
acknowledged. Without a doubt, comparing hierarchical clustering against centroid-based clustering 
is worthwhile. 

We tried to perform agglomerative clustering for the whole dataset. This required too much 
computer memory and computational time. We performed agglomerative clustering only for the 
surface layer data. There was no difference between the results of the K-means algorithm and the 
hierarchical clustering algorithm (except computational resources) for the surface layer data. Thus, 
we consider that using the K-means algorithm is computationally more feasible than using 
hierarchical clustering.  

With the K-means algorithm we have to select the number of clusters, while with hierarchical 
clustering the distance between clusters should be predefined (Hastie, T., Tibshirani, R., Friedman, J., 
2009. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, 745 pp.), 
which is not straightforward. In the latter case, in order to select the number of clusters, we had to 
plot distribution of the clusters in the error space and decide if the clusters have reasonable 
oceanographic meanings. Usually, dendrograms are used for the visualisation of the results of 
hierarchical clustering, but in our case, with the data number of O(106), the visualisation of the 
results is not straightforward. Using different algorithms for hierarchical clustering might be more 
justified, but a comparison of different clustering algorithms is not within the scope of this paper and 
requires a separate study. 

We have repeated the exercise using Birch algorithms of hierarchical clustering. The results did not 
change. Th main disadvantage of hierarchical clustering methods is that they require more 
computational time and computer resources than the K-means clustering algorithm. 

We added several sentences concerning hierarchical clustering methods. 



L56-57 Introduction “Indeed, other clustering methods could be implemented, e.g., hierarchical 
clustering.” 

L336-338, Summary “Although the tests with the balanced iterative reducing and clustering using 
hierarchies (Zhang et al., 1996), the Gaussian mixture model and K-nearest neighbor algorithm (e.g. 
Hastie et al., 2009) were performed (results not shown), we have implemented the K-means 
algorithm because of its simplicity and robustness.” 

 

3. The cluster interpretation should emphasize the distinct outcomes using the Taylor and target 
diagrams. At the moment, I see no evidence of new information being obtained (my last comment). 

Some preliminary assumptions are needed to perform model validation using the Taylor or target 
diagram. These methods require that existing measurements are somehow spatially or temporally 
grouped, e.g., we select all measurements over a certain geographical area, calculate the statistics 
and present it as one point in the diagrams. This procedure will be applied for different regions or 
depth levels so that the set of points will be displayed in the Taylor diagram. When applying this 
method, the information about model performance within the spatial domain is lost. Using the K-
means clustering algorithm, the spatial and temporal (+seasonal) analysis of the errors is new (Fig. 5), 
for example. In comparison, Kärna et al. (2021) (Kärnä, T., Ljungemyr, P., Falahat, S., Ringgaard, I., 
Axell, L., Korabel, V., Murawski, J., Maljutenko, I., Lindenthal, A., Jandt-Scheelke, S., Verjovkina, S., 
Lorkowski, I., Lagemaa, P., She, J., Tuomi, L., Nord, A., Huess, V., 2021. Nemo-Nordic 2.0: Operational 
marine forecast model for the Baltic Sea. Geoscientific Model Development 14(9), pp. 5731-5749. 
doi:10.5194/gmd-14-5731-2021) used conventional methods for validation of the NEMO-Nordic 2.0 
circulation model in the Baltic Sea. Their results on the spatial distribution of the model errors are 
presented on their Fig. 8, which could be compared with our Fig. 5b.  

The second difference the Taylor and target diagrams have compared to K-means clustering is that in 
the case of the Taylor diagram, all variables are treated independently of the others. For instance, 
the statistics for salinity and temperature are calculated separately and form two points in the Taylor 
and target diagram. In K-means, a location of a single centroid is found, which represents model 
errors for interdependent salinity and temperature errors. 

The K-means algorithm enables to assess the model performance over an entire model domain and 
in time. For instance, Fig. 5. shows that at the eastern side of the Bothnian Sea, in a certain case, the 
model overestimates temperature (cluster k=3) while being more correct in the open part of the 
Bothnian Sea. This information cannot be obtained using the Taylor diagram, unless we calculate 
error statistics for the eastern coastal area of the Bothnian Sea and open Bothnian Sea separately 
and present it in the Taylor diagram.  

As an example, we calculated the salinity and temperature bias for the southwestern Baltic Sea (see 
Fig An1 for the area). The bias for salinity was dS:   0.23 g/kg and for temperature dT:   0.66  ℃. From 
this, we could conclude that the model performs quite well in the southwestern Baltic Sea. Using 
K-means clustering, we showed that in up to 30% of the cases, the model has underestimated salinity 
(k=1; dS=-1.96 g/kg) there, and in up to the other 30% of cases, the model has overestimated salinity 
(k=2; dS=3.44) there (Fig. 5b, Table 1).  



 

Figure An1. The green colour represents the area of the Baltic Sea for which the model temperature 
and salinity bias was calculated. The calculation was performed for all data points that fell into the 
area and time period of the model run (1966-2006). 

In a specific example, presented in Fig. 6a, we evaluate the model performance at the monitoring 
station BY15. The K-means clustering approach, implemented on the whole dataset, shows that 
below the halocline (depth>60-80m) the model underestimates salinity (errors belong to the cluster 
k=1) from 1966 to 1989. From 1990 to 2003, the model has correct salinity but temperature is slightly 
overestimated (errors belong to the cluster k=2). This information cannot be extracted from the 
Taylor diagram, unless we calculate salinity and temperate errors for different depth intervals and 
different time periods, i.e., 1966-1989 and 1990-2003. 

As an example, we calculated vertical profiles of temperature and salinity bias at the monitoring 
station BY15 (Fig. An2). This could be compared with the model performance there, as shown using 
the K-means clustering algorithm (Fig. 6a,b). The information about the model skills at BY15, i.e., 
variations of the model errors in time-depth (Fig. 6a), could not be easily obtained using conventional 
methods. 

 

Figure An2. Vertical profiles of temperature and salinity bias of the model at BY15 calculated for the 
time period of the model run (1966-2006). 



 

4. The Baltic Sea is very special. The salinity is significantly lower than that of other marginal seas, 
and interaction with the open ocean is extremely limited, among other factors. I have my doubts 
about the method applied to the Baltic Sea being universally applicable; yet, this should be discussed. 

We agree that the Baltic Sea is different from other marginal seas and the ocean. Still, we cannot 
follow the argument by the reviewer that the method we propose could not be applied to other seas 
or the ocean. For instance, the same conventional metrics are used for different seas (incl. the Baltic 
Sea) and for the ocean in CMEMS. If the reviewer is concerned with regards to the small salinity 
variability between the world ocean or other coastal seas and the Baltic Sea, then this should not 
impact clustering of the normalized salinity errors. To validate the proposed method for the other 
seas is a separate task. 

As a result, I recommend that the authors pursue two revision strategies for the paper. One possibility 
is to include more model data (sea level, mixed layer depth, currents, sea ice, and possibly heat fluxes 
and runoffs),  

In the current stage of the elaboration of the K-means clustering algorithm for the assessment of the 
general ocean model quality (GETM in particular case), we form an error space using the set of 
simultaneously measured variables (temperature and salinity). Sea level, mixed layer depth, sea ice 
concentration and or thickness and heat fluxes are 3-dimensional (2D in space and time) fields. We 
use temperature and salinity, which are 4D (3D in space and time). Some of the suggested variables 
are not directly measurable (mixed layer depth, heat fluxes with the exception of solar radiation). It is 
rather difficult to obtain simultaneous measurements of sea level height and ice parameters unless 
we are limited to the coastal sea. River runoffs are a completely different type of variable. Currents 
are measured at very selected locations and times and not necessarily simultaneously with 
temperature and/or salinity. We agree that these variables could be included in the assessment of 
the models using K-means algorithm but in future work. 

or to use multiple models (at least two, another one can be CMEMS results). This way, I can 
determine the method's reliability. 

We have used proposed K-means methods for the assessment of model quality in two papers. One is 
published and the other one is revised and sent to the reviewers for the second round. Indeed, both 
of the applications deal with the Baltic Sea. 

In the paper by Kõuts et al. (2021) (Kõuts, M., Maljutenko, I., Elken, J., Liu, Y., Hansson, M., 
Viktorsson, L., Raudsepp, U., 2021. Recent regime of persistent hypoxia in the baltic sea. 
Environmental Research Communications 3(7), 075004. doi: 10.1088/2515-7620/ac0cc4), we used 
the proposed method for the assessment of coupled physical and biogeochemical model reanalyses 
data. The reanalyses data belong to the CMEMS multi-year product. The error pairs were formed for 
salinity and dissolved oxygen. In the paper by Kõuts et al. (2021), both proposed methods (common 
statistics and Taylor diagrams) were used. The paper showed that a more general picture of the 
model performance can be obtained with the proposed K-means method than by using the Taylor 
diagram.  

In the paper by Raudsepp et al (under the second round of review), we assessed the quality of the 
NEMO-Nordic 2.0 model performance (used in the CMEMS for near-real-time product) in 
reproducing surface temperature and salinity fields in comparison with ferry-box measurements 
along the ship track in the Baltic proper. The results showed that neither model nor ferry-box data 
can be trusted at the entrance area to the ports, especially in the southern Baltic Sea. This result 
could be intuitive, but in the study we have shown it based on the data. 



We provided reference to the paper by Kõuts et al. (2021) in the revised manuscript and added a 
sentence. 

L371-372 “An application of the method for the assessment of a coupled physical and 
biogeochemical model of the Baltic Sea is presented in Kõuts et al. (2021).” 

Another possibility is to incorporate additional clustering methods, such as agglomerative hierarchical 
clustering (bottom-up), divisive hierarchical clustering (top-down), or 'soft' K-means clustering 
(distribution-based) vs. rule-based methods (geographic areas, etc.). Clustering evaluation enables 
the acquisition of beneficial best-practices for clustering analysis. I believe that the work in these two 
areas does not require much time, and hence I recommend a major revision. 

We have done the experiments with agglomerative hierarchical clustering and with divisive 
hierarchical clustering. Our main concern in applying these methods is that these methods are not as 
robust as the K-means clustering. In addition, these methods need much more computational 
resources. We used the algorithms suggested by reviewer 1 and found no significant differences in 
the results. Rule-based algorithms have assumptions that follow prior knowledge of the rules, i.e., 
geographical regions, or use the other machine learning algorithm to define the rules. 

In conclusion, the proposed method is simple and robust, feasible in terms of computer resources 
required and contains information for general assessment of the model quality as well as for task 
oriented posterior analysis. 

L335-338 “In general, any other partitional clustering algorithm can be used instead of K-means for 
the clustering of multivariate model errors. Although the tests with the balanced iterative reducing 
and clustering using hierarchies (Zhang et al., 1996), the Gaussian mixture model and K-nearest 
neighbor algorithm (e.g. Hastie et al., 2009) were performed (results not shown), we have 
implemented the K-means algorithm because of its simplicity and robustness.” 

Introduction: 

P3, L40-L41: The rationale for using clustering methods is unclear. The shortcoming is that those 
papers did not include enough information in data? What is 4 dimensional information embedded? 
For instance, vertically, even if the vertically resolution in the observation is 1 cm, but you still bin to 
the resolution of 5m, don’t you? You did not include more information than traditional methods. I feel 
that the problem of standard statistical metrics (Taylor and target diagram) is their inability to 
express clustered error statistics, such as error in climatology, seasonal, or diurnal signals. By the way, 
what are your criteria for defining ‘the huge dataset’? 

We have rewritten and restructured the Introduction to be more clear. 

We have deleted sentence with the term “4-dimensional information embedded”. 

We have interpolated the model data to the exact location and time of the measurements as they 
are in the database. 4-dimensional information means that error pairs can be mapped back to the 
(x,y,z,t) space for posterior analysis after clustering is done. The model bias is assigned to each 
location and time of the error pair according to the coordinates of the centroid to where the error 
pair belong. Vertically 5 m bins and horizontally a 25 km2 grid are used for the analysis of the 
clustered errors. If the vertical resolution of the measurements is 1 cm, then the same resolution is 
kept for the errors and model validation. 

See answers to the general comments 1 and 3 where we explain in more detail the advantages of the 
clustering algorithm compared to conventional methods. We refer to Fig. 5 in our study and Fig. 8. by 
Kärnä et al. (2021) as well as the paper by Kõuts et al. (2021) to come to a conclusion regarding the 
information obtained by traditional methods and the method proposed by us. Much more 
information can be obtained from the proposed method during postprocessing. Our aim was to show 



how the method performs in obtaining detailed information on the model quality over the whole 
model domain and time span of the model.  

In the current context, “the huge dataset” is a dataset where the implementation of machine 
learning methods helps to extract and understand the information. We do not use term “huge 
dataset” in the revised manuscript. 

P3, L49: It appears as though this ‘K-means clustering algorithm’ has fallen from the sky. This section 
should contain an introduction to conventional clustering algorithms. There is something missing at 
the start of L50. 

It has not fallen from the sky. It has been adopted from clustering literature/text books (e.g. Hastie et 
al., 2009), where it has been straightforwardly introduced as robust and easily understandable to a 
wider audience.  

L51-57 “Ideally, researchers like to know the model accuracy for the whole model domain and time 
period considered. Therefore, we suggest a new method based on the machine learning K-means 
clustering algorithm (Hastie et al., 2009; Jain, 2010) that takes advantage of a large set of available 
data and retains detailed spatial and temporal distribution of model errors that can be used for the 
posterior analysis of model accuracy. This method belongs to the category of multivariate 
comparison. According to Hastie et al. (2009): “The K-means algorithm is one of the most popular 
iterative descent clustering methods. It is intended for situations in which all variables are of the 
quantitative type”. Indeed, other clustering methods could be implemented, e.g., hierarchical 
clustering.”  

P3, L60-64: This section should be in the ‘discussion or perspective’. Why in the ‘introduction’? 
Perhaps some previous efforts have already made used of it in an operational mode? Then they 
should be cited. 

To our knowledge, there have not been previous efforts in an operational mode. We have rewritten 
this section to be suitable for the Introduction as follows:  

L70-75 “Additionally, we implement the learning-predicting sequence in the form of clustering 
stability tests. The learning period consists of the model run for a certain period and error clustering. 
The learning period is for determining the number of clusters and the coordinates of the centroids. 
Based on the error clustering of the learning period, we can presume that a similar error distribution 
is valid for the forward model simulation results. During the predicting period, new available errors 
are added to the clusters. The coordinates of the centroids and other metrics are updated. In the 
operational applications, the value of this process lies in the fact that the exploitation of model 
simulation results can start before new validation is completed.” 

P3, L68-70: This article discusses the results for the entire Baltic Sea. Other validation studies of GETM 
in the Baltic Sea, not just in the Gulf of Finland, should be cited. 

We have deleted these sentences and this paragraph has been rewritten as follows:   

L76-78 “We apply proposed K-means clustering methods for the assessment of the model quality of 
the General Estuarine Transport Model (GETM; Burchard and Bolding, 2002) of the Baltic Sea. In this 
particular application, the model is used for the hindcast simulation of the general circulation of the 
Baltic Sea in 1966–2006 (Maljutenko and Raudsepp, 2019).” 

Materials and Methods: 

P4 Why this subsection 2.1 is in ‘Methods’? It should be in the introduction part, and review of the 
Baltic Sea dynamics should be included, with a reference to the discussion in the subsequent section 
on ‘adopting this method with caution’ in other seas. 



The subsection 2.1 is moved to the introduction, L78-105, and we include a short review of the 
dynamics of the Baltic Sea. Still, it is somewhat unclear why this method cannot be adopted to other 
seas. In a future study, it is aimed to apply this method to other European seas included in CMEMS. 

 

P6, L120, What is meant by a ‘preliminary’ check? That is, by examining Fig. 1a? 

Yes. We have removed the sentence. 

P6, L127, ‘This complicates data collection.’ What does it mean? Perhaps you mean ‘gathering of data 
during winter is very complicated’? 

Yes. We rewrote it as suggested. 

L137-138 “Gathering data during winter is very complicated due to seasonal ice coverage of the 
Baltic Sea (Raudsepp et al., 2020).” 

P6, L140, ‘The squared Euclidean distance’ is also coming from sky. Is that different clustering 
measures should be introduced and the reason to not choose nonEuclidean measures should be 
clearly stated. 

The square Euclidian distance is commonly used as the first choice of the measure of the distance, if 
not justified otherwise. We would like to note that we have normalized the salinity and temperature 
errors to make clustering independent of the data units. Thus, the clustering is performed on 
normalized errors, but the results are presented in original units. This is also stated in the 
manuscript. For clarification, we have added a sentence on  why we use the squared Euclidean 
distance:  

L151-154 “The squared Euclidean distance was used as the measure of the distance between data 
points and the centroid coordinates of the cluster. The squared Euclidean distance measured from 
the cluster centroid is the most commonly used partitioning criterion for continuous data (e.g., 
Kononenko and Kukar, 2007; Hastie et al., 2009).” 

Kononenko, I., Kukar, M., 2007. Machine Learning and Data Mining. Elsevier. 454 pp. 

Citation from Hastie et al., (2009) “The K-means algorithm is one of the most popular iterative 
descent clustering methods. It is intended for situations in which all variables are of the quantitative 
type, and squared Euclidean distance d(xi ,xi ′ ) = Xp j=1 (xij − xi ′j ) 2 = ||xi − xi ′ ||2 is chosen as the 
dissimilarity measure.” 

Results: 

P12, Figure5d, the dramatic change of clusters in recent years, e.g. big increase of K1, is it because of 
the smoothing you applied? BTW, add the meaning of pK in caption. 

The dramatic change of clusters is not due to smoothing. It can be seen in Fig. 1b that number of 
measurements has increased at that time. This increase is mainly caused by an increase in the 
number of measurements in the winter season. In winter, large volume inflows to the Baltic Sea 
occur. The model underestimates the salinity of these inflows and spreading of the water 
downstream in the Baltic Sea, which results in an increase of the share of cluster k=1. We have added 
the meaning of pK in the caption: 

“The share, p(k) represents the share of the error points belonging to the cluster k, is calculated as 
explained in Section 2.4.” 

P16, Section 3.4: Interpretation of the clusters. My concern 3 reflects the issue raised in this section. 
Almost all of the problems in this section can be well-defined using traditional methods and have 



generally recommended solutions, e.g. poorly simulated thermocline (increasing vertical resolution), 
Baltic inflow problem (increasing bottom inflow), Danish strait problem (too close to open boundary), 
river temperature problem (no easy solution), SST problem (bulk formula).  

In the answers to the general comments 1 and 3, we explain the advantages of the clustering 
algorithm compared to the conventional methods in more detail.” 

We have provided evidence that our method provides information about model quality over the 
entire spatial modeling domain and in time. It takes into account interdependent variables 
(temperature and salinity) that describe the circulation model performance in general. Also, we have 
shown that posterior analysis can provide information on model performance in a specific area and 
time period. All this information could probably be obtained using Taylor or targeted diagrams with 
considerable effort. Meanwhile, the proposed method is simple and robust. The interpretation of the 
results is straightforward concerning intuitive knowledge of the modelers, but it provides 
quantitative measures. Posterior analysis could fetch different types of information on a particular 
region of the model and a time period of interest. In this paper, we showed a fraction of posterior 
analysis of the clustered errors. 

Computationally, this method is feasible and can be applied on “colossal” datasets. We have 
provided postprocessing and interpretation of the results in different levels. 

Nothing novel! I would anticipate more new information if authors include more data than T and S. 
While one may argue that this is not critical, if not the primary need of GMD, it gives me, as a 
modeler, the feeling that this method is unnecessary. 

We present the new method here. We do not investigate the new findings from the model. That is 
why we selected a model where we know the main errors a priori. By using K means single-handedly, 
we have identified all known errors without examining each region and depth layer separately (see. 
Maljutenko and Raudsepp 2014). Any posterior analysis at any region or time period under interest is 
possible. 

 


