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Abstract. Convection influences climate and weather events over a wide range of spatial and temporal scales. Therefore, 

accurate predictions of the time and location of convection and its development into severe weather are of great importance. 

Convection has to be parameterized in Global Climate Models and Earth System Models as the key physical processes occur 

at scales much lower than the model grid size. This parameterization is also used in some Numerical Weather Prediction 10 

models (NWPs) when convection is not explicitly resolved. The convection schemes described in the literature represent the 

physics by simplified models that require assumptions about the processes and the use of a number of parameters based on 

empirical values. These empirical values and assumptions are rarely discussed in the literature. The present paper examines 

these choices and their impacts on model outputs and emphasizes the importance of observations to improve our current 

understanding of the physics of convection. The focus is mainly on the empirical values and assumptions used in the activation 15 

of convection (trigger), the transport and microphysics (commonly referred to as the cloud model) and the intensity of 

convection (closure). Such information can assist satellite missions focused on elucidating convective processes (e.g. the 

INCUS mission) and the evaluation of model output uncertainties due to spatial and temporal variability of the empirical values 

embedded into the parameterizations.  

 20 
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Table 1. List of acronyms.  

Acronym Meaning Acronym Meaning 
ADHOC Assumed-Distribution Higher-Order Closure HWRF Hurricane Weather Research and Forecasting model 
ALARO Aire Limitée Adaptation/Application de la 

Recherche à l’Opérationnel (ALARO). 
ICON Icosahedral Nonhydrostatic model 

ALE Available Lifting Energy IFS Integrated Forecasting System 
ALP Available Lifting Power IN 

INCUS              
Ice Nuclei 
Investigation of Convective Updrafts Mission 

AM4.0 Atmospheric Model version 4 IOP Intensive Observation Period 
AOT Aerosol Optical Thickness ITCZ Intertropical Convergence Zone 
ARM Atmospheric Radiation Measurement KF Kain-Fritsch scheme 
ARW Advanced Research WRF KIM Koel isolatie maatschappij (The Netherlands Institute for 

Transport Policy Analysis) 
AS Arakawa-Schubert scheme KWAJEX Kwajalein Experiment 
ATBD Algorithm Theoretical Basis Documents LBN Level of Neutral Buoyancy 
ATEX Atlantic Trade-Wind Experiment LCL Lifting Condensation Level 
BCL Buoyant Condensation Level LFC Level of Free Convection 
BMJ Betts-Miller-Janjić LFS Level of Free Sinking 
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Acronym Meaning Acronym Meaning 
BRAMS Brazilian developments on the Regional 

Atmospheric Modeling System 
LMDZ Laboratoire de Météorologie Dynamique Zoom 

BOMEX Barbados Oceanographic and Meteorological 
EXperiment 

LWC Liquid Water Content 
CA Cellular Automaton MIROC Model for Interdisciplinary Research on Climate 
CAM Community Atmosphere Model MJO Madden-Julian Oscillation 
CAPE Convective Available Potential Energy MM5 Mesoscale Model version 5 
CCM3 Community Climate Model version 3 MMF Multiscale Model Framework 
CCN Cloud Condensation Nuclei MP Microphysics Parameterization 
CCSM Community Climate System Model NAM North American Mesoscale model 
CDNC Cloud Droplet Number Concentration NAVGEM Navy Global Environmental Model 
CESM Community Earth System Model NCAR National Center for Atmospheric Research 
CFSv2 Climate Forecast System version 2 NCEP National Centers for Environmental Prediction 
CIN Convective Inhibition NWP Numerical Weather Prediction 
CISK Conditional Instability of the Second Kind PBL Planetary Boundary Layer 
CLUBB Cloud Layers Unified By Binomials PCAPE Integral over pressure of the buoyancy of an entraining 

ascending parcel with density scaling 
COARE Coupled Ocean-Atmosphere Response 

Experiment 
PDF Probability Density Function 

CP Cumulus Parameterization PML Potential Mixed Layer 
CRCP Cloud Resolving Convective Parameterization QE Quasi-Equilibrium 
CRM Cloud Resolving Model RACORO Routine AAF (ARM Aerial Facility) CLOWD (Clouds with 

Low Optical Water 
Depths) Optical Radiative Observations 

CSRM Cloud System Resolving Model RAS Relaxed Arakawa-Schubert scheme 
CWF Cloud Work Function RCM Regional Climate Model 
DBL Downdraft Base Layer RH Relative Humidity 
dCAPE Dynamic Convective Available Potential 

Energy 
RICO Rain In Cumulus over the Ocean field campaign 

DDL Downdraft Detrainment Level SAS Simplified Arakawa-Schubert scheme 
DualM Dual mass flux framework SCAM Single-column Community Atmosphere Model 
ECHAM General circulation model developed by the 

Max Planck Institute for Meteorology 
SCM Single Cloud Model 

ECMWF European Centre for Medium-Range Forecasts SGP97 Southern Great Plains 97 
EDMF Eddy Diffusivity Mass Flux SILHS Subgrid Importance Latin Hypercube Sampler 
EL Equilibrium Level SNU Seoul National University 
ENSO El Niño-Southern Oscillation SP Super-Parameterization 
EPS Ensemble Prediciton System   
ESM Earth System Model SPCZ South Pacific Convergence Zone 
GARP Global Atmospheric Research Program SST Sea Surface Temperature 
GATE GARP Atlantic Tropical Experiment STOMP STOchastic framework for Modeling Population dynamics 

of convective clouds 
GCM Global Circulation/Climate Model TC Tropical Cyclone 
GEOS-5 Goddard Earth Observing System, Version 5 

model 
TKE Turbulent Kinetic Energy 

GFDL Geophysical Fluid Dynamics Laboratory TWP-ICE Tropical Warm Pool – International Cloud Experiment 
GFS Global Forecast System UIUC University of Illinois, Urban–Champaign 
GISS GCM Goddard Institute for Space Studies Global 

Climate Model 
UM Unified Model 

GOAmazon Green Ocean Amazon field campaign UNICON Unified Convection scheme 
HadGEM3 
GA2.0 

Hadley Centre Global Environmental model 
Global Atmosphere version 2 

USL Updraft Source Layer 
HCF Heated Condensation Framework WRF Weather Research and Forecasting model 
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1 Introduction 

Numerical Weather Prediction models, Global Climate Models, and Earth System Models (NWP, GCMs, and ESMs) generate 70 

precipitation mainly through two parameterizations: microphysics of precipitation (MP hereafter) and cumulus 

parameterization (CP) schemes. They produce what is known as large-scale precipitation and convective precipitation, 

respectively. While other schemes, such as the planetary boundary layer (PBL) parameterization used to parameterize 

turbulence within the PBL without accounting for moist convection also affect precipitation occurrence, the especially intricate 

processes by which water vapor becomes cloud droplets or ice crystals and then liquid or solid precipitation are mainly modeled 75 

by the two former modules.  

The empirical values and assumptions embedded in the MP were explored in Tapiador et al. (2019a). The goal of the present 

paper is to provide a comprehensive account of the empirical choices and assumptions behind the representation of convective 

precipitation in models. There are indeed several reviews thoroughly discussing the empirical values and assumptions in 

convective models (e.g. De Roode et al. 2012), but they are generally focused on a particular parameter. To the best of our 80 

knowledge, there is no such extensive review of the empirical values and assumptions in the convection schemes available in 

the literature. Also, excellent recent reviews describing convection schemes already exist, namely Arakawa (2004) or Plant 

(2010), but the empiricisms in their physics have been rarely discussed. This paper aims to fill that void. 

The scientific interest of our endeavor is twofold. First, it can assist dedicated satellite missions such as the Investigation of 

Convective Updrafts (INCUS) mission, a new Earth Venture Mission-3 (EVM-3) of three SmallSats expected to be launch in 85 

2027 that aims to increase our knowledge of precipitation processes, and specifically on the many nuances behind convection 

(Stephens et al. 2020). Indeed, INCUS aims to advance our present understanding and modeling of convection on the directions 

identified in the ‘decadal survey’ (cf. Jakob, 2010; National Academies of Sciences, Engineering and Medicine, 2018, hereafter 

‘decadal survey’). The precise description and rationale behind the empirical parameters in the parameterization of convection 

can help INCUS and similar missions to focus on the key parameters, and to analyze their impacts on weather and climate 90 

models.  

Another science goal of our review is to pinpoint the more relevant empirical values so systematic sensitivity studies can be 

readily carried out. We exemplify the latest goal showing that the spread of a perturbed ensemble of just a few parameters can 

be substantial. Thus, we have used the European Centre for Medium-Range Forecasts (ECMWF) Integrated Forecasting 

System (IFS) to perform a sensitivity experiment with seven parameters (organized entrainment, entrainment for shallow 95 

convection, turbulent detrainment, adjustment time, rain conversion, momentum transport, and shallow vs deep cloud 

thickness). While this is a small subset of the many parameters we have identified in this review, and the experiment is intended 

as an illustration of the spread in the simulations for two tropical storms, the case invites to more systematic runs in both space 

(global coverage) and time (decadal simulations) over the whole empirical set of parameters of any given model. The spread 

of the results will help to gauge the uncertainties due to the empiricisms embedded in the convection modules, and to constraint 100 

those through dedicated campaigns and targeted observations.  
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Precipitation is arguably the most important component of the water cycle. Extreme hydrological events in the form of floods 

are responsible for the loss of thousands of lives every year and great damage to property, while droughts affect water 

resources, livestock, and crop production. Both extremes represent important threats for human life and developing economies 

(e.g., Trenberth, 2011; Pham-Duc et al., 2020). Changes in the hydrological cycle also affect human activities such as the 105 

production of electricity in hydropower plants, where a better optimization of electricity production depends on water input 

(García‐Morales and Dubus, 2007; Tapiador et al., 2011). Precipitation is also a key environmental parameter for biota. The 

types of vegetation and animal life that exist in a certain area are conditioned by temperature but even more by precipitation. 

Changes in the precipitation regime alter plant growth and survival and consequently impact the food chain (McLaughlin et 

al., 2002; Choat et al., 2012; Barros et al., 2014; Deguines et al., 2017). Prolonged droughts may increase the risk of wildfires, 110 

with the associated loss of local species (Holden et al., 2018). Therefore, it is not surprising that providing an accurate 

representation of precipitation in models is an active research topic. Specifically, in the climate realm it is already known that 

the effects of climate change will strongly modify the distribution and variability of precipitation around the world (Easterling 

et al., 2000; Dore, 2005; Giorgi and Lionello, 2008; Trenberth, 2011), posing many risks to life and human activities (Patz et 

al., 2005; McGranahan et al., 2007; IPCC, 2014; Woetzel et al., 2020). Thus, it is important to provide an explicit account of 115 

how models produce rain and snow in order to fully understand the outputs of the simulations.  

The paper is organized as follows. A brief note on model parameterization, tuning, and the importance of convection follows 

(Sect. 1.1 and 1.2). Then, the main strategies to model cumulus convection are briefly presented to provide the framework to 

the rest of the paper (Sect. 2). The core of the review is in the following three sections, which present the assumptions and 

empirical values in the trigger (Sect. 3), the cloud model (Sect. 4) and the closure of the scheme (Sect. 5). The paper concludes 120 

with notes and considerations on the topic, bringing together the most important results. The acronyms used through the paper 

may be found in Table 1. 

1.1 Model parameterizations 

Parameterizations in numerical models address the fact that some significant physical processes in nature occur at scales much 

lower than the grid size used in models (Arakawa and Schubert, 1974; Stensrud, 2007; McFarlane, 2011). That is the case of 125 

convection, where spatial resolutions of at least 100 m are required to realistically solve its dynamics (Bryan et al., 2003). 

However, typical horizontal grid resolutions in current models range from a kilometer scale for high resolution NWP applied 

to a particular area, to dozens of kilometers in global NWPs, GCMs, and ESMs. With these model grids, convection is a 

subgrid-scale process not explicitly resolved. The physics is then represented by a simplified model that requires assumptions 

about the processes and the use of several parameters based on empirical values. These are used as thresholds, constraints, or 130 

mean values of a number of processes, whereas the former simplification requires a compromise between reducing complexity 

and a fair representation of the atmosphere. 

While sometimes neglected and seldom explicit, tuning is an integral procedure of modeling (Hourdin et al., 2017; Schmidt et 

al., 2017; Tapiador et al., 2019a, b). It consists of estimating sensible values for the empirical parameters to reduce the 
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discrepancies between model outputs and observations. An example of these discrepancies is shown in Fig. 1 and Fig. 2. 135 

Hence, tuning may have a significant influence on model results and can help identify the parts of the model that need further 

attention. However, blind tuning can mask fundamental problems within the parameterization, leading to non-realistic physical 

states of the system, compensating for errors that translate into an inappropriate budget equilibrium, or affect other metrics 

(Tapiador et al., 2019a). This is particularly important for climate models, since projections and simulations of future climates 

always include the ceteris paribus assumption (Smith, 2002), i.e. the tenet that in the future the multiple feedbacks between 140 

the many processes will operate in the same way as in the present.  

As stated in Couvreux et al. (2021), different approaches have been proposed to avoid tuning, including the use of convection 

permitting models, or machine learning approaches that replace some parameterizations by neural networks. In the former 

approach, the high spatial and temporal resolutions of the model allow to simulate convection directly without resorting to 

parameterization. Couvreux et al. (2021) proposed a new method that performs a multi-case comparison between Single Cloud 145 

Models (SCM) and Large Eddy Simulation (LES) to calibrate parameterizations. The method uses machine learning without 

replacing parameterizations due to their important role in the production of reliable climate projections. Indeed, the computing 

power required to perform global, centennial ensemble simulations below kilometer resolution and under several 

anthropogenic forcings would be enormous, so improving the parameterization of convection schemes still is a thriving 

research field, as described below.  150 

 

Figure 1. Comparison between simulated 6-hour accumulated surface liquid precipitation with the New Tiedtke convection parameterization 

in the WRF model using GFS initial and boundary conditions (cumulus option 16 in WRF, left) and GPM IMERG Final run (right) for 

Typhoon Megi on 2016/09/25 from 18.00 UTC. The accumulated precipitation includes cumulus, shallow cumulus and grid scale rain. The 

domain is located over the Philippine Sea with a horizontal grid size of 10 kilometers. Radiation scheme: RRTMG shortwave and longwave 155 
schemes, boundary layer scheme: Mellor-Yamada-Janjic scheme, microphysics scheme: NSSL 2–moment scheme, land surface option: 

unified Noah land surface model, surface layer option: Eta similarity scheme. Spinning time: 24 hours. The typhoon was not seeded. 
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1.2 Convection: a key process in models 

There is a wide range of recent research topics in convection. These topics include machine learning to parameterize moist 

convection (e.g., Gentine et al., 2018; O’Gorman and Dwyer, 2018; Rasp et al., 2018); stochastic parameterizations of deep 160 

convection (e.g., Buizza et al., 1999; Majda et al., 1999, 2001; Majda and Khouider, 2002; Khouider et al., 2003; Majda et al., 

2003; Shutts, 2005; Plant and Craig, 2008; Dorrestijn et al., 2013; Khouider, 2014; Wang et al., 2016); the use of convective 

parameterization on “gray zones” (e.g., Wyngaard, 2004; Kuell et al., 2007; Mironov, 2009; Gerard et al., 2009; Yano et al., 

2010; Mahoney, 2016; Honnert et al., 2020); aerosols and their influence on convection (e.g., Heever and Cotton, 2007; Storer 

et al., 2010; Heever et al., 2011; Morrison and Grabowski, 2013; Grell and Freitas, 2014; Kawecki et al., 2016; Peng et al., 165 

2016; Han et al., 2017; Grabowski, 2018); microphysics impacts (e.g., Grabowski, 2015); impact of new cumulus entrainment 

(e.g., Chikira and Sugiyama, 2010; Lu and Ren, 2016); orographic effects on convection (e.g., Panosetti et al., 2016); new 

mass flux formulations (e.g., Gerard and Geleyn, 2005; Piriou et al., 2007; Guérémy, 2011; Arakawa and Wu, 2013; Park, 

2014; Grell and Freitas, 2014; Yano, 2014; Gerard, 2015; Kwon and Hong, 2017; Han et al., 2017); large eddy simulations 

(LES) (e.g., Siebesma and Cuijpers, 1995; Brown et al., 2002; De Rooy and Siebesma, 2008; Heus and Jonker, 2008; Neggers 170 

et al., 2009; Dawe and Austin, 2013) and scale-aware cumulus parameterization (e.g., Kuell et al., 2007; Arakawa et al., 2011; 

Arakawa and Wu, 2013; Grell and Freitas, 2014; Zheng et al., 2016; Kwon and Hong, 2017; Wagner et al., 2018).  

Such a wealth of papers illustrates the strength of this research topic in a vast number of fields. Of these, developing 

parameterization schemes for models is a thriving subfield, with several teams advancing the field (see Sect. 2 below). 

Difficulties persist, however. Convective processes have been identified in the latest decadal survey as a major source of 175 

uncertainty  and dedicated efforts are needed to fill the gaps in our present knowledge of the processes involved. Owing to the 

influence of convection on climate and weather events over a large range of spatial and temporal scales, one of the most 

important objectives of the decadal survey is to improve the predictions of the timing and location of convective storms, and 

their evolution into severe weather. Besides the drawbacks associated with the spatial resolution, the multiscale interactions 

leading to the organization and evolution of convective systems are difficult to observe and represent. Improving the observed 180 

and modeled representation of natural, low-frequency modes of weather/climate variability was also identified in the decadal 

survey as one of the most important challenges of the coming decade. Including interactions between large-scale circulation 

and organization of convection such as the Madden–Julian Oscillation (MJO) or El Niño–Southern Oscillation (ENSO) aims 

to improve predictions by 50 % at lead times of 1 week to 2 months, which will have a high societal impact. It is therefore 

essential to further understand the physics and dynamics of the underlying processes, currently described with simple 185 

parameterizations in many models. Advanced observations of atmospheric convection and high-resolution models are also 

needed. While models will likely increase their nominal resolution in the next decade, it is also likely that global, century-long 

simulations from multi-ensembles under different assumptions will need to resort to parameterizing convection to reduce the 

computational burden. 
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 190 
Figure 2. Simulated 6-hour accumulated surface liquid precipitation for Typhoon Megi without using a CP (upper left) and using five 

different CPs in the WRF model. The accumulated precipitation includes cumulus, shallow cumulus, and grid scale rain. The simulations 

start on 2016/09/25 at 18.00 UTC. The domain is located over the Philippine Sea with a horizontal grid size of 10 kilometers. Radiation 

scheme: RRTMG shortwave and longwave schemes, boundary layer scheme: Mellor-Yamada-Janjic scheme, microphysics scheme: NSSL 

2–moment scheme, land surface option: unified Noah land surface model, surface layer option: Eta similarity scheme. Spinning time: 24 195 
hours. GFS data were used to perform these simulations. The typhoon was not seeded. 
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2 Overview of the main schemes in cumulus convection modeling 

Soon after Charney and Eliassen (1964), and Ooyama (1964) introduced the idea of cumulus parameterization, two approaches 

emerged: the convergence and the adjustment schemes (Arakawa, 2004). Later, a new scheme was introduced by Ooyama 

(1971): mass-flux parameterization. Despite all these schemes attempting to explain the interaction between cumulus clouds 200 

and the large-scale environment, the choice of empirical values for certain parameters and the simplifications in the physics 

yield different convective parameterizations and strategies. Indeed, as shown in Fig. 2 for the 6-hours total accumulated 

precipitation for Typhoo Megi, even today model outputs look different depending on the cumulus parameterization used. 

Many operational weather models and most climate models still use updated version of schemes described in the 1980s and 

1990s. However, in recent years, new developments have emerged such as parameterizations including stochastic elements in 205 

the cumulus scheme, scale-aware approaches or the addition of processes such as cold pools, among others (Rio et al., 2019). 

Many of these new schemes have been developed to simulate convection across the so-called gray zones, i.e., zones where 

traditional convective parameterizations are no longer valid but convection cannot be yet resolved explicitly (Wyngaard, 2004). 

Different treatments for shallow and deep convection have been traditionally used in convection parameterizations. However, 

this trend has changed towards a unified treatment in recent years based on the seamless transition between shallow and deep 210 

convection observed in nature (e.g., Park, 2014). 

As of 2021, the main cumulus convection schemes publicly available for NWPs are convergence schemes, adjustment 

schemes, mass flux schemes, cloud system resolving models (CSRM), super-parameterization (SP), PDF-based schemes, 

unified models, scale-aware and scale-adaptive models, and models that account for convective memory and spatial 

organization The purpose of this paper is not to compare the performances of the schemes but to make explicit and investigate 215 

their empirical values and assumptions, so the focus of the following section is on these. The other drive of the paper, the 

assumptions in convective parameterizations, concern the trigger model, the transport and microphysics, commonly referred 

to as the cloud model in classical convection schemes, and the closure of the scheme (Fig. 4 right). These are also described 

in the sections below. 

 220 
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Figure 3. Simulated 24-hours position and pressure for Typhoon Megi (up) and Typhoon Chaba (down) using 15 ensembles in the ECMWF 

IFS model at 18 kilometers horizontal grid size. Each marker represents one ensemble member. Square markers indicate observations. The 

simulations start on 2016/09/26 at 06.00 UTC for Typhoon Megi and on 2016/10/03 at 00.00 UTC for Typhoon Chaba. Figures on the left 225 
depict observations (obs) and perturbed initial conditions (pert init conds), while figures on the right show 7 perturbed convection parameters 

(pert conv param) using the ECMWF Stochastically Perturbed Parameterization (SPP). The perturbed parameters are: organized 

entrainment, entrainment for shallow convection, turbulent detrainment, adjustment time, rain conversion, momentum transport, and shallow 

vs deep cloud thickness. 

 230 
Figure 4. Schematic ensemble of cumulus cloud (left) and bulk convection scheme (right) showing the main components of a bulk 

convection scheme: trigger, updraft, downdraft, entrainment, detrainment, closure, conversion of cloud water to rainwater, precipitation and 

evaporation, and subsidence. Schemes based on Arakawa and Schubert (1974, left) and Bechtold (2019, right). 
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2.1 Convergence schemes: the key role of the total moisture convergence parameter 

Convergence schemes consider that synoptic scale convergence destabilizes the atmosphere, while the heat released through 235 

condensation in cumulus clouds stabilizes it. Typical examples of this approach are Charney and Eliassen (1964), Ooyama 

(1964) and Kuo (1974). Charney and Eliassen (1964) did not use cloud models to explain these interactions. Instead, the 

concept of conditional instability of the second kind (CISK) was introduced. In the Tropical Cyclone (TC) case, CISK states 

that cyclones provide moisture that maintains cumulus clouds, and cumulus clouds provide the heat that cyclones need. 

Ooyama (1964) used a similar formulation, but represented the heating released through condensation in cumulus clouds in 240 

terms of a mass flux and considered the entrainment of ambient air. Kuo (1965, 1974) used a simple cloud model scheme to 

describe the interaction between a large-scale environment and cumulus clouds. One of the key assumptions in this scheme is 

that the total moisture convergence can be divided into a fraction 𝑏,	which is stored in the atmosphere, and the remaining 

fraction (1 − 𝑏), which precipitates and heats the atmosphere. This parameter was further modified by Anthes (1977), who 

proposed a relationship between 𝑏 and the mean relative humidity (RH) in the troposphere, with 𝑏 ≤ 1. In the evaluation of 245 

rainfall rates using the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) scale phase III, 

Krishnamurti et al. (1980) obtained the most realistic precipitation rates for 𝑏 ≈ 	0 for Kuo scheme (Kuo 1974). This value of 

b is not realistic as it implies that no moisture is stored in the atmosphere. In a later paper, Krishnamurti et al. (1983) introduced 

an additional subgrid-scale moisture supply to account for the observed vertical distributions of heat and moisture that the Kuo 

scheme failed to reproduced, as well as to address the major limitation of 𝑏 = 0 reported in Krishnamurti et al. (1980). The 250 

total moisture supply was expressed as 𝐼 = 	(1 + 𝜂)𝐼!, with 𝐼! the large-scale moisture supply. The authors used a multiple 

regression approach to find the values of 𝑏 and 𝜂. Another approach consists of using the wet-bulb characteristics to locally 

determine the partition between precipitation and moistening (Geleyn, 1985). 

Due to its formulation, the Kuo scheme cannot produce a realistic moistening of the atmosphere and cannot represent shallow 

convection. Moreover, it assumes that convection consumes water and not energy, which violates causality (Raymond and 255 

Emanuel, 1993; Emanuel, 1994). Despite these drawbacks, it can produce acceptable results in various applications (e.g., Kuo 

and Anthes, 1984; Molinari, 1985; Pezzi et al., 2008), such as in GCMs and NWP models (e.g., Rocha and Caetano, 2010; 

Mbienda et al., 2017). This convective parameterization scheme demands the least computational power and is thus sometimes 

used for large, centennial simulations. 

2.2 Adjustment schemes: two strategies to remove instability 260 

In adjustment schemes, the atmospheric instability is removed through an adjustment towards a reference state. Therefore, the 

physical properties of clouds are implicit and no cloud model has to be explicitly specified. The first proposed adjustment 

scheme was the moist convective adjustment by Manabe et al. (1965), also known as the hard adjustment. In this 

parameterization, moist convection occurs if the air is supersaturated and conditionally unstable. The instability is removed 

through an instantaneous adjustment of the temperature to a moist-adiabatic lapse rate, and of water vapor mixing ratio to 265 
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saturation. Moreover, all the condensed water in this process precipitates immediately. The main problems of this scheme are 

the production of very large precipitation rates, and its saturated final state after convection, which is rarely observed in nature 

(Emanuel and Raymond, 1993).  

The so-called soft or relaxed adjustment schemes attempt to alleviate these problems by assuming that the hard adjustment 

occurs only over a fraction a of the grid area, or by specifying the final mean RH (Cotton and Anthes, 1992). For example, 270 

Miyakoda et al. (1969) defined saturation as 80 % RH, while Kurihara (1973) performed the adjustment based on the buoyancy 

condition of a hypothetical cloud element instead of the saturation criterion.  

Further improvements to the adjustment schemes were introduced by Betts and Miller (1986), whose scheme is also known as 

a penetrative adjustment scheme. The authors proposed an adjustment of large-scale atmospheric temperature T and moisture 

q to reference profiles over a specified time scale τ (adjustment timescale). 275 

(𝜕𝑇/𝜕𝑡)"# = (𝑇$%& − 𝑇)/𝜏           (1) 

(𝜕𝑞/𝜕𝑡)"# = (𝑞$%& − 𝑞)/𝜏  

where subscript cu refers to cumulus convection and ref to the reference profile for each field. The reference profiles, different 

for shallow and deep convection, are quasi-equilibrium states based on observational data from GATE, Barbados 

Oceanographic and Meteorological Experiment (BOMEX), and Atlantic Trade-Wind EXperiment (ATEX). For the 280 

construction of the temperature reference profile, Betts (1986) used a mixing line model (Betts, 1982, 1985). Then, the moisture 

reference profile was calculated from the temperature profile by specifying the pressure difference between air parcel saturation 

level and pressure level at cloud base, freezing level, and cloud top. Therefore, the three adjustment parameters used in this 

scheme are the adjustment timescale 𝜏, the stability weight Ws, and the saturation pressure departure, Sp. 

The sensitivity of the scheme to the adjustment parameters has been evaluated by numerous authors. For instance, Baik et al. 285 

(1990) analyzed the influence of different values of each adjustment parameter on the simulation of a tropical cyclone, while 

Vaidya and Singh (1997) did the same for the simulation of a monsoon depression using four sets of values, including those 

from Betts and Miller (1986) and Slingo et al. (1994). In all cases, the adjustment parameters had to be modified depending 

on the different climate regimes. While Baik et al. (1990) set Ws = 0.95 and Sp = (-30, -37.5, -38) hPa as the optimal parameters 

to simulate a tropical cyclone, Vaidya and Singh (1997) obtained the best forecast for a monsoon depression with Ws = 1.0 and 290 

Sp = (-60, -70, -50) hPa. Despite the improvements achieved through adjusting the parameters for different climate conditions, 

the original Betts-Miller scheme occasionally produced heavy spurious rainfall over warm water and light precipitation over 

oceanic regions (Janjić, 1994). To overcome this problem, Janjić (1994) proposed considering a range of reference equilibrium 

states, and characterizing the convective regimes by a parameter called “cloud efficiency”, which is related to precipitation 

production and depends on cloud entropy. This parameter is the sort of empirical value that requires attention when future 295 

climates are to be simulated. The modified scheme, known as the Betts-Miller-Janjić (BMJ) scheme, is one of the most widely 

used adjustment schemes in NWP models (e.g., Vaidya and Singh, 2000; Evans et al., 2012; Fiori et al., 2014; Fonseca et al., 

2015; García-Ortega et al., 2017), despite its large bias for light rainfall (e.g., Gallus and Segal, 2001; Jankov and Gallus, 2004; 
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Jankov et al., 2005). Convective adjustment schemes are computationally efficient, which makes them suitable for large-scale 

simulations. 300 

2.3 Mass flux schemes: assuming the rates of mass detrainment and entrainment 

Because of the nature of both convergence and adjustment schemes, a cloud model does not have to be explicitly specified to 

describe the interaction between cumulus clouds and the large-scale environment. This is not the case for the mass-flux 

schemes, where convective instability is removed through the vertical eddy transport of heat, moisture, and momentum. The 

main objective of mass flux schemes is to describe this convective vertical eddy transport in terms of convective mass flux 305 

(Plant and Yano, 2015). To do so, the total flux is defined as 𝜔𝜓7777 , where w is the vertical velocity and 𝜓 a physical variable, 

e.g., the total specific humidity q. Then, the total flux is expressed as the sum of a large-scale mean 𝜔8𝜓7 and an unresolved 

eddy contribution 𝜔'𝜓′777777 (Reynolds averaging). Decomposing the total flux into flux contributions from cumulus cover areas 

and environmental regions, defining an active cloud fractional area a, and using again Reynolds averaging, the turbulent flux 

is expressed as  310 

𝜔′𝜓′777777 = 𝑎𝜔′𝜓′777777" + (1 − 𝑎)𝜔'𝜓'777777% + 𝑎(1 − 𝑎)(𝜔" −𝜔%)(𝜓" −𝜓%)       (2) 

where the overbar indexes c and e denote cloud (environmental) average of the fluctuations with respect to the cloud 

(environmental) average, and the superscripts c and e denote active cloud and passive environmental averages (Siebesma and 

Cuijpers, 1995). Commonly, the so-called “top-hat” approximation is used in convective scheme. This approximation implies 

neglecting the first two terms of the right-hand side in Eq. (2) in favor of the third one (the organized turbulent term due to 315 

organized updraft and compensating subsidence), which is considered dominant. Classical convective parameterizations 

further assumed that a is small compared to the large-scale system, i.e., 𝑎 ≪ 1 (e.g., Yanai et al., 1973; Arakawa and Schubert, 

1974, hereafter AS). Then, the mass flux formulation, using the definition of the convective mass flux is 

𝑀 =	−𝑎𝜔"/𝑔 = �̅�𝑎𝑤"	            (3) 

−𝜔'𝜓'777777 = 𝑔𝑀(𝜓" −𝜓7)            (4) 320 

where 𝑤"	represents the in-cloud vertical velocity. The reader is referred to Bechtold (2019) and Siebesma and Cuijpers (1995) 

for detailed derivation of these equations. Using a simple entraining plume model, and setting 𝜌 to unit, the continuity 

equations for the mass, updraft properties and vertical momentum are 
()
(*
= − (

(+
(𝑎𝑤") + 𝐸 − 𝐷            (5.1) 

(
(*
(𝑎𝜓") = − (

(+
(𝑎𝑤𝜓77777") + 𝐸𝜓% −𝐷𝜓" + 𝑎𝑆,         (5.2) 325 

(
(*
(𝑎𝑤") = − (

(+
D𝑎𝑤-7777"E + 𝐸𝑤% −𝐷𝑤" + 𝑎

.
/01

− (
(+
	(𝑎𝑃")        (5.3) 

where E and D refer to entrainment and detrainment rates, respectively, 𝑆, represents sources and sinks of 𝜓 , 𝜁 is a virtual 

mass parameter that reduces buoyancy due to the pressure gradient force, 𝑃" includes pressure perturbations within the cloud, 

and the overbar denotes average values. The first formulation of this type was introduced by Ooyama (1971). The author 
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assumed that cumulus clouds of different sizes coexist, and that they could be represented by an ensemble of independent non-330 

interacting buoyant elements. The definition of the so-called dispatcher function would close the parameterization. However, 

the author left this question open. Numerous schemes have been proposed since then mostly using the steady state assumption, 

i.e., 𝜕/𝜕𝑡 = 0 (e.g., Yanai et al., 1973; Arakawa and Schubert, 1974; Kain and Fritsch, 1990). As mentioned in Roode et al. 

(2012), early mass flux schemes did not apply a vertical velocity equation for convective updrafts (Eq. 5.3) and used an ad-

hoc assumption to specify the cloud top that depended on the vertical resolution. To alleviate this issue, recent mass flux 335 

parameterizations include a vertical velocity equation for updrafts in their formulation inspired by Simpson and Wiggert 

(1969): 
/
-
(2!"

(+
= 𝑎2𝐵 − 𝑏2𝜀𝑤"-            (6) 

where 𝜀 is the fractional entrainment (𝐸 = 𝜀𝑀), and 𝑎2 and 𝑏2 are tunable parameters related to pressure perturbation and 

subplume contributions, respectively (see Table 2). Since then, numerous convection scheme applied equations similar to  340 
Table 2: A sample values 𝑎! and 𝑏! used in Eq. (6). Based on Roode et al. (2012). 

Equation a b Other constants Reference 
!
"
#$!"

#%
= 𝑎$	𝐵 − 0.18

$!"

&
, were R is 

the cloud radius 

2/3   Simpson and Wiggert, 
(1969) 
 

!
"
#$!"

#%
= 𝑎$	𝐵 − b𝜀𝑤'"  2/3 1  Bechtold et al. (2001) 

 1/6 1  von Salzen and 
McFarlane (2002)  

 1/3 2  Jakob and Siebesma 
(2003)  

 1 2  Bretherton et al. (2004)  

 1 1  Cheinet (2004); 
Pergaud et al. (2009) 

 2 1  Soares et al. (2004) 

 0.62 1  De Rooy and Siebesma 
(2010) 

 0.40 (core), 0.19 
(updraft), 0.14 
(cloud) 

1.06 (core), -0.29 
(updraft), -0.02 
(cloud) 

	 Wang and Zhang 
(2014) 

!
"
#$!"

#%
= 𝑎$	𝐵 − 𝑏$𝜀𝑤'" − 𝑐$𝛿𝑤'"  1/6 1 𝑐$ = 1/2		 Gregory (2001) 

 !
"
(1 − 2𝜇) #$!

"

#%
= 𝑎$𝐵 − 𝑏$𝜀𝑤'

	
" 1 1/2 𝜇 = 0.15		 Neggers et al. (2009)  

!
"
#$!"

#%
= 𝑎$	𝐵 − (𝑏$𝜀 + 𝑐$)𝑤'"  2/3 1 𝑐$ = 0.002		 Rio et al. (2010) 

 2/3 1.5 𝑐$ = 0.002		 Sušelj et al. (2012, 
2013) 

!
"
(1 − 𝜇) #$!

"

#%
= 𝐵 − 𝑏$𝜀𝑤'"  1 0.5 𝜇 = 0.15		 Sakradzija et al. (2016) 

#$!"

#%
= 𝑎$	𝐵 − 𝑏$𝜀𝑤'"  0.8 0.4  Han et al. (2017) 

 
 1 1.5  Suselj et al. (2019a, b) 
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Eq. (6) for the in-cloud vertical velocity (e.g., Bechtold et al., 2001; Gregory, 2001; von Salzen and McFarlane, 2002; Jakob 

and Siebesma, 2003; Bretherton et al., 2004; Cheinet, 2004; Soares et al., 2004; Rio and Hourdin, 2008; Neggers et al., 2009; 

Pergaud et al., 2009; Rio et al., 2010; De Rooy and Siebesma, 2010; Kim and Kang, 2012; Roode et al., 2012; Sušelj et al., 345 

2012, 2013; Wang and Zhang, 2014; Morrison, 2016a, b; Peters, 2016; Suselj et al., 2019). The reader is referred to Roode et 

al. (2012) for a detail derivation of Eq. (6) from Eq. (5.3) and a discussion about the values of the tunable parameters 𝑎2 and 

𝑏2. 

 

To overcome the gray zone issue, schemes should be scale-aware, which requires to drop the traditional assumption of 𝑎	 ≪ 	1 350 

in convective parameterizations (Arakawa et al., 2011). Numerous cumulus schemes no longer use this assumption (e.g., 

Neggers et al., 2009; Arakawa and Wu, 2013; Grell and Freitas, 2014). 

 

Mass flux convective parameterization schemes still are the most common convective parameterizations used in ESMs, 

Regional Climate Models (RCMs), and NWP models. 355 

2.4 Cloud System Resolving Models (CSRM) 

The performances of the previous schemes prompted the search for new strategies to model convection. Krueger (1988) put 

forward the CSRM idea (also known as the explicit convection, convection-permitting or cloud ensemble models) to explicitly 

simulate convective processes over a kilometer scale, instead of using parameterizations. Most convective parameterizations 

tend to produce too little heavy rain and too much light rain (e.g., Dai and Trenberth, 2004; Sun et al., 2006; Dai, 2006; Allan 360 

and Soden, 2008; Stephens et al., 2010), though these results depend on the model used for the simulations, and have problems 

representing diurnal precipitation cycles over land (e.g., Yang and Slingo, 2001; Guichard et al., 2004). The use of convection-

permitting models can solve errors associated with other convective parameterizations (e.g., Kendon et al., 2012; Prein et al., 

2013; Brisson et al., 2016), but entails higher computational costs, which limits their application in climate modeling (e.g., 

Wagner et al., 2018; Randall et al., 2019). They are also increasingly used in NWP though (e.g., Kain et al., 2006; Gebhardt 365 

et al., 2011). Recently, Prein et al. (2015) reviewed prospects and challenges in regional convection-permitting climate 

modeling. 

2.5 Super-Parameterization (SP) 

Hybrid approaches also exist. SP (also known as cloud-resolving convective parameterization (CRCP) or multiscale model 

framework (MMF)) is an approach between parameterized and explicit convection, which consists of replacing the convective 370 

parameterizations by 2D cloud resolving models (CRMs), or even a 3D LES model, at each grid cell of a GCM (Grabowski 

and Smolarkiewicz, 1999; Grabowski, 2016). Randall et al. (2003) proposed SP as “the only way to break the cloud 

parameterization deadlock.” SP is mostly applied in GCMs (e.g., Grabowski, 2001; Khairoutdinov and Randall, 2003; 
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Khairoutdinov et al., 2005; Zhu et al., 2009; Jung and Arakawa, 2014; Sun and Pritchard, 2016). Several studies have compared 

the performance of SP with convective parameterizations, in particular using the Community Atmosphere Model (CAM).  375 

Among the most notable improvements achieved by SP in CAM are simulations of heavy rainfall events that are much more 

similar to observations, a better diurnal precipitation cycle over land (e.g., (Khairoutdinov et al., 2005; DeMott et al., 2007; 

Zhu et al., 2009; Holloway et al., 2012; Rosa and Collins, 2013), and the production of a realistic MJO (e.g., Thayer-Calder 

and Randall, 2009; Holloway et al., 2013). However, simulations with SP also have problems that need solving, such as the 

failure to simulate light rainfall rates reported by Zhu et al., (2009). The computational cost of this approach is also higher than 380 

the one for convective parameterizations (Krishnamurthy and Stan, 2015) but smaller than the computational cost for global 

CSRMs performing climate simulations (Randall et al., 2003).  

2.6 PDF-based schemes 

Numerous cloud and stochastic parameterizations are based on probability density functions (PDFs) of moist conserved 

thermodynamic variables. The so-called statistical schemes use PDFs to improve simulations of cloud clover so important in 385 

the planetary energy budget (e.g., Cahalan et al., 1994; Bony and Dufresne, 2005; Neggers and Siebesma, 2013; Bony et al., 

2015). To our knowledge, the first scheme suggesting a joint PDF to compute cloud cover was that of Sommeria and Deardorff 

(1977) followed by Mellor (1977). These schemes used a single-Gaussian PDF. Various PDF distributions have been proposed 

since the formulation of the first statistical scheme, including gamma (Bougeault, 1982), Gaussian (Sommeria and Deardorff, 

1977; Mellor, 1977; Bechtold et al., 1992), triangular (Smith, 1990), uniform (Le Trent and Li, 1991), lognormal (Bony and 390 

Emanuel, 2001), beta (Tompkins, 2002), and double-Gaussian (Lewellen and Yoh, 1993; Larson et al., 2002; Golaz et al., 

2002a; Naumann et al., 2013). Studies such as those of Tompkins (2002) and Watanabe et al. (2009) included prognostic 

equations for the shape parameters of the PDF which reduced cloud cover bias when tested in ECHAM5 (Tompkins, 2002) 

and MIROC (Model for Interdisciplinary Research on Climate, Watanabe et al., 2009), respectively. 

In the stochastic parameterization context, Craig and Cohen (2006) used statistical mechanics to describe fluctuations about a 395 

large-scale equilibrium to provide a theoretical basis for stochastic parameterizations. A PDF in the form of an exponential 

law provides random values of the mass flux per cloud. Plant and Craig (2008) followed this scheme and used a PDF in their 

formulation together with a plume model and closure assumption adapted from Kain-Fritsch scheme (Kain and Fritsch, 1990, 

Kf hereafter), while Teixeira and Reynolds (2008) obtained a stochastic component from a normal PDF to perturb the 

tendencies related to the convective parameterization. Tompkins and Berner (2008) used a similar approach to perturb the 400 

initial humidity of the convective parcel and/or the humidity of the air entrained during ascent. More recently, Sakradzija et 

al. (2015) extended the deep convective formulation in Plant and Craig (2008) to shallow convection.  

PDFs are also used to unify the representation of moist convection and boundary layer turbulence into one single scheme (see 

section 2.7). Randall et al. (1992) and Lappen and Randall (2001) used double-delta PDF to model the subgrid-scale variability 

of vertical velocity, temperature, and moisture. The scheme is called Assumed-Distribution Higher-Order Closure (ADHOC) 405 

and it is a combination of assumed distributions of higher-order closure and mass-flux closure. Bechtold et al. (1995) used a 
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positively skewed distribution function to account for shallow clouds. Later, Chaboureau and Bechtold (2002, 2005) extended 

this approach to include all types of clouds. Based on results from Larson et al. (2002) and the binormal model of Lewellen 

and Yoh (1993), Golaz et al. (2002a, b) proposed the Cloud Layers Unified By Binomials (CLUBB) approach that uses a 

double-Gaussian PDF instead of a double-delta PDF. More recently, Jam et al. (2013), Hourdin et al. (2013) and Qin et al. 410 

(2018), represented shallow cumulus clouds with the PDF variances diagnosed from the turbulent and shallow convective 

processes. In the context of the EDMF framework, Cheinet (2003, 2004) used a Gaussian distribution of the thermodynamic 

variables, Soares et al. (2004) parameterized cloudiness with a PDF, Sušelj et al. (2012) and further modifications of the 

scheme (Sušelj et al., 2013, 2014; Suselj et al., 2019b, a) use a PDF to describe the moist updraft characteristics. Sakradzija et 

al. (2016) coupled the extension of the Plant and Craig (2008) described in  Sakradzija et al. (2015) to the Eddy Diffusivity 415 

Mass Flux (EDMF) parameterization in ICON. 

A number of studies that attempt to unify the representation of shallow and deep convection also use PDFs (e.g., Park, 2014a, 

b, see section 2.8). 

2.7 Unified models 

Traditionally, models have used separate parameterizations for boundary layer, shallow and deep convection. Deficiencies 420 

associated to deep convection schemes, such as the representation of the MJO, the diurnal cycle of precipitation or the double 

Intertropical Convergence Zone (ITCZ), have been addressed by introducing different modifications in existing models. 

However, Guichard et al. (2004) showed that these modifications are not sufficient to resolve deficiencies of convection 

parameterization, and stressed the necessity of using and ensemble of parameterizations that represents a succession of 

convective regimes. Numerous attempts to merge shallow and deep convection parameterizations into a single framework can 425 

be found in the literature (e.g., Bechtold et al., 2001; Kain, 2004; Kuang and Bretherton, 2006; Hohenegger and Bretherton, 

2011; Mapes and Neale, 2011; D’Andrea et al., 2014; Park, 2014a, b). Hohenegger and Bretherton (2011) proposed a unified 

parameterization modifying the University of Washington (UW) shallow convection scheme (Bretherton et al., 2004; Park and 

Bretherton, 2009) to make it more suitable for deep convection. The authors kept the assumption that mass flux at cloud base 

is proportional to CIN/TKE but modified the proportionality factor following Fletcher and Bretherton (2010), who set it to 430 

0.06. Besides, the increase of the average TKE over the depth of the boundary layer due to cold pools is included in the 

calculations of TKE and, therefore, in the closure. Mapes and Neale (2011) also modified the UW shallow convection scheme 

by making entrainment dependent on a prognostic variable called organization (see section 2.9). Guérémy (2011) proposed a 

new mass flux scheme based on continuous buoyancy, and D’Andrea et al. (2014) extended the shallow convection of Gentine 

et al. (2013a, b) to deep convection. Park (2014a, b) described a unified convection scheme (UNICON) for both shallow and 435 

deep convection without relying on an equilibrium closure. The scheme diagnoses the dynamics, macrophysics and 

microphysics of multiple plumes. Besides, it includes a prognostic cold pool parameterization and mesoscale organized flow 

within the PBL, thus accounting for convective memory. Later, Park et al. (2017) modified UNICON to diagnose additional 

detrainment following Tiedtke (1993) and Teixeira and Kim (2008). More recently, Shin and Park (2020) developed a 
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stochastic UNICON model where the correlated multivariate Gaussian distribution for updraft vertical velocity and 440 

thermodynamic scalars is used to randomly sample convective updraft plumes.  

In general, models split the turbulence parameterization among the PBL and moist convection (usually based on different 

conceptual models) simplifying the treatment of turbulence but requiring the addition of an artificial closure to match both 

schemes (Sušelj et al., 2014). Examples of PBL schemes that produce precipitation include the IFS EDMF, the EDMF 

developed by Neggers (2009) or the CLUBB scheme implemented in CAM (Thayer-Calder et al., 2015), among others. To 445 

our knowledge, the first scheme proposing a unified scheme in this way was that of Chatfield and Brost (1987), further 

evaluated by Petersen et al. (1999) and extended by Lappen and Randall (2001a, b) (see section 2.6 for further details). Golaz 

et al. (2002a, b) and Larson et al. (2002) proposed an approach to combine the representation of shallow convection and 

turbulence, the so-called Cloud Layers Unified By Binomials (CLUBB, section 2.6 for more details). Efforts to applied 

CLUBB to deep convection include those of Cheng and Xu (2006) and Bogenschutz and Krueger (2013) in CRMs or Davies 450 

et al. (2013) in a SCM. To improve deep convective simulations, Storer et al. (2015) and Thayer-Calder et al. (2015) used a 

Subgrid Importance Latin Hypercube Sampler (SILHS; Larson et al., 2005; Larson and Schanen, 2013) that draws samples 

from the joint PDF to drive microphysical processes. More recently, Larson (2020) described the unified configuration of 

CLUBB-SILHS, where no separated deep parameterization is used (the reader is referred to this papers for a detailed 

explanation of CLUBB-SILHS). 455 

 

The EDMF approach was proposed by Siebesma and Teixeira (2000) and Siebesma et al. (2007) to overcome the commonly 

ad-hoc matching between the mass flux approach for convective transport within the clouds, and the eddy diffusivity approach 

to parameterize turbulent transport in the atmospheric boundary layer. Starting from Eq. (2), assuming 𝑎 << 1 and identifying 

the third term in the equation with the convective mass flux,  460 

𝜔′𝜓′777777 = 𝜔'𝜓'777777% +𝑀(𝜓" −𝜓7)           (7) 

Then, the first term in Eq. (7) is approximated by an eddy-diffusivity approach (Siebesma et al., 2007) 

𝑤′𝜓′777777 ≅ 	−𝐾 (,3

(+
+𝑀(𝜓# −𝜓7)          (8) 

Thus, the transport in the atmospheric boundary layer is determine as the sum of an eddy diffusivity component, defined as 

the product of a diffusivity coefficient K and the local gradient of a thermodynamic state variable 𝜓, and a mass flux part, 465 

defined as the product of a mass flux and the difference between 𝜓 in the updraft and its horizontal mean value. The authors 

used a K-profile (Holtslag, 1998) for the eddy diffusivity coefficient, took the updraft fractional area as a constant and scaled 

the mass flux with the standard deviation of the vertical velocity 𝜎2. Despite originally used for dry convective boundary 

layers (Siebesma and Teixeira, 2000; Siebesma et al., 2007; Witek et al., 2011), numerous versions of the scheme extended it 

to moist convection (e.g., Soares et al., 2004; Angevine, 2005; Rio and Hourdin, 2008; Neggers et al., 2009; Neggers, 2009; 470 

Pergaud et al., 2009; Angevine et al., 2010; Köhler et al., 2011; Sušelj et al., 2012, 2013, 2014; Suselj et al., 2019).  
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Besides extending the EDMF model to moist convection, a number of versions included a multiple plume formulation. For 

example, Cheinet (2003) combined the EDMF model with the multiparcel model described in Neggers et al. (2002). With the 

goal of finding the least complex mass flux framework that can reproduce the smoothly varying coupling between the sub-

cloud mixed layer and the shallow convective cloud layer, Neggers et al. (2009) and Neggers (2009) proposed a new 475 

formulation combining the EDMF concept with a dual mass flux (DualM) framework. There, two different updrafts are 

considered: a dry updraft and a moist updraft. Each of the updrafts are characterized by an area fraction (see Table 16) that 

varies in time, with a continuous area partitioning between moist and dry updraft. In order to realistically represent not only 

convectively driven boundary layers but also the transition between shallow and deep convection, Sušelj et al. (2013) further 

developed the scheme described in Sušelj et al. (2012). One of the main innovations included the use of a Monte Carlo sampling 480 

of the PDF of updraft properties at cloud base. Sušelj et al. (2014) described a simplified version of Sušelj et al. (2013) 

stochastic model where the eddy-diffusivity parameterization is based on Louis (1979), among other modifications. Later, Tan 

et al. (2018) extended the EDMF approach by using prognostic plumes and adding downdrafts, among other changes. 

 Neggers (2015) reformulated the EDMF approach in terms of discretized size densities with a limited number n of bins. This 

new version, referred as to ED(MF)n, was studied in a SCM. Han et al. (2016) proposed a hybrid EDMF parameterization 485 

where EDMF is used only for the strongly unstable PBL. For weakly unstable PBL, the scheme uses a nonlocal PBL scheme 

with an eddy-diffusivity countergradient approach (Deardorff, 1966; Troen and Mahrt, 1986; Hong and Pan, 1996; Han and 

Pan, 2011). Han and Bretherton (2019) replaced the ED parameterization in this scheme by a new TKE-based moist EDMF 

parameterization for vertical turbulence mixing, included downdrafts, and assumed a decreased of the updraft mass flux with 

decreasing grid size, which makes the scheme scale-aware. More recently, Wu et al. (2020) implemented a new downdraft 490 

parameterization in EDMF through a Mellor–Yamada–Nakanishi–Niino (MYNN) ED component. Kurowski et al. (2019) 

implemented a stochastic multi-plume EDMF scheme into CAM5 and Sakradzija et al. (2016) coupled Sakradzija et al. (2015) 

to EDMF in ICON. Several NWP models have included EDMF approaches, i.e., ECMWF (Köhler, 2005; Köhler et al., 2011), 

AROME (Pergaud et al., 2009), NCEP GFS (Han et al., 2016a), Navy Global Environmental Model (NAVGEM) (Sušelj et 

al., 2014), and the Laboratoire de Météorologie Dynamique Zoom (LMDZ; Hourdin et al., 2013) model. Recently, 495 

Bhattacharya et al. (2018) and Wu et al. (2020) implemented different versions of the EDMF scheme in WRF. 

2.8 Scale-aware and scale-adaptive models 

Wyngaard (2004) coined the terms terra incognita or “gray zone” to refer to zones where traditional convective 

parameterizations are no longer valid, but convection cannot be resolved explicitly yet. To palliate the gray zone 

parameterizations should become scale-aware and scale-adaptive. This means that the scheme is aware of the processes that 500 

need to be parameterized and parameterizes only those processes. Recently, Honnert et al. (2020) reviewed schemes that have 

been proposed for the convective boundary layer in the gray zone.  
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In the context of mass flux representations, the Quasi-Equilibrium (QE) assumption on a negligible small cloud area fraction 

𝑎 has to be eliminated to make parameterizations scale-aware (Arakawa et al., 2011). Arakawa et al. (2011) and Arakawa and 505 

Wu (2013) described a seamless approach in their unified parameterization where the assumption about 𝑎 is eliminated, the 

vertical eddy transport is rederived and the parameterization is forced to converge to an explicit simulation as 𝑎 → 1. Following 

this approach, Grell and Freitas (2014) extended the Grell and Dévényi (2002) scheme based on Grell (1993) by specifying 𝑎 

as a function of the convective updraft radius R obtained from the traditional definition of entrainment 𝜀 (Siebesma and 

Cuijpers, 1995; Simpson and Wiggert, 1969; Simpson, 1971), i.e., 𝜀 = 0.2/𝑅. Later, Freitas et al. (2017) tested this scheme in 510 

the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) version 5.2 obtaining a smooth 

transition between convective and grid-scale precipitation even at gray zone scales.   

Lim et al. (2014) modified the Simplified Arakawa-Schubert scheme (SAS; e.g, Grell, 1993; Pan and Wu, 1995; Hong and 

Pan, 1998; Han and Pan, 2011) in NCEP GFS by introducing a grid-scale dependency in the trigger. More recently, Kwon and 

Hong (2017) extended this grid-scale dependency to the convective inhibition, mass flux and detrainment of hydrometeors, 515 

and Han et al. (2017) updated the SAS scheme with a cloud mass flux that decreases with increasing grid resolution to include 

scale dependency. 

Zheng et al. (2016) modified the adjustment time scale in KF scheme following Bechtold et al. (2008), and include a scale-

aware entrainment equation, among other modifications. 

Other approaches to overcome the gray zone issue include spreading subsidence to neighboring cells in Grell3D scheme (Grell 520 

and Freitas, 2014) or a hybrid parameterization for non-hydrostatic weather prediction models as described in Kuell et al. 

(2007). This scheme uses a traditional cumulus parameterization for mass and energy transport in the updraft and downdraft, 

and treats environmental subsidence by grid-scale equations. More recently, Freitas et al. (2018) implemented and tested a 

new version of the Grell and Freitas (2014) scheme in the the NASA Goddard Earth Observing System (GEOS). The new 

scheme uses a trimodal formulation with different entrainment rates that depend on the normalized mass flux profile, which is 525 

prescribed by a beta PDF, among other modifications. Gao et al. (2017) compared the performance of the traditional KF 

scheme with the Grell and Freitas (2014) scheme in the simulation of summer precipitation across gray zone resolutions. Better 

results were reported with the scale-aware scheme. An integrated package of subgrid and grid-scale parameterizations in the 

range 2-10 km, also known as the Modular Multiscale Microphysics and Transport (3MT), was proposed by Gerard (2007). 

Zheng et al. (2016) added scale-awareness to the KF scheme (Kain and Fritsch, 1990, 1993; Kain, 2004) by introducing scale 530 

dependency in in-cloud properties, such as entrainment or grid scale vertical velocity.  

 

Another way to introduce scale-awareness and adaptivity consists in using multiple plumes instead of a single one. The first 

scheme using multiple plumes is that of Arakawa and Schubert (1974). Different schemes have been proposed based on 

multiple plumes for deep (e.g., Donner, 1993; Donner et al., 2001; Nober and Graf, 2005; Wagner and Graf, 2010) and shallow 535 

convection (e.g., Neggers et al., 2002; Sušelj et al., 2012; Neggers, 2015). Due to the lack of observations on cloud entrainment, 

Neggers et al. (2002) used LES results to formulate an expression for the lateral entrainment rate as a function of the vertical 
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velocity of each parcel, while Sušelj et al. (2012) described moist updraft characteristic through a PDF. Other 

parameterizations, such as those of  Wagner and Graf (2010), Nober and Graf (2005) or Neggers and Siebesma (2013) make 

use of active population dynamics such as those in the Lotka-Volterra equations (Lotka, 1910, 1920; Volterra, 1926), where 540 

two species interact with a predator-prey behavior. Neggers (2015) also introduce population dynamics in a new EDMF called 

the ED(MF)n. The author used bin-macrophysics, where plumes are described in terms of discrete size densities formed by a 

limited number n of bins. The scale-adaptivity of this scheme was further evaluated in Brast et al. (2018). Population dynamics 

were also used by Park (2014) in his multi-cloud model in UNICON and by Hagos et al. (2018) in the STOchastic framework 

for Modeling Population dynamics of convective clouds (STOMP), among others. Khouider et al. (2010) described a stochastic 545 

multi-cloud model based on the deterministic multi-cloud model of Khouider and Majda (2006) but using a Markov chain 

lattice model. In this scheme, four possible convective states in each lattice are considered, namely clear sky, deep, congestus 

or stratiform clouds, that randomly evolve in time as a birth-death process (Gillespie, 1975, 1977). Dorrestijn et al. (2013, 

2015) also used this approach but estimating transition probabilities from one state to another using LES results and 

observations, respectively. Further works followed, such as those of Deng et al. (2015) for representing the MJO, the coupling 550 

of Khouider et al. (2010) to simplified primitive equations of Frenkel et al. (2012), the use of observations to estimate transition 

probabilities in Peters et al. (2013), or the implementation of a stochastic multi-cloud scheme in ECHAM6.3 by Peters et al. 

(2017), among others. Later,  Khouider (2014) improved Khouider et al. (2010) by using a coarse-grained Markov chain lattice 

model. Examples of stochastic parameterizations based on concepts from statistical mechanics include Plant and Craig (2008) 

for deep convection or Sakradzija et al. (2015, 2016) and Sakradzija and Klocke (2018) for shallow convection. Recently, 555 

Keane et al. (2014) evaluated the scale adaptivity of Plant and Craig (2008) in ICON model. Rochetin et al. (2014a, b) added 

a stochastic component to the trigger function in LMDZ5B and  Sakradzija et al. (2016) introduced scale-awareness in ICON 

model by coupling the stochastic scheme described in Sakradzija et al. (2015) to the EDMF scheme. Other scale-aware schemes 

include CLUBB due to its limitation of the turbulent length scale to the horizontal grid spacing (Larson et al., 2012).  

Other studies have included a scale-dependent entrainment and/or convective time scale (e.g., Bechtold et al., 2008; Zheng et 560 

al., 2016; Han et al., 2017; Gao et al., 2020) based on results obtained in entrainment-mixing studies (e.g., Burnet and 

Brenguier, 2007; Lu et al., 2011, 2014; Kumar et al., 2018; Kooperman et al., 2018).  

The best way to achieve scale-aware and scale-adaptive cumulus schemes is still unknown but the field is rapidly evolving. 

2.9 Models accounting for convective memory and spatial organization 

As pointed out in Davies et al. (2009), the QE hypothesis does not account for convective memory, which can be defined as 565 

the dependence of convection on their past states. Different strategies have been proposed to include it in convective 

parameterizations, such as the use of prognostic variables or cold pools, among others. The first scheme to include convective 

memory was that of Pan and Randall (1998). The authors chose a cumulus kinetic energy prognostic closure in their 

formulation. Later, Gerard and Geleyn (2005) also account for convective memory. Based on Bougeault (1985), the authors 

defined cloud base mass flux as the product of a prognostic vertical updraft velocity and a prognostic updraft fraction area, 570 
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obtained by a moist static energy closure. Gerard (2007) and Gerard et al. (2009) also used this approach and even applied it 

for downdrafts (Gerard et al. 2009). Piriou et al. (2007) used precipitation evaporation as the source of convective memory 

and related entrainment to the probability of undiluted updrafts. Mapes and Neale (2011) also chose precipitation evaporation 

as the source of convective memory and introduced a prognostic variable called organization that links precipitation 

evaporation with the entrainment rate. Other authors selected the precipitation at convective cloud base as the source of 575 

convective memory and made entrainment a function of it (e.g., Hohenegger and Bretherton (2011) or Willett and Whitall 

(2017) in the UK Met Office model). Another way to introduce convective memory consists in using a master equation or 

Markov chains, such as the schemes of Hagos et al. (2018) or Khouider et al. (2010). In their extended EDMF, Tan et al. 

(2018) included convective memory using prognostic equations for updrafts and downdrafts and for the area fraction (see 

Table 16). 580 

Evaporation of precipitation from deep convective clouds gives rise to cold pools that, when spread at the surface, are able to 

initiate further convective events, therefore adding memory to the system (e.g., Khairoutdinov and Randall, 2006; Rio et al., 

2009; Böing et al., 2012; Schlemmer and Hohenegger, 2014). Based on this, recent studies include convective memory through 

cold pools (e.g., Grandpeix and Lafore, 2010; Park, 2014; Del Genio et al., 2015). The prognostic variables are the cold pool 

thermodynamic properties and fractional area (Grandpeix and Lafore, 2010) as well as the cold pool depth (Del Genio et al., 585 

2015) or the mesoscale organized flow (Park, 2014). More recently, Colin et al. (2019) performed numerical experiments to 

identify the source of convective memory using CRMs. The results showed that memory comes from low-level thermodynamic 

process such as rain evaporation, cold pools or hot thermals, among others. 

Based on the “game of life” (Chopard, 2009), Bengtsson et al. (2011) used a cellular automaton (CA) in their subgrid scheme. 

The authors introduced convective memory by assigning a prescribed lifetime to each active cell. Bengtsson et al. (2013) also 590 

included memory in their stochastic parameterization for deep convection using this approach in Aire Limitée 

Adaptation/Application de la Recherche à l’Opérationnel (ALARO). The definition of the area fraction in the cumulus scheme 

(Gerard et al., 2009) now includes the contribution from CA. Sakradzija et al. (2015) accounted for convective memory by 

considering that the cloud rate distribution in shallow convection comes from the superposition of two modes. These two 

modes consider passive and active clouds, respectively. In their work, the authors considered convective memory due to the 595 

finite lifetime of individual clouds. Later, Sakradzija et al. (2016) used this scheme in the calculation of the moist-convective 

area fraction in EDMF in ICON. 

Results from Davies et al. (2013) suggested that spatial organization could strongly affect convective memory more than the 

microphysics parameterizations. Later, Colin (2020) confirmed this hypothesis. 

Understanding spatial organization of convection is not only important for developing stochastic and scale-aware 600 

parameterizations but also due to its impact in the radiative-convective equilibrium (Neggers and Griewank, 2021) . Few 

studies have proposed parameterizations to represent convective organization in GCMs (e.g., Donner, 1993; Donner et al., 

2001; Mapes and Neale, 2011; Donner et al., 2011; Khouider and Moncrieff, 2015; Moncrieff et al., 2017). Donner (1993), 

Alexander and Cotton (1998) and Donner et al. (2001) represented the effects of mesoscale circulations and downdrafts based 



23 
 

on the Leary and Houze (1980) water budget model. A similar model was developed by Gray (2000) who also considered 605 

momentum fluxes and related the strength of mesoscale circulation to detrainment of the convective mass flux. As mentioned 

before, Mapes and Neale (2011) introduced a prognostic variable called organization into the UW shallow convection scheme 

(Bretherton et al., 2004; Park and Bretherton, 2009). This variable, that represents the degree of subgrid organization, could 

affect plume calculations in terms of plume-base vertical velocity, convective inhibition, preferential rising of warmer air in 

updrafts, area fraction and closure, as well as a shift in the spectrum toward wider plumes with lower lateral mixing and a 610 

preferential growth in preconditioned local environments. All this would lead to more and deeper convection, and therefore 

more organization. 

Other studies accounted for convective organization by including surface cold pools in their convective parameterizations 

(e.g., Rio et al., 2009; Grandpeix and Lafore, 2010; Rochetin et al., 2014a, b; Park, 2014a, b; Böing, 2016). Grandpeix and 

Lafore (2010) proposed a density current parameterization based on the first convective wake parameterization described by 615 

Qian et al. (1998). The impact of the cold pools on convection is implemented through two variables: the available lifting 

energy (ALE) provided by the density current, and the available lifting power (ALP, see section 5.1.1). In UNICON model, 

Park (2014a) parameterized subgrid mesoscale convective organization in terms of the evaporation of convective precipitation 

and downdrafts. Later, Böing (2016) described an object-based model of the organization of moist convection by cold pools 

inspired by Abelian sandpile models (Bak et al., 1987). The model is a two-way feedback between instability and convection, 620 

where convection and instability are represented as particles coupled to a lattice grid. The authors suggested that an object-

based model could capture properties of convective organization. Stratton and Stirling (2012) used the height of the lifting 

condensation level as a variable to introduce convective organization into their parameterization, while Folkins et al. (2014) 

introduced a dependency on the local precipitation generated by the convective scheme over the past 2 h. Khouider and Majda 

(2006) developed a multicloud parameterization where three cloud types control the heating fields of organized convection in 625 

the tropics. It was later refined by Khouider and Majda (2008) and applied by Khouider and Moncrieff (2015) in their 

parameterization of organized convection in the ITCZ. Moncrieff et al. (2017) proposed a new method referred to as multiscale 

coherent structure parameterization (MCSP) to parameterize physical and dynamical effects of organized convection. This 

new approach consists in using a slantwise overturning model with a special focus on top-heavy heating and upgradient 

momentum transport. Despite all this proposals,  the model of  Donner et al. (2011) is the only operational GCM representing 630 

all aspects of mesoscale convective systems (Rio et al., 2019). 

In Shutts (2005) the spatial and temporal correlations of the atmospheric mesoscale are represented by a CA. Bengtsson et al. 

(2011) extended the implemented CA in ECMWF Ensembe Prediciton System to be able to interact with the numerical model. 

Later, Bengtsson et al. (2013) introduced this CA approach in ALARO and analyzed it in a regional gray-zone resolution 

model over Europe. This approach produced a precipitation intensity and convective organization in better agreement with 635 

OPERA observations than results obtained from the reference model. In Bengtsson et al. (2019), CA is conditioned by a 

prescribed stochastically generated skewed distribution with the goal of introducing subgrid-scale organization. 



24 
 

Other attempts to represent convective organization include the use of a damped-driven oscillator (Davies et al., 2009), 

spatially coupled oscillators (Feingold and Koren, 2013) or a Markov chain lattice model (e.g., Khouider et al., 2010). 

Moncrieff and Liu (2006) proposed a hybrid approach to represent convective organization. Mesoscale organization is 640 

represented by explicit convectively driven circulations using a CSRM and transient cumulus by the BMJ convective 

parameterization (Betts, 1986; Betts and Miller, 1986; Janjić, 1994). PDF-based or spectral schemes based on a discretized 

distribution (e.g., Neggers et al., 2003; Wagner and Graf, 2010; Neggers, 2012; Park, 2014; Neggers, 2015) include size 

information into the system, which allows representing impacts of spatial organization (Neggers et al., 2019; Laar, 2019). 

More recently, Neggers and Griewank (2021) developed a binomial stochastic framework referred to as Binomial Objects on 645 

Microgrids (BiOMi) model, which probed to capture convective memory and simple forms of spatial organization, among 

other important convective behaviors, at a cheap computational cost. 

This paper considers all the aforementioned convective parameterizations with emphasis on the mass-flux schemes. 

3 Trigger function: assumptions and empiricisms 

In a CP, the accurate simulation of convection greatly depends on the trigger function. The trigger function determines whether 650 

convectively unstable air at the boundary layer leads to the onset of convection and if so, activate the CP. 

There are as many strategies to initiate convection as there are convection schemes. This section focuses on the assumptions 

and empirical values of the most important trigger functions, the starting levels, and the impacts of the trigger formulations on 

the simulation of convective processes. Table 3 lists the most common choices used in the main trigger function types. 

3.1 Trigger function types 655 

According to the physical variable used as the main trigger condition, the most used trigger functions in CPs may be classified 

into (1) moisture convergence, (2) cloud work function (CWF), (3) cloud base stability and convective available potential 

energy (CAPE) triggers, and (4) large-scale vertical velocity. Other triggers used are (5) stochastic and heated condensation 

framework (HCF) triggers. Table 3 lists the assumptions and empirical values used in the main trigger function types, which 

are discussed below. 660 

3.1.1 Moisture convergence trigger 

The main condition to activate convection, together with the existence of a deep layer of conditional instability, is exceeding 

a minimum threshold value of the vertically integrated moisture convergence. This is the case in the Anthes-Kuo scheme (Kuo, 

1965; Anthes, 1977) and in the original Tiedtke scheme (Tiedtke, 1989). The latter has undergone several modifications since 

its publication. For instance, Gregory et al. (2000) substituted the condition of positive moisture convergence to activate deep 665 

convection by a minimum cloud depth threshold in the European Centre for Medium-Range Forecast (ECMWF) convective 

parameterization. Other authors replaced the moisture convergence trigger in the Tiedtke scheme by triggers based on positive 
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buoyancy (Zhang et al., 2011) or the existence of unstable parcel withing some height above the ground (Bechtold et al., 2004). 

Therefore, these schemes are no longer classified as moisture convergence trigger.  
 670 

Table 3: A sample of empirical values and assumptions used in the main trigger function types. 

Empirical value or assumption Choices in the literature Reference 

Large-scale moisture convergence Yes Kuo (1974); Anthes (1977); Tiedtke (1989) 

CWF Positive Arakawa and Schubert (1974); Pan and Wu 
(1995); Han et al. (2019) 

 Fixed value Moorthi and Suarez (1992) 

Large-scale vertical velocity ω Controls δT to trigger convection Fritsch and Chappell (1980); Kain and Fritsch 
(1990); Bechtold et al. (2001); Kain (2004); 
Ma and Tan (2009); Berg et al. (2013) 
 

CAPE At least some CAPE Betts (1986); Betts and Miller (1986); Janjić 
(1994) 

 Must be positive Zhang and McFarlane (1995); Xie and Zhang 
(2000); Bechtold et al. (2004); Zhang and Mu 
(2005a); Wu (2012) 

 CAPE	 > 	70	J	kg)!  Lin and Neelin (2003); Wu et al. (2007) 

dCAPE 𝑑𝐶𝐴𝑃𝐸 > 100	J	kg)!  Xie and Zhang (2000); Zhang (2002); Song 
and Zhang (2009); Zhang and Song (2010) 

 𝑑𝐶𝐴𝑃𝐸 > 45	J	kg)!	h)!  Song and Zhang (2018) 

Stochastic Stochastic perturbation in the large-scale vertical 
velocity ω in KF trigger 

Bright and Mullen (2002) 

 Markov process Majda and Khouider (2002); Khouider et al. 
(2003); Stechmann and Neelin (2011) 

 Bayesian Monte Carlo Song et al. (2007) 

 Adds a stochastic feature to the SAS trigger Zhang et al. (2014) 

 Adds a stochastic trigger to Emanuel (1991) Rochetin et al. (2014a) 

Dilute dCAPE 𝑑𝑖𝑙𝑢𝑡𝑒	𝑑𝐶𝐴𝑃𝐸 > 70	J	kg)!  Neale et al. (2008) 

 𝑑𝑖𝑙𝑢𝑡𝑒	𝑑𝐶𝐴𝑃𝐸 > 55	J	kg)!	h)!  Song and Zhang (2017) 

HCF Yes Tawfik and Dirmeyer (2014); Bombardi et al. 
(2015); Tawfik et al. (2017) 

3.1.2 CWF trigger 

The first CWF trigger was introduced by AS, who proposed that convection activation depends on a threshold value of the 

CWF, which is defined as the integral buoyancy force of each entraining cloud between cloud base and cloud top. Several 

variations of the original CWF trigger function have been suggested. Tokioka et al. (1988) included a modification in the AS 675 

to suppress deep convection in those areas where the depth of the PBL is not sufficiently thick. This modification is defined 

on a critical value of the entrainment rate below which deep convection is suppressed and moist air can accumulate in the 
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large-scale low level convergence zone. For example, the GFDL global atmosphere and land model (AM2–LM2; Anderson et 

al., 2004) includes this modification. In the relaxed Arakawa-Schubert scheme (RAS) (Moorthi and Suarez, 1992), the 

activation of convection depends on a critical value of the CWF, while the SAS scheme (Grell, 1993; Pan and Wu, 1995) 680 

triggers convection if the CWF is positive, as shown in Table 3. Another condition to activate convection in SAS is based on 

the pressure difference between the starting level, i.e., the level of maximum moist static energy between the surface and 700-

hPa level, and the level of free convection (LFC), which defines a threshold value for the convection inhibition (CIN) factor. 

With the aim of decreasing convection in large-scale subsidence regions and increasing it in large-scale convergent regions, 

Han and Pan (2011) modified the limit to reach the LFC, which is now proportional to large-scale vertical velocity w. Further 685 

improvements to the SAS activation criteria include a grid-spacing dependency in the convective trigger function (Lim et al., 

2014), considering the spatial resolution dependency, and a new definition of the CIN threshold value applying a scale-aware 

factor (Kwon and Hong, 2017). Different versions of the AS scheme are currently used in the Global Forecast System (GFS) 

of the National Centers for Environmental Prediction (NCEP), the Mesoscale Model 5 (MM5), the Goddard Earth Observing 

System model version 5 (GEOS-5), the Geophysical Fluid Dynamics Laboratory (GFDL) model, and in the WRF model. 690 

To improve the representation of the diurnal cycle, Rio et al. (2009) proposed a new trigger for deep convection: the so-called 

available lifting energy (ALE). This trigger is defined as the kinetic energy of the parcel inside thermals and activates deep 

convection when it overcomes CIN. In this case, convection activation is controlled by lifting processes in the sub-cloud layer, 

e.g. gust fronts. The authors obtained a better representation of the diurnal cycle with their new formulation. Grandpeix and 

Lafore (2010) also used the ALE trigger in their coupled wake-convection scheme. Together with a closure based on the flux 695 

of kinetic energy associated with thermals and the splitting of convective heating and drying, a more realistic representation 

of moist convection was possible. More recently, Hourdin et al. (2013) confirmed these results in the implementation of ALE 

trigger into a new version of the LMDZ atmospheric general circulation (LMDZ5B). 

3.1.3 Cloud base stability and CAPE triggers 

Many CPs have been proposed to simplify the formulation and implementation of the AS scheme. Among other assumptions, 700 

some CPs substitute the convection trigger based on CWF by CAPE, defined in a similar way as CWF but without including 

dilution of ascending parcel by entrainment. For instance, BMJ developed a new parameterization based on empirical results, 

in which the activation of convection requires the existence of CAPE. In this scheme, cloud base is the lifting condensation 

level (LCL) of a lifted parcel with the largest CAPE in the lowest 130 hPa of the model. From there, the parcel is lifted moist 

adiabatically until the equilibrium level (EL) is reached. In general, the cloud top is at the level immediately beneath EL. 705 

Moreover, deep convection continues if the cloud depth is greater than a certain value and covers at least two model layers 

(Baldwin et al., 2002). Finally, deep convection activates if the adjustment using reference profiles of temperature (based on 

a moist adiabat) and moisture (based on imposed sub-saturation at the cloud base) results in the column drying. The reference 

profiles computed in the BMJ scheme are different for shallow and deep convection.The scheme is currently used in NCEP 

North American Mesoscale model (NAM), MM5, and WRF models. Another important convective parameterization also using 710 
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a CAPE trigger is the Zhang-McFarlane scheme (Zhang and McFarlane, 1995, hereafter ZM). To improve climate simulations 

in the Canadian Climate Center GCM, the authors proposed a simplified version of the AS scheme that includes a positive 

CAPE trigger. However, it initiates convection too often during the day, which led Xie and Zhang (2000) to modify the scheme. 

They kept the positive CAPE condition and added a second condition based on the change of CAPE due to large-scale forcing 

(dCAPE). This new trigger improved the simulations of the ITCZ and MJO (Zhang, 2002; Song and Zhang, 2009; Zhang and 715 

Song, 2010). Alternative formulations of convection trigger include the addition of an RH threshold of 80 % in the convection 

trigger (Zhang and Mu 2005a, b) to suppress convection if the boundary layer air is too dry. Another modification is the 

inclusion of dilution in CAPE calculation due to entrainment (dilute CAPE) by Neale et al. (2008) to reduce excessive 

precipitation over land in the simulations of ENSO. 

Unlike some of the trigger criteria already discussed, a more recent trigger function by Tawfik and Dirmeyer (2014), the HCF, 720 

is not based on the lifting parcel method, but uses vertical profiles of temperature and humidity. First, it finds the buoyant 

condensation level (BCL) and determines several variables such as the buoyant mixing potential temperature, 𝜃.4, , defined 

as the 2 m potential temperature needs to reach the BCL, and the potential temperature deficit, 𝜃5%&, defined as the difference 

between the 𝜃.4 and the 2 m potential temperature, or the sum of all the temperature increments needed to attain the BCL. In 

HCF, convection will activate when 𝜃5%& ≤ 0. The HCF trigger reduces the number of false positives compared to the parcel-725 

based trigger. When the HCF trigger is implemented in the NCEP Climate Forecast System version 2 (CFSv2), the 

representation of the Indian monsoon and tropical cyclone intensity improves (Bombardi et al., 2016). In the Community Earth 

System Model (CESM), the strategy improves the frequency of heavy precipitation events and reduces the overactivation of 

convection in the model (Tawfik et al., 2017). 

 730 

3.1.4 Large-scale vertical velocity trigger 

Drawing on the observations in Fritsch and Chappell (1980) suggesting a positive impact of background vertical motion on 

convective development, Kain and Fritsch (1990) (KF) proposed a trigger based on large-scale vertical velocity. In this scheme, 

the first potential source layer for convection, also known as the updraft source layer (USL), is a layer of at least 60 hPa 

thickness that is constructed by mixing vertically adjacent layers, beginning at the surface. The temperature and pressure of 735 

the parcel at its LCL is calculated, as well as a temperature perturbation	𝛿𝑇, which is proportional to 𝜔 (see Table 4). If the 

sum of the parcel temperature and the temperature perturbation is higher than the environmental temperature, the parcel is 

released from its LCL. Above the LCL, the parcel is lifted upwards with entrainment, detrainment, water loading, and a vertical 

velocity determined by the Lagrangian parcel method (Bechtold et al., 2001). Convection is activated if the vertical velocity 

remains positive for a minimum depth of 3–4 km. Otherwise, the USL is moved up one model level and the procedure starts 740 

again. This process continues until a suitable USL is found or the search has moved up above the lowest 300 hPa of the 

atmosphere, where the search is terminated. The lake-effect snow observations of Niziol et al. (1995) forced to reduce the 
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minimum cloud-depth threshold in Kain and Fritsch (1993) from 3–4 km to 2 km as they showed that clouds with this depth 

can produce significant snowfall. In Plant and Craig (2008), the temperature perturbation to find the USL is set to 0.2 as in 

Gregory and Rowntree (1990) . If no buoyant source layer can be found, then the process (like in KF) is repeated with a 745 

temperature perturbation of 0.1 K. The plume radii are determined with an exponential PDF. 

Other authors, such as Ma and Tan (2009), included moisture advection in the temperature perturbation to improve the KF 

scheme for the case of weak synoptic forcing. Berg et al. (2013) defined a PDF that generates a range of virtual potential 

temperature and water vapor mixing ratio to substitute 𝛿𝑇 in the trigger function. With this new trigger, the scheme more 

realistically accounts for subgrid variability within the convective boundary layer in a way. Both the modified version of the 750 

KF scheme, and the KF itself, are used in the WRF mode. 

As for the trigger of shallow convection, Bechtold et al. (2001) proposed a deep convective scheme based on Kain and Fritsch 

(1990, 1993) but also included a shallow parameterization. In this regard, the triggering criterion is only based on a cloud-

depth condition without using the temperature perturbation included in the deep scheme. Besides, cloud-depth condition and 

cloud radius take smaller values than those use for deep convection (see Table 4). Jakob and Siebesma (2003) also used a 755 

cloud-depth condition to decide whether deep or shallow convection is triggered. In this case, the maximum value of the cloud 

depth to activate shallow convection is set to 200 hPa. The procedure of finding cloud base is the same for both 

parameterizations. 

In the shallow convection parameterization for mesoscale models described in Deng et al. (2003) based on Kain and Fritsch 

(1990, 1993), maximum cloud depth is set to 4 km and cloud radius is allowed to increase smoothly with time from a minimum 760 

value of 0.15 km to a maximum value of 1.50 km. Moreover, shallow convection trigger is a function of boundary layer TKE. 

In  Han and Pan (2011), the USL is set to the level of maximum moist static energy withing the PBL and the maximum cloud 

top for shallow convection is restricted by the ratio between the layer pressure and surface pressure that cannot be higher than 

0.7. A cloud-depth criterion to activate shallow or deep convection is also used in this case. Han et al. (2017) developed a 

scale-aware parameterization for NCEP GFS, where the cloud-depth criterion is increased to 200 hPa compared to the 150 hPa 765 

used in Han and Pan (2011). 

In Kain (2004) the conditions to trigger shallow convection are the same as for deep convection except for the cloud depth, 

that must be smaller than the one for deep convection (see Table 4). In this parameterization, the values of cloud radius are the 

same for both shallow and deep convection for computational reasons. Bretherton et al. (2004) triggers convection if the 

vertical velocity of the parcel is equal or higher than a critical value derived from the vertical velocity equation (Eq. (6)). This 770 

critical velocity takes the form 𝑤"$6*,89 = T2𝑎2(𝐶𝐼𝑁), where 𝑎2 is the virtual mass coefficient used in the updraft vertical 

velocity equation (Eq. (6), see Roode et al. (2012)). Park and Bretherton (2009) used the same triggering conditions as 

(Bretherton et al., 2004). 

 

 775 
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Table 4: A sample of empirical values and assumptions used in the trigger. (Note: subscript sh refers to shallow convection) 

Components Empirical value or assumption Choices in the literature Reference 

Buoyancy 
threshold 

Includes a temperature 
perturbation 𝛿𝑇 linked to the 
large-scale vertical velocity 𝜔 

𝑇*+* + 𝛿𝑇 > 𝑇,-., 𝛿𝑇 = 𝑘	𝜔!/0, where 𝑘 is a unit 
number with dimensions K	s!/0	cm)!/0 

Fritsch and Chappell (1980) 

  𝛿𝑇	 = 	𝑘[𝜔*+* − 𝑐(𝑧)]!/0, with 𝑘 a unit number 
with dimensions K	s!/0	cm)!/0and  

𝑐(𝑧) = 	 V𝜔1
(𝑧*+*/2000),				𝑧*+* ≤ 2000

𝜔1																												𝑧*+* > 2000,	where 

𝜔1 = 2	cm	s)!, and 𝑧*+* is the height (m) of the 
LCL above the ground 

Kain and Fritsch (1990, 1993); 
Kain(2004) 

 Includes a constant 𝛿𝑇 𝛿𝑇	 = 	0.2	K  Gregory and Rowntree (1990); Bechtold 
et al. (2001); Plant and Craig (2008) if 
not USL found, search repeat with 
𝛿𝑇	 = 	0.1	K 

  𝛿𝑇	 = 	0.65	K  Emanuel and Živković-Rothman (1999) 

  𝛿𝑇	 = 	0.90	K  Bony and Emanuel (2001) 

 Includes 𝛿𝑇 composed of 
horizontal 𝛿𝑇2 and vertical 𝛿𝑇. 
components with associated 
normalized moisture advections 
(𝑅2 and 𝑅.) 

𝛿𝑇	 = 	𝑅2	𝛿𝑇2 + 𝑅.	𝛿𝑇.  Ma and Tan (2009) 

 Uses probability density function 
(PDF) 

Substitute 𝛿𝑇 in the trigger function by a generated 
range of virtual potential temperature and water 
vapor mixing ratio 𝑞. 

Berg et al. (2013) 

CIN Must be smaller than a certain 
threshold 

𝐶𝐼𝑁 < 10	J	kg)!  Donner (1993); Donner et al. (2001) 

  𝐶𝐼𝑁 < 100	J	kg)!  Wilcox and Donner (2007) 

 Smaller than the Available 
Lifting Energy (ALE) 

|𝐶𝐼𝑁| < 𝐴𝐿𝐸  Rio et al. (2009); Grandpeix and Lafore 
(2010); Hourdin et al. (2013)  
Rochetin et al. (2014) proposed a 
stochastic definition of ALE. 

 Higher than a critical value and 
inversely proportional to large-
scale vertical velocity 𝜔 

𝐶𝐼𝑁	 ≥ 𝐶𝐼𝑁'345 , where 𝐶𝐼𝑁'345	𝜖	(−120, 80)𝑚"𝑠)" Han et al. (2017), in addition to the 
condition on LFC 

Cloud base At LCL  Betts (1986); Betts and Miller (1986); 
Janjić (1994) 

 Height at which air parcel is 
moistly saturated and 
𝑇673',8 −	𝑇,-. > −0.5	K  

 Tiedtke (1989); Baba (2019) 

 Determined from sounding Cloud base is lower than LNB Emanuel (1991) 

 Can be anywhere in the 
troposphere 

 Grell (1993) 

 Below PBL top  Zhang and McFarlane (1995) 

 Might be above PBL top  Zhang and Mu (2005a) 

 Lowest level where an adiabatic 
parcel is supersaturated 

 Wu (2012) 

Cloud depth Should be higher than a certain 
threshold value 

𝐶𝐷 > 300	hPa  Kuo (1965); Anthes (1977) 

  𝐶𝐷 > 3 − 4	km  Kain and Fritsch (1990) 
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Components Empirical value or assumption Choices in the literature Reference 

  𝐶𝐷 > 150	hPa  Hong and Pan (1998); Han and Pan 
(2011); Stratton and Stirling (2012) 

  𝐶𝐷 ≥ 3	km   Bechtold et al. (2001) 

  𝐶𝐷 > 200	hPa  Gregory (2001); Jakob and Siebesma 
(2003; Bechtold et al. (20049; Han et al. 
(2017) 

 Within a certain range 0.5	km ≤ 𝐶𝐷92 < 3	km  Bechtold et al. (2001) 

  200	m < 𝐶𝐷	92 < 500	m  Vogelmann et al. (2012); Lu et al. 
(2018) 

 Minimum cloud depth is a 
function of the parcel 
temperature at LCL 𝑇*+* 

𝐶𝐷:4- = i
4000,																					 𝑇*+* > 20	℃
2000,																					 𝑇*+* < 0	℃
2000 + 100	𝑇*+*, 0	℃ ≤ 𝑇*+* ≤ 20	°C

  
Kain (2004) 
 

 Maximum value for shallow 
convection 

𝐶𝐷:7;,92 = 200	hPa  Gregory (2001); Jakob and Siebesma 
(2003); Han et al. (2017) 

  𝐶𝐷:7;,92 = 4	km  Deng et al. (2003) 

  𝐶𝐷:7;,92 = 150	hPa  Han and Pan (2011) 

Cloud radius Constant  Arakawa and Schubert (1974) 

  𝑅 = 1500	m  Kain and Fritsch (1990); Bechtold et al. 
(2001) 

  𝑅92 = 50	m  Bechtold et al. (2001) 

 Varies as a quadratic expression 
within a certain range  

0.15	km ≤ 𝑅92 ≤ 1.5	km  Deng et al. (2003) 

 Depends on the large-scale 
vertical velocity at LCL 𝜔*+* 𝑅 = i

1000,																				 𝑊=* < 0
2000,																				 𝑊=* > 10
1000 +𝑊=*/10, 0 ≤ 𝑊=* ≤ 10

  

where 𝑊=* = 𝜔*+* − 𝑐(𝑧) (see buoyancy threshold 
for Kain (2004)) 

Kain (2004) 
 

 PDF of plume radii  Plant and Craig (2008) 

Cloud top Determined by a temperature 
condition 

Level where 𝑇'8>?@ = 𝑇,-. Kuo (1974); Fritsch and Chappell 
(1980); Wu (2012) 

 Level where buoyancy vanishes  Arakawa and Schubert (1974); Tiedtke 
(1989); Wu (2012); Hong and Pan 
(1996) searches from the highest model 
down 

 Immediately beneath EL  Betts (1986); Betts and Miller (1986); 
Janjić (1994) 

 No lower than level of minimum 
saturated moist static energy 

 Zhang and McFarlane (1995) 

 Determined by the vertical 
velocity of the parcel 𝑤 

Level where 𝑤	becomes	negative  Bechtold et al. (2001) 

  𝑤 = 0	m	s)!  Jakob and Siebesma (2003); Bechtold et 
al. (2004) 
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Components Empirical value or assumption Choices in the literature Reference 

  𝑤 < 0.2	m	s)!  Wagner and Graf (2010) 

 Function of ratio layer pressure P 
to surface pressure Ps 

Maximum value 𝑃/𝑃9 = 0.7	for	shallow	
convection	

Han and Pan (2011) 

Entrainment 
rate 

Convection is suppressed if the 
entrainment in the updraft 𝜀?, is 
smaller than a certain threshold 
value 𝜀'? 

𝜀'? = 𝑐A>B/𝐷, where D is the depth of the PBL and 
𝑐A>B a constant   

Tokioka et al. (1988); Anderson et al. 
(2004); Kim et al. (2011) says that 
𝑐A>B = 0.025	or	0.1 in AM2, and 
𝑐A>B = 0	or	0.1 in SNU 

RH Set to a constant value 𝑅𝐻 = 100	%  Manabe et al. (1965) 

 Must be greater than a certain 
threshold value 

𝑅𝐻 > 80	%  Zhang and Mu (2005a, b); Chikira and 
Sugiyama (2010)Zhang et al. (2011)  

  𝑅𝐻 > 75	% at lifting level Wu (2012) 

  𝑅𝐻 > 40	%  Zhao et al. (2018) 

Vertical 
velocity of the 
parcel 

 𝑤 > 0  Kain and Fritsch (1990); Jakob and 
Siebesma (2003); Bechtold et al. (2004); 
Kain (2004)  

  𝑤'345,92 = y2𝑎$(𝐶𝐼𝑁), where 𝑎$ = 1 Bretherton et al. (2004); Park and 
Bretherton (2009) 

3.1.5 Stochastic trigger 

The traditional convective triggers lead to deficiencies in the simulation of different atmospheric events, as stated in Sect. 2. 

A promising strategy to reduce these deficiencies is the use of stochastic triggering (Rochetin et al. 2014a, b). Instead of using 780 

a deterministic parameterization in which the subgrid-scale response is fixed to a certain resolved-scale state, the response is 

sampled from a suitable probability distribution (Dorrestijn et al., 2013b). For example, Majda and Khouider (2002), and 

Khouider et al. (2003) used a stochastic model based on CIN using a Markov process. Stechmann and Neelin (2011) used a 

two-state Markov jump process as their stochastic trigger. Bright and Mullen (2002) modified the KF trigger function by 

applying stochastic perturbation to w, while Song et al. (2007) included several random parameters in the trigger criteria using 785 

a Bayesian learning procedure. Zhang et al. (2014) added a stochastic term to the SAS trigger function in the Hurricane Weather 

Research and Forecasting model (HWRF), and Rochetin et al. (2014a, b) used LES to introduce a stochastic trigger in the 

Emanuel parameterization (Emanuel, 1991). 

3.2 Starting levels 

The LFC is located at, or near, the cloud base or at the top of the PBL. Different methods are applied for calculating the LFC 790 

in the literature. For instance, KF used the potential source layers for clouds (USL) in their procedure to find LFC, while Pan 

and Wu (1995) first determined the convection starting level and then imposed a critical depth to find the LFC (see Sect. 3.1). 

In their stochastic parameterization, Plant and Craig (2008) set to 50 hPa the depth of potential source layers, being the base 

of each 5 hPa higher than the potential layer previously tested. To trigger convection, both deep and shallow,  Han and Pan 

(2011) set a threshold value for the pressure difference between LFC with and without sub-cloud layer entrainment. Differences  795 
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Table 5: A sample of empirical values and assumptions used in the starting levels. (Note: subscript sh refers to shallow convection) 

Components Empirical value or assumption Choices in the literature Reference 
USL Level of maximum moist static energy 

between surface and pressure level 
𝑝:7;  

𝑝:7; = 700	hPa  Grell (1993);Pan and Wu (1995); Zhang and 
McFarlane (1995); Han and Pan (2011); Wu 
(2012) 

  𝑝:7; = 400	hPa	  Hong and Pan (1996, 1998) 

 Layer with a minimum depth Dcrit and 
below the lowest 300 hPa 

𝐷'345 = 60	ℎ𝑃𝑎 Kain and Fritsch (1990) 

 Surface  Park (2014a, b) 

USLsh Level of maximum moist static energy 
within PBL 

 Han and Pan (2011) 

LFC Level of positive buoyancy  Tiedtke (1989); Fritsch and Chappell (1980); 
Kain and Fritsch (1990); Donner (1993); 
Bechtold et al. (2001); Bechtold et al. (2004);  
 

 Reached within an upper limit In the lowest 300	hPa of the atmosphere Kain and Fritsch (1990); Bechtold et al. (2004) 

 Reached within a critical depth Dcrit 
from the convection starting level in 
proportion to vertical velocity at 
cloud base 𝜔 

𝐷'345 = 150	hPa  Hong and Pan (1996, 1998) 

  120		hPa	 < 𝐷'345 < 180		hPa , with 
𝐷'345 = 𝑓(𝜔,𝜔!, 𝜔") , 𝜔! = −5 · 10)0(−1 ·
10)0) and 𝜔! = −5 · 10)C(−2 · 10)D) over 
land(ocean) 

Han and Pan (2011); Han et al. (2017) 
Lim et al. (2014) and Han et al. (2019) computed 
𝜔! and 𝜔" assuming   
𝜔 = 𝑓(model	horizontal	resolution)  
Kwon and Hong (2017) added a scale-aware 
factor to 𝐷'345 

   𝐷'345 ∝ 𝑅𝐻 Han et al. (2020) 

LFS Level at which the temperature of a 
saturated mixture of equal amounts of 
updraft and environmental air 
becomes less than Tenv 

  Fritsch and Chappell (1980);  
Tiedtke (1989); Nordeng (1994); Baba (2019) it 
has to be located below the level of minimum 
moist static energy h 

 Level of minimum environmental 
saturated equivalent potential 
temperature between LCL and cloud top 

  Kain and Fritsch (1990); Bechtold et al. (2001); 
Wu (2012) 

 Level of minimum moist static energy 
h   Grell et al. (1991); Grell (1993)  

 Level of minimum moist static energy 
h if lower than the base of the 
detrainment layer. If not, it matches 
the detrainment level 

  Zhang and McFarlane (1995) 

  Near 400-hPa level. Level above the 
minimum moist static energy h   Pan and Wu (1995) 

 Located within a certain range above 
USL 

150−200 hPa Kain (2004) 

 

higher that this threshold value, set to 25 hPa, will activate convection. Besides, the authors assumed that the convection 

starting level for deep convection is at the level of maximum moist static energy h between the surface and the level of 700 
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hPa, while for shallow convection it starts at the level of maximum h within the PBL. Table 5 lists a sample of the main 800 

assumptions and empirical values used to determine the starting levels. 

While the starting level for the ascending currents (updrafts) is reasonably evident, the starting level for the descending currents 

(downdrafts), usually called the level of free sinking (LFS), may start at any vertical level no lower than the cloud base. Several 

convective parameterizations, such as those proposed by Tiedtke (1989) or Bechtold et al. (2001), follow the definition 

suggested by Fritsch and Chappell (1980), who assumed that LFS is the level at which the temperature of a saturated mixture 805 

of equal amounts of updraft and environmental air becomes smaller than the environmental temperature. In contrast, Grell et 

al. (1991) determined LFS as the minimum value of ℎ, and Zhang and McFarlane (1995) matched LFS with the lowest updraft 

detrainment level. However, if the minimum value of ℎ  is lower than the bottom level of updraft detrainment, LFS is 

determined as in Grell (1993). 

3.3 Impact of trigger functions on convective models 810 

Differences between trigger functions depend on the identification of the source layer of convective air and on how this layer 

of unstable air can give rise to convection. While near-surface air is selected as the source layer in some CPs (Tiedtke, 1989; 

Donner, 1993; Bechtold et al., 2001; Tawfik and Dirmeyer, 2014), in others, the choice is the layer of maximum moist static 

energy, h (Arakawa and Schubert, 1974; Grell, 1993; Zhang and McFarlane, 1995; Wu, 2012). On the other hand, different 

convection triggers are used to determine whether unstable air turns into convection, as mentioned in the previous section. 815 

However, the best way to construct a trigger function is still unknown and, in many cases, an ad-hoc formulation leads to poor 

performance in the activation of convection at the right location and time (Suhas and Zhang, 2014; Song and Zhang, 2017). 

Comparison between the performance of different trigger functions and observations from different climates leads to 

improvements in the formulation of the activation criteria for convection. Suhas and Zhang (2014) used three intensive 

observation period (IOP) datasets from the Atmospheric Radiation Measurement (ARM) program, and long-term single-820 

column models (SCMs) to evaluate the performance of different trigger functions (AS scheme, Bechtold scheme, Donner 

scheme, KF scheme, Tiedtke scheme, and four variants of the ZM scheme). The dilute dCAPE trigger function showed the 

best performance in both the tropics and midlatitudes, while the undilute dCAPE was as good as the dilute dCAPE only for 

the tropics. Furthermore, the Bechtold and the dilute CAPE trigger functions were among the best performing schemes. As a 

follow-up, Song and Zhang (2017) used observations from the Green Ocean Amazon (GOAmazon) field campaign to evaluate 825 

and improve the trigger functions selected in Suhas and Zhang (2014), with the addition of the HCF. In their study, the dCAPE-

type triggers also ranked first, followed by the Bechtold and HCF triggers. The undilute dCAPE trigger performed better with 

the inclusion of a 700-hPa upward motion, while the dCAPE trigger improved with an optimization of the entrainment rate 

and dCAPE threshold. Using the GOAmazon, the authors set the values for the dCAPE threshold and entrainment rate. The 

new values are 55	J	kg:/s:/ for the dCAPE threshold and 2.5 · 10:;m:/ for the entrainment rate. 830 

The convection trigger criterion plays a crucial role in the simulation of a wide number of atmospheric events. The impact of 

the trigger function on the correct simulation of the diurnal cycle of convection and precipitation in atmospheric models has 
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been widely studied, especially over land (Bechtold et al., 2004; Knievel et al., 2004; Lee et al., 2007a, b, 2008; Hara et al., 

2009; Evans and Westra, 2012). The common problem in the simulation of the diurnal cycle is that it peaks too early and its 

amplitude is too high (Yang and Slingo, 2001; Collier and Bowman, 2004). Moreover, the diurnal cycle of precipitation peaks 835 

too early over land (in general, 2 to 4 hours before the observed maxima) (Dai, 2006), which is related to the formulation of 

the trigger function (Betts and Jakob, 2002; Bechtold et al., 2004). Lee et al. (2008) performed a sensitivity analysis with four 

different trigger functions implemented in the RAS scheme and found significant differences in the diurnal cycle of 

precipitation over the Great Plains in the United States. Several studies have performed sensitivity analyses and found possible 

ways to improve the simulation of the diurnal cycle. Models with finer resolution provided a better simulation in the amplitude, 840 

variability, and timing of the diurnal cycle (Wang et al., 2007; Sato et al., 2009). The inclusion of the effect of moisture 

advection in the trigger function improved the distribution and intensity of convective precipitation in the MM5 (Ma and Tan, 

2009). The use of different initiation and termination conditions in the SAS scheme led to a better diurnal variation of 

precipitation (Han et al., 2019) although it increased the excessive precipitation and did not alleviate the bias in the phase of 

precipitation intensity. The modification of both the trigger and closure criteria by considering cold pools could minimize the 845 

bias in the diurnal cycle of convection (Rio et al., 2009, 2013). Another important case are the deficiencies in the simulation 

of the MJO (Lin et al., 2006), which are often improved by the modification of the trigger function. For example, Wang and 

Schlesinger (1999) found that a better representation of the MJO was possible by adding a moisture trigger to the convective 

parameterization used in the atmospheric general circulation model at the University of Illinois, Urban–Champaign (UIUC). 

Zhang and Mu (2005b) used the same approach in the National Center for Atmospheric Research (NCAR) Community Climate 850 

Model version 3 (CCM3) as well as Lin et al. (2008) in the Seoul National University (SNU) atmospheric general circulation 

model. Another example is a better representation of the Indian summer monsoon rainfall by the addition of HCF to the trigger 

function in the Climate Forecast System version 2 (CFSv2) (Bombardi et al., 2015).  

The lack of “convective memory” effects in the models based on the QE assumption causes a convective parameterization to 

be triggered, regardless of the convection stage, as long as the convection criteria are met. Different ways to include the 855 

memory effect have been proposed, such as using prognostic cumulus kinetic energy (Pan and Randall, 1998), or an ensemble 

of cold pools (Grandpeix and Lafore, 2010; Del Genio et al., 2015) (see section 2.9). 

4 Cloud model: types and choices 

The cloud model represents the interaction between cumulus clouds and the large-scale environment. Thus, it determines the 

vertical distribution of convective heat and moisture through the parameterization of the mass flux profile, the 860 

entrainment/detrainment, and the microphysics. This section discusses the main types of mass flux and 

entrainment/detrainment schemes adopted in the literature, as well as the main assumptions and empirical values employed in 

the formulation of the cloud model.  
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4.1 Mass flux scheme types 

According to the approach used to estimate the unknown quantities in Eq. (5.1), Eq. (5.2) and Eq. (5.3), mass flux schemes are 865 

classified into spectral, bulk and episodic mixing models.  

4.1.1 Spectral models 

Spectral models represent the ensemble of clouds within a grid box with a spectrum of clouds, each of them with a cloud 

model. Therefore, multiple types of convection are considered in these models in contrast to the bulk ones, where the use of 

only one cloud model for each grid box makes necessary to decide a priori the type of convection and to characterize the cloud 870 

model by averages over the ensemble of clouds.  

In spectral models, clouds within a grid box are grouped into different cloud models according to a certain parameter. The 

majority of spectral schemes generate an ensemble of plumes based on a distribution of entrainment rates (Arakawa and 

Schubert, 1974; Hack et al., 1984; Nober and Graf, 2005; Chikira and Sugiyama, 2010), although care has to be taken such 

that the results (convective regime) are not dominated by the least entraining parcels. Each cloud type contributes in a different 875 

amount to the ensemble mean depending on their cloud base mass flux. This type of model was original proposed by AS. Since 

then, the scheme has undergone several modifications, some of them make the scheme no longer a spectral model but a bulk 

mass flux scheme (e.g., Grell, 1993; Pan and Wu, 1995). For example, Moorthi and Suarez (1992) modified the closure in AS 

scheme by replacing the QE assumption for a relaxation towards the equilibrium. This scheme is also known as the Relaxed 

Arakawa-Schubert (RAS). Numerous studies described models based on the spectral representation (e.g., Wagner and Graf, 880 

2010; Donner, 1993; Sušelj et al., 2012, 2013; Hong et al., 2013; Neggers, 2015; Olson et al., 2019; Brast et al., 2018; Hagos 

et al., 2018).  

4.1.2 Bulk models 

The ensemble of clouds within a grid box is represented by a single cloud model, in contrast to spectral models. Yanai et al. 

(1973) are the main representatives of this type of scheme. In their diagnostic study, clouds are classified according to their 885 

cloud tops, and the steady plume hypothesis (Morton et al., 1956) is applied. It is assumed that all clouds have a common cloud 

base height, and that the values on detrainment are identical to the values inside the plume. In mesoscale models, Fritsch and 

Chappell (1980) and Kain and Fritsch (1992) also applied the steady hypothesis, as did Singh et al. (2019) in their study of the 

relationship between humidity, instability, and precipitation in the tropics. Tiedtke (1989), and Gregory and Rowntree (1990) 

applied the same approach as Yanai et al. (1973) in their schemes at the ECMWF, and at the U.K. Meteorological Office. The 890 

scheme used at ECMWF has undergone several modifications since then (e.g., Nordeng, 1994; Gregory et al., 2000; Li et al., 

2007; Zhang et al., 2011; Kim and Kang, 2012; Stevens et al., 2013). Other studies, such as Grell (1993), changed the spectrum 

of cloud sizes in AS for a simple non-entraining cloud within a single grid box. Pan and Wu (1995) developed the so-called 

simplified Arakawa-Schubert model (SAS), which is a modified version of the model proposed by Grell (1993). The cloud 
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ensemble is also represented by a single non-entraining cloud and the downdraft starting level is modified to avoid excessive 895 

cooling below cloud base. Han and Pan (2011) further modified entrainment, detrainment and cloud base mass flux in SAS to 

overcome unrealistic grid-scale precipitation, and develop a bulk mass flux parameterization for shallow convection. Many 

mass flux parameterizations use the bulk-cloud approach (e.g., Siebesma and Holtslag, 1996; Bechtold et al., 2001; Neggers 

et al., 2009; Yano and Baizig, 2012; Loriaux et al., 2013) with different formulations of their cloud models (i.e., formulation 

of the mass flux at cloud base, entrainment, detrainment, microphysics). 900 

4.1.3 Episodic mixing models 

Drawing on the continuous entrainment and average buoyancy used in entraining/detraining plume models in both bulk and 

spectral formulations, Emanuel (1991, 1994) proposed the so-called episodic mixing model, which is based on the stochastic 

mixing model of Raymond and Blyth (1986), and the observations of Taylor and Baker (1991), among others. Thus, Emanuel 

assumed that mixing is highly inhomogeneous and episodic, and applied the buoyancy sorting hypothesis (Telford, 1975; 905 

Taylor and Baker, 1991), which is the basis of a number of cumulus parameterizations (e.g., James and Markowski, 2010; 

Park, 2014a), especially those focused on shallow convection (e.g., Bretherton et al., 2004; De Rooy and Siebesma, 2008; 

Neggers et al., 2009; Pergaud et al., 2009). The Emanuel scheme and its modified versions (Emanuel and Živković-Rothman, 

1999; Grandpeix et al., 2004; Peng et al., 2004) are widely used in RCMs (e.g., Zou et al., 2014; Raju et al., 2015; Bhatla et 

al., 2016; Gao et al., 2016; Kumar and Dimri, 2020). 910 

 

The aforementioned mass flux scheme types are explained from the point of view of the ascending currents. However, 

convective downdrafts, i.e., descendent currents caused by evaporation of condensate and rainwater loading, should be taken 

into account. Simply put, they may be considered as bottom-up updrafts. Downdrafts are of great importance in atmospheric 

convection. As Plant and Yano (2015) highlighted, they have opposite effects on the organization and evolution of convective 915 

systems. The transport of cooler and drier air into the sub-cloud layer may stabilize it and therefore inhibit convection or may 

lead to the development of new convective elements if downdrafts cause an increase in low-level convergence. The majority 

of convective parameterizations include downdrafts with assumptions about their starting level, entrained and detrained air, or 

the amount of condensate available for evaporation. However, many schemes, such as Grell (1993), the ZM scheme used in 

CESM, or the Tiedtke scheme in the ECHAM model, have described downdrafts as simple saturated plumes, i.e., “inverse 920 

plume”, with a mass flux proportional to the updraft mass flux (Thayer-Calder, 2012). Other authors have proposed a more 

complex parameterization including unsaturated downdrafts in their formulations and a downdraft mass flux based on Eq. 

(5.1), Eq. (5.2)and Eq.(5.3) (e.g., Emanuel, 1991; Xu et al., 2002). 

4.2 Entrainment and detrainment 

The mixing of air masses due to entrainment of environmental air into clouds and detrainment of cloudy air into the 925 

environment are key processes in convective parameterizations (Blyth, 1993; Luo et al., 2010; Donner et al., 2016) as they 
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modify the vertical profiles of heat and moisture within cloudy air. Sanderson et al. (2008) identified the entrainment rate as 

one of the dominant parameters affecting climate sensitivity after evaluating thousands of GCM simulations. Other authors, 

such as Rougier et al. (2009), Klocke et al. (2011) and Zhao (2014) have obtained similar conclusions in their analyses. In 

addition, the influence of convective detrainment of water vapor and hydrometeors from cumulus clouds is an important source 930 

of water that strongly impacts climate simulations (e.g., Ramanathan and Collins, 1991; Lindzen et al., 2001). 

In this section, attention is drawn to the most important model types of entrainment and detrainment, the main assumptions 

and empirical values used in the literature, and the impact that the different formulations have in convective models. The main 

assumptions and empirical values used in the formulation of entrainment and detrainment are listed in Tables 6 and 7 and in 

Tables 8 and 9, respectively. 935 

4.2.1 The choice of lateral vs cloud-top entrainment 

Since Stommel (1947) provided the first description of cumulus cloud dilution by entrainment of environmental air, two 

conceptual models are still competing: the lateral entrainment model and the cloud-top entrainment model.  

In the lateral entrainment model, Stommel (1947) considered that environmental air enters the cloud through the lateral cloud 

edges and continuously dilutes cloudy air during its ascent, regardless of whether it is considered a plume or a bubble. Several 940 

aircraft observations and experiments in water tanks (Turner, 1962; Morton, 1965) contributed to the formulation of the lateral 

entrainment theory. However, authors such as Warner (1970) pointed out the deficiencies of this theory in predicting the right 

profile of liquid water content (LWC).  

In order to address these deficiencies, Squires (1958) proposed another entrainment model, the cloud-top entrainment. This 

author suggested that environmental air enters the cloud predominantly at or near the cloud top, descends through penetrative 945 

downdrafts created by evaporative cooling, and dilutes the cloud by turbulent mixing. Paluch (1979) provided more evidence 

for cloud-top entrainment in her study on cumulus clouds over Colorado. The author found that the cloud water-mixing ratio 

and the wet equivalent potential temperature follow a line at a single level, the so-called “mixing line”, which connects cloud 

base and cloud top. Paluch interpreted it as evidence for a two-point mixing scenario. Further studies (Boatman and Auer, 

1983; Lamontagne and Telford, 1983; Jensen et al., 1985; Reuter and Yau, 1987) confirmed Paluch’s results. However, several 950 

authors have criticized the mixing line source levels (e.g., Blyth et al., 1988; Malinowski and Pawlowska-Mankiewicz, 1989; 

Raga et al., 1990; Grabowski and Pawlowska, 1993; Neggers et al., 2002; Zhao and Austin, 2005), and the interpretation of 

the mixing line (e.g., Betts and Albrecht, 1987; Taylor and Baker, 1991; Grabowski and Pawlowska, 1993; Siebesma, 1998; 

Böing et al., 2014). 

Which of the two models predominates in cumulus convection remained unclear for many years. The increase in computational 955 

power in recent decades has promoted the use of LES to study entrainment and detrainment mainly in shallow cumulus clouds. 

Several authors, such as Heus et al. (2008) and Böing et al. (2014), have applied LES to identify the dominant process in 

mixing in cumulus clouds, concluding that cloud-top entrainment is insignificant compared to lateral entrainment. 
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4.2.2 Main empirical values in entrainment and detrainment formulations 

Aircraft observations and experiments in water tanks (Turner, 1962; Morton, 1965) led to the formulation of the lateral 960 

entrainment theory, which anticipates that the fractional entrainment rate (hereafter entrainment rate) changes with the cloud 

radius  (Malkus, 1959; Squires and Turner, 1962; Simpson and Wiggert, 1969; Simpson, 1971) 
/
4
(4
(+
= 𝜀 ≃ <

=
 ,            (9) 

where M is the mass flux, z is the height, 𝜀 denotes the entrainment rate, C is a constant, and R is the radius of the rising plume. 

These first parameterizations set 𝐶 = 0.2 based on laboratory results. As De Rooy et al. (2013) pointed out in their review 965 

article on entrainment and detrainment in cumulus convection, many cloud models still use this formulation (e.g., Arakawa 

and Schubert, 1974; Kain and Fritsch, 1990; Donner, 1993), sometimes assuming a constant entrainment rate. 

Houghton and Cramer (1951) improved this theory by taking into account the increase of vertical velocity due to buoyancy. 

Thus, the authors distinguish between dynamical entrainment due to larger-scale organized inflow, 𝜀>?@ , and turbulent 

entrainment caused by turbulent mixing, 𝜀ABCD. The turbulent entrainment rate is related to the flux across the updraft boundary, 970 

which is often described with an eddy diffusivity approach (Kuo, 1962; Asai and Kasahara, 1967; De Rooy et al., 2013; Cohen 

et al., 2020). Under the eddy diffusivity approach, the eddy flux is modelled by a downgradient and an eddy diffusivity. that 

for the case of the turbulent entrainment is proportional to the radial scale of a plume (used as a mixing length) and the turbulent 

velocity scale of the environment. The change of mass flux with height, including the detrainment δ of negative buoyant 

mixtures, is given by 975 
/
4
(4
(+
= 𝜀>?@ + 𝜀ABCD − 𝛿>?@ − 𝛿ABCD.         (10) 

Tiedtke (1989) and Nordeng (1994) assumed that turbulent entrainment is inversely proportional to cloud radii, as in Simpson 

and Wiggert (1969) and Simpson (1971). They used typical cloud sizes, based on observations, for different types of convection 

to fix the values of entrainment rates. For penetrative and midlevel convection, the entrainment rate was fixed to 𝜀ABCD = 1 ⋅

10:; m:/.  This is a typical value for tropical clouds as showed in the analysis of aircraft observations in Simpson (1971). For 980 

shallow convection, the entrainment rate was based on typical values for large trade cumuli, 𝜀ABCD = 3 ⋅ 10:;	m:/  (Nitta, 

1975). Gregory and Rowntree (1990) also assumed a turbulent entrainment rate, but inversely proportional to the height, while 

in Bechtold et al. (2008), 𝜀ABCD  is O(1 ⋅ 	10:E	m:/ ) in better agreement with CRM results, and also relative humidity 

dependent, which turned out to be important to represent realistic tropical variability (Table 6). Dynamical entrainment 𝜀>?@ 

is proportional to moisture convergence and occurs only in the lower part of the cloud layer up to the level of strongest vertical 985 

ascent in Tiedtke (1989). In Nordeng (1994), it is based on momentum convergence. Gregory and Rowntree (1990) did not 

include it in their parameterization, whereas in Bechtold et al. (2008), it depends on RH and is only applied to deep convection. 

For downdraft, Bechtold et al. (2014) set 𝜀ABCD = 3 ⋅ 10:;	m:/  and 𝜀>?@  as a function of 𝐵 . A common practice in the 

definition of entrainment rates for downdraft consists in assuming a similar parameterization as for updrafts (Table 7). 
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Kain and Fritsch (1990) introduced another type of parameterization based on the buoyancy sorting. In their parameterization, 990 

homogeneous mixing of cloudy and environmental air was assumed, leading to mixtures with different buoyancy properties 

that have the same probability of occurrence. Moreover, the authors modified Eq. (9) to make it pressure dependent. The 

fraction of environmental air that makes the mixture neutrally buoyant is the so-called critical mixing fraction 𝜒" , which 

determines whether a mixture entrains or detrains after mixing. Thus, entrainment of positive buoyant mixtures occurs if 

𝜒 < 𝜒c, while 𝜒 > 𝜒c leads to immediate detrainment of negative buoyant mixtures. Therefore, detrainment can occur at any 995 

level where 𝜒 > 𝜒c, unlike in the AS scheme, where only the cloud top detrainment is considered. Moreover, the maximum 

entrainment rate is proportional to pressure and inversely proportional to updraft radius. However, the KF scheme had 

deficiencies, such as excessive detrainment or the production of unrealistic deep saturated layers. In newer versions of the KF 

scheme, a mitigation of unrealistic deep saturated layers is achieved by assuming that the entrainment of environmental air 

cannot be lower than 50 % of the total environmental air involved in the mixing process in the updraft, and that cloud radius 1000 

depends on the convergence of the sub-cloud layer (Kain, 2004). Recently, Zheng et al. (2016) modified the minimum 

entrainment equation in Kain (2004) to include both organized and turbulent entrainment. The authors made the equation scale-

dependent and expressed it in terms of sub-cloud layer depth instead of cloud radius. Another scheme based on the buoyancy-

sorting hypothesis, but assuming episodic mixing, is the Emanuel scheme (Emanuel, 1991), where, in contrast to the KF 

scheme, the resulting mixtures just ascend or descend to their level of neutral buoyancy to detrain. 1005 

Other approaches use in-cloud quantities instead of only the environmental quantities to estimate the entrainment rate. For 

instance, Gregory (2001) proposed an entrainment rate that depends on B and inversely on the square of the updraft speed w 

calculated using Eq. (6). The value of 𝑎2 also comes from the equation and is selected by comparing SCM simulations against 

LES/CRM studies and available observations. This parameterization deals with both shallow and deep convection. What 

distinguishes one type of convection from another is the value of a constant Ce, whose values were specified by using a SCM 1010 

in ECMWF model. 

Apart from buoyancy, another environmental quantity that might influence entrainment, and therefore convection, is RH. A 

number of studies have analyzed the effect of RH in parameterization of entrainment/detrainment rates, drawing different 

conclusions. For instance, Jensen and Del Genio (2006) found a positive correlation between entrainment rate and RH in their 

analysis of remote sensing observations and soundings at Nauru Island, while Bechtold et al. (2008) and Zhao et al. (2018) 1015 

found a negative correlation using the Atmospheric Model version 4 (AM4.0). The same conclusion was achieved by Stirling 

and Stratton (2012) using a CRM formulation and the Met Office Unified Model (Met Office UM).  

Mapes and Neale (2011) addressed the so-called “entrainment dilemma”, in which the excessive entrainment values tend to 

excessively restrain convection, while insufficient entrainment values abundantly ease its activation. To overcome this, they 

proposed a new formulation of the entrainment rate dependent on a prognostic variable called organization, which expresses 1020 

the interaction between the environment and convection. In their formulation, the rain evaporation rate controls the 

organization and produces more deep convection for lower values of the entrainment rate. 
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The previous discussion about entrainment and detrainment rates was focused on deep convective schemes with some 

references to unified schemes. However, parameterizations of these processes are also important in shallow convection. 1025 

Tiedtke (1989) fixed the entrainment and detrainment  rates for shallow convection to  𝜀 = 𝛿 = 3 · 10:;	m:/ based on typical 

values for large trade cumuli (Nitta, 1975). Using LES based on BOMEX, Siebesma and Cuijpers (1995) found typical values 

of entrainment for the core between 1.5	 · 10:E	m:/ and 2 · 10:E	m:/ and around 3 · 10:E	m:/ for the updraft. Siebesma 

(1998) found typical values for entrainment in shallow convection in the range 1.5 − 2.5 · 10:Em:/. In their revision and 

performance analysis of the ECMWF IFS, Gregory et al. (2000) found values of 𝜀 = 1.2 · 10:E	m:/  at cloud base and 1030 

𝜀	 = 	3 · 	10:E	m:/150 hPa above it employing a control physics package that included a cloud scheme based on Tiedtke 

(1989, 1993).  

Grant and Brown (1999) and Grant and Lock (2004) described a similarity theory for shallow convective transport. In this 

theory, buoyancy production and turbulent dissipation are assumed to nearly balance within QE shallow convective fields. As 

for the entrainment formulation, it is scaled based on observable quantities such as CAPE or mass-flux at cloud base with a 1035 

constant 𝐴F that represents the fraction of TKE available for entrainment. The value of this constant is derived from LES 

results. Kirshbaum and Grant (2012) used this formulation with 𝐴F = 0.06. Drueke et al. (2019) found also used this TKE 

similarity theory for cloud ensembles to retrieve values of entrainment rates based on sub-cloud and environmental conditions. 

Besides, the authors compared this method with the parcel model of Jensen and Del Genio (2006), which coupled surface 

remote sensing observations and soundings at Nauru Island to a parcel model, and Entrainment Rate In Cumulus Algorithm 1040 

(ERICA) proposed by Wagner et al. (2013), which uses an algorithm to retrieve values of entrainment from ground-based 

remote sensing observations. The analysis was performed using LES simulations of a range of shallow cumulus over ocean 

and land showing a strong contrast in entrainment between them, as well as a lower dilution for wider clouds. The parcel 

method and TKE similarity theory better capture the sensitivity within continental cumuli and showed a lower mean error 

compared to ERICA. The diurnal variations of entrainment within continental shallow cumulus were only reproduced by the 1045 

TKE method. With this method, the authors found values of 𝐴F in the range 0.037 − 0.035. More recently, Kirshbaum and 

Lamer (2021) performed a climatological sensitivity analysis of shallow cumulus entrainment in oceanic and continental 

locations using the parcel method and the TKE as in Drueke et al. (2019). Four years of observations at two ARM observatories 

were used. The analysis confirmed the results obtained by Drueke et al. (2019) and identified other sources of entrainment 

variability such as sub-cloud wind speed in oceanic flows and cloud base mass flux in individual cumuli. Median values of 1050 

entrainment at a continental site range between 0.5 and 0.6 km-1 and between 1.0 and 1.1 km-1 at the oceanic site. 

Neggers et al. (2002) developed a new formulation using LES. The authors proposed an entrainment rate inversely proportional 

to a turnover timescale that seems to be independent of cloud depth, and the vertical velocity of the parcel. Thus, each parcel 

will have its own entrainment rate depending on their vertical velocity. For the ensemble of parcels, the fractional entrainment 

rate is of the order of the values shown in Siebesma and Cuijpers (1995). Sušelj et al. (2012) followed Neggers et al. (2002) 1055 

but with a different value of the turnover timescale (see Table 6). Model results using a SCM probed to be sensitive to the 

choices of this parameter.  
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In their EDMF model, Soares et al. (2004) used a constant entrainment rate within the cloud layer following the entrainment 

rate in Siebesma (1998), while in the sub-cloud layer the entrainment is inversely proportional to height.   

Bretherton et al. (2004) proposed an entrainment formulation similar to that of KF but modified 𝜒c by defining a critical eddy-1060 

mixing distance dc based on observations and LES results that revealed fractions of negative buoyant air in the updrafts (Taylor 

and Baker, 1991; Siebesma and Cuijpers, 1995). The so-called fractional mixing rate 𝜀G is defined as inversely proportional to 

the top of the cumulus layer H. In their unified scheme, Hohenegger and Bretherton (2011) applied the buoyancy sorting idea 

to compute entrainment and detrainment rates as in Bretherton et al. (2004) defining 𝜀G in a different way. Taking into account 

LES simulations performed with the System for Atmospheric Modelling (SAM), this value is here link to the convective 1065 

precipitation at cloud base (see Table 6).  

Based on the results obtained from using tracers in LES simulations of shallow convection during BOMEX, that pointed to a 

description of entrainment through a stochastic Poisson process, Romps and Kuang (2010b) developed a parcel model with 

stochastic entrainment similar to the one proposed in Romps and Kuang (2010a). The authors used a Monte Carlo method to 

model entrainment rate. The parameterization uses two probability functions characterized by two parameters, i.e., the mean 1070 

ratio of the entrained mass 𝑚%H*, and the distance that parcel travels between entrainment events 𝑑%H*. The mean fractional 

entrainment per distance is given by the ratio of these two parameters. The values that best fit to the CRM results were 

𝑑%H*	 = 	226	mm  and 𝑚%H* = 0.91 , i.e., 𝜀 = 4.0 · 10:E	m:/ . Nie and Kuang (2012) specified 𝑚%H* = 0.32  and 

𝑑%H* = 	125	m for their LES simulations of BOMEX to reduce the number of undilute updrafts to a number comparable to 

their 25-m resolution run. For the sub-cloud layer, the parameters were set to 𝑑%H* = 30	m and 𝑚%H* = 0.06. Sušelj et al. 1075 

(2013) replaced the entrainment parameterization in Sušelj et al. (2012) by a stochastic formulation. The authors considered a 

constant entrainment rate for dry updrafts below the condensation level, and an entrainment formulation similar to the one 

proposed by Romps and Kuang (2010b). In this case, the authors found a typical distance of 100	m between entrainment 

events for BOMEX phase-3 experiment. Sušelj et al. (2014) parameterized the entrainment rate as in Sušelj et al. (2013) 

although with different values for the constant entrainment rate and 𝑑%H*. 1080 

Recently, in their shallow cumulus study, Lu et al. (2018) identified deficiencies in the previous studies about the impact of 

RH on entrainment that could lead to erroneous conclusions regarding the effects of RH on entrainment, such as the use of 

conserved quantities related to RH to estimate entrainment rates, or that no observations had thus far been used to determine 

the relationship between RH and entrainment. To address these deficiencies, the authors analyzed aircraft observations from 

the Routine AAF (ARM Aerial Facility) CLOWD (Clouds with Low Optical Water Depths) Optical Radiative Observations 1085 

(RACORO) (Vogelmann et al., 2012) and Rain In Cumulus over the Ocean (RICO) field campaigns (Rauber et al., 2007) for 

shallow cumulus and concluded that 𝜀 and RH are positively correlated. Nonetheless, there is no general consensus on the 

effects of environmental RH on entrainment rates (Lu et al., 2018). 

 

 1090 
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Table 6: A sample of empirical values and assumptions used in the parameterization of entrainment in the updraft. (Note: subscript sh refers 
to shallow convection) 

Type Empirical value or assumption Choices in the literature Reference 
Turbulent Constant 𝜀5?3E? = 1 · 10)C	m)! for penetrative (only occurs in the 

lower part of the cloud layer) and midlevel convection, 
and 𝜀5?3E,92? = 3 · 10)C	m)!  

Tiedtke (1989); Nordeng (1994); 
Zhang et al. (2011); Möbis and 
Stevens (2012) 

  𝜀5?3E? = 3 · 10)C	m)!  Wang et al. (2007) 
 Inversely proportional to height z 𝜀5?3E? = 𝐶5?/𝑧, with 𝐶5? = 3	𝐴,	𝑓(𝑝), where 

𝐴	, = 	1.5 for all levels above LCL, and 𝑓(𝑝) = 𝑝/𝑝9", 
with 𝑝9	𝑡ℎ𝑒	𝑠urface pressure 

Gregory and Rowntree (1990) 

  𝐶5? = 0.55 + 8.0 �1.2 − %#$#
!11

�
"
, with 0.55 ≤ 𝐶5? ≤ 3.5 Stratton and Stirling (2012) only for 

deep convection over land 
  𝜀5?3E? = !

%
· �F·&H

%#$#
�, where 𝑧*+*  is the height of the LCL 

and A=2.0 

Stirling and Stratton 2012) only for 
deep convection over land 

  𝜀?-4? = 𝐹(𝑧)	𝑓@6	3	𝐴,𝜌𝑔	𝑓(𝑝), where F(z) is a scaling 
factor in the range 0.5 to 2.5, and 𝑓@6  is a tuning 
parameter set to 1.13 (deep) and 1.0 (shallow) 

Willet and Whitall (2017) 

 Proportional to the environmental 
humidity 𝑞� 𝜀5?3E? = 𝑐1𝐹I,1 , where 𝐹I,1 = � J%KKK

J%,'KKKKK
�
"

and 𝑞9�  and 𝑞9,E�����  are 

the saturation specific humidity at the parcel level and 
cloud base, respectively 

Bechtold et al. (2008); Han and Pan 
(2011); Zhang and Song (2016) 
Del Genio and Wu (2010) found 
𝑐1 = 0.5 

Dynamical Proportional to moisture 
convergence 

 Tiedtke (1989); Möbis and Stevens 
(2012) 

 Depends on momentum 
convergence 

𝜀@L-? = !
"

M

$(,#)*
" )∫ M	@%#)*

+
+ !

O
@O
@%

 , where 

𝑤	@,*PQ	 = 	1	m	s)! is the downdraft velocity at LFS 

Nordeng (1994); Möbis and 
Stevens (2012) 

 Proportional to the environmental 
humidity 𝑞� 𝜀@L-? = 𝑐!

J%KKK)JK
JK
𝐹I,!, where 𝐹I,! = � J%KKK

J%,'KKKKK
�
0
 , 𝑐! is a tunable 

parameter, and 𝑞9�  and 𝑞9,E�����  are the saturation specific 
humidity at the parcel level and cloud base, respectively  

Bechtold et al. (2008); Del Genio 
and Wu (2010) found 𝑐! = 0.1 

  𝜀@L-? = 𝑑!(1 − 𝑅𝐻)𝐹I,!where 𝑑! is a tunable parameter Han and Pan (2011) 
  𝜀@L-? = 𝐶,(1.3 − 𝑅𝐻)𝐹I,!  , where 𝐶, = 1.8 · 10)0𝑚)! , 

and 𝜀92? = 2 · 𝜀@L-?  
 

Bechtold et al. (2014) 

 Occurs when cloud 
parcels accelerate upward and the 
buoyancy B is positive 

 Zhang et al. (2011)  

No distinction Inversely proportional to cloud 
radius R 

𝜀? = 𝐶,?/𝑅, with 𝐶,? = 1 Malkus (1959) 

  𝐶,? = 0.2	(T62, ST62), 0.18	(SW69)	 Turner (1962); Squires and Turner 
(1962); Simpson and Wiggert 
(1969); Arakawa and Schubert 
(1974); Wagner and Graf (2010) 

 Function of a critical mixing 
fraction 𝜒' 

𝜒 < 𝜒'  Kain and Fritsch (1990); Bechtold 
et al. (2001); Pergaud et al. (2009) 

 Proportional to a critical mixing 
function 𝜒' 

𝜀? ≥ 𝑀?
+,-R6
&
𝜒', where 𝑀? is the updraft mass flux at 

cloud base, 𝐶,? = 0.03	m	Pa)!, and 𝜒' = 0.5 

Kain (2004) 

 Does not exist around cloud edges  Grell et al. (1994) 
 Defined by the requirement that 

the temperature of the plume that 
detrains at a certain level z equals 
Tenv 

Reaches its maximum value at the height of minimum h 
for a saturated state 

Zhang and McFarlane (1995) 

 Inversely proportional to height z 𝜀 = +,,%.
%

 with 𝐶,,92 = 1.0 Siebesma and Cuijpers (1995); 
Siebesma et al. (2003); De Rooy 
and Siebesma (2008) 



43 
 

Type Empirical value or assumption Choices in the literature Reference 
 Set to a constant value 𝜀92? = 2 · 10)0	𝑚)!  Siebesma (1998); Soares et al. 

(2004) 
  𝜀92? = 1.2 · 10)0	𝑚)!  at cloud base and 𝜀92? = 3 ·

10)0	𝑚)!150 hPa above it 
Gregory et al. (2000) 

  Below condensation level 𝜀?-4? = 	2.5 · 10)0	𝑚)! 
(S13), 8. 5 · 10)C	𝑚)! (S14) 

Sušelj et al. (2013); Sušelj et al. 
(2014) 

  𝜀? = 2.5 · 10)C	m)!  Song and Zhang (2017) 
  𝜀92? = 	2 · 10)0	𝑚)!  Siebesma (1998); Siebesma et al. 

(2003); Soares et al. (2004) 
 Proportional to the fraction of TKE 

available for entrainment 𝐴I 
𝜀92? = 𝐴I

$∗

:'

!
+S

, where 𝑤∗  is the convective velocity-
scale, 𝑚E cloud base mass flux, CD is the cloud depth 
and 𝐴I = 0.03 for the core (GB99), 0.06 (KG12) 

Grant and Brown (1999); Grant and 
Lock (20049; Kirshbaum and Grant 
(2012) 

  𝜀92? = 𝐴I
+FUV0/2

:'
"/2

!
+S

 , where 𝐴I = 0.037 − 0.035	 Drueke et al. (2019) 

 Function of the buoyancy of the 
parcel B and the in-cloud updraft 
velocity, w 

𝜀? = 𝐶,?
73M
$" , where 𝐶,? = 0.25  (deep G01), 0.5 

(shallow G01) and 𝑎$ = 1/6 

Gregory (2001), Kim et al. (2013) 

  𝐶,? = 0.6  Chikira and Sugiyama (2010) 
  𝐶,? = 0.3  Del Genio et al. (2012) 
  𝐶,? = ( !

&HKKKK
− 1)  Kim and Kang (2012)  

  𝐶,? = 0.52  Hirota et al. (2014) 
  𝜀92? = 𝐶,,92? M

$" , 𝐶,,9? = 0.55 (sub-cloud layer) Pergaud et al. (2009) 

 Function of the in-cloud vertical 
velocity w and a turnover 
timescale τt 

𝜀92? = W
X4

!
$

, with 𝜏5 = 300	s  and 𝜂 = 0.9  for BOMEX 
and 1.2 for SCMs (N02) 
𝜏5 = 400	s and 𝜂 = 1 (N09) 
𝜏5 = 500	s and 𝜂 = 1 (S12) 
𝜏5,92 = 320	s and 𝜂 = 1 (S16) 

Neggers et al. (2002, 2009); Sušelj 
et al. (2012); Sakradzija et al. 
(2016) 

  𝜂/𝜏5 = 2.4 · 10)0	s)!  Chikira and Sugiyama (2010) 
 Inversely proportional to height z 𝜀? = 𝐶,?/𝑧, where 𝐶,? = 0.55 (JS03), 0.1 (HP11) Jakob and Siebesma (2003); Han 

and Pan (2011) (only in sub-cloud 
layers) 

  𝜀92? = 𝐶,,92? /𝑧, where 𝐶,,92? =1.0 (RS08),0.3 (HP11) De Rooy and Siebesma (2008); Han 
and Pan (2011)  

  (in sub-cloud layer) 𝜀92? = 𝐶,,92? � !
%Y∆%

+ !
(%5)%)Y∆%

� , 
where ∆𝑧  is the vertical grid spacing and 𝐶,,92? =
0.5	(S04), 0.4 (S07) 

Soares et al. (2004); Siebesma et al. 
(2007) 

    
 Depends on a critical eddy-mixing 

distance dc and a critical mixing 
fraction χc 

𝜀92? = 𝜀1𝜒'", where 𝜀1 =
!D
@!
	 (B04) 

𝜀1(𝑧) = 𝜀1(𝑧'E)(𝑧/𝑧'E)',  (HB11), where 𝑧'E is cloud-
base height, and ce is computing by specifying 𝜀1  at 
cloud base and at 𝑧'E + 2000	m 

Bretherton et al. (2004); 
Hohenegger and Bretherton (2011) 

 Inversely proportional to height z 𝜀92? = +,,%.
%

 with 𝐶,,92 = 1.0 De Rooy and Siebesma (2008) 

 Proportional to detrainment rate 
𝛿92?  in the sub-cloud layer 

𝜀92? = 0.4	𝛿92?   Rio and Hourdin (2008) 

 Function of the buoyancy B and 
the in-cloud vertical velocity w 

𝜀? = 𝑚𝑎𝑥 �0, !
!Y]0

�7]0M
$" − 𝑏′�� , where 

𝑎𝛽!(1 + 𝛽!))! = 0.315, 𝑎 = 2/3 
and 𝑏′ = 0.002 

Rio et al. (2010) 

 Stochastic parameterization. 
Depends on mean ration of 
entrained mass 𝑚,-5 and distance 
that parcel travels between 
entrainment events 𝑑,-5 

𝜀92? = 𝑚,-5/𝑑,-5, where  
𝑑,-5 	= 226	m (RK10), 125	m (NK12), 30	mm NK12-
sub-cloud layer), 100 m (S13), 200 m (S14) 
𝑚,-5 = 0.91 	(RK10),	0.32 	(NK12),	0.06 	(NK12-sub-
cloud	layer),	0.1	(S13),	0.2	(S14)	

Romps and Kuang (2010); Nie and 
Kuang (2012); Sušelj et al. (2013, 
2014) 
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Type Empirical value or assumption Choices in the literature Reference 
 Depends on a prognostic variable  Mapes and Neale (2011) 

 Depends on RH and the height of 
the LCL zLCL for the early stages of 
developing convection over land 

 Stirling and Stratton (2012) 

 Depends on the PBL depth and the 
height z. Sets a maximum value for 
𝜀? 

𝜀? = 𝜇/min	(𝑧, 𝑧UM*)  with µ = 0.185  as 
default value and 𝜀:7;? = 1 · 10)C	m)!. The 
value of µ  is modified within the paper 
(µ × 2, µ × 5, µ/2) 

Oueslati and Bellon (2013) 

 Function of the pressure p 𝜀? = 4.5	𝐹 6(%)O)^(%)
6%"

 with 𝐹 = 0.9	 as a 
default value and 𝑝9	𝑡ℎ𝑒	𝑠urface pressure 

Klingaman and Woolnough (2014) 

 Uses PDFs Lognormal, gamma and Weibull distributions Guo et al. (2015) 
 The entrained mass depends on the 

pressure depth of a model layer ∆p, 
horizontal grid spacing Dx, and the 
height of LCL above the ground 
zLCL 

∆𝑀, = 𝑀E
_]
%#$#

∆𝑝 , where 𝑀E  is the updraft 
mass flux at cloud base, 𝛼	 = 	0.03, and 𝛽	 =
	[1 + 𝑙𝑛(	25/𝐷𝑥	)] 

Zheng et al. (2016) 

 Values using retrieval methods 𝜀92? = 0.5	𝑘𝑚)! over land Drueke et al. (2019) 
  𝜀92? = 0.5 − 0.6	km)!	(1.0 − 1.1	km)!) 

over land(ocean) 
Kirshbaum and Lamer (2021) 

 Function of buoyancy B and 
detrainment rate δu 

𝜀?𝑤" = 𝐶!𝐵 − 𝐶"𝛿?𝑤" with 𝐶! = 𝐶" ≈ 0.2 Baba (2019) 

 

Table 7: A sample of empirical values and assumptions used in the parameterization of entrainment in the downdraft. 1095 

Type Empirical value or assumption Choices in the literature Reference 
Turbulent Set to a constant value 𝜀5?3E@ = 2 · 10)C	m)!  Tiedtke (1989); Nordeng (1994); 

Möbis and Stevens (2012); Baba 
(2019) 

  𝜀5?3E@ = 3 · 10)C	m)!  Bechtold et al. (2014) 
Dynamical Function of in-cloud buoyancy B 

and downdraft velocity at the LFS 
𝑤	@,*PQ 

𝜀@L-@ = )M

$(,#)*
" )∫ M	@%#)*

+
+ !

O
@O
@%

 , where 

𝑤	@,*PQ	 = 	1	m	s)! is the downdraft velocity at the LFS 

Baba (2019) 

 Function of in-cloud 
buoyancy B 

 Bechtold et al. (2014) 

No distinction Set to a constant value 𝜀@ = 2 · 10)C	m)! (K13) Gerard and Geleyn (2005); Gerard 
(2007); Kim et al. (2013) 

 Proportional to 𝜀? . Its maximum 
value 𝜀:7;@  is constrained 

𝜀@ = 2	𝜀?	and 𝜀:7;@ = 2/(𝑧S − 𝑧E)  where 𝑧S  is height 
of the detrainment level, and 𝑧E is the cloud base height 

Zhang and McFarlane  

 

Less attention has been paid to the parameterizations of the detrainment process. Many convection schemes set it as a constant 

value (see Tables 8 and 9), while others consider detrainment to be negligible (Lu et al., 2012). Tiedtke (1989) and Nordeng 

(1994) assumed a turbulent detrainment inversely proportional to cloud radii and fixed its value to 𝛿ABCD = 	1 ⋅ 	10:; m:/	 for 

penetrative and midlevel convection (see Table 8). On the other hand, Gregory and Rowntree (1990) assumed a turbulent 1100 

detrainment rate inversely proportional to the height and smaller than 𝜀ABCD, while Bechtold et al. (2008) set 𝛿ABCD to a constant 

value. Dynamical detrainment 𝛿>?@  is defined to occur in Tiedtke (1989), Bechtold et al. (2008) and Gregory and Rowntree 

(1990) when the updraught buoyancy becomes negative. In the former two schemes it is then set proportional to the decrease 

in updraught kinetic energy while in the latter it is computed implicitly. For downdraft, Bechtold et al. (2014) set 𝛿ABCD = 𝜀ABCD, 
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and enforced	𝛿>?@  over the lowest 50 hPa. As in the case of entrainment rates in downdrafts, a common practice in the 1105 

definition of detrainment rates for downdraft consists in assuming a similar parameterization as for updrafts (Table 9). 

 
Table 8: A sample of empirical values and assumptions used in the parameterization of detrainment in the updraft. (Note: subscript sh refers 
to shallow convection) 

Type Empirical value or assumption Choices in the literature Reference 
Turbulent Constant 𝛿5?3E? = 1 · 10)C	m)!  Tiedtke (1989); Nordeng (1994); 

Bechtold et al. (2008); Zhang et al. 
(2011) 

  𝛿5?3E,92? = 3 · 10)C	m)!  Tiedtke (1989) 
 Dependent on RH 𝐶@5? = 𝐶@5? (1.6 − 𝑅𝐻) , where   𝐶@5? = 0.75 ·

10)C𝑚)! 
Bechtold et al. (2014) 

 Proportional to the entrainment 
rate 𝜀5?3E?  

𝛿5?3E? = 𝐶@5? · 𝜀5?3E?  where 𝐶@5? = 2/3 Gregory and Rowntree (1990) 

  𝐶@5? = (1 − 𝑅𝐻)  Derbyshire et al. (2011); Walters et al. 
(2019) 

  𝐶@5? = 15(1 − 𝑅𝐻)"  Stirling and Stratton (2012) 
  𝐶@5? = 2.5(1 − 𝑅𝐻)   Stratton and Stirling (2012) 
  𝛿5?3E,92? = 𝜀5?3E,92?  where𝐶@5,92? = (1.6 − 𝑅𝐻)   Bechtold et al. (2014) 
Dynamical Initiated if the buoyancy of the 

parcel is less than a minimum 
value, 𝐵:4- 

𝐵:4- = 2 − 3	K  Yanai et al. (1973) 

  𝐵:4- = 0.2	K  Gregory and Rowntree (1990) 
 Only at levels of neutral buoyancy  Tiedtke (1989) 
 Non-zero above the lowest 

possible organized detrainment 
level 𝑧8>$ 

𝛿@L-? = !
`
@`
@%

, where 𝜎 = 𝜎1 	cos �
a
"
%)%673
%!4)%673

�  with 
𝑧'5 the cloud top height, and 𝜎 the horizontal area 
covered by the updraft. 
𝑧8>$  is the level of neutral buoyancy with 
entrainment rate 𝜀 = !

"(bY%)%!')
, where the subscript 

cb means cloud base, and 𝜁 = 25	m corresponds to 
an excess buoyancy of 1 K at cloud base and a 
vertical velocity of 1 m s-1 at that level. 

Nordeng (1994), 

 Proportional to the decrease in 
updraft vertical kinetic energy at 
the top of the cloud 

 Bechtold et al. (2008); Zhang and Song 
(2016) 

 Proportional to the loss of 
buoyancy 

 Derbyshire et al. (2011) 

 When updraft becomes negatively 
buoyant 

 Bechtold et al. (2014) 

No distinction Occurs only in a thin layer at cloud 
top 

 Arakawa and Schubert (1974) 

 Only at levels of neutral buoyancy  Emanuel (1991); Moorthi and Suarez 
(1992) 

 Does not exist around cloud edges  Grell et al. (1994) 
 Constant 𝛿? = 2 · 10)C	m)! (deep) and 

𝛿92? = 2 · 10)0	m)! (shallow) 
Gregory (2001) 

  𝛿92? = 3 · 10)0𝑚)!  Soares et al. (2004) 
 Depends on a critical eddy-mixing 

distance dc and a critical mixing 
fraction 𝜒' 

𝛿92? = +(
-

@!
(1 − 𝜒')", where 𝐶@? = 1.5 Bretherton et al. (2004); Zhao et al. 

(2018) 

 Function of average	 of	 χc 	from	
cloud	 base	 up	 to	 the	middle	 of	
the	cloud	layer	〈χc〉∗ 

𝛿92? ∝ 	 〈χc〉∗			 De Rooy and Siebesma (2008) 
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Type Empirical value or assumption Choices in the literature Reference 
 Depends on in-cloud vertical 

velocity w, buoyancy B and the 
difference in the water mixing 
ratio (∆q) between the mean 
plume (ql) and the environment (q) 

 𝛿? = 𝑚𝑎𝑥 ¥0, − 70]0
!Y]0

M
$" + 𝑐 ¦

∆9
9

$"§
@

¨ , where 𝑎! =

2/3, 𝛽! = 0.9, 𝑐 = 0.012	s)! and 𝑑 = 0.5 

Rio et al. (2010) 

 Constant at all levels 𝛿? = 𝜀'E , and 𝛿92? = 	 𝜀'E,92 	with 𝜀'E(92)	 the 
entrainment at cloud base for deep(shallow)	
 

Han and Pan (2011) 

 Function of buoyancy B and in-
cloud vertical velocity w 

 𝛿? = −𝐶@?
7M
$"where 𝐶@? takes different values Kim et al. (2013) 

 Function of buoyancy B 𝛿? = 𝐵/2  Baba (2019) 
 1110 

Table 9: A sample of empirical values and assumptions used in the parameterization of detrainment in the downdraft. 

Type Empirical value or assumption Choices in the literature Reference 
Turbulent Set to a constant value 𝛿5?3E@ = 2 · 10)C	m)!  Tiedtke (1989): Nordeng (1994); Baba 

(2019) neglects it when the downdraft is 
thermodynamically positive buoyant or 
reaches below the cloud base 

  𝛿5?3E@ = 3 · 10)C	m)!  Bechtold et al. (2014) 
Dynamical Enforced over the lowest 50 hPa  Bechtold et al. (2014) 
 When the downdraft is 

thermodynamically positive buoyant 
or reaches below the cloud base 

𝛿@L-@  inversely proportional to layer thickness (if 
in-cloud) or to height (if below cloud base) 

Baba (2019) 

No distinction Set to a constant value that is 
replaced when vertical velocity 
decreases with height, usually near 
cloud top 

𝛿@ = 2 · 10)C	m)!  Gregory (2001) 

 Only at levels of neutral buoyancy  Emanuel (1991) 
 Only over a fixed layer of 60 hPa that 

extends from downdraft detrainment 
level to downdraft base layer 

𝛿@ = 0	m)! apart from the detrainment layer Bechtold et al. (2001) 

 Linear function of pressure between 
the top of USL and the base of the 
downdraft 

 Kain (2004) 

 Proportional to the updraft 
convergence of the updraft mass flux 

 Gerard and Geleyn (2005) 

 When downdraft becomes positively 
buoyant, with 75% of its mass 
detraining at each subsequent 

 Kim et al. (2013) 

 Only in the lowest 1000 m above the 
ground or starting at LFC, whichever 
is located higher above the ground 

 Grell and Freitas (2014) 

 
In the parameterization of detrainment in shallow convection schemes, De Rooy and Siebesma (2008) treated the mass flux 

and the entrainment formulation separately based on LES results, that suggest that variations in the mass flux profile are mostly 

related to the fractional detrainment (Jonker et al., 2006; De Rooy and Siebesma, 2008). De Rooy and Siebesma (2008) kept 1115 

𝜀 fixed as an inverse function of height, and developed a dynamical formulation for 𝛿 dependent on the average of 𝜒" from 

cloud base up to the middle of the cloud layer 〈𝜒"〉∗(the reader is referred to equation A11 in De Rooy and Siebesma (2008) 

for a detailed calculation of 𝜒"), and on the cloud layer depth. For shallow convection, Siebesma and Cuijpers (1995) found 

vales of detrainment rates that were rather constant showing around 3 · 10:E	m:/  for the core and 4 · 	10:E	m:/ for the 
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updraft. Using LES output from BOMEX, Siebesma (1998) found typical values of detrainment in the range 1120 

2.5	 − 	3 · 	10:E	m:/. Other studies, such as Soares et al. (2004)  used a constant detrainment rate following Siebesma (1998), 

set it to the value of entrainment at cloud base (e.g., Han and Pan, 2011), or proportional to the entrainment rates (e.g., Bechtold 

et al., 2014), among others. 

4.2.3 Impact of entrainment and detrainment on convective models 

The discussion above illustrates the many nuances in the modeling of convection, the importance of empirical values in the 1125 

final results and the need to further research to disentangle the many details involved. It is accepted that the parameterizations 

of entrainment and detrainment still have great uncertainties (e.g., Romps, 2010; Becker and Hohenegger, 2018) and problems 

in producing a realistic representation of convection (e.g., Mapes and Neale, 2011). For example, Stratton and Stirling (2012) 

improved the timing and amplitude of the diurnal cycle of tropical convection in the Met Office climate model by setting the 

entrainment for deep convection as a function of the height of LCL.  1130 

Perhaps not surprisingly, MJO simulations are also sensitive to entrainment (e.g., Hannah and Maloney, 2011; Del Genio et 

al., 2012; Kim et al., 2012; Hirons et al., 2013; Klingaman and Woolnough, 2014). Hannah and Maloney (2011) applied the 

RAS scheme in a GCM and analyzed the influence of minimum entrainment rate and rain evaporation fraction in the simulation 

of MJO. Larger values of any of the two parameters led to a better representation of the MJO and interseasonal variability, 

although higher values of minimum entrainment produced a drier and cooler atmosphere in contrast to the effect of higher 1135 

values of rain precipitation fraction. Klingaman and Woolnough (2014) evaluated the effects of 22 model configurations and 

subgrid parameterizations on the simulation of MJO in the Hadley Centre Global Environmental model Global Atmosphere 

version 2 (HadGEM3 GA2.0) and tested the changes in 14 hindcast cases. A better representation of the MJO for both hindcast 

and climate simulations was achieved by increasing entrainment and detrainment rates for mid-level and deep convection. A 

better representation of MJO was also achieved by Kim et al. (2012) using a GCM to evaluate the tropical subseasonal 1140 

variability. However, this improvement was at the expense of an increased bias in the mean state, typical for other GCMs with 

stronger MJO (Kim et al., 2011). 

The entrainment parameterization proposed by Gregory (2001) for both deep and shallow convection achieved satisfactory 

results in various analyses (e.g., Chikira and Sugiyama, 2010; Del Genio and Wu, 2010) but proved to be cloud- and altitude-

dependent. Recently, Baba (2019) modified Gregory’s parameterization of the entrainment rate by relating it to the detrainment 1145 

rate and B. This new parameterization led to improvements in the positive bias of precipitation in western Pacific region, in 

the positive bias of outgoing shortwave radiation over the ocean as well as in the simulation of MJO, equatorial waves, and 

precipitation over the western Pacific region. Using an RCM over the Maritime Continent region, Wang et al. (2007) 

demonstrated that changes in the values of the fractional entrainment/detrainment rates in Tiedtke scheme, including both 

shallow and deep convection, affect the simulation of the tropical precipitation diurnal cycle. Over land, Del Genio and Wu 1150 

(2010) used a CRM to study the transition from shallow to deep convection in diurnal cycles and inferred entrainment rates. 

Subsequently, the authors compared results from three different entrainment parameterizations to the results obtained with 
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CRM and concluded that the best results were achieved by the entrainment parameterization of Gregory (2001). Through a 

version of the Goddard Institute for Space Studies Global Climate Model (GISS GCM) with the entrainment rate proposed by 

Gregory (2001), Del Genio et al. (2012) efficiently reproduced the MJO transition from shallow to deep convection. 1155 

The advantage of the formulation of entrainment and detrainment rates in the unified scheme of Hohenegger and Bretherton 

(2011) is that it does not require an explicit distinction between deep and shallow convection. This formulation linking the 

fractional mixing rate 𝜀G to the convective precipitation at cloud base improved the simulation of the precipitation diurnal cycle 

compared to CAM, as well as relative humidity, cloud cover and mass flux profiles, and could realistically simulate the 

transition between shallow and deep convection. Willet and Whitall (2017) also achieved a more realistic representation of the 1160 

diurnal cycle in the tropics with this fractional mixing rate in their parameterization of entrainment in the UK MetOffice model.  

Other studies have evaluated the impact of entrainment/detrainment formulation on large-scale features, such as the double 

ITCZ (e.g., Chikira, 2010; Chikira and Sugiyama, 2010; Möbis and Stevens, 2012; Oueslati and Bellon, 2013). Möbis and 

Stevens (2012) used both the Tiedtke and Nordeng schemes in an aquaplanet GCM to evaluate the sensitivity of ITCZ to the 

choice of the convective parameterization. The Tiedkte scheme produced a double ITCZ, while the Nordeng scheme, with a 1165 

higher lateral entrainment rate, led to a single ITCZ. In the works by Chikira (2010) and Chikira and Sugiyama (2010), the 

entrainment rate from AS was replaced by a formulation that depends on the surrounding environment following Gregory 

(2001) and Neggers et al. (2002). With this new formulation, variability and climatology improved, including the double ITCZ 

and the South Pacific Convergence Zone (SPCZ). Oueslati and Bellon (2013) obtained similar improvements in their study of 

the effects of entrainment on ITCZ by increasing entrainment in a hierarchy of models (coupled ocean–atmosphere GCM, 1170 

atmospheric GCM, and aquaplanet GCM), at the cost of an overestimation of precipitation in the center of convergence zones. 

The role of entrainment on large-scale features was also underlined by Hirota et al. (2014) in their comparison of four 

atmospheric models with different entrainment formulations over tropical oceans. 

 

Based on Zhang (2002) and using sounding data from the Coupled Ocean-Atmosphere Response Experiment (COARE), the 1175 

South Pacific Convergence Zone (SGP97) and the Tropical Warm Pool – International Cloud Experiment (TWP-ICE), Zhang 

(2009) concluded that the entrainment of environmental air also affects CAPE and closure assumptions in CPs. The drier the 

entrained air, the stronger is the dilution effect that acts to reduce CAPE. Moreover, dilute CAPE shows a better correlation 

with the consumption of CAPE than undilute CAPE. 

As for the impact of entrainment and detrainment formulations for shallow convection, Siebesma and Holtslag (1996) 1180 

evaluated a mass flux shallow cumulus based on BOMEX results and found that lateral entrainment and detrainment rates 

were one order of magnitude larger than those used in Tiedtke scheme. Neggers et al. (2002) evaluated their multiparcel model 

with LES results based on BOMEX and Small Cumulus Microphysics Study (SCMS). The model reproduced the features of 

the buoyant part of the clouds and the variability of temperature, moisture and velocity observed in cumulus clouds. Romps 

and Kuang (2010) found that their stochastic formulation of entrainment reproduces well the variability observed in the CRM 1185 

even when the cloud base variability is turned off. While the convective updrafts simulated with the approach proposed by 
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Sušelj et al. (2012) did not reach high enough compared to LES results and observations, the stochastic entrainment formulation 

described in Sušelj et al. (2013) properly simulated shallow cumulus, including the height of the updrafts and their reduction 

of horizontal area with height. 

As mentioned in Sect. 4.2.2, less attention has been paid to the parameterizations of the detrainment process. Based on LES 1190 

results for shallow convection, De Rooy and Siebesma (2008) proposed a new detrainment parameterization that led to 

improvements for ARM, BOMEX, and RICO shallow convection cases compared to the standard parameterizations of 

entrainment and detrainment (Siebesma and Cuijpers, 1995; Siebesma et al., 2003). Moreover, the authors revealed a greater 

variation in the detrainment rates from hour to hour and case to case than the variation in the entrainment rates. Derbyshire et 

al. (2011) confirmed this finding using a CRM and an adaptive detrainment proportional to the environmental relative 1195 

humidity. Later, De Rooy and Siebesma (2010) showed that detrainment strongly influences the vertical structure of the mass 

flux.  

4.3 Microphysics in convective clouds 

The representation of microphysical processes in cumulus parameterizations is key to simulations of climate change (e.g., 

Ramanathan and Collins, 1991; Rennó et al., 1994; Lindzen et al., 2001). Convective microphysics greatly affects the 1200 

representation of convective clouds due to its influence on detrainment of water vapor and hydrometeors, and the interaction 

between clouds and aerosols (e.g., Khain et al., 2005; Koren et al., 2005; Rosenfeld et al., 2008; Song and Zhang, 2011; Song 

et al., 2012; Tao et al., 2012). However, many convective parameterization schemes treat microphysical processes crudely, 

specifying an empirically determined conversion rate from cloud water to rainwater (e.g., Arakawa and Schubert, 1974; 

Tiedtke, 1989; Zhang and McFarlane, 1995; Han and Pan, 2011) or a certain precipitation efficiency, defined as the fraction 1205 

of condensed cloud water converted to precipitation (Emanuel, 1991). The reader should keep in mind that other authors also 

take into account the effect of precipitation evaporation and thus, precipitation efficiency is defined as the fraction of 

condensate that reaches the surface (see Table 10). This is used in the calculations of the initial downdraft mass flux like in  

 
Table 10: A sample of empirical values and assumptions used in precipitation efficiency accounting for evaporation. 1210 

Empirical value or assumption Choices in the literature Reference 
Function of the wind shear ∆𝑉  and 
cloud depth CD  𝑃𝐸$9 = 1.591 − 0.639

∆𝑉
𝐶𝐷 + 0.0953 ª

∆𝑉
𝐶𝐷«

"

− 0.00496 ª
∆𝑉
𝐶𝐷«

0

 
Fritsch and Chappell (1980) set 
PE = 0.9 if ∆d

+S
< 1.35 

Function of wind shear ∆𝑉 (similar as 
in FC80) and cloud base height 𝑧*+* 

𝑃𝐸 = 𝑓(𝑃𝐸$9, 𝑃𝐸*+*	) 
𝑃𝐸*+* =

!
!YUV+

 where 𝑃𝐸% = 0.967 − 0.700𝑧*+* + 0.162𝑧*+*"  
−1.257 · 10)"𝑧*+*0 	 

Zhang and Fritsch (1986); Kain 
and Fritsch (1990); Bechtold et al. 
(2001) 

Function of wind shear ∆𝑉  and sub-
cloud RH 

 Grell (1993); Grell and Dévényi 
(2002) 

Proportional to the total volume of 
condensed water accumulated over 
the cloud lifetime 𝑀d  and droplet 
concentration 𝑁@ 

𝑃𝐸 ≈ 𝑀d
1.f𝑁@!.!0 Jiang et al. (2010); Grell and 

Freitas (2014) used CCN instead 
of 𝑁@ 
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Bechtold et al., (2001). A brief description of the main assumptions and empirical values used in the representation of 

microphysics in CPs is presented here for the sake of completeness. For a detailed review of microphysics parameterizations, 

the reader is referred to Zhang and Song (2016) for convection and Tapiador et al. (2019a) for a full account. 

4.3.1 Conversion of cloud water to precipitation 

Despite the importance of microphysical processes in the simulation of surface precipitation, radiation or cloud cover, only a 1215 

few convection schemes attempted to realistically represent these processes. A common approach is to assume that a specified 

fraction of the condensate is instantaneously removed as rain. In Yanai et al. (1973) and Tiedtke (1989), the conversion rate 

from cloud water to rainwater is assumed to be proportional to cloud water mixing ratio lw with an empirical function K(z) 

conversion coefficient that depends on height, as shown in Table 11. Other assumptions include a constant conversion 

coefficient Cc (Arakawa and Schubert, 1974; Grell, 1993; Zhang and McFarlane, 1995) or define a temperature-dependent 1220 

threshold water content lwc, above which all cloud water is converted to precipitation (Emanuel and Živković-Rothman, 1999). 

Park and Bretherton (2009) modified the shallow cumulus parameterization described in Hack (1994) and used in the UW 

scheme based on the shallow convective parameterization of Bretherton et al. (2004). Among the modifications introduced, 

cloud condensate exceeding a certain threshold value of the cloud condensate mixing ratio is converted into precipitation, and 

includes the evaporation of convective precipitation above cloud base. In general, shallow convective schemes do not include 1225 

a parameterization of conversion to precipitation. 

Few schemes with a more realistic treatment of the conversion of cloud water to rainwater can be found in the literature on 

convection. Autoconversion of cloud water in the convection scheme is considered in Sud and Walker (1999), following 

Sundqvist (1978), as well as in Zhang et al. (2005). The latter included the autoconversion of cloud water and other 

microphysical processes for both cloud water and ice in the Tiedtke scheme. However, neither the size nor the number 1230 

concentration of both hydrometeors is considered explicitly. This makes it impossible to account for aerosol-convection 

interaction, which is of great importance in climate simulations. To overcome this shortcoming, Song and Zhang (2011) and 

Song et al. (2012) added mass mixing ratio and number concentration of each hydrometeor in their parameterization. Another 

more realistic treatment of condensation is that proposed by Bony and Emanuel (2001). In this scheme, the condensed water 

produced at the subgrid scale is predicted by the convection scheme, while its spatial distribution is predicted by a statistical 1235 

cloud scheme through a probability distribution function of the total water. Indeed, the parameterization of the microphysics 

is more comprehensively devoted to this specific problem. 

 

 

 1240 
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Table 11: A sample of empirical values and assumptions used in the conversion of cloud water to precipitation. (Note: subscript sh refers to 
shallow convection) 

Empirical value or assumption Choices in the literature Reference 
Proportional to the liquid water 
content lw and an empirical function 
K(z)	that depends on height z 

𝑃𝑟 = 𝐾(𝑧)𝑙$, where  

𝑘(𝑧) = V
0, 𝑧 ≤ 𝑧E + 1500	m

2 · 10)0	m)!, 𝑧 > 𝑧E + 1500	m
 (T89) 

Yanai et al. (1973); Tiedtke (1989) 

Constant conversion rate Cc  Arakawa and Schubert (1974)  

 𝑃𝑟 = 𝐶'𝑀?𝑙$, , where 𝐶' = 	6 · 10)0	m)! (W12), 𝑀?	 is the 
updraft mass flux, 𝑙$ is the liquid water content and ρ is the 
air density 

Lord et al. (1982); Wu (2012) 

  𝐶' = 	2 · 10)0	m)! Zhang and McFarlane (1995); Han 
and Pan (2011) 

 𝐶' = V𝑎 · exp	{𝑏[𝑇(𝑧) − 𝑇1]}, 𝑇 ≤ 0	℃
𝑎, 𝑇 > 0	℃, with  

𝑎 = 2 · 10)0	m)!, and 𝑏 = 0.07	℃)! 
Han et al. (2016)  

Function of a condensate to 
precipitation conversion factor cr and 
the in-cloud vertical velocity w 

𝑃𝑟 ∝ 1 − 𝑒𝑥𝑝(−𝑐3∆𝑧/𝑤),	with 𝑐3 = 0.01	s)! (KF90) 
𝑐3 = 0.02	s)! (B00) 

Kain and Fritsch (1990); Bechtold et 
al. (2001) 

Varies linearly between 150 mb and 
500 mb 𝑃𝑟 = ±

0,													 𝑝E − 𝑝4 < 150	hPa
6')65)!D1

0D1
150	hPa < 𝑝E − 𝑝4

1,													 𝑝E − 𝑝4 > 500	hPa
< 500	hPa , where 

𝑝Eis the pressure at cloud base 

Emanuel (1991) 

Function of the detrainment pressure 

𝑃𝑟 = ²0.8 +

1, 𝑝 < 500	hPa
800 − 𝑝
1500 500	hPa < 𝑝 < 800	hPa

0.58, 𝑝 > 800	hPa

 

Moorthi and Suarez (1992)  

 

𝑃𝑟 = ²0.500 +

0.975, 𝑝 < 500	hPa

0.475
800 − 𝑝
300 500	hPa < 𝑝 < 800	hPa

0.500, 𝑝 > 800	hPa

 

Anderson et al. (2004); Li et al. (2018) 

Function of a threshold of the cloud 
water content lwc is converted to 
precipitation 

Pr = 𝐶,gg(𝑙$ − 𝑙𝑤') 

𝑙$' = ±
𝑙1, 𝑇 ≥ 0	℃

𝑙1(1 − 𝑇/𝑇'), 𝑇' < 𝑇 < 0	℃
0, 𝑇 ≤ 𝑇'

 , 

where  𝑙1 = 1.1	g	kg)!	 is a warm cloud autoconversion 
threshold, and 𝑇' = −55	℃  

Emanuel and Živković-Rothman 
(1999) set 𝐶,gg = 1 ; Bony and 
Emanuel (2001) set 𝐶,gg = 0.999 

Precipitation of condensate above a 
threshold cloud condensate mixing 
ratio 𝑞:7;,92 

𝑞:7;,92 = 1	g	kg)!  Bretherton et al. (2004); Park and 
Bretherton (2009) 

Function of the cloud water content 
lwc, temperature and cloud droplet 
number concentration CDNC 

𝑃𝑟 =	 𝑙$𝑓(𝑇, 𝐶𝐷𝑁𝐶), where  
𝑓(𝑇, 𝐶𝐷𝑁𝐶)

= ±
1.0, 𝐶𝐷𝑁𝐶 < 750	𝑐𝑚)0	or	𝑇 < 263	K
0.25, 750	𝑐𝑚)0 < 𝐶𝐷𝑁𝐶 < 1000	𝑐𝑚)0	or	𝑇 > 263	K
0.0, 𝐶𝐷𝑁𝐶 > 1000	𝑐𝑚)0	or	𝑇 > 263	K

 

 

Nober et al. (2003) 
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4.3.2 Evaporation in downdrafts 1245 

Downdrafts are greatly affected by evaporation of hydrometeors and detrained cloud droplets due to latent cooling. Therefore, 

a realistic representation of this microphysical process is needed. However, only a limited number of convective 

parameterizations, such as Emanuel (1991), include an explicit calculation of this process, as shown in Table 12. Instead, crude 

assumptions can be found in the literature. The evaporation in downdraughts is often implicitly computed by assuming that 

the evaporation maintains a saturated or quasi-saturated downdraught while the equivalent potential temperature is conserved 1250 

(e.g.,  Fritsch and Chappell, 1980; Zhang and McFarlane, 1995). More sophisticated formulations include those of Kreitzberg 

and Perkey (1976) based on Kessler (1969), and Song and Zhang (2011) based on Sundqvist (1988). 

 
Table 12: A sample of empirical values and assumptions used in the evaporation in the downdraft. 

Empirical value or assumption Choices in the literature Reference 
Evaporation takes place at the same level 
where water detrains and is proportional to the 
liquid water mixing ratio of the detrained air 
𝑙@$ 

𝐸𝑉𝑃	 ∝ 𝑙@$ Arakawa and Schubert (1974) 

Detrained cloud condensates evaporate 
immediately 

 Tiedtke (1989) 

Function of the precipitation mixing ratio qprec 
and environmental thermodynamic properties 

𝐸𝑉𝑃 =
(!)J(

5 /J%:45 )hJ;<,!5

"·!12Y!1=/(65J%:45 )
 where 𝑞@  is the 

mixing ratio in the downdrafts, and 𝑞975   the 
saturation mixing ratio 

 
Emanuel (1991) 

Evaporation in the downdrafts cannot exceed a 
fraction of the precipitation 

 Zhang and McFarlane (1995) 

Constant evaporation coefficients 𝐶,.76 = 1.0	(for	rain), 0.8	(for	snow) Emanuel and Živković-Rothman 
(1999) 

Estimated using a specified value of RH 𝑅𝐻 = 90	%  
 

Bechtold et al. (2001) 

Related to vertical profiles of grid-mean 
relative humidity RH and precipitation flux R 

𝐸𝑉𝑃 = 𝐾,(1 − 𝑅𝐻)𝑅!/", where  
𝐾, = 0.2 · 10)D(km	m)"	s)!))!/"	s)!  

Park and Bretherton (2009) 

Function of RH and the conversion of cloud 
water to rainwater Pr 

𝐸𝑉𝑃 = 𝐶,.76(1 − 𝑅𝐻)𝑃𝑟!/", where  
𝐶,.76 = 2.0 · 10)C(km	m)"	s)"))!/"	s)!  

Wu (2012) 

4.3.3 Aerosols 1255 

Aerosols play a key role in the climate system due to their influence on the Earth’s energy budget through absorption and 

scattering of solar radiation. Focused on microphysical processes, aerosols serve as cloud condensation nuclei (CCN) and ice 

nuclei (IN) and thus affect cloud properties, dynamics, and precipitation. However, aerosol-convection interactions are very 

complex processes, seldom included in convection microphysics. Zhang et al. (2005) developed a new parameterization 

accounting for the effects of aerosols in stratiform and convective clouds. This was later modified by Lohmann (2008) to 1260 

include droplet activation by aerosols in terms of the updraft velocity w, temperature, aerosol number concentration, and size 

distribution, while ice nucleation is a function of w, aerosol properties, and air temperature. More recently, Grell and Freitas 

(2014) developed a new convective parameterization that includes an interaction with aerosols through an autoconversion of 

cloud water to rainwater dependent on CCN, parameterized in terms of the aerosol optical thickness (AOT) at 550 nm, as well 
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as an aerosol dependent evaporation of cloud drops. The authors also included tracer transport and wet scavenging in their 1265 

parameterization. This convection scheme is currently available in WRF. 

5 Closure: strategies to close the budget equation 

Closure consists in defining the intensity or strength of convection, i.e., the amount of convection regulated by large-scale 

variables. Therefore, it is essential to close the budget equations (Eq. (5.1), Eq. (5.2) and Eq. (5.3)). Despite the number of 

hypotheses proposed in the literature, it is still considered an unresolved problem (Yano et al., 2013). The following subsections 1270 

discuss the main closure types, as well as their main assumptions and empirical values. The impact of the closure formulation 

in convective model concludes the section. 

5.1 Closure types 

Existing convective closures for can be classified into diagnostic, prognostic, and stochastic. While diagnostic closures relate 

cumulus effects to the large-scale dynamics at a particular time scale, prognostic closures perform a time integration of 1275 

explicitly formulated transient processes. Stochastic closures include randomness elements to closure schemes.  

5.1.1 Diagnostic closures 

Diagnostic closures include different types of closures based on a certain physical variable that expresses the intensity of 

convection. Table 13 shows a sample of empirical values and assumptions used in the closure in the updraft. In moisture 

convergence schemes, moisture convergence or vertical advection of moisture are selected as the closure variable (e.g., Kuo, 1280 

1974; Anthes, 1977; Krishnamurti et al., 1980, 1983; Kuo and Anthes, 1984; Molinari and Corsetti, 1985; Tiedtke, 1989), 

therefore assuming that convection consumes the moisture supplied by the large-scale processes. 

The first parameterizations based on moisture convergence were too crude to produce results similar to those observed in 

nature, which led to the formulation of mass flux schemes. Early parameterizations lacked a theoretical framework to explain 

the interactions between the large-scale dynamics and convection or were incomplete, such as in Ooyama (1971). In an attempt 1285 

to overcome this drawback, Arakawa and Schubert (1974) proposed a closed theory based on the QE of the CWF, which is 

similar to CAPE. Since then, many CPs use CAPE-like closures, generally assuming that the adjustment occurs at a relaxed 

time scale in contrast to the instantaneous adjustment proposed in Arakawa (1969), among others. Table 14 lists the most 

important choices made for the relaxation time scale. 

 1290 
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Table 13: A sample of empirical values and assumptions used in the closure in the updraft. 1295 

Main closure variable Empirical value or assumption Choices in the literature Reference 
Moisture convergence Convection is controlled by the column-

integrated water vapor 
 Kuo (1974); Tiedtke (1989); Gerard 

(2007) 
CWF QE assumption  Arakawa and Schubert (1974); Grell 

(1993) 
 Relaxed at a certain time scale τ  Pan and Wu (1995); Lim et al. (2014) 

includes a factor depending on the 
vertical velocity at the cloud base 

 Relaxed at a certain time scale τ and 
towards a CWF reference value 

𝐶𝑊𝐹3,g = 10	J	kg)!  Zhao et al. (2018) 

CAPE Consumed by convective activity at a 
certain time scale τ 

 Fritsch and Chappell (1980); Betts 
(1986); Betts and Miller (1986) (deep 
convection is suppressed if the 
precipitation rate is negative), Nordeng 
(1994); Gregory et al. (2000); Bechtold 
et al. (2001) 

 Consumption proportional to heat and 
moisture sources 

 Donner (1993); Donner et al. (2001); 
Wilcox and Donner (2007) 

 Consumed at an exponential rate by 
cumulus convection 

 Zhang and McFarlane (1995) 

 Modified by the vertical velocity  Stratton and Stirling (2012) 

Boundary-layer QE 
(CAPE) 

QE between increased boundary layer 
moist entropy and decreased entropy 
due to moist downdrafts 

  Emanuel (1995); Raymond (1995)  

 Cloud-base upward mass flux is 
relaxed toward sub-cloud-layer QE. 
Includes a fixed relaxation rate α and a 
convection buoyancy threshold δTk 

𝛼 = 0.02	kg	(m"	s	K))! 	and 𝛿𝑇B =
0.65	K (EZ99), 0.90	K (BE01) 

Emanuel and Živković-Rothman 
(1999); Bony and Emanuel (2001) 

Free tropospheric QE 
(dCAPE) 

Convective and large-scale processes 
in the free troposphere above the 
boundary layer are in balance. 
Contribution from the free troposphere 
to changes in CAPE is negligible. 

 Zhang (2002); Zhang and Mu (2005a); 
Zhang and Wang (2006); Song and 
Zhang (2009); Zhang and Song (2010); 
Song and Zhang (2018)  

Dilute CAPE Consumed by convective activity at a 
certain time scale τ 

 Kain (2004); Neale et al. (2008); Wang 
and Zhang (2013); Walters et al. (2019) 

PCAPE Relaxation of an effective PCAPE that 
includes the imbalance between BL 
heating and convective overturning 

 Bechtold et al. (2014); Baba (2019) 

CAPE and moisture 
convergence 

  Gerard (2015); Becker et al. (2021) 

 

 

 

 

 1300 
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Table 14. A sample of the empirical values and assumptions in the relaxation time scale. (Note: subscript sh refers to shallow convection) 

Empirical value or assumption Choices in the literature Reference 
Varies within a specified range 𝜏 = 100 − 10C	s		 Arakawa and Schubert (1974) 
 0.5	h < 𝜏 < 1	h		 Bechtold et al. (2001) 
 1800	s < 𝜏92 < 3600	s	 Kain (2004) 
Set to a constant value 𝜏 = 2	h		

𝜏92 = 3	h	(B86,	BM86,	B01)	
Betts (1986); Betts and Miller (1986); 
Zhang and McFarlane (1995); Lin and 
Neelin (2000); Bechtold et al. (2001); 
Zhang (2002, 2003); Zhang and Mu 
(2005b); Zhang and Wang (2006); 
Song and Zhang (2009); Zhang and 
Song (2010); Stratton and Stirling 
(2012) 

 𝜏 = 3600	s		 Nordeng (1994) 
 𝜏 = 1	h		 Pan and Wu (1995) 
 𝜏 = 8	h		 Zhao et al. (2018) 
Inversely proportional to cloud efficiency 	 Janjić (1994) 
Function of the cloud depth CD, the vertical 
average updraft velocity 𝑤�  and an empirical 
scaling function f that decreases with 
horizontal resolution 

𝜏 = +S
$i
𝑓. In B14 the minimum allowed value for 𝜏 is 12 

min 

Bechtold et al. (2008, 2014); Baba 
(2019) 

Varies with a bulk RH over the cloud layer  Derbyshire et al. (2011) 
Varies according to the large-scale velocity ω 
within the range 1200−3600 s 

𝜏 = max	 µ𝑚𝑖𝑛 �∆𝑡 + 𝑚𝑎𝑥(1800 − ∆𝑡, 0) ×

� j)j=
j2)j=

� , 3600� , 1200¶ , with ∆𝑡  the real model 
integration time step (s), 𝜔0 = −8 · 10)0(−2 · 10)C),  
𝜔C = −4 · 10)"(−2 · 10)0) over (ocean) 
 

Han and Pan (2011) 
Lim et al. (2014); Han et al. (2019): 
𝜔0 = −250/∆𝑥,  
𝜔C = 0.1 · 𝜔0, ∆𝑥 the grid size (in m)  

Dynamic formulation. Depends on the cloud 
depth CD, the grid resolution Dx and the in-
cloud vertical velocity w 

𝜏 = +S
$
�1 + 𝑙𝑛 �"D

S;
��  Zheng et al. (2016) 

 1305 
Following Lin et al. (2015), CAPE-like closures can be classified into two types according to the decomposition and constraints 

applied to the closure variable: the flux type and the state type. In the flux type, the change of the CAPE-like variable is 

decomposed into its large-scale and convective components. Of these types of closures, CAPE is the most commonly used 

closure variable in CPs (Fritsch and Chappell, 1980; Kain and Fritsch, 1993; Zhang and McFarlane, 1995; Gregory et al., 2000; 

Bechtold et al., 2001) with adjustment time scales varying from constant values to functional forms (Bechtold et al., 2008). 1310 

Other schemes with CAPE closure include the KF scheme in WRF (Kain, 2004), as well as in CAM (Neale et al., 2008; Wang 

and Zhang, 2013), CAM6, and the Met Office Unified Model Global Atmosphere 7.0 (GA7.0) (Walters et al., 2019) for deep 

convection schemes. While the preceding schemes applied convective closure to the full troposphere, Emanuel (1995) and 

Raymond (1995) proposed the so-called boundary-layer QE, where only the boundary layer component of the CAPE closure 

is considered. On the other hand, Zhang (2002) introduced a modified version of the QE assumption, in which only dCAPE is 1315 

employed as the closure variable, without considering the effect of boundary layer forcing. This type of closure, known as the 

free tropospheric QE or the parcel-environment QE, provides a better simulation of the diurnal cycle of precipitation than the 

boundary-layer QE (Zhang, 2003a), as well as a better representation of MJO and ITCZ than the QE assumption used in the 

Zhang-McFarlane scheme (Zhang and Mu, 2005b; Zhang and Wang, 2006; Song and Zhang, 2009; Zhang and Song, 2010). 
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Donner and Phillips (2003) confirmed these results in their analysis over oceanic tropical areas and midlatitude continental 1320 

location of ARM. More recently, Bechtold et al. (2014) used the QE assumption to formulate a closure for the free troposphere 

based on boundary layer forcing. The dCAPE closure variable was replaced by PCAPE, defined as the integral over pressure 

of the buoyancy of an entraining ascending parcel with density scaling. The authors defined a convective adjustment time scale 

following Bechtold et al. (2008). This adjustment time is defined as the product of a convective turnover time scale	𝜏" and 

empirical scaling function 𝑓(𝑛) that decreases with increasing spectral truncation. At the same time, 	𝜏" is given by the ratio 1325 

of the convective cloud depth and the vertical averaged updraft velocity. The authors stressed the dependency of 	𝜏" with 

PCAPE through the velocity, which agrees with the observations in Zimmer et al. (2011). The implementation of this closure 

in the ECMWF IFS led to a better representation of the diurnal cycle of precipitation. 

In contrast to the previous flux-type closures, state-type closures decompose the change of the CAPE-like variable into its 

boundary layer component and free troposphere component, instead of in its large-scale and convective component. The main 1330 

representatives of state-type closures are the convective adjustment schemes of Betts (1986), where mesoscale and subgrid 

scale cloud processes maintain QE, and Emanuel (1994), where QE is related to fluctuations of entropy in the sub-cloud layer. 

Differences between these adjustment schemes are in the adjustment time scale and reference profiles selected for the 

adjustment. For example, Emanuel (1994) included an adjustment time scale for the sub-cloud layer of the order or half day, 

while Betts and Miller (1986) found good results for values between 1 and 2 hours based on GATE wave data. More recently, 1335 

authors such as Khouider and Majda (2006, 2008) and Kuang (2008) applied a state-type scheme only to the lower troposphere. 

An alternative principle to QE is the so-called activation control proposed by Mapes (1997), in which the intensity of deep 

convection is controlled by inhibition and initiation processes at low levels, and closure is formulated in terms of CIN and the 

turbulent kinetic energy (TKE) (Mapes, 2000; Fletcher and Bretherton, 2010). However, as highlighted in Yano and Plant 

(2012b) this formulation is not self-consistent, which is a must, as models are intended to test physical hypotheses (the reader 1340 

is referred to Yano et al. (2013) for a detailed explanation). In Rio et al. (2009) the intensity of convection is controlled by 

sub-cloud processes, such as boundary layer thermals. The authors defined the closure in terms of the so-called available lifting 

power (ALP), which is the flux of kinetic energy associated with thermals. Grandpeix and Lafore (2010) also used an ALP 

closure in their wake parameterization for GCMS couple with Emanuel’s scheme (Emanuel, 1991), as well as Hourdin et al. 

(2013) in the development of the LMDZ5B. While in Grandpeix and Lafore (2010)  the source of ALP comes from the collapse 1345 

of the wakes, in Hourdin et al. (2013) the thermal plumes and the spread of cold pools are the ones providing the power. 

 

This section presented the assumptions and empirical values used in the formulation of the closure for updrafts. However, the 

magnitude of the downdrafts should also be addressed. In the schemes where it is included, it is commonly expressed as a 

fraction g5 of the closure of the corresponding updraft, setting g5 as a certain value (Johnson, 1976; Tiedtke, 1989; Baba, 1350 

2019). Alternatively, other authors have related g5 to precipitation efficiency (Emanuel, 1995; Bechtold et al., 2001), the RH 
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in the LFS (Kain, 2004) or proposed a formula for g5 in terms of the total precipitation rate within the updraft (Zhang and 

McFarlane, 1995). Table 15 lists some of the empirical values and assumptions used in closure in the downdraft. 

 
Table 15: A sample of empirical values and assumptions used in the closure in the downdraft. 1355 

Empirical value or assumption Choices in the literature Reference 
Proportional to the updraft mass 
flux Mu 

𝑀@ = 𝛾@	𝑀?, where 𝛾@ = 0.2 Johnson (1976, 1980); Tiedtke (1989); 
Nordeng (1994) 

 𝛾@ = 0.1 − 𝑃𝐸  Emanuel (1989, 1995); Bechtold et al. 
(2001) 

 𝛾@ = 0.1 − 𝑅𝐻  Kain (2004) 

 𝛾@ = 0.3  Baba (2019) 

Function of updraft mass flux 
Mu and re-evaporation of 
convective condensate 

 Grell (1993); Grell et al. (1994); Pan and 
Wu (1995) 

Function of updraft mass flux 
Mu, height z, and maximum 
downdraft entrainment rate 
𝜀:7;@  

𝑀@(z) = −α	𝑀E
klmnI>:?

( ·(%#)*)%)o)!
I>:?
( ·(%#)*)%)

, where 𝛼  is a 
proportionality factor that depends on the total 
precipitation and evaporation rates 

Zhang and McFarlane (1995) (downdraft 
ensemble is constrained both by the 
availability of precipitation and by the 
requirement that the net mass flux at 
cloud base be positive) 

 𝑀@(z) = −α	𝑀@(*PQ)
klmnI>:?

( ·(%#)*)%)o)!
I>:?
( ·(%#)*)%)

, with 
𝑀@(*PQ) = 2	(1 − 𝑅𝐻*PQ��������)	𝑀?(*PQ) , where 𝑅𝐻*PQ  is the 
mean (fractional) RH at LFS, 𝑀?(*PQ) is 𝑀? at LFS, and 
𝜀:7;@ = 5 · 10)C	m)! 

Wu (2012) 

 

The discussion above focused on closure in deep convective and unified schemes. As for shallow convection closures, different 

approaches have been proposed since the publication of the first convection schemes. In this paper, we present a framework 

for the main empirical values and assumptions for shallow convection following the classification in Neggers et al. (2004). 

The authors classified the main shallow convection closures into moist static energy convergence, CAPE adjustment and sub-1360 

cloud convective velocity scaling.  

In the moist static energy closures, the QE budget for moist static energy controls shallow convection activity. Based on the 

results obtained by LeMone and Pennell (1976) from trade wind cumuli, and the moisture convergence hypothesis from Kuo 

(1965, 1974) and (Lindzen, 1988), Tiedtke (1989) proposed a shallow convection closure based on the moist static energy 

closure. Later, Raymond (1995) and Emanuel (1995) used it in the boundary layer quasi-equilibrium for shallow convection, 1365 

and Gregory et al. (2000) included it in a revised version of the ECMWF scheme. More recently, Bechtold et al. (2014) 

parameterized the mass flux for shallow convection in terms of the vertically integrated moist static energy tendency. 

Other authors proposed shallow convection closures based on the relaxation of the system towards a certain reference state 

within a relaxation time scale, i.e., adjustment scheme. For example, Albrecht et al. (1979) used this closure in their study of 

the trade wind boundary layer specifying a constant adjustment time set to 1/3 day according to the observation results obtained 1370 

by Betts (1975) for BOMEX. Later, based on observations from BOMEX and ATEX, Betts (1986) used an adjustment scheme 
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for shallow in which the thermodynamic structure tends towards a mixing line with an adjustment time set to 3 hours. Bechtold 

et al. (2001) used the same value for the relaxation time in their CAPE closure formulation for shallow convection.  

One of the main representatives of TKE budget closures is Grant (2001), who assumed that mass flux at cloud base is 

proportional to the convective velocity scale proposed by Deardorff et al. (1969), 𝑤∗. The proportionality constant is the area 1375 

fraction of cumulus updrafts and was determined by plotting the cloud-base mass flux versus the sub-cloud layer velocity scale 

in LES (see Tabe 16). This shallow closure was further used by other authors such as Soares et al. (2004), Siebesma et al. 

(2007) or Pergaud et al. (2009) in an EDMF, or Han and Pan (2011) and Han et al. (2017) in their revision of the NCEP GFS, 

among others. While Soares et al. (2004) defined the mass flux as the product of the updraft vertical velocity and a constant 

updraft fraction, Siebesma et al. (2007) scaled the mass flux with the standard vertical velocity deviation and set the 1380 

proportionality constant to 0.3. In Pergaud et al. (2009) the closure is based on the mass flux near the surface instead of at the 

LCL. The authors set the proportionality constant to 0.065 based on LES results. Han et al. (2017) modified the closure by 

making the cloud base mass flux a function of the mean updraft velocity. This way, shallow convection can be triggered in the 

stable boundary layer. Another closure based on the relationship between mass flux and TKE is that described in Kain (2004), 

where the mass flux is scaled with the maximum TKE in the sub-cloud layer. The convective time period in this 1385 

parameterization ranges from 1800 to 3600 s.  

Similar to these parameterizations, Hourdin et al. (2002) developed a new mass parameterization of vertical transport in the 

convective boundary layer, known as the thermal plume model, where the closure depends on the maximum vertical velocity 

and an area fraction. As stated in Rio and Hourdin (2008) the area fraction is predicted according to the entrainment and 

detrainment in contrast to the constant values used in Soares et al. (2004) or Siebesma et al. (2007), among others.  1390 

Using LES simulations and observations, Grant and Lock (2004) proposed a shallow convective closure proportional to CAPE 

and the convective velocity scale 𝑤∗ More recently, Zheng et al. (2016) extended the shallow convection study of Grant and 

Lock (2004) and expressed the closure in terms of CAPE and cloud depth-averaged vertical velocity. 

In the DualM framework, Neggers et al. (2009) defined the vertical structure of the updraft mass flux as the product of the 

updraft vertical velocity and updraft fraction. Based on results from De Rooy and Siebesma (2008) and the statistical 1395 

distribution type in Sommeria and Deardorff (1977), the authors used a moist-zero buoyancy deficit to estimate the updraft 

area fraction and through it, the vertical velocity and mass flux. 

A different shallow convection closure was suggested by Mapes (2000). Thea author expressed the mass flux in terms of CIN 

and TKE. Later, Bretherton et al. (2004) developed a new parameterization consisting in coupling a PBL turbulence model 

based on Grenier and Bretherton (2001) with a shallow convective mass flux scheme based on an entraining–detraining single-1400 

plume model. The closure assumes that a buoyant cumulus cloud can form if the vertical velocity of source air is high enough 

to penetrate the inversion layer in the sub-cloud layer and reach its LFC. The critical velocity is a function of CIN and the 

distribution of velocities is assumed to be Gaussian. The mass flux closure has a form similar to that proposed by Mapes 

(2000). In this case, it is an exponential function of the ratio between CIN and the average TKE in the sub-cloud layer calculated 

by the PBL scheme. In their simulations of the transition from shallow to deep convection, Kuang and Bretherton (2006) 1405 
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applied the CIN-based closure proposed by Mapes (2000) with the updraft velocity at cloud base set to the sub-cloud layer 

TKE as in Bretherton et al. (2004). In the unified scheme of Hohenegger and Bretherton (2011), the shallow closure is a 

function of the ratio between CIN and mean planetary boundary layer TKE. Despite its use in several convection schemes, this 

parameterization is not self-consistent as already mentioned in section 5.1.1. 

 1410 
Table 16: A sample of empirical values and assumptions used in the cloud fraction. (Note: subscript sh refers to shallow convection) 

Empirical value or assumption Choices in the literature Reference 
Function pf the relative 
humidity RH, liquid water 
mixing ratio 𝑞8  and the 
saturation specific humidity 𝑞9 

𝑎92 = 	𝑅𝐻B0 �1 − 𝑒𝑥𝑝 µ− B"J6
[(!)&H)J%]@2

¶�  , where 𝑘! =
0.25, 𝑘" = 100 and 𝑘0 = 0.49 

Xu and Randall (1996); Han and Pan 
(2011) 

Constant 𝑎92 = 0.03	(G01, JS03), 0.01(S04), 0.065 (P09)  Grant (2001); Jakob and Siebesma 
(2003); Soares et al. (2004); Pergaud et 
al. (2009) 

For deep convection, it is 
allowed to vary on the coarse 
mesh 𝑗∆𝑥 

𝑎	(𝑗∆𝑥) = 	 [1 − 𝑎r� (𝑗∆𝑥)]𝑎Y , where 0 ≤ 𝑎r� ≤ 1 , and 
𝑎Y = 0.002 (K03) 

Majda and Khouider (2002); Khouider et 
al. (2003) 

For stratiform clouds, it is a 
function of RH and the 
difference in potential 
temperature between the surface 
𝜃9?3g and 700 hPa 𝜃s11	2U7 
 

𝜃s11	2U7 − 𝜃9?3g = 20	K (T04, N09) Klein and Hartmann (1993); Tompkins 
et al. (2004); Neggers et al. (2009) 

Prognostic 	 Gerard and Geleyn (2005); Gerard 
(2007); Gerard et al. (2009); Tan et al. 
(2018) 

Depends on the transition layer 
depth 𝑑53  and the sub-cloud 
mixed layer depth ℎ:8 	

(For	moist	updraft)	𝑎:,92 = �@4<
2>6
� !
"6Y!

, with 𝑝 = 2.2, 
(for dry updraft) 𝑎@,92 = 𝐴 − 𝑎:, where 𝐴 = 0.1(N07, 
N09*) is the total updraft fractional area 

Neggers et al. (2007, 2009); Neggers 
(2009)=N09* 

Depends on the wake radius 𝑅$ 
and density 𝐷$ 

𝑎$ = 𝐷$𝜋𝑅"  Grandpeix and Lafore (2010) 

Depends on the turbulent kinetic 
energy TKE 

𝑎 = (2TKE/3)!/"  Mapes and Neale (2011) only for the first 
generation 

   

Depends on the previous 
generation value and 
organization  

𝑎^Y! = 𝑎^" + 𝑜𝑟𝑔(𝑎^ − 𝑎^") ,	 where	 g	 indicates	 the	
generation 

Mapes and Neale (2011) for generations 
different than the first one. 

Stochastic formulation Conditioned on CAPE Bengtsson et al. (2013) for deep 
convection using cellular automat (CA); 
Dorrestijn et al. (2015); Gottwald et al. 
(2016)  

  Sakradzija et al. (2015, 2016) for shallow 
convection 

Function of the convective 
updraft radius R and the grid-
box area Agrid 

𝑎 = a&
FA<5(

  Grell and Freitas (2014); Han et al. 
(2017) 

 

In the MM5, Deng et al. (2003) proposed three different shallow convection closures depending on the values of the cloud 

depth CD, cloud top height 𝑧*, and LFC height 𝑧!J<, and assumed a uniform updraft geometry. The closures include a TKE-

based closure, a CAPE closure and a hydrid closure. TKE-based closure is used when 𝑧* ≤	𝑧!J<. In this closure, the cloud 1415 
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base mass flux in the sub-cloud layer scales with the maximum diagnosed TKE in the sub-cloud mass-source layer over a 

relaxation time scale. If 𝐶𝐷	 ≥ 4	km , the CAPE closure applies, while for 𝐶𝐷	 < 4	km  and 𝑧* >	𝑧!J<  a hybrid closure 

between TKE and CAPE closures is used. The transition is done through a simple linear averaging. More recently, Freitas et 

al. (2020) proposed a trimodal formulation instead of the unimodal deep plume used in Grell and Freitas (2014) to represent  

shallow, congestus and deep convection. Closures for shallow convection include the boundary layer quasi-equilibrium from 1420 

Raymond (1995), the closure proposed in Grant (2001), and a closure based on the heat engine treatment of convection applied 

in Rennó et al. (1994). This closure relates the updraft cloud base mass flux to the buoyancy surface flux, a certain 

thermodynamic efficiency, and the total CAPE that is equivalent to the standard CAPE. 

5.1.2 Prognostic closures 

Compared to the QE assumption used in the majority of the diagnostic closures mentioned above, prognostic closures do not 1425 

distinguish between large-scale and convective processes and substitute the QE assumption with time integration of prognostic 

equations. These equations explicitly account for the time changes of different physical variables, i.e., convective kinetic 

energy or h, which are related to the cloud-base mass flux through a dimensional parameter. Energy dissipation rate is also 

included in this type of closure through a dissipation term, either determined by a second dimensional parameter called 

dissipation time (e.g., Randall and Pan, 1993; Pan and Randall, 1998; Yano and Plant, 2012a) or expressed in terms of the 1430 

entrainment rate and an aerodynamic friction coefficient (e.g., Gerard and Geleyn, 2005). Gerard and Geleyn (2005) defined 

cloud base mass flux as 𝑀# = −𝑎#𝑤# where 𝑎#is a prognostic updraft fraction area, obtained by a moist static energy closure, 

and 𝑤#is a prognostic vertical updraft velocity. Gerard (2007) and Gerard et al. (2009) also used this approach and even applied 

it for downdrafts (Gerard et al. 2009). Other schemes using prognostic updraft fractional areas include those of Grandpeix and 

Lafore (2010), Mapes and Neale (2011) and Tan et al. (2018), among others (see Table 16). 1435 

5.1.3 Stochastic closures 

Usually subgrid-scale processes are considered in an ensemble mean sense in CPs (Lin and Neelin, 2000, 2002). Stochastic 

closures include randomness elements to convective schemes closures to represent these subgrid-scale processes in a more 

realistic way. Numerous stochastic convective parameterizations have been proposed (e.g., Lin and Neelin, 2000, 2002; Majda 

and Khouider, 2002; Lin and Neelin, 2003; Khouider et al., 2003; Khouider, 2014). However, as Stechmann and Neelin (2011) 1440 

stated, sometimes the distinction between stochastic triggers and stochastic closures is not clear. Differences between the 

proposed closures are in the type of stochastic process employed. For instance, Stechmann and Neelin (2011) proposed a 

stochastic closure for precipitation using a Gaussian white noise, while Majda and Khouider (2002) and Khouider et al. (2003) 

used a Markov jump process. 

For deep convection, Lin and Neelin (2000) include a first-order autoregressive random noise component in the convective 1445 

parameterization of Betts and Miller (1986) keeping the convective relaxation timescale. This random noise is expressed as 
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𝜉* = 𝑐K𝜉*:/ + 𝑧*, where 𝑐K is an autoregressive coefficient that yields an autocorrelation time 𝜏K for the process and 𝑧* is white 

noise with zero mean and standard deviation 𝜎+. The authors evaluated three values for 𝜏K, i.e., 20 min, 2 hours and 1 day, 

with three different 𝜎+, i.e., 4.5 K, 0.8 K and 0.1 K, respectively. Longer 𝜏K produced better results compared to observations. 

Lin and Neelin (2003) introduced this stochastic component in the ZM closure with 𝜏K = 	1	day and 𝜎+ = 	1000	J	kg:/. This 1450 

scheme increased precipitation variance toward observations. Based on the variability around the equilibrium state, Plant and 

Craig (2008) and Groenemeijer and Craig (2012) used a PDF to obtained random values for the cloud-base mass flux. This 

PDF expresses the chance of launching a cloud with a certain radius between two calls of the convective scheme. The radius 

is assumed to be related to the mass flux. It is defined as 𝑝(𝑚)𝑑𝑚 = /
〈M〉

exp D:M〈M〉E 𝑑𝑚, where m is the mass flux per cloud and 

〈𝑚〉 is its ensemble average, both related through the definition of updraft radius 𝑚 = 	 〈M〉	〈="〉	
𝑅-. Moreover, the closure time 1455 

scale in Plant and Craig (2008) is defined as 𝜏" = 𝑘𝐿 = 𝑘~〈M〉
〈43〉

, where 〈𝑀8〉 is the ensemble-mean total coud-base mass fux 

calculated as in Kain and Fritsch (1990), and k is a constant that depends on the definition of adjustment. The default parameter 

choices in Plant and Craig (2008) are 〈𝑚〉 = 2 · 10:P	kg	s:/ , a root mean squared cloud radius of 〈𝑅-〉//- = 450	m and 

𝑘	 = 	0.3	s	m:/. In Groenemeijer and Craig (2012) these values did not produce enough convective, so they were changed to 

〈𝑚〉 = 1 · 10:P	kg	s:/ and 〈𝑅-〉//- = 1200	m , and fixed 𝜏" = 600	s . Bengtsson et al. (2013) introduced a CA in the 1460 

parameterization of the updraft mesh fraction 𝑎# used in the Gerard et al. (2009) cumulus convective scheme closure. Using 

observational data, Dorrestijn et al. (2015) determined the 𝑎# for various cloud types using Markov chains. The one for deep 

convection was later implemented in the Tiedtke cumulus scheme in the Simplified Parameterizations, Primitive Equation 

Dynamics (SPEEDY).  

For shallow convection, Sakradzija et al. (2015) developed a stochastic shallow parameterization following the studies of Craig 1465 

and Cohen (2006) and Plant and Craig (2008) for deep convection. In this scheme, the number of new clouds is sample form 

a Poisson distribution while the lifetime average mass flux for each new cloud is randomly sampled from a Weibull distribution 

with two modes, namely forced and passive clouds on one hand, and active clouds on the other. This Weibull distribution is 

defined through a scale 𝜆 and a shape k parameter. The cloud lifetime is defined as 𝜏"R* = 𝛼6𝑚S#, where the coefficients are 

obtained from the non-linear least square fitting of the joint distribution of cloud mass flux and cloud lifetime. The total cloud-1470 

base mass flux is then calculated by integrating the instantaneous mass flux distribution, i.e., 

〈𝑀〉 = 	 ∫ 𝑚〈𝜏"R*(𝑚)〉〈𝐺𝑝(𝑚)〉𝑑𝑚
T
G  or  〈𝑀〉 = 𝐺𝛼𝜆U0/Γ D2 + /

U
E, where G is the cloud generating rate. The following values 

were used for this parameterization: 𝑘 = 0.7 , 𝜆/ = 7269.08	kg	s:/	 , 𝜆/ = 29868.48	kg	s:/	 , 𝛼/ = 0.02	kg:/	 , 

𝛼- = 	0.33	kg:/, and 𝐺 = 4.55	s:/ (subscript 1 refers to forced and passive clouds, and subscript 2 for active clouds. The 

reader is refer to Sakradzija et al. (2015) for values of other parameters). This scheme was later implemented in EDMF 1475 

(Sakradzija et al., 2016) and ICON (Sakradzija and Klocke, 2018) with variations in the values of the aforementioned 

parameters. 
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5.2 Impact of closure on convective models 

The closure problem is one of the major challenges in CPs. As well as being essential to close the budget equations (Eq. (5.1), 

Eq. (5.2) and Eq. (5.3)), it plays an important role in the performance of CPs. For instance, Bechtold et al. (2008) obtained a 1480 

better representation of the rainfall pattern and tropical wave activity with their modifications of the entrainment and convective 

adjustment time in the deep convection scheme in IFS. In Rio et al. (2009), the representation of the diurnal cycle of 

precipitation is greatly improved using the ALP deep closure in a 1D model. In their formulation, the convective mass flux 

scheme is coupled with cold pools and the thermal plume model through the ALP. Using a dilute CAPE closure together with 

convective momentum transport, Neale et al. (2008) improved the representation of ENSO in CAM3. Adding a stochastic 1485 

component to the deep convection closure in BMJ, Lin and Neelin (2000) obtained a better representation of the intraseasonal 

variability. Later, Lin and Neelin (2003) include a stochastic component in the deep closure of the ZM scheme. The daily 

variance was much closer to observations than without the stochastic component. Moreover, the SPCZ was better placed. 

Replacing the CAPE closure used in the ZM scheme by a dCAPE closure, Zhang (2002) improved the simulation of 

precipitation, moisture and temperature for midlatitude continental convection. This closure also improved the diurnal cycle 1490 

of precipitation over the southern great planes in the U.S. (Zhang, 2003b). The replacement of the ZM closure by dCAPE 

provided a better representation of the tropical precipitation in NCAR CCM in Zhang and Mu (2005a). With this closure, the 

precipitation was enhanced over the western Pacific monsoon region during June, July and August, as well as the SPCZ during 

December, January and February. In the representation of the MJO, Zhang and Mu (2005b) used the closure and convection 

trigger proposed in Zhang and Mu (2005a) and removed the restriction in the convection originating level. The simulated MJO 1495 

was more consistent with the observations in terms of variability in precipitation, outgoing longwave radiation and zonal wind, 

and exhibited a clear eastward propagation. However, the precipitation signal and the time period of the MJO differ from the 

observations. This revision of the ZM scheme used in the NCAR Community Climate System Model (CCSM3) also alleviates 

the biases related to the double ITCZ in precipitation and cold tongue in Sea Surface Temperature (SST) over the equator, 

among other benefits (Zhang and Wang, 2006; Song and Zhang, 2009; Zhang and Song, 2010). Wang and Zhang (2013) 1500 

evaluated three different trigger and closures assumptions in CAM4 and CAM5 and highlighted the need of using multiple 

independent observations simultaneously to constrain models to reduce the degrees of freedom as well as the need to avoid the 

individual treatment of model physical parameterizations. Wang et al. (2016) obtained a better representation of the 

precipitation intensity, especially over the tropical belt as well as improved simulations of the eastward propagating 

intraseasonal signals of precipitation and zonal wind by coupling the Plant and Craig (2008) stochastic parameterization with 1505 

the ZM scheme in CAM5. More recently, Becker et al. (2021) showed a better representation of the propagation and 

organization of mesoscale convective systems, such as African squall lines, when adding a term for the integrated and scaled 

total advective moisture tendency to the CAPE closure. 

Using CRM simulations, Kuang and Bretherton (2006) tested the viability of representing the transition from shallow to deep 

convection using a CIN-based closure similar to the shallow closure in Bretherton et al. (2004). Results from an idealized 1510 
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numerical experiment of shallow-to-deep convection transition are in agreement with the CIN-based closure and do not support 

a closure based solely on CAPE. Later, Fletcher and Bretherton (2010) extended the Bretherton et al. (2004) shallow closure 

to deep convection with the goal of finding a closure that works well for both shallow and deep convection without changing 

any parameter. Three CRM simulations forced with observations from ARM Great Plains, Kwajalein Experiment (KWAJEX) 

and BOMEX were used to test this closure as well as a CAPE and a Grant closure (Grant, 2001). The CIN-based closure was 1515 

more skillful in the prediction of the cloud-base mass flux and performed well for both deep and shallow convection. 

Hohenegger and Bretherton (2011) modified the UW shallow convection scheme to develop a unify scheme for shallow and 

deep convection. The closure introduced also relates the cloud base mass flux to TKE and CIN taking into account the 

contribution of cold pools to the increase of TKE. LES simulations and BOMEX, KWAJEX and ARM were used to formulate 

and improve this parameterization. Tested in the Single-column Community Atmosphere Model (SCAM) single-column 1520 

modeling framework, this parameterization was able to represent both shallow and deep convection and mid-latitude 

continental convection. Han and Pan (2011) modified the deep scheme in SAS (Pan and Wu, 1995) by increasing the allowable 

cloud-base mass flux, originally set to 0.1	kg	(m-s:/):/, with a Courant-Friedrichs-Lewy (CFL) criterion to make cumulus 

deeper and stronger. This scheme effectively eliminated the remaining instability in the atmospheric column that was 

producing excessive grid-scale precipitation in the original formulation. Using a PCAPE closure with boundary layer forcing, 1525 

the scheme for shallow and deep convection described in Bechtold et al. (2014) represented fairly well the observed daytime 

evolution of convection over land when compared with observations such as satellite data. Moreover, the evolution of shallow 

and deep convection agreed with CRM results. Over Europe, better represented the mainly surface-driven convection over the 

Balkans and the Atlas Mountains, as well as forced convection over Central Europe, and reduced unrealistic rates of snowfall 

along the coast of the British Isles and near European continent for a particular winter case. Han et al. (2020) obtained similar 1530 

results using this closure in KIM (The Netherlands Institute for Transport Policy Analysis). The afternoon peak was delayed 

and the biases of the overestimated precipitation over land in the morning and late afternoon was reduced. 

Focused on closures for shallow convection, different authors have analyzed the impact that shallow convection closures have 

on the simulation of the diurnal cycle. For instance, Neggers et al. (2004) evaluated moist static energy closure, CAPE 

adjustment and sub-cloud convective velocity scaling closure against LES simulations and analyzed the impact of each closure 1535 

on the simulation of the diurnal cycle. Among those, the sub-cloud convective velocity scaling closure showed the best results. 

The onset, dissipation time and cloud cover of cumulus clouds was well captured by the EDMF scheme in Soares et al. (2004). 

Scaling the mass flux with the standard vertical velocity deviation in the EDMF, Siebesma et al. (2007) obtained realistic 

representation of the main properties of dry convective boundary layers. Using a similar closure, Pergaud et al. (2009) showed 

the ability of the EDMF scheme to represent mixing in the countergradient zone and to handle the diurnal cycle of boundary 1540 

layer cumulus clouds. Similar results were obtained by Rio and Hourdin (2008) in terms of the diurnal cycle of the boundary 

layer. The shallow cumulus parameterization developed by Bretherton et al. (2004) reproduced well LES results obtained by 

Siebesma and Cuijpers (1995) and Siebesma et al. (2003) for a subperiod of BOMEX, and by Wyant et al. (1997) for the 

transition from stratocumulus to trade. However, this transition was slightly abruptly in the simulations with the shallow 
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parameterization. McCaa and Bretherton (2004) further analyzed the performance of this scheme in a regional climate 1545 

simulation of the subtropical northeast Pacific Ocean in MM5. The regional mean shortwave cloud radiative forcing and 

vertical structure was better represented by this scheme compared to other parameterizations of cloud-topped boundary layer 

processes. In the DualM framework, Neggers et al. (2009) defined the cloud-base mass flux as the product of updraft fraction 

and updraft vertical velocity. Examined for ATEX, this closure, produced steeper gradients closer to LES results than the ones 

obtained with a fixed structure of the mass flux, and concluded that this result is an indicator of the interaction between the 1550 

mass flux and environmental humidity introduced by the closure. Han and Pan (2011) replaced the shallow convection in SAS 

with a new formulation using the shallow closure describe in Grant (2001). Compared to the original formulation, this new 

scheme did not destroy stratocumulus clouds off the west coasts of South America and Africa. 

6 Conclusions 

Numerical models need simplifications in order to cope with the complexity of the physical processes actually ocurring in the 1555 

atmosphere. The degree of simplification in the physics is evolving at a pace inverse to the availability of computational power. 

Thus, early convective parameterizations (as well as parameterizations of radiation, turbulence, microphysics, etc.) were based 

on very simple assumptions, such as the conditional instability of the second kind (CISK) first presented by Charney and 

Eliassen (1964) and Ooyama (1964) in tropical cyclone modeling. Manabe et al. (1965)  proposed a different parameterization, 

the so-called adjustment scheme, where atmospheric instability is removed through an adjustment towards a reference state. 1560 

The instability was removed instantaneously, and a condensed water precipitated immediately. However, the scheme produced 

very large precipitation rates, and a saturated final state after convection, which is rarely observed in nature (Emanuel and 

Raymond, 1993). To alleviate this issues, relaxed adjustment schemes and penetrative adjustment schemes (Betts, 1986; Betts 

and Miller, 1986) were proposed. Such improvements were only possible when more powerful computers became available. 

However, novel theoretical approaches ahead of the technological capabilities of the time have also greatly impacted the field. 1565 

Thus, the first parameterizations based on moisture convergence were too crude to produce results similar to those observed 

in nature, which led to the formulation of mass flux schemes. Simulations improved with further refinements of the interaction 

of cumulus clouds with the large-scale environment by, for instance, Ooyama (1971) (a statistical ensemble of bubbles 

represent cumulus convection) or Yanai et al. (1973) (detrainment and cumulus-induced subsidence). Early parameterizations 

lacked a theoretical framework to explain the interactions between the large-scale dynamics and convection or were 1570 

incomplete, such as in Ooyama (1971). In an attempt to overcome this drawback, Arakawa and Schubert (1974) proposed a 

closed theory based on the cloud work function and adjustment towards QE. A few years after, thanks to the increase in 

computational power, more complex parameterizations and new variables based on observations were implemented to achieve 

better spatial and temporal resolutions. Krueger (1988) put forward the Cloud Systems Resolving Model (CSRM) idea to 

explicitly simulate convective processes over a kilometer scale, instead of using parameterizations. However, this approach 1575 

entails an extremely high computational cost. As an alternative with a lower computational cost, Multiscale Model Framework 
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(MMF) or superparameterizations (SP) emerged. In this case, convective parameterizations are replaced by 2D cloud resolving 

models (CRMs), or even a 3D LES model, at each grid cell of a GCM (Grabowski and Smolarkiewicz, 1999). 

To alleviate problems associated to traditional convective parameterizations, e.g. the representation of the diurnal cycle of 

convection (e.g.,Yang and Slingo, 2001; Guichard et al., 2004), several studies introduce modifications in existing models. 1580 

Challenges remain for convective parameterizations. As highlighted in Rio et al. (2019), three of these major challenges include 

(a) improve the representation of convective cloud ensembles, (b) improve the representation of convective memory and 

organization, and (c) improve the representation of convection to large-scale interactions. The reader is refer to Rio et al. 

(2019) for a comprehensive review. Here, only the main representatives of each challenge are mentioned. 

Regarding the first challenge, current approaches to improve the representation of convective cloud ensemble include unified 1585 

and multi-object frameworks parameterizations that account for the coexistence of more numerous cloud types within a model 

grid cell, and different methods to compute the vertical profile of cloud properties. Traditionally, models have used separate 

parameterizations for shallow and deep convection. Guichard et al. (2004) stressed the necessity of using and ensemble of 

parameterizations that represents a succession of convective regimes. Some modelers proposed to keep shallow and deep 

convection parameterizations separate due to their different nature and then use a parameterization to couple them (e.g., Rio 1590 

et al., 2013), while others proposed unified schemes that attempt to merge shallow and deep convection into one 

parameterizations (e.g., Guérémy, 2011; Arakawa and Wu, 2013; Wu and Arakawa, 2014; Park, 2014a, b; D’Andrea et al., 

2014; Kwon and Hong, 2017; Zhao et al., 2018). Besides, models traditionally split the turbulence parameterization among 

the PBL and moist convection simplifying the treatment of turbulence but requiring the addition of an artificial closure to 

match both schemes (Sušelj et al., 2014). Unified models have been also used to merge these parameterizations, such as the 1595 

so-called Cloud Layers Unified By Binomials (CLUBB) (Golaz et al., 2002a, b; Larson et al., 2002). Two different approaches 

have been proposed that unify the PBL, shallow and deep convection. Those approaches are the so-called EDMF framework  

(e.g., Hourdin et al., 2002; Köhler et al., 2011; Hourdin et al., 2013; Bhattacharya et al., 2018) and third-order turbulent 

schemes (e.g., Guo et al., 2014, 2015). Parameterizations account for the coexistence of more numerous cloud types within a 

model grid cell include the use of Markov chains considering a certain number of cloud types (Khouider et al., 2010; Dorrestijn 1600 

et al., 2013b; Peters et al., 2013) or the use of a probability density function (PDF) (e.g., Plant and Craig, 2008; Sakradzija et 

al., 2016) , among others. As for the methods to compute the vertical profile of cloud properties, numerous studies apply a 

deterministic entrainment to different cloud types; others use stochastic entrainment parameterizations (e.g., Raymond and 

Blyth, 1986; Emanuel and Živković-Rothman, 1999; Grandpeix et al., 2004; Romps and Kuang, 2010; Sušelj et al., 2013; 

Romps, 2016). The vertical profile of vertical velocity also needs further attention as many schemes do not solve an equation 1605 

for the vertical velocity, and the ones that do it are mostly based on the equation proposed by Simpson and Wiggert (1969) as 

highlighted in Roode et al. (2012). 

For the second challenge, improving the representation of convective memory and organization, there are at least two 

outstanding issues. On the one hand, as pointed out in Davies et al. (2009), the QE hypothesis does not account for convective 

memory. Different strategies have been proposed to include it in convective parameterizations, such as the use of prognostic 1610 
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variables (e.g., Pan and Randall, 1998; Gerard and Geleyn, 2005; Piriou et al., 2007; Mapes and Neale, 2011; Hohenegger and 

Bretherton, 2011; Willet and Whitall, 2017; Tan et al., 2018), Markov chains (e.g., Khouider et al., 2010; Hagos et al., 2018), 

cellular automaton (CA) assigning a prescribed lifetime to each active cell (e.g., Bengtsson et al., 2011, 2013) or cold pools  

(e.g., Grandpeix and Lafore, 2010; Park, 2014; Del Genio et al., 2015; Colin et al., 2019). On the other hand, as for the 

representation of convective organization, Donner (1993), Alexander and Cotton (1998) and Donner et al. (2001) represented 1615 

the effects of mesoscale circulations and Mapes and Neale (2011) introduced a prognostic variable called organization that 

represents the degree of subgrid organization. Other studies accounting for convective organization use surface cold pools 

(e.g., Rio et al., 2009; Grandpeix and Lafore, 2010; Rochetin et al., 2014a, b; Park, 2014a, b; Böing, 2016), slantwise 

overturning model (e.g., Moncrieff et al., 2017), CA (e.g., Shutts, 2005; Bengtsson et al., 2011, 2013, 2019, 2021), or PDF-

based or spectral schemes based on a discretized distribution (e.g., Neggers et al., 2003; Wagner and Graf, 2010; Neggers, 1620 

2012; Park, 2014; Neggers, 2015). Accurate representations of precipitation and cloud cover are important for the spatial 

organization and the time evolution of convective systems. Parameterizations accounting for the microphysics of precipitation 

include those of Feingold (2003), Genio et al. (2005), McFiggans et al. (2006) and Heymsfield et al. (2013), among others. 

Besides, several studies attempted to improve convective cloud radiative effects using PDFs (e.g., Bogenschutz et al., 2010; 

Perraud et al., 2011; Hourdin et al., 2013; Storer et al., 2015; Qin et al., 2018). 1625 

The third main challenge is to achieve better representations of convection to large-scale interactions, i.e., shallow convection, 

transitions from shallow to deep and from deep to organized convection. For transitions from shallow to deep, various 

approaches have been proposed, especially focused on the representation of the diurnal cycle of precipitation (e.g., Rio et al., 

2009; Stratton and Stirling, 2012; Rio et al., 2013; Bechtold et al., 2014; Rochetin et al., 2014; Peters et al., 2017). Other 

aspects that deserve more attention, among others, are the representation of the impact of sea breeze in deep convection 1630 

initiation over islands, and the tendency to show strong positive tropical rain biases for model with strong intraseasonal 

variability due to the sensitivity of convection to free tropospheric humidity through entrainment (Rio et al., 2019). Transitions 

from deep to organized convection also deserve more attention due to the role that mesoscale convective system play on 

weather and climate.  

 1635 

The field of modeling convection is full of details and intricacies. As already mentioned, mass flux convective parameterization 

schemes are still the most common convective parameterizations used in ESMs, RCMs, and NWP models. Besides, models 

have traditionally used separate parameterizations for shallow and deep convection Therefore, we mainly focused our attention 

to the assumptions and empirical values used in shallow and deep mass flux schemes for their three main elements, i.e., trigger, 

cloud model and closure. In the activation of convection, the main differences between shallow and deep convection are in the 1640 

cloud-depth criterion, the updraft radius and in the buoyancy threshold. Both cloud depth and radius are always set to smaller 

values compared to deep convection. As for the temperature perturbation that some deep convective parameterizations include 

in the buoyancy threshold, it is absent in shallow convection trigger. Commonly, the procedure followed to find cloud base 

and trigger convection is the same for both schemes, though some studies set different conditions for the USL (Han and Pan, 
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2011) or use a vertical velocity criterion to trigger shallow convection (Bretherton et al., 2004; Park and Bretherton, 2009). 1645 

The cloud-depth criterion is what decides which type of convection activates.  

Numerous parameterizations of entrainment and detrainment have been proposed for shallow and deep convection including 

turbulent and dynamical components (e.g., Tiedtke (1989) and Nordeng (1994) for deep and shallow convection), constant 

values (e.g. Song and Zhang (2017) for deep and (Siebesma, 1998) for shallow convection), inverse proportionality to height 

(e.g., Siebesma and Cuijpers (1995) for deep and Jakob and Siebesma (2003) for shallow convection) or to the vertical velocity 1650 

of the parcel (e.g., Gregory (2001) for both deep and shallow convection), or dependence on a critical mixing fraction (e.g., 

Kain and Fritsch (1990) for deep and Bretherton et al. (2004) for shallow convection), among others. For those schemes using 

the same parameterization for shallow and deep convection, the main difference between the two types is in the values, higher 

for shallow than for deep convection. Entrainment and detrainment formulations for downdrafts usually use similar 

parameterization as for updrafts. In terms of the microphysics, shallow convective schemes usually do not include a 1655 

parameterization of conversion to precipitation. 

As for the closure formulation, numerous deep convective schemes use CAPE-based closures, although formulations based on 

convective adjustment in terms of CIN and TKE or using stochastic closure have been also proposed. For shallow convection, 

the most used are TKE-based closures. Other closures such as moist static energy convergence (Tiedtke, 1989) and CAPE 

adjustment closures (Betts, 1986) are also used in shallow convection. For the latter, the adjustment time is usually higher for 1660 

shallow than for deep convection. In the parameterizations where it is included, downdraft closure is commonly expressed as 

a fraction of the closure of the corresponding updraft. 

 

Convective parameters require fine tuning, but there is no explicit methodology to do so. In some cases, the authors use the 

variables that are easiest to measure. In others, mean values describe processes that cannot be modeled in sufficient detail, or 1665 

the values represent particular conditions for certain locations and atmospheric events (Mauritsen et al., 2012). For instance, 

Bony and Emanuel (2001) adjusted their water vapor and temperature prediction using the TOGA-COARE data measured in 

Western Pacific Ocean in 1993, while Betts and Miller (1986) used GATE datasets measured over the tropical Atlantic Ocean 

in 1974 to develop their deep convection scheme. Hence, empirical values and assumptions selected this way might yield good 

results when compared to observations from certain locations and less good results for others. Commonly, manual tuning of 1670 

convective parameters is used, although various automatic methods have recently been used to estimate parameters, including 

the variational method (Emanuel and Živković-Rothman, 1999), Bayesian calibration (e.g., Hararuk et al., 2014; Wu et al., 

2018), simulated annealing method (e.g., Jackson et al., 2004, 2008; Liang et al., 2014), genetic algorithm (e.g., Lee et al., 

2006), ensemble data assimilation (e.g., Ruiz et al., 2013; Li et al., 2018), or machine learning (e.g., Schneider et al., 2017) 

among others. Recently, Couvreux et al. (2021) proposed a new method that performs a multi-case comparison between SCM 1675 

and LES results to calibrate parameterizations. The method uses machine learning without replacing parameterizations. 

Comparisons with observations were, and still are, crucial to the development of convective parameterizations. For instance, 

the underprediction of large-scale precipitation by dry adiabatic models compared to observations led to the inclusion of moist 
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adiabatic processes in NWP models (Smagorinsky, 1956), and the lake-effect snow observations (Niziol et al., 1995) forced 

to reduce the minimum cloud-depth threshold in Kain and Fritsch (1993) to 2 km. However, observations suffer from data 1680 

gaps and the instruments used are not able to sampling key variables in parametric equations. Long-term instrumentation 

deployment at meteorological supersites (e.g. Neggers et al., 2012; Song et al., 2013; Gustafson et al., 2020; Zheng et al., 

2021) or field campaigns (e.g. EUREC4A) have been conducted to alleviate these issues. Despite the increase of observational 

supersites worldwide, data gaps still remain. A statistically process-level evaluation has been proposed by authors such as 

Neggers et al. (2012) or Gustafson et al. (2020), among others. This new approach consists in combining LES outputs with 1685 

observations. Indeed, high resolution models provide additional information in 4D that is not possible to be obtained from 

point-based measurements (Gustafson et al., 2020). Another complementary approach to fill observational gaps and provide 

scientists with more information about the physics of convection is dedicated satellite missions such as INCUS. Although 

observations have long been used to tune parameters in convective schemes to reduce errors, it is still unclear whether these 

tuned parameters based on particular datasets can improve model skills across different locations, model resolutions or 1690 

atmospheric events. Spaceborne sensors can help to palliate the situation through global, homogeneous and time-extended 

observations. INCUS and forthcoming missions can shed new light on the empiricisms and help characterizing the adequate 

values for the many empirical parameters in models. As described above, it is known that model results are sensitive to the 

empirical values in convection. To summarize here the numerous sensitivity studies, some have reported that the location and 

intensity of precipitation are extremely sensitive to cumulus parameterization (e.g., Bechtold et al., 2008; Ma and Tan, 2009; 1695 

Chikira and Sugiyama, 2010). For instance, Wang et al. (2007) improved the simulated diurnal cycle over land and ocean by 

increasing the entrainment/detrainment rates for deep and shallow convection used in the Tiedtke scheme, which tends to 

simulate convective precipitation too early in the day and with an unrealistic amplitude over land. Thus, the choice of a 

convective scheme impacts the diurnal cycle (e.g., Bechtold et al., 2004; Wang et al., 2007), as well as the simulation of 

monsoon precipitation in climate models (e.g., Mukhopadhyay et al., 2010), the MJO (e.g., Lin et al., 2006), the ENSO (e.g., 1700 

Wu et al., 2007; Neale et al., 2008), the ITCZ configuration (e.g., Liu et al., 2019) or cloud cover and precipitation over urban 

areas (e.g., Karlický et al., 2020), among others. This topic has profound practical effects: it has been shown that choices in 

the convective parameterization affect the prediction of track, intensity and associated rainfall of tropical cyclones (e.g., 

Mohandas and Ashrit, 2014). However, the impacts of the empirical values in convection are extremely code-specific and 

often errors in calibration of one parameter are hidden by errors in another. Examples of these include masking errors in vertical 1705 

structure due to errors in cloud overlap (Neggers and Siebesma, 2013) or the too-few, too-bright problem (e.g., Nam et al., 

2014). Therefore, results obtained in one GCM with a particular set of empirical values might differ from results obtained in 

a different GCM with the same set of empirical values.  

 

Timely providing the correct amount of precipitation at the right location is still a challenge for models. In the weather realm, 1710 

Fig. 2 is an example of how different the precipitation field may look depending on the cumulus parameterization used. All a 

priori sensible methods locate the maximum and minima in different parts of typhoon Megi and predict different areas and 
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total accumulations. Fig. 3 shows differences in the location and pressure of typhoon Megi and Chaba with initial perturbations, 

and when 7 different convection parameters are perturbed using SPP. Compared to the initial perturbations, changes in 

convection parameters show a bigger dispersion and yield to a wider range of pressure values for each of the cyclones. In the 1715 

climate model realm, validation exercises focusing on precipitation (Tapiador et al., 2012, 2017, 2018) have shown the 

importance and challenges of comparing model outputs with precipitation measurements in order to improve model 

performance. Indeed, the difficulties of quantitative precipitation estimation suggest precipitation as a privileged metric to 

gauge model performance (Tapiador et al., 2019b). The “ultimate test”, as has been described, makes precipitation science an 

active field of research. As discussed in such paper, there is no complete agreement even in the reference data, with datasets 1720 

differing even in such aggregated value as the global mean value of the precipitation on Earth. Advances in satellite 

precipitation estimation (Kummerow et al., 1998; Joyce et al., 2004; Okamoto et al., 2005; Ushio and Kachi, 2010; Watanabe 

et al., 2010, 2011; Kucera et al., 2013; Hou et al., 2014; Huffman et al., 2015; Xie et al., 2017; Levizzani and Cattani, 2019; 

Skofronick-Jackson et al., 2019) are indispensable to advance further, since direct estimates of precipitation (pluviometers, 

disdrometers) and ground radars are limited to land areas. In the near future, it is likely that satellites will continue to play a 1725 

vital role in validating models and therefore in opening new directions in the way key physical processes are modeled. These 

advances need to be parallel with an explicit account of what is empirical in models in order to benefit both fields, observations 

and models. Algorithm developers in the satellite realm are perhaps more used to specifying their assumptions through the 

Algorithm Theoretical Basis Documents (ATBD) but a full comparison between the physics and empirical values behind both 

algorithms and parameterizations is much needed to advance the field. On that note, it is clear that better access to climate 1730 

models code would contribute to address scientific gaps in climate models and to improve their reliability (Añel et al., 2021). 

It would be also highly desirable that scientists not only specify the parameterizations they have used, but also the assumptions 

and empirical values they have actually selected within these. Tables 2-16 can be used to easily identify and pinpoint their 

choices. The benefit will be immense as some discrepancies could be readily attributed to known issues (i.e. heavy spurious 

rainfall over warm water in adjustment schemes) or identified as cofounding variables. As in the case of the microphysics, 1735 

making transparent the codes, the assumptions and the empiricisms can only benefit the community and dispel any potential 

concerns.  

 

As a final comment, it is important to note that the focus of this paper is not comparing the publicly available convection 

schemes or to lean users towards one or another but to explore the Physics behind the modules, and to do that from an objective 1740 

and independent point of view. Neither is the paper about criticizing the simplifications that are inherent to modeling the 

atmosphere, or the limitations of current methods. On the contrary, the research arises from the conviction that models are the 

way forward to advance climate research. Being aware of the potential misuse of the results shown here to attempt discrediting 

models, it is important to vaccinate uninformed critics and discourage futile attempts: neither this paper nor Tapiador et al. 

(2019a) cast any shadow on model outputs. On the contrary, they display and celebrate the delicate intricacies, nuances, precise 1745 

measurements and careful choices made by the community to craft complex tools to forecast, simulate and predict precipitation. 
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