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Abstract. This study describes and evaluates a new downscaling scheme that specifically addresses the need for hillslope-scale

atmospheric forcing timeseries for modeling the local impact of regional climate change projections on the land surface in

complex terrain. The method has a global scope in that it does not rely directly on surface observations and is able to generate

the full suite of model forcing variables required for hydrological and land surface modeling at hourly timesteps. It achieves

this by utilising the previously published TopoSCALE scheme to generate synthetic observations of current climate at the5

hillslope scale, while accounting for a broad range of surface-atmosphere interactions. These synthetic observations are then

used to debias (downscale) CORDEX climate variables using the quantile mapping method. A further temporal disaggregation

step produces sub-daily fields. This approach has the advantages of other empirical-statistical methods, namely speed of use,

while avoiding the need for ground data, which is often limited. It is therefore a suitable method for a wide range of remote

regions where ground data is absent, incomplete, or not of sufficient length. The approach is evaluated using a network of high10

elevation stations across the Swiss Alps and a test application of modelling climate change impacts on Alpine snow cover is

given.

1 Introduction

Climate change has caused, and will continue to cause significant changes in the global cryosphere with increasing impacts

likely in a wide range of domains (Hock et al., 2019). Where observational records of sufficient length exist, we are able to15

quantify these changes. Such records are often curated as part of national or international networks e.g. the World Meteoro-

logical Organisation’s Global Cryosphere Watch, World Glacier Monitoring Service or the Global Climate Observing System.

However, such locations are globally sparse, with particular observational gaps in remote regions due to technical difficulties

and resources required to maintain monitoring infrastructure.

In order to obtain possible scenarios of future conditions we are reliant on climate models. However, for meaningful impact20

studies climate time-series are often required at higher spatial and temporal resolutions than currently available from Global or

even Regional Climate Models (GCMs/ RCMs). This is especially the case in heterogeneous terrain such as mountain regions

where topographic and therefore climate variability is high over short horizontal distances. High surface variability requires
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modelling at the hillslope scale (c. 100 m) in order to adequately capture fluxes and stores of energy, water and carbon (Fan

et al., 2019). Various methods of downscaling can be utilised to achieve this goal. Dynamical downscaling typically applies25

an RCM or numerical weather prediction model (e.g. (alias?)) at high resolution over a limited area in order to obtain more

detailed process representation. This requires no additional data beyond a boundary forcing, yet is computationally costly

(normally a supercomputer is required) and is therefore generally applied to limited domains and/or time periods. In addition,

an extensive set of boundary fields are required in order to set up a run that are not normally available via standard distribution

portals such as Earth System Grid Federation (ESGF), further complicating possible studies. Empirical-statistical downscaling30

(ESD) approaches are typically computationally cheap to run yet require extensive and robust ground observations that are

often either not available, of uncertain quality, or distributed unequally according to important gradients such as elevation. In

addition, timeseries from many stations are not available at climate timescales - typically 30 years (Arguez and Vose, 2011),

rendering the application of ESD methods problematic. Furthermore, many modern physically based impact models require a

full suite of forcing variables to drive them, usually at sub-daily time-steps. Such requirements are rarely met by initiatives that35

have provided input for impact studies (Michel et al., 2021). It is increasingly recognized that analysis of extremes, and not

just mean values, is required to fully quantify the impact of climate change (Katz and Brown, 1992). By definition this requires

highly temporally resolved forcing, as climatic extremes often occur over short timescales, e.g. daily maximum temperature or

storm peak that require sub-daily simulations.

Climate model timeseries, even from the latest generation of RCMs, typically exhibit bias (systematic deviations) when40

evaluated against observations (Ivanov et al., 2018; Kotlarski et al., 2014). These biases need to be corrected before climate

timeseries can be used to force a locally applied impact model (Wood et al., 2004). However, in impact studies we are typically

interested in a climate change signal (CCS), which is a quantitative measure of the difference between a future climate state and

historical reference period (Themeßl et al., 2012). Bias correction (BC) can modify the CCS (Ivanov et al., 2018; Themeßl et al.,

2012) which has been a subject of discussion and often seen as a deficiency in BC methods (Hempel et al., 2013). However,45

it is recognised that model biases typically do not cancel out in the calculation of a CCS and therefore its modification under

BC has been interpreted recently as an enhancement rather than a deficit, particularly in intensity dependent biases which

characterise variables such as precipitation (Gobiet et al., 2015).

There are a wide range of BC methods (Gutmann et al., 2014) with perhaps the most established and widely used being

quantile mapping (QM) which has been shown to perform favourably in comparison studies (Teutschbein and Seibert, 2013;50

Themeßl et al., 2011) and found to cope well with with non-stationary conditions - removing the restrictive stationarity assump-

tion in climate BC. It is also one of the few methods able to correct wet day frequency and intensity (Déqué, 2007). QM is a

distribution based BC method that removes quantile dependent biases with respect to a reference period (Ivanov and Kotlarski,

2017), it therefore corrects the variance and not just the mean. It should be noted that if the climate variable and reference are at

the same spatial scale a pure bias correction is applied, whereas if the reference is at a finer scale (e.g. a meteorological station)55

then an implicit downscaling is achieved, which also makes it a class of empirical-statistical downscaling (ESD) methods.

While concerns over the deterministic nature of QM (Maraun, 2013) and effect on multi-day statistics (Addor and Seibert,

2014) are acknowledged, it is widely accepted to be a pragmatic approach to satisfy the requirements of impact models (Rajczak
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et al., 2016) with deficits shared by all statistically-based methods. A useful overview of the issues involved with respect to

impact modelling can be obtained from Stocker et al. (2015).60

All ESD/BC methods require climate scale timeseries of observations (typically 30 years). In remote regions lacking suffi-

cient historical observations this requirement can be difficult to satisfy. Atmospheric reanalysis data-sets have been proposed as

a means to compensate for missing or incomplete observations (Cao et al., 2019; Fiddes and Gruber, 2014) in order to provide

a "best-guess" of the current state. Moreover, global reanalysis datasets can form the basis for impact studies with a global

consistency.65

In this study we address the problem of lack of impact-model ready (i.e. hillslope scale) climate timeseries with a new

modelling framework called "TopoCLIM". We use the latest ECMWF global reanalysis dataset ERA5 (Hersbach et al., 2020)

together with the downscaling method TopoSCALE (Fiddes and Gruber, 2014) to provide a robust assessment of local-scale

meteorological forcing for the reference period. Importantly, using these pseudo-observations we are able to debias climate

timeseries in regions lacking ground observations. Furthermore, this method provides a full suite of forcing data required to70

run a numerical model at sub-daily timesteps.

By coupling this to the subgrid clustering scheme TopoSUB (Fiddes and Gruber, 2012) and the snow model FSM (Essery,

2015), we demonstrate the ability of this scheme to efficiently generate hillslope scale climate change maps of snow cover

over the entire Swiss Alps. We test this scheme both with a detailed evaluation at the Weissfluhjoch meteorological station, and

across the Swiss network of high elevation stations (IMIS) which has a large spatial coverage.75

2 Methods

2.1 Overview

The scheme is implemented in Python with several specific sub-routines implemented in R (e.g. the quantile mapping package).

An overview of the processing pipeline is given in Figure 1 and can be summarised as a three-step process: (1) A quasi-

physical topography-based downscaling method TopoSCALE (Fiddes and Gruber, 2014) generates hillslope scale (defined80

by the DEM resolution) forcing time-series for the reference period from the ERA5 reanalysis, (2) the BC method quantile

mapping (Gudmundsson et al., 2012) is used to statistically downscale (debias) a climate time series at the given point for

which we now have a reference from downscaled ERA5 forcing, (3) a disaggregation scheme (Förster et al., 2016) generates

hourly climate timeseries based on observed sub-daily distributions of meteorological variables. We demonstrate this approach

by downscaling CORDEX RCM data at hillslope scale and additionally generalising this to a map product using the subgrid85

scheme, TopoSUB (Fiddes and Gruber, 2012), which efficiently spatialises 1D model results (multiple subgrid samples per

CORDEX gridbox) to a map domain according to important dimensions of land surface heterogeneity. In this way, hillslope

resolution (100 m) map results are generated with a laptop-feasible number of subgrid simulations (in this case 100) per

large-scale CORDEX gridbox. The overall philosophy of this approach is to develop methods that are global in application and

therefore can be used in data-poor regions, are efficient to run and repeat (i.e. the ability to rapidly repeat numerical experiments90

that have a relatively low computational cost), and yet address the key drivers of climate-surface variability in complex terrain.
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2.2 Preprocessing

The CORDEX data download is achieved using a custom tool built around the ESGF Python client. This is not a trivial task

due to the large data volumes involved and variable uptime of data nodes. All preprocessing of raw CORDEX data (Figure 1):

concatenating NetCDF time series, extracting region of interest and regridding from rotated pole projections, is accomplished95

using standard tools from the Climate Data Operators (CDO) suite. The CDO tools are called from the preprocessing module

of TopoCLIM and not used as standalone command line tools - enhancing the ease of use and reproducibility of the processing

pipeline. As downloads are done by variable, it is possible that the full set of required forcing variables are not available for a

given CORDEX model chain. If this is the case the model chain is excluded from any further processing.

Climate model calendars are often simplified for numerical reasons and are inherited from the parent GCM, these need to be100

correctly handled to produce comparable timeseries. Three calendars exist in the CORDEX data used here: "360-day" (every

month is 30 days long), "365-day" (no leap year), and "standard" (complete Gregorian calendar). We convert all calendars to

"standard" by linearly scaling dates to the standard Gregorian calendar and then gap filling missing data by linear interpolation.

For example, during the conversion from a "360-day" to a "standard" calendar, the output from the linear scaling will result

in a 365 day timeseries (in the case of non-leap year) and be missing the following dates: January 31st, March 31st, June 1st,105

July 31st, September 30th and November 30th. In a second step these dates are gap-filled using linear interpolation.

2.3 Spatial downscaling of reanalysis data

ERA5 reanalysis “observations” are downscaled using the TopoSCALE scheme (Fiddes and Gruber, 2014) to be used as the

reference data in the bias correction. We acknowledge that reanalyses are not true observations (Parker, 2016), yet by assimilat-

ing an extensive set of observations into a Numerical Weather Prediction (NWP) model, reanalyses are often considered to give110

the best possible view of the global climate (Dee et al., 2014). TopoSCALE performs a 3D interpolation of atmospheric fields

available on pressure levels, to account for time varying lapse rates, and a topographic correction of radiative fluxes. The latter

includes a cosine correction of incident direct shortwave radiation on a slope, adjustment of diffuse shortwave and longwave

radiation by the sky view factor, and elevation correction of both longwave and direct shortwave. It has been extensively tested

in various geographical regions and applications, e.g. permafrost in the European Alps (Fiddes et al., 2015), permafrost in115

the North Atlantic region (Westermann et al., 2015), Northern hemisphere permafrost (Obu et al., 2019), Antarctic permafrost

(Obu et al., 2020), Arctic snow cover (Aalstad et al., 2018), Arctic climate change (Schuler and Østby, 2020), and Alpine snow

cover (Fiddes et al., 2019). This approach enables us to provide a climate length pseudo-observation timeseries globally, while

accounting for the main topographic effects on atmospheric forcing. We call this product T-MET throughout the text. It should

be noted that this serves as our reference throughout the paper. A detailed validation and quantification of uncertainty of the120

TopoSCALE method is given in Fiddes and Gruber (2014) and therefore is not repeated here. We do however compare our

results to the station data variables air temperature and snow depth across the IMIS network.
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2.4 Quantile mapping

Bias correction through quantile mapping Q : x→ x? is achieved as follows (Panofsky and Brier, 1968):

x? =Q(x) = F−1
o [Fm (x)] , (1)125

where the debiased output variable x? is obtained by applying the quantile mapping function Q to the biased input variable

x. This function is generally formed through the composition of the modeled cumulative distribution function (Fm) and the

inverse of the observed cumulative distribution function (Fo). In our case, Fo is obtained from the pseudo-observations in the

form of downscaled ERA5 data, while Fm is generated from the CORDEX output which we want to bias correct.

We use the R package "QMAP" for this purpose (Gudmundsson et al., 2012). Gudmundsson et al. (2012) compared different130

implementations of QM for daily precipitation data and found that a non-parametric empirical approach (as implemented in

the cited package) outperforms implementations relying on theoretical distributional assumptions. While quantile mapping

ensures that quantile biases are corrected in the CDF, it does not account for seasonally varying bias. It is therefore well

suited to air temperature where we can be reasonably sure that winters are cold and summers hot, at least in mid to high

latitudes. However, with precipitation the intra-annual distribution can be biased while the CDF may look reasonable (e.g. wet135

and dry season timing could be shifted). We address this with a two step approach called QM_MONTH. We split the data

according to 12 temporal subsets corresponding to the months of the calendar year and run the QM algorithm on each subset,

computing QM parameters separately for each month. These are applied throughout the historical and climate time series at

the appropriate months. Similar approaches have been used successfully in other studies, e.g. Hanzer et al. (2018). Quantile

mapping is performed on a subset of data during 1980-1995 to allow an evaluation to be performed over the time period 1996-140

2006. It should be noted that these periods are constraints imposed by the datasets used in this study and can be changed in

other applications of the method.

While the variables are bias corrected independently, they are corrected towards a physically consistent dataset in the form

of downscaled ERA5 data. We argue that the method does not produce physically inconsistent results, despite being univariate.

The validation during the current climate also supports this claim (Table 3-5).145

2.5 Temporal downscaling of climate time series

The final step in preparing the climate forcing is a temporal disaggregation to generate required sub-daily fields. Original

hourly resolution T-MET are used to temporally disaggregate the downscaled (quantile mapped) daily climate timeseries. The

"Melodist" package is used for this purpose (Förster et al., 2016). This disaggregates daily data based on observed sub-daily

distributions. It should be noted that this assumes sub-daily distributions are stationary in a future climate, which quite possibly150

may not be the case. However, a greater source of uncertainty likely exists in the ability of ERA5 to reproduce short timescale

local weather patterns which require convection resolving model resolutions (Liu et al., 2017) and appropriate physics.

Variables are disaggregated with the Melodist methods listed in Table 1 (Förster et al., 2016). Melodist does not however,

provide methods for air pressure or longwave radiation, these are handled with the following procedure: taking advantage of

the relationship between incoming longwave radiation (ILWR) and air temperature (TA),155
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ILWR = ε×σ×TA4

where σ is the Stefan-Boltzmann constant (5.67× 10−8Wm−2K4) we diagnosed the daily all sky emissivity (ε). We then

used ε as a daily scaling factor to convert disaggregated TA into ILWR. This procedure therefore assumes a constant ε at sub

daily timestep (which of course will not normally be true) yet ensures that ILWR scales correctly with TA. Therefore higher

TA lead to higher ILWR values and vice-versa. Air pressure is simply linearly interpolated to the sub-daily timestep.160

3 Study region and data

3.1 Model domain

We consider two scales in this study (a) point-scale (meteorological stations: Weissfluhjoch and the IMIS network) and (b)

regional (Swiss Alps), in order to illustrate typical applications of the scheme. A map of the study region and the location of

the stations we used is given in Figure 2.165

3.2 Climate data

The basic forcing comes from the regional climate model project CORDEX EUR-44 product (Jacob et al., 2014) at a nominal

resolution of 44 km. The 44 km product was chosen over the 22 km product as this had many more model chains available. The

EURO domain also has an 11 km product but this is not available globally, and therefore is not fit for the purpose of this study.

Data was retrieved from the ESGF using an API and automated Python based tool developed in this study. This is an important170

step as the number of file downloads is large with dimensions being models×variables×scenarios×time periods. The fact that

the ESGF consists of a distributed set of data nodes with variable uptime, further complicates the download process. We use

daily data to force the scheme and retrieve historical data plus projections from two climate change scenarios, RCP2.6 which

is a very stringent pathway, RCP2.6 requires that CO2 emissions start declining by 2020 and go to zero by 2100 and RCP8.5

where emissions continue to rise throughout the 21st century. A full description of CORDEX variables is given in Table 1175

and model chains used in Table 2. Daily data was chosen for the method (therefore requiring a temporal disaggregation step)

as limited number of model chains are available at sub-daily resolutions. This is particularly the case outside of the EURO

domain where use-cases for this method are envisaged. A higher number of model chains increases confidence in our results,

by improved quantification of inter-model variability.

3.3 Reanalysis data180

We use ECWMF’s latest reanalysis product ERA5 (Hersbach et al., 2020), which uses version 41r2 of IFS which is the ECMWF

NWP model. ERA5 represents an evolution over its predecessor, ERA-Interim, by increasing the model spatial resolution to

0.25 degrees, temporal resolution to hourly and the vertical model levels to 137 (37 pressure levels are stored). These reanalysis

data are downscaled for the purpose of bias correction using the TopoSCALE scheme (Fiddes and Gruber, 2014) as described

above (cf. Methods).185
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3.4 Topography

NASA’s SRTM-3 90 m digital elevation model (DEM) is used as a topographical surface for TopoSCALE downscaling rou-

tines. Slope, aspect and sky-view factor (the portion of the sky hemisphere that is visible for a given DEM pixel) are derived

(Dozier and Frew, 1990).

“A higher resolution DEM may also be used but likely does not add value as processes such as wind transport that operate190

on these scales are not included in the model (Mott et al., 2018). However, it should be noted that avalanching off steep slopes

is accounted for by removing snow linearly above a slope threshold ((Fiddes et al., 2015)). Importantly in our scheme, higher

resolution does not necessarily increase runtime either in point mode (trivially) or in spatial mode where the run-time in the

main programme modules is related to number of TopoSUB clusters. Additionally, the scheme is designed to scale well by

generating cluster forcings through array computations.195

4 Simulation setup and evaluation

4.1 Simulation and maps

We use the Factorial Snow Model (FSM) (Essery, 2015) to simulate the snow cover and TopoSUB (Fiddes and Gruber, 2012)

to spatialise results to a 2D map. FSM is a multi-physics ensemble model, however in this study we always use configuration

31 which is the most complex version of the model where all five parameterisations are switched on. TopoSUB is a topographic200

sampling scheme that reduces distributed modelling problems that explicitly model individual pixels to a lumped model several

orders of magnitude smaller while considering the full range of topographic heterogeneity that exists. For example, a 100 m

grid over a 25 km × 25 km domain would have 62500 pixels which would each represent a model simulation in a fully

distributed setup of many surface models. TopoSUB would reduce this to 100-200 samples, each representing a single model

run, representing a reduction in computation of around 3 orders of magnitude. It achieves this by using a k-means clustering205

algorithm (MacQueen, 1967) to perform a multidimensional classification on the model domain resulting in so-called TopoSUB

clusters, consisting of pixels with similar terrain parameters. Predictors used in the clustering algorithm are elevation, slope,

aspect and sky view factor. In this way it is possible to produce high resolution maps (e.g. DEM resolution) over large (regional)

modelling domains, while explicitly including important drivers of surface-atmosphere processes. The scheme is implemented

on an HPC cluster for efficiency in an "embarrassingly parallel" sense, i.e. no communication required between compute nodes.210

Typical setups use 100 nodes with run-times measured in minutes for full 1980-2100 runs, for example to produce the results

given in Figure 7. The scheme also has a desktop mode which typically utilises 8 cores and typical runs will require a few

hours. These indicative numbers are provided merely to give the reader an order-of-magnitude idea of how frugal this scheme

is in terms of computation resources compared to dynamical downscaling.
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4.2 Treatment of glaciers215

Glacier zones are typically masked in studies of seasonal snow unless a glacier layer is explicitly accounted for in the model. In

this study, however, we wanted to highlight and track changes in the glacier accumulation zones. These zones are areas where

the annual surface mass balance is positive, leading to the formation or growth of glaciers. With our framework we are able to

identify such zones, as we are able to model areas with perennial snow cover with FSM and these give a good indication of

glacier accumulation zones under a given climate. However, we ignore glacier dynamics so we are not able to adequately map220

the spatio-temporal evolution of glaciers.

4.3 Evaluation

Predictive methods must by definition be evaluated on independent data from that which was used for calibration in order to

correctly evaluate how applicable a model is beyond the data-space within which it was developed. Further, highly adaptable

methods, such as the non-parametric techniques used in this study, are prone to over fitting. These issues are avoided in this225

study as we perform an independent evaluation using station data from the IMIS station network, whereas calibration or in this

case downscaling, is performed using downscaled ERA5 fields. Note, none of the meteorological fields of the IMIS stations

were assimilated during the production of ERA5. Snow depth results are evaluated by automatic snow depth measurements

performed by sonic ranger (Campbell Scientific SR50), available from the Inter-cantonal Measurement and Information System

(IMIS) station network at 30 minute intervals. This is a high elevation station network that forms the backbone of the national230

avalanche service in Switzerland.

The analysis in this study is organised as follows: The reference period is defined as 1981-2010 and future scenarios are

analysed for climate periods 2031-2060 and 2070-2100. We assess the downscaling of all meteorological fields at the Weiss-

fluhjoch IMIS station (Figure 3) which has the full suite of variables produced as compared to standard IMIS stations which

lack a full radiation balance. Here, we additionally test the performance of the scheme at point-scale (Figure 5 and 6). We235

further assess air temperature and snow depth (as a proxy for precipitation) using the entire IMIS network (Figure 6). We do

not assess precipitation directly as year-round datasets are not available from the IMIS network due to unheated gauges, and

snow depth is often considered a more robust variable to measure at high elevation. After this we provide results using the

scheme at various spatial scales (Figure 6-8).

5 Results and discussion240

5.1 Evaluation at the Weissfluhjoch station

Figure 3 and Table 3 and 4 (statistics) show an evaluation of the scheme at the WFJ station both as a cumulative distribution

function (left column) and a day of year (DOY) plot which averages all values in the timeseries for a given DOY (right

column). Here we compare grid-box CORDEX ensemble mean (CLIM), a single parameter set quantile map run (QM) and

monthly parameter set quantile map run (QM_MONTH) to T-MET and station measurements. This comparison is done over245
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the period 1996-2006 which corresponds to the overlapping time-frames of CORDEX-HIST, T-MET and station data, and also

importantly does not include the period over which quantile mapping is run (1980-1995). We perform two sets of comparison,

first with T-MET as a reference as this is the target of the quantile mapping (Table 3). This shows how the scheme behaves

particularly in terms of the different QM and QM_MONTH implementations (Table 3). In the second, we compare results

directly to the measurements at the station to get a global look at how the scheme performs (Table 4), of course this is then250

subject to residual error in the TopoSCALE downscaling scheme which produces T-MET (Table 5) and therefore must be

interpreted carefully.

With respect to target T-MET (Figure 3, Table 3) percentage bias and RMSE are generally strongly decreased by the scheme

in the standard QM mode and further by the QM_MONTH variant, especially where there is a time varying bias signal (e.g.

shortwave radiation).255

With respect to station measurements (Table 4) we see overall improvement in statistics by the scheme, however this is

not always reflected in an improvement in statistics between QM and QM_MONTH as there is residual error between the

station measurements and downscaled T-MET. The strongest improvements are variables which are downscaled according to

model pressure levels in the TopoSCALE scheme (air temperature and relative humidity). Precipitation is the only parameter

we do not see an improvement in the scheme with respect to the measurements, but this is expected due to high uncertainty in260

precipitation and the fact this is not addressed by the base TopoSCALE downscaling. This point is further discussed below in

Section 5.4.

Figure 4 shows a typical point scale application generating a forcing timeseries, in this case for air temperature. The effect

of the bias correction is shown with a clear improvement with respect to T-MET. Figure 5 gives a point scale example of

snow depth evolution at WFJ. Available snow depth observations from WFJ show good agreement with both the historical265

period and first decade of the RCP runs in terms of lying within the model ensemble. It should be stressed that a quantitative

comparison with individual years cannot be made as CORDEX variability (and climate models more generally) is not expected

to be perfectly synchronised with observed variability at temporal resolutions of years to a decade. Note the stable/rising snow

depth under RCP2.6 by end of century correlated to stabilised mid-century temperatures shown in Figure 4.

5.2 Evaluation for the IMIS network270

Figure 6 gives the evolution of snow depth averaged across the IMIS network in terms of mean DOWY (day of water year)

snow depth, starting 1 September. IMIS station measurements are given as reference, however it should be noted that the time

period covered by each station is variable within the period 1996-2018. The shortest station record is 10 years. These are

compared to T-MET snow depth by only using days present in the IMIS dataset. At this synoptic spatial and temporal scale

there is good agreement with low bias and RMSE scores and high correlation (Table 4). The evolution of snow depth for future275

climate scenarios and two future periods is given. By mid-century under RCP2.6 a reduction in peak snow depth of around 20

cm is seen and further 25 cm under RCP8.5 with respect to the reference CORDEX historical period (CORDEX-HIST). Peak

snow depth occurs around 30-40 days earlier. By late century RCP2.6 snow depth has not further deteriorated and in fact shown

signs of possible recovery with peak snow depth moving towards that of the CORDEX-HIST period. RCP8.5, however, gives
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a strong further reduction in peak snow depth of around 1 m with respect to CORDEX-HIST. The comparison between the280

CORDEX-HIST (1980-2006) and T-MET/ IMIS (1996-2018) is useful but should be treated with caution due to only partially

overlapping periods (defined by availability of station measurements). The CORDEX-HIST period has a higher peak snow

depth and later snow melt-out date, which could be due to less climate change as it represents an earlier period than IMIS and

T-MET.

5.3 Climate change impacts on Alpine snow cover across Switzerland285

As an example application of the full model pipeline, the results in Figure 7 were generated by feeding model results (TopoCLIM/FSM)

to the TopoSUB spatial framework to generate transiently modelled snow depth maps at 100 m resolution. The ensemble

mean is used in each scenario/ time period plot. We highlight again that by using this simple approach we implicitly model

climate-viable glacier accumulation zones, where the snowpack does not melt-out by the end of summer. Mid-century results

are comparable between RCP2.6 and RCP8.5 except for lower elevation areas such as the Jura mountains in the far west of290

Switzerland. By late-century the difference is large, as also seen in Figure 6 with a strong increase in the snowline elevation

and reduction of snow depth even at high elevations. Glacier accumulation zones remain only in the high Valais (Mattertal)

and Bernese Oberland around today’s accumulation zone of the Aletsch Glacier. Figure 8 provides a more quantitative picture

of snow cover-elevation dynamics. This hypsometry plot summarizes the pixels of Figure 7 by showing the mean and standard

deviation of snow depth at each 50 m elevation band across the entire domain for three time periods and scenarios RCP2.6/8.5.295

As expected, a strong decrease in snow depth is seen at all elevations under RCP8.5. A slightly different story is seen under

RCP2.6 with snow depth reducing up to mid-century followed by an increase at high elevations (above 3500 masl) by end of

the century - this is a consistent message throughout this study and reflects the results of Figures 5, 6 and 7. It can be partially

explained by stabilisation of air temperatures by mid-century (Figure 4) together with increased precipitation in the Alpine

region (Jacob et al., 2014; Smiatek et al., 2016).300

An interesting observation in this figure is that in all time periods and scenarios snow depth is limited both at low elevation

by temperature and at high elevation by terrain, which tends to be steeper and therefore permits lower accumulations due to

avalanching (permitted by the model, as discussed in Section 3.4). A final point of note in this figure is the truncation level

indicating the accumulation zone elevation which is approximately 4000 m for HIST. Above this level seasonal snow is not

possible, as it will not melt before the following winter season or the ground is too steep for snow accumulation. This upper305

limit of seasonal snow rises to around 4500masl over the 21st century, well above former glaciated surfaces. An implication of

this for water resources is that while we lose a large quantity of glacier accumulation zones during the 21st century, irrespective

of scenario, we will likely not lose seasonal snow water resources at those elevations.

Several previous studies have investigated the impacts of climate change upon Alpine snow cover (e.g. Verfaillie et al., 2018;

Steger et al., 2012; Marty et al., 2017; Frei et al., 2018; Bender et al., 2020), however direct comparison is often problematic due310

to model resolution, analysis period, parent climate models and/or emissions scenarios used. This highlights the importance of

model intercomparison studies whereby these important variables controlling model results can be standardised. Comparison

to the previous works cited highlights the contribution of this study in that most were conducted either at an RCM resolution
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of 25 - 12 km (e.g. Steger et al., 2012; Frei et al., 2018), local scale (e.g. Verfaillie et al., 2018; Bender et al., 2020) or reliant

on in situ data (e.g. Marty et al., 2017; Bender et al., 2020). In this study, we demonstrate a method that generates results over315

large modelling domains at hillslope scale, a scale which is extremely important in regulating the stores and fluxes of water,

energy, and carbon (e.g Fan et al., 2019), and therefore critical to modelling snow cover in mountainous terrain. Additionally,

this approach does not rely on in situ data and therefore is appropriate for data-scarce regions.

5.4 Forcing uncertainty

The largest source of uncertainty in the scheme is the reanalysis forcing from ERA5. Both quantile mapping and disaggregation320

of fields to sub-daily timesteps are inherently constrained by the distribution of ERA5 fields. While ERA5 provides hourly data

and therefore resolves the diurnal cycle, it remains a 0.25 degree model with a correspondingly smooth topographical surface

representation and parameterisation of physical processes that occur on shorter length scales. Typical examples are convective

precipitation and cold air pooling in valley bottoms (Cao et al., 2017; Liu et al., 2017), orographic enhancement of precipi-

tation and wind fields (Gerber et al., 2018; Mott et al., 2018; Gutmann et al., 2016). As the density of observations that are325

assimilated in reanalyses varies globally we expect the performance of the TopoCLIM model pipeline to be a function of how

well constrained ERA5 is in any given location. A full analysis and discussion of TopoSCALE uncertainties is given by Fiddes

and Gruber (2014) and to some extent in Fiddes et al. (2019). The most uncertain variable is precipitation which is clearly a

critical point for snow modelling studies. We do however show that there are no large scale biases in the precipitation field

at least in our snow depth comparison across the IMIS network. We have shown in previous studies that variables driving the330

energy balance (air temperature, incoming shortwave radiation, incoming longwave radiation) are downscaled with good skill

by TopoSCALE. One method we have explored to reduce (and quantify) meteorological forcing uncertainty and precipitation

uncertainty in particular, is through Bayesian data assimilation of globally available satellite products using a particle batch

smoother, which has shown promising results (Fiddes et al., 2019; Alonso-González et al., 2020). The coupling of this scheme

with TopoCLIM will be the subject of subsequent work.335

5.5 Evaluation uncertainty

Our station measurements are characterised by considerable uncertainties, a problem that is particularly acute for precipitation

related fields such as snow depth, so we have to some degree a chicken and egg scenario when it comes to model validation,

in that it’s hard to untangle the origin of apparent errors. For example, stations tend to be situated in sheltered flat to concave

topography. Here we expect there to be considerable preferential deposition (Lehning et al., 2008) from surrounding windblown340

slopes and ridge-lines (Grünewald and Lehning, 2015). In general we would expect stations therefore to be positively biased

with respect to large scale precipitation fluxes. Additionally, certain stations will be exposed to very local climatic effects

which are not represented in the large scale 0.25 degree resolution ERA5 forcing. Examples of such local effects include wind

funnelling leading to scouring, enhanced Foehn effects and local orographic enhancement.
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5.6 Snow model uncertainty345

The snow model used in this study, FSM, is an intermediate complexity physically-based model and we do not expect it to

perform as well with respect to snow densification as a more complex snow physics model such as SNOWPACK (Lehning

et al., 2002; Wever et al., 2015). This can introduce uncertainty when using snow depth as a validation parameter. However,

it should be noted that there is active discussion about snow model complexity and how this does not necessarily lead to

improved performance (c.f. Magnusson et al., 2015). Snow water equivalent is a simpler modelling objective but a much harder350

measurement objective and therefore few sites are available - particularly with good coverage at regional scales, therefore

limiting its applicability for large-scale evaluations.

6 Conclusions

In this study we have developed and tested a new scheme for downscaling regional climate projections, specifically designed

to provide hillslope scale forcings for impact models. We take advantage of the now globally available CORDEX RCM data355

to develop a method with global scope. The scheme adheres to the approach of TopoSCALE upon which it builds, that is

modelling tools that bridge the gap between relatively simple empirical approaches and full dynamical models that require

extensive computing resources. It can be run both on desktop or cluster environments. The target application of this scheme

is impact modelling in complex terrain where significant atmosphere-surface interactions need to be considered. A particular

application is in remote areas where ground data may either not be present at all or not available for the duration of a climate360

normal period, meaning that traditional ESD methods are problematic to use. Another strength of this approach is that it

produces continuous timeseries, such that it permits transient simulations in contrast to other parsimonious methods such as

the delta-change approach, an important point for domains such as soil, ground-ice or glaciers where surface forcings drive

processes over decadal timescales.

This framework is adaptable to any kind of meteorological input data (both the reference data and the future/past period).365

Here we have given an example with the reference based on downscaling ERA5, but it could equally be generated by down-

scaling other reanalyses such as MERRA or outputs from regional models such as WRF, COSMO, or ICAR. The method

would also be applicable to other future projections such as those from CMIP6 which are coming online now. Exploring all

these possibilities is beyond the scope of this paper, but it’s useful to emphasize the potential applications of this framework.

Another aspect to highlight is that we are downscaling an ensemble of CORDEX outputs which also gives us a better idea370

of the uncertainty in future climate projections and impacts on the snowpack (in this case). It should also be stated that as a

framework other downscaling routines or bias correction approaches could be used. The modularity allows these options to

be explored. The very efficient combination of steps as presented in this paper provides a powerful way of rapidly obtaining

hillslope scale climate forcings anywhere on the globe.

As a final point, TopoCLIM can be used to bias correct any dataset that partly overlaps with the reference period. Thus, in375

addition to the future projections considered in this study, it would also be possible to use TopoCLIM to correct coarser-scale

reanalysis data that stretch far back in time. A prime example would be ECMWF’s 20th century reanalysis (ERA-20C) which
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spans 1900-2010 and thus partly overlaps with ERA5 (1950-today) that is used to drive TopoSCALE to generate the reference

data T-MET.
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Figure 1. Schematic overview of the main TopoCLIM processes and experimental setup used in this study.
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Figure 3. Evaluation of the quantile mapping routine at the Weissfluhjoch station in standard mode "QM" single parameter set and

"QM_MONTH" seasonally varying parameter set. CLIM is the uncorrected CORDEX data. STATION is the Weissfluhjoch station mea-

surements. T-MET is the downscaled ERA5 data obtained using TopoSCALE. Shown are the cumulative density function over the period

1981-2010 (left panel) and seasonal distribution given as average by day of year (DOY) for the same period (right panel).

20



1980 2000 2020 2040 2060 2080 2100

−
2

0
2

4
6

 

A
ir 

te
m

pe
ra

tu
re

 (
°C

)

Hist
Hist_raw
RCP2.6
RCP2.6_raw
RCP8.5
RCP8.5_raw
T−MET

Figure 4. A point-scale TopoCLIM product: Mean annual near surface air temperature at the Weissfluhjoch (2540 masl) showing corrected

historical, RCP2.6 and RCP8.5 time series. T-MET and uncorrected CORDEX data are also shown for comparison. The coloured envelopes

indicate the model spread and ensemble mean is given by the bold line. The zero degree isotherm is given by the horizontal line.
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Figure 5. An example point-scale TopoCLIM product: Mean annual snow depth (m) ensemble at the Weissfluhjoch station (2540m asl) for

historical and future RCP scenarios. Observations from Weissfluhjoch are given in black for a qualitative comparison. Ensemble means are

indicated by solid lines and long term average over the plotted historical period (1981-2010) is given by the horizontal line. Observations

lie within the ensemble spread, indicating that the bias correction method works satisfactorily. It should be stressed that we do not attempt

a quantitative comparison here as CORDEX (and climate models more generally) variability is not expected to be perfectly synchronised

with observed variability. Nonetheless, this representation usefully shows the inter-annual variability that is present in both the model and

the observations instead of simply showing decadal means.
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Figure 6. Large scale evaluation of the scheme at all IMIS station locations: Network mean air temperature and snow depth across all IMIS

stations (IMIS) is compared to the same data generated by the TopoSCALE downscaling of ERA5 (T-MET) and TopoCLIM downscaled

CORDEX data for the historical period (1981-2010) and scenarios RCP2.6/8.5 for near (2031-2060) and far future periods (2070-2099) for

each day of water year (DOWY), starting at September 1. The full width of the model ensemble is represented by the shading. Note T-MET

and IMIS have the same time-frame (variable by station between 1996-2020) and are therefore directly comparable (see Table 5), but this

only partially overlaps with the CORDEX historical period and therefore is intended for visual comparison only.
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Figure 7. Example TopoCLIM forced climate change maps: Mean snow depth (m) for RCP2.6 and RCP8.5 (columns) and time periods

1981-2010, 2031-2060 and 2070-2099 (rows). Perennial snow-pack (does not melt in an annual cycle) is masked out (white regions) and

assumed to represent climatological glacier accumulation zones.
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Figure 8. Hypsometry of snow depth over the Swiss Alps for RCP2.6, RCP8.5 for periods 1981-2010, 2031-2060 and 2070-2099. This data

is derived from the ensemble mean, with shading showing +/- 1 standard deviation of values in each elevation band. The elevation limit in

each time period corresponds to the threshold between seasonal and non-seasonal snow, or glacier accumulation zones. This demonstrates

the rising equilibrium-line altitude of glaciers over the 21st century in all RCP’s and extension of seasonal snow into the former glacier zones.
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Table 1. CORDEX variables used in this study, together with the Climate and Forecast Conventions (CF) standard name.

Variable name Units Timestep CF long name Melodist method

tas K daily Near-Surface Air Temperature sine mean

pr kg m−2 s−1 daily Precipitation equal

ps Pa daily Surface Air Pressure -

hurs % daily Near-Surface Relative Humidity equal

rsds W m−2 daily Surface Downwelling Shortwave Radiation pot rad

rlds W m−2 daily Surface Downwelling Longwave Radiation -

uas m s−1 daily Eastward Near-Surface Wind random

vas m s−1 daily Northward Near-Surface Wind random

Table 2. CORDEX model chains used in this study.

GCM RCM Scenario Ensemble Version

CNRM-CERFACS-CNRM-CM5 CLMcom-CCLM5-0-6 Hist/RCP2.6/8.5 r1i1p1 v1

CNRM-CERFACS-CNRM-CM5 SMHI-RCA4 Hist/RCP2.6/8.5 r1i1p1 v1

ICHEC-EC-EARTH CLMcom-CCLM5-0-6 Hist/RCP2.6/8.5 r12i1p1 v1

ICHEC-EC-EARTH KNMI-RACMO22E Hist/RCP2.6/8.5 r12i1p1 v1

ICHEC-EC-EARTH SMHI-RCA4 Hist/RCP2.6/8.5 r12i1p1 v1

MIROC-MIROC5 CLMcom-CCLM5-0-6 Hist/RCP2.6/8.5 r12i1p1 v1

MPI-M-MPI-ESM-LR SMHI-RCA4 Hist/RCP2.6/8.5 r12i1p1 v1

NCC-NorESM1-M SMHI-RCA4 Hist/RCP2.6/8.5 r1i1p1 v1

NOAA-GFDL-GFDL-ESM2M SMHI-RCA4 Hist/RCP2.6/8.5 r1i1p1 v1
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Table 3. Statistics from the evaluation in Figure 3. Correlation (R), root mean squared error (RMSE) and percentage bias (PBIAS) are given

relative to downscaled ERA5 data T-MET.

Statistic Scheme tas [K] pr [kg m−2 s−1] rsds [W m−2] rlds [W m−2] hurs [%]

R [-] CLIM 0.98 0.39 0.99 0.95 0.02

R [-] QM 0.98 0.35 0.98 0.95 -0.11

R [-] QM_MONTH 0.99 0.55 0.99 0.97 0.74

RMSE CLIM 2.27 2.17e-05 43.00 24.19 17.29

RMSE QM 1.04 1.75e-05 19.09 7.41 6.89

RMSE QM_MONTH 0.84 1.58e-05 10.46 5.67 3.94

PBIAS [%] CLIM 0.7 28.8 -21.1 9.1 23.3

PBIAS [%] QM 0 0.3 0.1 0.1 -0.1

PBIAS [%] QM_MONTH 0 0.2 0 0.1 -0.1

Table 4. Statistics from the evaluation in Figure 4. Correlation (R), root mean squared error (RMSE) and percentage bias (PBIAS) are given

relative to station measurements at Weissfluhjoch (STATION).

Statistic Scheme tas [K] pr [kg m−2 s−1] rsds [W m−2] rlds [W m−2] hurs [%]

R [-] CLIM 0.99 0.22 0.97 0.97 -0.16

R [-] QM 0.98 0.20 0.97 0.96 -0.30

R [-] QM_MONTH 0.98 0.32 0.97 0.94 0.76

R [-] T-MET 0.98 0.35 0.97 0.94 0.76

RMSE CLIM 1.86 2.59e-05 29.41 15.61 16.94

RMSE QM 1.01 2.82e-05 22.89 11.59 9.31

RMSE QM_MONTH 1.15 2.76e-05 23.78 12.94 5.34

RMSE T-MET 1.15 2.85e-05 24.27 13.45 5.24

PBIAS [%] CLIM 0.6 2.6 -13.9 5.4 21

PBIAS [%] QM -0.1 -20.1 9.1 -3.3 -2

PBIAS [%] QM_MONTH -0.1 -20.2 9.1 -3.3 -2

PBIAS [%] T-MET -0.1 -20.3 9 -3.4 -1.9
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Table 5. Statistics from Figure 6 evaluation comparing T-MET results against IMIS station data for the historical period.

Variable Mean IMIS Mean T-MET R Bias RMSE

TA [K] 273.8 273.7 0.998 -0.12 0.63

HS [m] 0.70 0.63 0.995 -0.07 0.095
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