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Abstract. This study describes and evaluates a new downscaling scheme that specifically addresses the need for hillslope

scale
:::::::::::
hillslope-scale

:
atmospheric forcing timeseries for modeling the local impact of regional climate change projections on

the land surface in complex terrain. The method has a global scope in that it does not rely directly on surface observations

and is able to generate the full suite of model forcing variables required for hydrological and land surface modeling at hourly

timesteps. It achieves this by utilising the previously published TopoSCALE scheme (Fiddes and Gruber, 2014) to generate5

synthetic observations of current climate at the hillslope scale, while accounting for a broad range of surface-atmosphere

interactions. These synthetic observations are then used to debias (downscale) CORDEX climate variables using the quantile

mapping method. A further temporal disaggregation step produces sub-daily fields. This approach has the advantages of other

empirical-statistical methods, namely speed of use, while avoiding the need for ground data, which is often limited. It is

therefore a suitable method for a wide range of remote regions where ground data is absent, incomplete, or not of sufficient10

length. The approach is evaluated using a network of high elevation stations across the Swiss Alps and a test application of

modelling climate change impacts on Alpine snow cover is given.

1 Introduction

Climate change has
:::::
caused, and will continue to cause significant changes in the global cryosphere with increasing impacts

likely in a wide range of domains (Hock et al., 2019). Where observational records of sufficient length exist
:
, we are able to15

quantify these changes. Such records are often curated as part of national or international networks e.g. the World Meteoro-

logical Organisation’s Global Cryosphere Watch, World Glacier Monitoring Service or the Global Climate Observing System.

However, such locations are globally sparse, with particular observational gaps in remote regions due to technical difficulties

and resources required to maintain monitoring infrastructure.

In order to obtain possible scenarios of future conditions we are reliant on climate models. However, for meaningful impact20

studies climate time-series are often required at higher spatial and temporal resolutions than currently available from Global

or even Regional Climate Models (GCMs/ RCMs). This is especially the case in heterogeneous terrain such as mountain

regions where topographic
:::
and

::::::::
therefore

:::::::
climate variability is high over short horizontal distances.

::::
High

:::::::
surface

:::::::::
variability
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::::::
requires

:::::::::
modelling

::
at

:::
the

:::::::
hillslope

:::::
scale

::
(c.

::::
100

::
m)

::
in

:::::
order

::
to

:::::::::
adequately

:::::::
capture

:::::
fluxes

:::
and

:::::
stores

::
of

:::::::
energy,

::::
water

::::
and

::::::
carbon

::::::::::::::
(Fan et al., 2019).

:
Various methods of downscaling can be utilised to achieve this goal. Dynamical downscaling typically ap-25

plies an RCM or numerical weather prediction model (e.g. WRF)
:::::::::::
(e.g. (alias?)) at high resolution over a limited area in order

to obtain more detailed process representation. This requires no additional data beyond a boundary forcing, yet is computation-

ally costly (normally a supercomputer is required) and is therefore generally applied to limited domains and/or time periods.

In addition, an extensive set of boundary fields are required in order to set up a run that are not normally available via standard

distribution portals such as Earth System Grid Federation (ESGF), further complicating possible studies. Empirical-statistical30

downscaling (ESD) approaches are typically computationally cheap to run yet require extensive and robust ground observa-

tions that are often either not available, of uncertain quality, or distributed unequally according to important gradients such

as elevation. In addition, timeseries from many stations are not available at climate timescales - typically 30 years (Arguez

and Vose, 2011), rendering the application of ESD methods problematic. Furthermore, many modern physically based impact

models require a full suite of forcing variables to drive them, usually at sub-daily time-steps. Such requirements are rarely met35

by initiatives that have provided input for impact studies (Michel et al., 2021). It is increasingly recognized that analysis of

extremes, and not just mean values, is required to fully quantify the impact of climate change (Katz and Brown, 1992). By

definition this requires highly temporally resolved forcing, as climatic extremes often occur over short timescales
:
, e.g.

:
daily

maximum temperature or storm peak that require sub-daily simulations.

Climate model timeseries, even from the latest generation of RCMs, typically exhibit bias (systematic deviations) when40

evaluated against observations (Ivanov et al., 2018; Kotlarski et al., 2014). These biases need to be corrected before climate

timeseries can be used to force a locally applied impact model (Wood et al., 2004). However, in impact studies we are typically

interested in a climate change signal (CCS)
:
, which is a quantitative measure of the difference between a future climate statistic

::::
state and historical reference period (Themeßl et al., 2012). Bias correction (BC) can modify the CCS (Ivanov et al., 2018;

Themeßl et al., 2012) which has been a subject of discussion and often seen as a deficiency in BC methods (Hempel et al.,45

2013). However, it is recognised that model biases typically do not cancel out in the calculation of a CCS and therefore its

modification under BC has been interpreted recently as an enhancement rather than a deficit, particularly in intensity dependent

biases which characterise variables such as precipitation (Gobiet et al., 2015).

There are a wide range of BC methods (Gutmann et al., 2014) with perhaps the most established and widely used being

quantile mapping (QM) which has been shown to perform favourably in comparison studies (Teutschbein and Seibert, 2013;50

Themeßl et al., 2011) and found to cope well with with non-stationary conditions - removing the restrictive stationarity as-

sumption in climate BC. It is also one of the few methods able to correct wet day frequency and intensity
:::::::::::
(Déqué, 2007).

QM is a distribution based BC method that removes quantile dependent biases with respect to a reference period (Ivanov and

Kotlarski, 2017), it therefore corrects the variance and not just the mean. It should be noted that if the the climate variable and

reference are at the same spatial scale a pure bias correction is applied, whereas if the reference is at a finer scale (e.g. a me-55

teorological station) then an implicit downscaling is achieved, which also makes it a class of empirical-statistical downscaling

(ESD) methods.
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While concerns over the deterministic nature of QM (Maraun, 2013) and effect on multi-day statistics (Addor and Seibert,

2014) are acknowledged, it is widely accepted to be a pragmatic approach to satisfy the requirements of impact models (Rajczak

et al., 2016) with deficits shared by all statistically-based methods. A useful overview of the issues involved with respect to60

impact modelling can be obtained from Stocker et al. (2015).

All ESD/BC methods require climate scale timeseries of observations (typically 30 years). In remote regions lacking suffi-

cient historical observations this requirement can be difficult to satisfy. Atmospheric reanalysis data-sets have been proposed as

a means to compensate for missing or incomplete observations (Cao et al., 2019; Fiddes and Gruber, 2014) in order to provide

a "best-guess" of the current state. Moreover, global reanalysis datasets can form the basis for impact studies with a global65

consistency.

In this study we address the problem of
:::
lack

:::
of impact-model ready

:::
(i.e.

::::::::
hillslope

:::::
scale)

:
climate timeseries with a new

modelling framework called "TopoCLIM". We use the latest ECMWF global reanalysis dataset ERA5
:::::::::::::::::::
(Hersbach et al., 2020)

together with the downscaling method TopoSCALE (Fiddes and Gruber, 2014) to provide a robust assessment of local-scale

meteorological forcing for the reference period. Using
::::::::::
Importantly,

:::::
using

:
these pseudo-observations we are able to debias70

climate timeseries in regions lacking ground observations. Furthermore, this method provides a full suite of forcing data

required to run a numerical model at sub-daily timesteps.

By coupling this to the subgrid clustering scheme
:::::::
TopoSUB

:
(Fiddes and Gruber, 2012) and the snow model FSM (Essery,

2015), we demonstrate the ability of this scheme to efficiently generate high resolution (100 m)
:::::::
hillslope

::::
scale

:
climate change

maps of snow cover over the entire Swiss Alps. We test this scheme both with a detailed evaluation at the Weissfluhjoch75

meteorological station, and across the Swiss network of high elevation stations (IMIS) which has a large spatial coverage.

2 Methods

2.1 Overview

The scheme is implemented in Python with several specific sub-routines implemented in R (e.g. the quantile mapping package).

An overview of the processing pipeline is given in Figure 1 and can be summarised as a three-step process: (1) A quasi-80

physical topography-based downscaling method TopoSCALE (Fiddes and Gruber, 2014) generates hillslope scale (defined

by the DEM resolution) forcing time-series for the reference period from the ERA5 reanalysis, (2) the BC method quantile

mapping (Gudmundsson et al., 2012) is used to statistically downscale (debias) a climate time series at the given point for which

we now have a reference from downscaled ERA5 forcing, (3) a disaggregation scheme (Förster et al., 2016) generates hourly

climate timeseries based on observed sub-daily distributions of meteorological variables. We demonstrate this approach by85

downscaling CORDEX RCM data at both hillslope scale and additionally generalising this to a map product using the subgrid

scheme, TopoSUB (Fiddes and Gruber, 2012)
:
,
::::::
which

::::::::
efficiently

:::::::::
spatialises

:::
1D

::::::
model

::::::
results

::::::::
(multiple

::::::
subgrid

::::::::
samples

:::
per

::::::::
CORDEX

::::::::
gridbox)

::
to

:
a
::::
map

:::::::
domain

::::::::
according

:::
to

::::::::
important

::::::::::
dimensions

::
of

::::
land

::::::
surface

::::::::::::
heterogeneity.

::
In
::::

this
::::
way,

::::::::
hillslope

::::::::
resolution

::::
(100

:::
m)

:::::
map

::::::
results

:::
are

::::::::
generated

:::::
with

:
a
:::::::::::::

laptop-feasible
:::::::
number

::
of

:::::::
subgrid

::::::::::
simulations

:::
(in

::::
this

::::
case

::::
100)

::::
per

:::::::::
large-scale

::::::::
CORDEX

:::::::
gridbox. The overall philosophy of this approach is to develop methods that are global in application and90
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therefore can be used in data-poor regions, are efficient to run and repeat (ability to be experimental
:::
i.e.

:::
the

:::::
ability

::
to
:::::::

rapidly

:::::
repeat

::::::::
numerical

:::::::::::
experiments

:::
that

::::
have

::
a

::::::::
relatively

:::
low

::::::::::::
computational

::::
cost), and yet address the key drivers of climate-surface

variability in complex terrain.

2.2 Preprocessing

The CORDEX data download is achieved using a custom tool built around the ESGF python
::::::
Python client. This is not a trivial95

task due to the large data volumes involved and variable uptime of data nodes. All preprocessing steps of raw CORDEX data ,

such as
::::::
(Figure

:::
1): concatenating NetCDF time series, extracting region of interest and regridding from rotated pole projections,

was
:
is accomplished using standard tools from the Climate Data Operators (CDO) suite. The CDO tools are incorporated into

:::::
called

::::
from

:
the preprocessing module of TopoCLIM and not used as standalone command line tools - enhancing the ease of

use and reproducibility of the processing pipeline. As downloads are done by variable, it is possible that the full set of required100

forcing variables are not available for a given CORDEX model chain. If this is the case the model chain is excluded from any

further processing.

Climate model calendars are often simplified for numerical reasons and are inherited from the parent GCM, these need to be

correctly handled to produce comparable timeseries. Three calendars exist in the CORDEX data used here: "360-day" (every

month is 30 days long), "365-day" (no leap year), and "standard" (complete Gregorian calendar). We convert all calendars to105

"standard" by linearly scaling dates to the standard Gregorian calendar and then gap filling missing data by linear interpolation.

For example

:::
For

::::::::
example,

:::::
during

:::
the

:
conversion from a "360-day" to a "standard" calendar, the output from the linear scaling will result

in a 365 day timeseries (in the case of non-leap year) and be missing the following dates: January 31st, March 31st, June 1st,

July 31st, September 31st
::::
30th and November 30th. In a second step these dates are gap-filled using linear interpolation.110

2.3 Spatial downscaling of observations
::::::::
reanalysis

:::::
data

ERA5 reanalysis (Hersbach et al., 2020) “observations” are downscaled using the TopoSCALE scheme (Fiddes and Gruber,

2014) to be used as the reference data in the bias correction. We acknowledge that reanalyses are not true observations (Parker,

2016), yet by assimilating an extensive set of observations into an NWP
:
a
:::::::::
Numerical

:::::::
Weather

:::::::::
Prediction

:::::::
(NWP) model, re-

analyses are often considered to give the best possible view of the global climate (Dee et al., 2014). TopoSCALE performs a115

3D interpolation of atmospheric fields available on pressure levels, to account for time varying lapse rates, and a topographic

correction of radiative fluxes. The latter includes a cosine correction of incident direct shortwave radiation on a slope, adjust-

ment of diffuse shortwave and longwave radiation by the sky view factor, and elevation correction of both longwave and direct

shortwave. It has been extensively tested in various geographical regions and applications,
:
e.g. permafrost in the European

Alps (Fiddes et al., 2015), permafrost in the North Atlantic region (Westermann et al., 2015), Northern hemisphere permafrost120

(Obu et al., 2019), Antarctic permafrost (Obu et al., 2020), Arctic snow cover (Aalstad et al., 2018), Arctic climate change

(Schuler and Østby, 2020), and Alpine snow cover (Fiddes et al., 2019). This approach enables us to provide a climate length

pseudo-observation timeseries globally, while accounting for the main topographic effects on atmospheric forcing. We call
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this product T-MET throughout the text. It should be noted that this serves as our reference throughout the paper. A detailed

validation and quantification of uncertainty of the TopoSCALE method is given in Fiddes and Gruber (2014) and therefore is125

not repeated here. We do however compare our results to the station data variables air temperature and snow depth across the

IMIS network.

2.4 Quantile mapping

Bias correction through quantile mapping Q : x→ x? is achieved as follows (Panofsky and Brier, 1968)
:
:

x? =Q(x) = F−1
o [Fm (x)] , (1)130

where the debiased output variable x? is obtained by applying the quantile mapping function Q to the biased input variable

x. This function is generally formed through the composition of the modeled cumulative distribution function (Fm) and the

inverse of the observed cumulative distribution function (Fo). In our case, Fo is obtained from the pseudo-observations in the

form of downscaled ERA5 data, while Fm is generated from the CORDEX output which we want to bias correct.

We use the R package QMAP
::::::::
"QMAP" for this purpose (Gudmundsson et al., 2012). Gudmundsson et al. (2012) compared135

different implementations of QM for daily precipitation data and found that a non-parametric empirical approach (as imple-

mented in the cited package) outperforms implementations relying on theoretical distributional assumptions. While quantile

mapping ensures that quantile biases are corrected in the CDF
:
, it does not account for seasonally varying bias. It is therefore

well suited to air temperature where we can be reasonably sure that winters are cold and summers hot, at least in mid to high

latitudes. However, with precipitation the intra-annual distribution can be biased while the CDF may look reasonable (e.g. wet140

and dry season timing could be shifted). We address this with a two step approach called QMAP
::::
QM_MONTH. We split the

data according to 12 temporal subsets corresponding to the months of the calendar year and run the QM algorithm on each sub-

set, computing QM parameters separately for each month. These are applied throughout the historical and climate time series

at the appropriate months. Similar approaches have been used successfully in other studies
:
, e.g. Hanzer et al. (2018). Quantile

mapping is performed on a subset of data during 1980-1995 to allow an evaluation to be performed over the time-period
::::
time145

:::::
period

:
1996-2006.

::
It

::::::
should

::
be

:::::
noted

::::
that

::::
these

:::::::
periods

:::
are

:::::::::
constraints

:::::::
imposed

:::
by

:::
the

:::::::
datasets

::::
used

::
in

::::
this

::::
study

::::
and

:::
can

:::
be

:::::::
changed

::
in

::::
other

::::::::::
applications

:::
of

:::
the

:::::::
method.

:::::
While

:::
the

::::::::
variables

:::
are

:::
bias

::::::::
corrected

:::::::::::::
independently,

::::
they

:::
are

::::::::
corrected

::::::
towards

::
a
:::::::::
physically

::::::::
consistent

::::::
dataset

::
in

:::
the

:::::
form

::
of

::::::::::
downscaled

:::::
ERA5

::::
data.

:::
We

:::::
argue

::::
that

:::
the

::::::
method

::::
does

:::
not

:::::::
produce

:::::::::
physically

::::::::::
inconsistent

::::::
results,

::::::
despite

:::::
being

:::::::::
univariate.

:::
The

:::::::::
validation

:::::
during

:::
the

::::::
current

:::::::
climate

:::
also

::::::::
supports

:::
this

:::::
claim

::::::
(Table

::::
3-5).

:
150

2.5 Temporal downscaling of observations
::::::
climate

:::::
time

:::::
series

The final step in preparing the climate forcing is a temporal disaggregation to generate required sub-daily fields. Original

hourly resolution T-MET are used to temporally disaggregate the downscaled (quantile mapped) daily climate timeseries. An

adapted version of the Melodist
:::
The

::::::::::
"Melodist" package is used for this purpose (Förster et al., 2016). This disaggregates daily

data based on observed sub-daily distributions. It should be noted that this assumes sub-daily distributions are stationary in a155
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future climate, which quite possibly may not be the case. However, a greater source of uncertainty likely exists in the ability

of ERA5 to reproduce short timescale local weather patterns which require convection resolving model resolutions (Liu et al.,

2017) and appropriate physics.

2.6 Simulation and maps

We use the Factorial Snow Model (FSM) model (Essery, 2015) to simulate the snow cover and TopoSUB (Fiddes and Gruber, 2012)160

to spatialise results to a 2D map. Briefly, TopoSUB is a topographic sampling scheme that reduces distributed modelling

problems that explicitly model individual pixels to a lumped model several orders of magnitude smaller while considering

the full range of topographic heterogeneity that exists. It achieves this by using a k-means clustering algorithm to perform a

multidimensional classification on the model domain resulting in so-called TopoSUB clusters, consisting of pixels with similar

terrain parameters. In this way it is possible to produce high resolution maps (e.g. DEM resolution) over large (regional)modelling165

domains, while explicitly including important drivers of surface-atmosphere processes. The scheme is implemented on an HPC

cluster for efficiency in an "embarrassingly parallel" sense i.e. no communication required between compute nodes. Typical

setups use 100 nodes with run-times measured in minutes for full 1980-2100 runs. The scheme also has a desktop mode which

typically utilises 8 cores and typical runs will require a few hours. These indicative numbers are provided merely to give the

reader an order-of-magnitude idea of how frugal this scheme is in terms of computation resources compared to dynamical170

downscaling.
::::::::
Variables

:::
are

::::::::::::
disaggregated

::::
with

:::
the

::::::::
Melodist

::::::::
methods

:::::
listed

::
in

:::::
Table

::
1
:::::::::::::::::
(Förster et al., 2016).

::::::::
Melodist

:::::
does

:::
not

:::::::
however,

:::::::
provide

:::::::
methods

:::
for

:::
air

:::::::
pressure

::
or

:::::::::
longwave

::::::::
radiation,

:::::
these

:::
are

:::::::
handled

::::
with

:::
the

::::::::
following

:::::::::
procedure:

::::::
taking

::::::::
advantage

::
of

:::
the

::::::::::
relationship

:::::::
between

::::::::
incoming

:::::::::
longwave

:::::::
radiation

:::::::
(ILWR)

:::
and

:::
air

::::::::::
temperature

:::::
(TA),

2.6 Treatment of glaciers

Glacier zones are typically masked in studies of seasonal snow unless a glacier layer is explicitly accounted for in the model. In175

this study, however, we wanted to highlight and track changes in the glacier accumulation zones. These zones are areas where

the annual surface mass balance is positive, leading to the formation or growth of glaciers. With our framework we are able to

identify such zones, as we are able to model areas with perennial snow cover with FSM and these give a good indication of

glacier accumulation zones under a given climate. However, we ignore glacier dynamics so we are not able to adequately map

the spatio-temporal evolution of glaciers
:::::
ILWR

::
=
:::::::::::
ε×σ×TA4180

:::::
where

::
σ

::
is

:::
the

:::::::::::::::
Stefan-Boltzmann

:::::::
constant

:::::::::::::::::::::
(5.67× 10−8Wm−2K4)

::
we

:::::::::
diagnosed

:::
the

:::::
daily

::
all

::::
sky

::::::::
emissivity

::::
(ε).

:::
We

::::
then

::::
used

:
ε
::
as

::
a
::::
daily

:::::::
scaling

:::::
factor

::
to

::::::
convert

::::::::::::
disaggregated

:::
TA

::::
into

::::::
ILWR.

::::
This

::::::::
procedure

::::::::
therefore

:::::::
assumes

::
a
:::::::
constant

:
ε
::
at
::::
sub

::::
daily

:::::::
timestep

:::::::
(which

::
of

::::::
course

:::
will

:::
not

::::::::
normally

:::
be

::::
true)

:::
yet

:::::::
ensures

:::
that

::::::
ILWR

:::::
scales

::::::::
correctly

::::
with

::::
TA.

::::::::
Therefore

::::::
higher

::
TA

::::
lead

::
to
::::::
higher

:::::
ILWR

::::::
values

:::
and

::::::::::
vice-versa.

:::
Air

:::::::
pressure

::
is

::::::
simply

::::::
linearly

::::::::::
interpolated

::
to
:::
the

::::::::
sub-daily

::::::::
timestep.
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3 Study region and data185

3.1 Model domain

We consider two scales in this study (a) point-scale (meteorological stations: Weissfluhjoch and the IMIS network) and (b)

regional (Swiss Alps), in order to illustrate typical applications of the scheme. A map of the study region and the location of

the stations we used is given in Figure 2.

3.2 Climate data190

The basic forcing comes from the regional climate model project CORDEX EUR-44 product (Jacob et al., 2014) at a nominal

resolution of 44 km. The 44 km product was chosen over the 22 km product as this had many more model chains available. The

EURO domain also has an 11 km product but this is not available globally, and therefore is not fit for the purpose of this study.

Data was retrieved from the ESGF using an API and automated python
::::::
Python based tool developed in this study. This is an

important step as the number of file downloads are
::
is large with dimensions being models×variables×scenarios×time periods.195

The fact that the ESGF consists of a distributed set of data nodes with variable uptime, further complicates the download

process. We use daily data to force the scheme and retrieve historical data plus projections from two climate change scenarios,

RCP2.6 ( a "very stringent "
::::
which

::
is
::
a
::::
very

::::::::
stringent pathway, RCP2.6 requires that CO2 emissions start declining by 2020

and go to zero by 2100 ) and RCP8.5 (
:::::
where

:
emissions continue to rise throughout the 21st century). A full description of

CORDEX datasets and models used
::::::::
variables is given in Table

:
1

:::
and

::::::
model

:::::
chains

::::
used

:::
in

::::
Table

:
2. Daily data was chosen for200

the method (therefore requiring a temporal disaggregation step) as limited number of model chains are available at sub-daily

resolutions. This is particularly the case outside of the EURO domain where use-cases for this method are envisaged. A higher

number of model chains increases confidence in our results, by improved quantification of inter-model variability.

3.3 Reanalysis data

We use ECWMF’s latest reanalysis product ERA5 (Hersbach et al., 2020), which uses version 41r2 of IFS which is the ECMWF205

NWP model. ERA5 represents an evolution over its predecessor, ERA-Interim, by increasing the model spatial resolution to

30
::::
0.25

::::::
degrees, temporal resolution to hourly and the vertical model levels to 137.

:::
137

:::
(37

::::::::
pressure

:::::
levels

:::
are

::::::
stored).

:
These

reanalysis data are downscaled for the purpose of bias correction using the TopoSCALE scheme (Fiddes and Gruber, 2014) as

described above (cf. Methods).

3.4 Topography210

NASA’s SRTM-3 90 m digital elevation model (DEM) is used as a topographical surface for TopoSCALE downscaling rou-

tines. Slope, aspect and sky-view factor (the portion of the sky hemisphere that is visible for a given DEM pixel) are derived

(Dozier and Frew, 1990).
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:
“A higher resolution DEM may also be used but likely does not add value as processes such as wind transport that operate

on these scales are not included in the model (Mott et al., 2018). Importantly,
::::::::
However,

:
it
::::::
should

:::
be

:::::
noted

::::
that

::::::::::
avalanching215

::
off

:::::
steep

:::::
slopes

::
is
:::::::::
accounted

:::
for

::
by

::::::::
removing

:::::
snow

:::::::
linearly

:::::
above

:
a
:::::
slope

::::::::
threshold

:::::::::::::::::
((Fiddes et al., 2015)

::
).

:::::::::
Importantly

:
in our

scheme, higher resolution does not necessarily increase runtime either in point mode (trivially) or in spatial mode where the

run-time in the main programme modules is related to number of TopoSUB clusters. Additionally, the scheme is designed to

scale well by generating cluster forcings through array computations.

4 Simulation setup and evaluation220

4.1
:::::::::

Simulation
::::
and

:::::
maps

:::
We

:::
use

:::
the

:::::::
Factorial

:::::
Snow

::::::
Model

::::::
(FSM)

::::::::::::
(Essery, 2015)

::
to

:::::::
simulate

:::
the

:::::
snow

:::::
cover

:::
and

:::::::::
TopoSUB

::::::::::::::::::::::
(Fiddes and Gruber, 2012)

::
to

::::::::
spatialise

:::::
results

::
to
::
a
:::
2D

::::
map.

:::::
FSM

::
is

:
a
::::::::::::
multi-physics

::::::::
ensemble

::::::
model,

:::::::
however

::
in

::::
this

::::
study

:::
we

::::::
always

::::
use

:::::::::::
configuration

::
31

:::::
which

::
is

:::
the

::::
most

::::::::
complex

::::::
version

::
of

:::
the

:::::
model

::::::
where

::
all

:::
five

:::::::::::::::
parameterisations

:::
are

:::::::
switched

:::
on.

:::::::::
TopoSUB

:
is
::
a
::::::::::
topographic

:::::::
sampling

:::::::
scheme

::::
that

:::::::
reduces

:::::::::
distributed

:::::::::
modelling

::::::::
problems

::::
that

:::::::::
explicitly

:::::
model

:::::::::
individual

::::::
pixels

::
to

::
a
:::::::
lumped

::::::
model225

::::::
several

:::::
orders

:::
of

:::::::::
magnitude

::::::
smaller

:::::
while

::::::::::
considering

:::
the

::::
full

:::::
range

::
of

:::::::::::
topographic

:::::::::::
heterogeneity

::::
that

:::::
exists.

::::
For

::::::::
example,

:
a
::::
100

::
m

::::
grid

::::
over

::
a
:::
25

:::
km

::
×
:::

25
::::

km
::::::
domain

::::::
would

:::::
have

:::::
62500

::::::
pixels

::::::
which

:::::
would

:::::
each

::::::::
represent

::
a
:::::
model

::::::::::
simulation

::
in

:
a
:::::

fully
:::::::::
distributed

:::::
setup

:::
of

:::::
many

::::::
surface

::::::::
models.

::::::::
TopoSUB

::::::
would

::::::
reduce

::::
this

::
to

::::::::
100-200

::::::::
samples,

::::
each

:::::::::::
representing

:
a
:::::
single

::::::
model

::::
run,

:::::::::::
representing

:
a
:::::::::

reduction
::
in

:::::::::::
computation

::
of

::::::
around

::
3
::::::
orders

::
of

::::::::::
magnitude.

::
It
::::::::
achieves

:::
this

:::
by

:::::
using

::
a

:::::::
k-means

::::::::
clustering

:::::::::
algorithm

::::::::::::::::
(MacQueen, 1967)

:
to
:::::::
perform

::
a
::::::::::::::
multidimensional

:::::::::::
classification

:::
on

:::
the

::::::
model

::::::
domain

::::::::
resulting230

::
in

:::::::
so-called

:::::::::
TopoSUB

:::::::
clusters,

::::::::
consisting

:::
of

:::::
pixels

::::
with

::::::
similar

::::::
terrain

:::::::::
parameters.

:::::::::
Predictors

::::
used

::
in

:::
the

::::::::
clustering

:::::::::
algorithm

::
are

:::::::::
elevation,

:::::
slope,

:::::
aspect

:::
and

::::
sky

::::
view

:::::
factor.

:::
In

:::
this

::::
way

:
it
::
is

:::::::
possible

::
to

:::::::
produce

::::
high

::::::::
resolution

:::::
maps

::::
(e.g.

:::::
DEM

:::::::::
resolution)

:::
over

:::::
large

:::::::::
(regional)

::::::::
modelling

::::::::
domains,

:::::
while

:::::::::
explicitly

::::::::
including

::::::::
important

::::::
drivers

:::
of

::::::::::::::::
surface-atmosphere

:::::::::
processes.

::::
The

::::::
scheme

::
is

:::::::::::
implemented

::
on

:::
an

::::
HPC

::::::
cluster

:::
for

::::::::
efficiency

::
in

::
an

::::::::::::::
"embarrassingly

:::::::
parallel"

:::::
sense,

:::
i.e.

:::
no

:::::::::::::
communication

:::::::
required

:::::::
between

:::::::
compute

::::::
nodes.

::::::
Typical

:::::
setups

:::
use

::::
100

:::::
nodes

::::
with

::::::::
run-times

::::::::
measured

::
in

:::::::
minutes

::
for

:::
full

::::::::::
1980-2100

::::
runs,

:::
for

:::::::
example235

::
to

:::::::
produce

::
the

::::::
results

:::::
given

::
in

::::::
Figure

::
7.

::::
The

::::::
scheme

::::
also

:::
has

:
a
:::::::
desktop

:::::
mode

:::::
which

::::::::
typically

::::::
utilises

::
8

::::
cores

::::
and

::::::
typical

::::
runs

:::
will

::::::
require

::
a
:::
few

::::::
hours.

:::::
These

::::::::
indicative

::::::::
numbers

:::
are

:::::::
provided

:::::::
merely

::
to

::::
give

:::
the

:::::
reader

:::
an

::::::::::::::::
order-of-magnitude

::::
idea

::
of

::::
how

:::::
frugal

:::
this

:::::::
scheme

:
is
:::
in

::::
terms

:::
of

::::::::::
computation

::::::::
resources

:::::::::
compared

::
to

::::::::
dynamical

::::::::::::
downscaling.

4.2
::::::::

Treatment
:::
of

:::::::
glaciers

::::::
Glacier

:::::
zones

:::
are

:::::::
typically

:::::::
masked

::
in

::::::
studies

::
of

:::::::
seasonal

:::::
snow

:::::
unless

:
a
::::::
glacier

:::::
layer

::
is

:::::::
explicitly

:::::::::
accounted

:::
for

::
in

:::
the

::::::
model.

::
In240

:::
this

:::::
study,

::::::::
however,

:::
we

::::::
wanted

::
to

::::::::
highlight

:::
and

:::::
track

:::::::
changes

::
in

:::
the

::::::
glacier

:::::::::::
accumulation

:::::
zones.

::::::
These

:::::
zones

:::
are

::::
areas

::::::
where

::
the

::::::
annual

:::::::
surface

::::
mass

:::::::
balance

:
is
::::::::

positive,
::::::
leading

::
to

:::
the

:::::::::
formation

::
or

::::::
growth

::
of

:::::::
glaciers.

:::::
With

:::
our

:::::::::
framework

:::
we

:::
are

::::
able

::
to

::::::
identify

::::
such

::::::
zones,

::
as

:::
we

:::
are

::::
able

:::
to

:::::
model

:::::
areas

::::
with

::::::::
perennial

:::::
snow

:::::
cover

::::
with

:::::
FSM

:::
and

:::::
these

::::
give

:
a
:::::
good

::::::::
indication

:::
of

8



:::::
glacier

::::::::::::
accumulation

:::::
zones

:::::
under

:
a
:::::
given

:::::::
climate.

::::::::
However,

:::
we

::::::
ignore

:::::
glacier

:::::::::
dynamics

::
so

:::
we

:::
are

:::
not

::::
able

::
to

:::::::::
adequately

::::
map

::
the

:::::::::::::
spatio-temporal

::::::::
evolution

:::
of

:::::::
glaciers.245

4.3
:::::::::

Evaluation

Predictive methods must by definition be evaluated on independent data from that which was used for calibration in order to

correctly evaluate how applicable a model is beyond the data-space within which it was developed. Further, highly adaptable

methods, such as the non-parametric techniques used in this study, are prone to over fitting. These issues are avoided in this

study as we perform an independent evaluation using station data from the IMIS station network, whereas calibration or250

in this case downscaling, is performed using downscaled ERA5 fields. Note, none of the meteorological fields of the IMIS

stations were assimilated during the production of ERA5. Snow depth results are evaluated by automatic snow depth (cm)

measurements performed by sonic ranger (Campbell Scientific SR50), available from the Inter-cantonal Measurement and

Information System (IMIS) station network at 30 minute intervals. This is a high elevation station network that forms the

backbone of the national avalanche service in Switzerland.255

The analysis in this study is organised as follows: The reference period is defined as 1981-2010 and future scenarios are

analysed for climate periods 2031-60 and 2070-100
::::::::
2031-2060

::::
and

:::::::::
2070-2100. We assess the downscaling of all meteorological

fields at the Weissfluhjoch IMIS station (Figure 3) which has the full suite of variables produced as compared to standard IMIS

stations which lack a full radiation balance. Here, we additionally test the performance of the scheme at point-scale (Figure 5

and 6). We further assess air temperature and snow depth (as a proxy for precipitation) using the entire IMIS network (Figure260

6). We do not assess precipitation directly as year-round datasets are not available from the IMIS network due to unheated

gauges, and snow depth is often considered a more robust variable to measure at high elevation. After this we provide results

using the scheme at various spatial scales (Figure 6-8).

5 Results and discussion

5.1 Station evaluation of point forcing timeseries
:::::::::
Evaluation

::
at

:::
the

:::::::::::::
Weissfluhjoch

::::::
station265

Figure 3 and Table 3 and 4 (statistics) shows
::::
show

:
an evaluation of the quantile mapping scheme at the WFJ station both as

a cumulative distribution function (left column) and a day of year (DOY) plot which averages all values in the timeseries for

a given DOY (right column). Here we compare grid-box CORDEX ensemble mean
::::::
(CLIM), a single parameter set quantile

map run (QM_QM) and monthly parameter set quantile map run (QM_MONTH) to T-MET and station measurements. This

comparison is done over the period 1996-2006 which corresponds to the overlapping time-frames of CORDEX-HIST, T-MET270

and station data, and also importantly does not include the period over which quantile mapping is run
::::::::::
(1980-1995). We perform

two sets of comparison, first with T-MET as a reference as this is the target of the quantile mapping (Table 3). This shows how

the scheme behaves particularly in terms of the different QM and QM_MONTH implementations (Table 3). In the second, we

compare results directly to the measurements at the station to get a global look at how the scheme performs (Table 4), of course
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this is then subject to residual erro
:::
error

:
in the TopoSCALE downscaling scheme which produces T-CLIM

::::::
T-MET (Table 5)275

and therefore must be interpreted carefully.

With respect to target T-CLIM
::::::
T-MET (Figure 3, Table 3) Percentage

:::::::::
percentage bias and RMSE are generally strongly

decreased by the scheme in the standard QMAP
:::
QM

:
mode and further by the QMAP

:::
QM_MONTH variant, especially where

there is a time varying bias signal (e.g. shortwave radiation).

With respect to station measurements (Table 4) we see overall improvement in statistics by the scheme, however this is280

not always reflected in an improvement in statistics between QM and QM_MONTH as there is residual error between the

station measurements and downscaled T-MET. The strongest improvements are variables which are downscaled according to

model pressure levels in the TopoSCALE scheme (air temperature and relative humidity). Precipitation is the only parameter

we do not see an improvement in the scheme with respect to the measurements, but this is expected due to high uncertainty in

precipitation and the fact this is not addressed by the base TopoSCALE downscaling. This point is further discussed below in285

Section 5.4.

Figure 4 shows a typical point scale application generating a forcing timeseries, in this case for air temperature. The effect

of the bias correction is shown with a clear improvement with respect to T-MET. Figure 5 gives a point scale example of

snow height
:::::
depth evolution at WFJ. Available snow height

::::
depth

:
observations from WFJ show good agreement with both the

historical period and first decade of the RCP runs
::
in

:::::
terms

::
of

:::::
lying

::::::
within

:::
the

:::::
model

:::::::::
ensemble.

::
It
::::::
should

:::
be

:::::::
stressed

:::
that

::
a290

:::::::::
quantitative

::::::::::
comparison

::::
with

:::::::::
individual

:::::
years

::::::
cannot

::
be

:::::
made

:::
as

::::::::
CORDEX

:::::::::
variability

::::
(and

:::::::
climate

::::::
models

:::::
more

:::::::::
generally)

:
is
::::
not

:::::::
expected

::
to
:::
be

::::::::
perfectly

:::::::::::
synchronised

::::
with

::::::::
observed

:::::::::
variability

::
at

:::::::
temporal

::::::::::
resolutions

::
of

:::::
years

::
to

:
a
:::::::

decade. Note the

stable/rising snow height
::::
depth

:
under RCP2.6 by end of century correlated to stabilised mid-century temperatures shown in

Figure 4.

5.2 Spatial evaluation of snow depth
::::::::::
Evaluation

:::
for

:::
the

:::::
IMIS

:::::::
network295

Figure 6 gives the evolution of snow depth averaged across the IMIS network in terms of mean DOY
::::::
DOWY

::::
(day

:::
of

:::::
water

::::
year)

:
snow depth, starting 1 September. IMIS station measurements are given as reference, however it should be noted that

the time-period
:::
time

::::::
period

:
covered by each station is variable

:::::
within

:::
the

::::::
period

:::::::::
1996-2018. The shortest station record is 10

years, therefore the dataset nominally represents the period 1996-2018. These are compared to T-MET snow height
::::
depth

:
by

only using days present in the IMIS dataset. At this synoptic spatial and temporal scale there is good agreement with low bias300

and RMSE scores and high correlation (Table 4). The evolution of snow height
::::
depth

:
for future climate scenarios and two

future periods is given. By mid-century under RCP2.6 a reduction in peak snow depth of around 20 cm is seen and further 25

cm under RCP8.5 with respect to HIST
::
the

::::::::
reference

:::::::::
CORDEX

::::::::
historical

::::::
period

:::::::::::::::
(CORDEX-HIST). Peak snow depth occurs

around 30-40 days earlier. By late century RCP2.6 snow depth has not further deteriorated and in fact shown signs of possible

recovery with peak snow depth moving towards that of the HIST
:::::::::::::
CORDEX-HIST

:
period. RCP8.5, however, gives a strong305

further reduction in peak snow depth of around 1 m with respect to HIST
::::::::::::::
CORDEX-HIST. The comparison between HIST

:::
the

:::::::::::::
CORDEX-HIST

:
(1980-2006) and T-MET/ IMIS (1996-2018) is useful but should be treated with caution due to only partially

overlapping periods (defined by availability of station measurements). HIST
:::
The

::::::::::::::
CORDEX-HIST

::::::
period has a higher peak
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snow depth and later snow melt-out date, which could be due to less climate change as it represents an earlier period than IMIS

and T-MET.310

5.3 TopoCLIM application: Climate change impacts on Alpine snow cover
:::::
across

:::::::::::
Switzerland

The
::
As

::
an

::::::::
example

:::::::::
application

::
of

:::
the

::::
full

:::::
model

::::::::
pipeline,

:::
the results in Figure 7 were generated by coupling TopoCLIMwith

::::::
feeding

::::::
model

::::::
results

:::::::::::::::
(TopoCLIM/FSM)

:::
to the TopoSUB spatial framework to generate transiently modelled snow height

maps at 100m
:::::
depth

:::::
maps

::
at

:::
100

:
m resolution. The ensemble mean is used in each scenario/ time-period

::::
time

:::::
period

:
plot.

We highlight again that by using this simple approach we implicitly model climate-viable glacier accumulation zones, where315

the snowpack does not melt-out by the end of summer. Mid-century results are comparable between RCP2.6 and RCP8.5

with marginal snow cover affected in RCP8.5 (except for the lower elevation Jura mountains) and decrease in accumulation

zones
:::::
except

:::
for

:::::
lower

:::::::
elevation

:::::
areas

::::
such

::
as

:::
the

::::
Jura

:::::::::
mountains

::
in

:::
the

::
far

:::::
west

::
of

::::::::::
Switzerland. By late-century the difference

is strong
:::::
large, as also seen in Figure 6 with a strong increase in the snowline elevation and reduction of snow height

:::::
depth

::::
even

at high elevations. Glacier accumulation zones remain only in the high Valais (Mattertal) and Bernese Oberland around today’s320

accumulation zone of the Aletsch Glacier. Figure 8 provides a more quantitative picture of snow cover-elevation dynamics.

This hypsometry plot summarizes the pixels of Figure 7 by showing the mean and standard deviation of snow depth at each

50 m elevation band across the entire domain for three time periods and scenarios RCP2.6/8.5. As expected, a strong decrease

in snow depth is seen at all elevations under RCP8.5. A slightly different story is seen under RCP2.6 with snow depth reducing

up to mid-century followed by an increase at high elevations (above 3500 masl) by end of the century - this is a consistent325

message throughout this study and reflects the results of Figures 5, 6 and 7. It can be partially explained by stabilisation of air

temperatures by mid-century (Figure 4) together with increased precipitation in the Alpine region (Jacob et al., 2014; Smiatek

et al., 2016).

An interesting observation in this figure is that in all time periods and scenarios snow depth is limited both at low elevation

by temperature and at high elevation by terrain, which tends to be steeper and therefore permits lower accumulations due to330

avalanching (the latter effect is explicitly accounted for in the modelling scheme by removing snow linearly above a slope

threshold (c.f. Fiddes et al., 2015)
::::::::
permitted

::
by

::::
the

::::::
model,

::
as

::::::::
discussed

::
in
:::::::

Section
::::
3.4). A final point of note in this figure is

the truncation level indicating the accumulation zone elevation which is approximately 4000 m for HIST, above .
::::::
Above

:
this

level seasonal snow is not possible, as it will not melt before the following winter season or the ground is too steep for snow

accumulation. This upper limit of seasonal snow limit rises to around 4500masl over the 21st century, well above former335

glaciated surfaces. An implication of this for water resources is that while we lose a large quantity of glacier accumulation

zones during the 21st Century
::::::
century, irrespective of scenario, we will likely not lose seasonal snow water resources at those

elevations.

::::::
Several

:::::::
previous

::::::
studies

::::
have

::::::::::
investigated

:::
the

:::::::
impacts

::
of

::::::
climate

::::::
change

::::
upon

::::::
Alpine

:::::
snow

::::
cover

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Verfaillie et al., 2018; Steger et al., 2012; Marty et al., 2017; Frei et al., 2018; Bender et al., 2020)

:
,
:::::::
however

:::::
direct

:::::::::::
comparison

::
is

:::::
often

::::::::::
problematic

::::
due

::
to

::::::
model

:::::::::
resolution,

:::::::
analysis

:::::::
period,

::::::
parent

::::::
climate

:::::::
models

::::::
and/or340

::::::::
emissions

::::::::
scenarios

:::::
used.

::::
This

::::::::
highlights

:::
the

::::::::::
importance

::
of

:::::
model

::::::::::::::
intercomparison

::::::
studies

:::::::
whereby

:::::
these

::::::::
important

::::::::
variables

:::::::::
controlling

::::::
model

::::::
results

:::
can

:::
be

:::::::::::
standardised.

:::::::::::
Comparison

::
to

:::
the

::::::::
previous

:::::
works

:::::
cited

:::::::::
highlights

:::
the

:::::::::::
contribution

::
of

::::
this
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::::
study

::
in
::::
that

::::
most

:::::
were

:::::::::
conducted

:::::
either

::
at

::
an

:::::
RCM

:::::::::
resolution

::
of

:::
25

:
-
::
12

:::
km

::::::::::::::::::::::::::::::::::
(e.g. Steger et al., 2012; Frei et al., 2018),

:::::
local

::::
scale

:::::::::::::::::::::::::::::::::::::::
(e.g. Verfaillie et al., 2018; Bender et al., 2020)

:
or
::::::

reliant
:::
on

::
in

:::
situ

::::
data

::::::::::::::::::::::::::::::::::::
(e.g. Marty et al., 2017; Bender et al., 2020).

:::
In

:::
this

:::::
study,

:::
we

:::::::::::
demonstrate

:
a
:::::::
method

:::
that

:::::::::
generates

:::::
results

:::::
over

::::
large

:::::::::
modelling

:::::::
domains

::
at
::::::::

hillslope
:::::
scale,

::
a

::::
scale

::::::
which

::
is345

::::::::
extremely

::::::::
important

::
in

:::::::::
regulating

:::
the

:::::
stores

:::
and

:::::
fluxes

::
of

::::::
water,

::::::
energy,

:::
and

::::::
carbon

:::::::::::::::::
(e.g Fan et al., 2019)

:
,
:::
and

::::::::
therefore

::::::
critical

::
to

::::::::
modelling

:::::
snow

:::::
cover

:::
in

:::::::::::
mountainous

::::::
terrain.

:::::::::::
Additionally,

::::
this

::::::::
approach

::::
does

::::
not

:::
rely

:::
on

::
in
::::

situ
::::
data

::::
and

::::::::
therefore

::
is

:::::::::
appropriate

:::
for

:::::::::
data-scarce

:::::::
regions.

:

5.4 Forcing uncertainty

The largest source of uncertainty in the scheme is the reanalysis forcing from ERA5. Both quantile mapping and disaggregation350

of fields to sub-daily timesteps are inherently constrained by the distribution of ERA5 fields. While ERA5 provides hourly data

and therefore resolves the diurnal cycle, it remains a 25 km
:::
0.25

::::::
degree

:
model with a correspondingly smooth topographical

surface representation and parameterisation of physical processes that occur on shorter length scales. Typical examples are

convective precipitation and cold air pooling in valley bottoms (Cao et al., 2017; Liu et al., 2017), orographic enhancement

of precipitation and wind fields (Gerber et al., 2018; Mott et al., 2018; Gutmann et al., 2016). As the density of observations355

that are assimilated in reanalyses varies globally we expect the performance of the TopoCLIM model pipeline to be a function

of how well constrained ERA5 is in any given location. A full analysis and discussion of TopoSCALE uncertainties is given

by Fiddes and Gruber (2014) and to some extent in Fiddes et al. (2019). The most uncertain variable is precipitation which is

clearly a critical point for snow modelling studies. We do however show that there are no large scale biases in the precipitation

field at least in our snow height
::::
depth

:
comparison across the IMIS network. We have shown in previous studies that variables360

driving the energy balance (TA, ILWR, ISWR
::
air

:::::::::::
temperature,

::::::::
incoming

:::::::::
shortwave

::::::::
radiation,

::::::::
incoming

::::::::
longwave

:::::::
radiation) are

downscaled with good skill by TopoSCALE. One method we have explored to reduce (and quantify) meteorological forcing

uncertainty and precipitation uncertainty in particular, is through Bayesian data assimilation of globally available satellite

products using a particle batch smoother, which has shown promising results (Fiddes et al., 2019; Alonso-González et al.,

2020). The coupling of this scheme with TopoCLIM will be the subject of subsequent work.365

5.5 Evaluation uncertainty

Our station measurements are characterised by considerable uncertainties, a problem that is particularly acute for precipitation

related fields such as snow depth, so we have to some degree a chicken and egg scenario when it comes to model validation, in

that it’s hard to untangle the origin of apparent errors. For example, stations tend to be situated in sheltered flat to concave to-

pography. Here we expect there to be considerable preferential deposition
::::::::::::::::::
(Lehning et al., 2008) from surrounding windblown370

slopes and ridge-lines (Grünewald and Lehning, 2015). In general we would expect stations therefore to be positively biased

with respect to large scale precipitation fluxes. Additionally, certain stations will be exposed to very local climatic effects which

are not represented in the large scale 25 km
::::
0.25

:::::
degree

:
resolution ERA5 forcing. Examples of such local effects include wind

funnelling leading to scouring, enhanced Foehn effects and local orographic enhancement.
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5.6 Snow model uncertainty375

The snow model used in this study, FSM, is an intermediate complexity physically-based model and we do not expect it to

perform as well with respect to snow densification as a more complex snow physics model such as SNOWPACK (Lehning

et al., 2002; Wever et al., 2015), this .
:::::

This can introduce uncertainty when using snow depth as a validation parameter.

However, it should be noted that there is active discussion about snow model complexity and how this does not necessarily

lead to improved performance (c.f. Magnusson et al., 2015). Snow water equivalent is a simpler modelling objective but a380

much harder measurement objective and therefore few sites are available - particularly with good coverage at regional scales,

therefore limiting its applicability for large-scale evaluations.

6 Conclusions

In this study we have developed and tested a new scheme for downscaling regional climate projections, specifically designed

to provide hillslope scale forcings for impact models. We take advantage of the now globally available CORDEX RCM data to385

develop a method with global scope. The scheme is parsimonious and adheres to the philosophy
:::::::
approach

:
of TopoSCALE upon

which it builds, that is modelling tools that bridge the gap between relatively simple empirical approaches and full dynamical

models that require extensive computing resources. It can be run both on desktop or cluster environments. The target application

of this scheme is impact modelling in complex terrain where significant atmosphere-surface interactions need to be considered.

A particular application is in remote areas where ground data may either not be present at all or not available for the duration390

of a climate normal period, meaning that traditional ESD methods are problematic to use. Another strength of this approach

is that it produces continuous timeseries, such that it permits transient simulations in contrast to other parsimonious methods

such as the delta-change approach, an important point for domains such as soil, ground-ice or glaciers where surface forcings

drive processes over decadal timescales.

This framework is adaptable to any kind of meteorological input data (both the reference data and the future/past period).395

Here we have given an example with the reference based on downscaling ERA5, but it could equally be generated by downscal-

ing other reanalyses such as MERRA or outputs from regional models such as WRF, COSMO, or ICAR. The method would

also be applicable to other future projections such as those from CMIP6 which are coming online now. Exploring all these

possibilities is of course beyond the scope of one
:::
this paper, but it’s important

:::::
useful

:
to emphasize the modularity

:::::::
potential

::::::::::
applications of this framework. Another aspect to highlight is that we are downscaling an ensemble of CORDEX outputs which400

also gives us a better idea of the uncertainty in future climate projections and impacts on the snowpack (in this case). It should

also be stated that as a framework other downscaling routines or bias correction approaches could be used, our main message

is that the combination of these methods .
::::
The

:::::::::
modularity

::::::
allows

:::::
these

::::::
options

::
to

:::
be

::::::::
explored.

:::
The

::::
very

:::::::
efficient

:::::::::::
combination

::
of

::::
steps

::
as

:::::::::
presented

::
in

:::
this

:::::
paper

:
provides a powerful way of rapidly obtaining hillslope scale climate forcings anywhere on

the globe.405

As a final pointof note, the scheme could also be usefully applied retrospectively
:
,
:::::::::
TopoCLIM

::::
can

::
be

:::::
used to bias correct

historical reanalysis that suffer from uncertainties related to pre-satellite era data assimilation and a much reduced surface
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station network, such as ECMWFs
:::
any

::::::
dataset

::::
that

:::::
partly

:::::::
overlaps

::::
with

:::
the

::::::::
reference

:::::::
period.

:::::
Thus,

::
in

:::::::
addition

::
to

:::
the

::::::
future

:::::::::
projections

:::::::::
considered

::
in

::::
this

:::::
study,

::
it

::::::
would

:::
also

:::
be

:::::::
possible

::
to

:::
use

::::::::::
TopoCLIM

::
to

:::::::
correct

:::::::::::
coarser-scale

::::::::
reanalysis

::::
data

::::
that

:::::
stretch

:::
far

::::
back

::
in

:::::
time.

::
A

:::::
prime

:::::::
example

:::::
would

:::
be

:::::::::
ECMWF’s 20th century reanalysis , ERA-20CM (

:::::::::
(ERA-20C)

::::::
which

:::::
spans410

1900-2010 )
:::
and

::::
thus

:::::
partly

:::::::
overlaps

::::
with

::::::
ERA5

:::::::::::
(1950-today)

:::
that

::
is

::::
used

::
to

:::::
drive

:::::::::::
TopoSCALE

::
to

:::::::
generate

:::
the

::::::::
reference

::::
data

::::::
T-MET.
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Figure 3. Evaluation of the quantile mapping routine at the Weissfluhjoch station in standard mode "QM_QM" (single parameter set )

and "QM_MONTH" seasonally varying parameter set. CLIM is the uncorrected CORDEX data. STATION is the Weissfluhjoch station

measurements. T-MET is the downscaled ERA5 data obtained using TopoSCALE. Shown are the cumulative density function over the

period 1981-2010 (left panel) and seasonal distribution given as average by day of year (DOY) for the same period (right panel).
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Figure 4. A point-scale TopoCLIM product: Mean annual near surface air temperature at the Weissfluhjoch (2540 masl) showing corrected

historical, RCP2.6 and RCP8.5 time series. T-MET and uncorrected CORDEX data are also shown for comparison. The coloured envelopes

indicates
::::::
indicate the model spread and ensemble mean is given by the bold line. The zero degree isotherm is given by the horizontal line.
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Figure 5. An example point-scale TopoCLIM product: Mean annual snow depth (m) ensemble at the Weissfluhjoch
:::::
station (2540m asl) for

historical and future RCP scenarios. Observations from WFJ2
:::::::::::
Weissfluhjoch are given in black for a qualitative comparison. Ensemble means

are indicated by solid lines and long term average over the plotted historical period (1981-2010) is given by the horizontal line. Observations

lie within the ensemble spread, indicating that the bias correction method works satisfactorily. It should be stressed that we do not attempt a

quantitative comparison here as CORDEX (and climate models more generally) variability is not expected to be perfectly synchronised with

observed variability. Nonetheless, we still prefer to present
:::
this

:::::::::::
representation

::::::
usefully

:::::
shows

:
the inter-annual variability that is present in

both the model and the observations instead of
:::::
simply showing decadal means.
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Figure 6. Large scale evaluation of the scheme
:
at

::
all

::::
IMIS

:::::
station

:::::::
locations: Mean DOY

::::::
Network

::::
mean

:
air temperature and snow height

::::
depth

across all IMIS stations (IMIS) is compared to the same data generated by the TopoSCALE downscaling of ERA5 (TSCALE
:::::
T-MET) and

TopoCLIM downscaled CORDEX data for the historical period (1981-2010) and scenarios RCP2.6/8.5 for near (2031-2060) and far future

periods (2070-2099) .
::
for

::::
each

:::
day

::
of

:::::
water

:::
year

::::::::
(DOWY),

::::::
starting

:
at
:::::::::
September

:
1.
:
The full width of the model ensemble is represented by

the shading. Note TSCALE
::::::
T-MET and IMIS have the same time-frame (variable by station between 1996-2020) and are therefore directly

comparable (see Table 5), but this only partially overlaps with the CORDEX historical period and therefore is intended for visual comparison

only.
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Figure 7. Example TopoCLIM
:::::
forced

:
climate change maps: Mean snow depth (m) for RCP2.6 and RCP8.5 (columns) and time periods

1981-2010, 2031-2060 and 2070-2099 (rows). Perennial snow-pack (does not melt in an annual cycle) is masked out (white regions) and

assumed to represent climatological glacier accumulation zones.
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Figure 8. Hypsometry of snow depth over the Swiss Alps for RCP2.6, RCP8.5 for periods 1981-2010, 2031-60
::::::::
2031-2060

:
and

2070-99
::::::::
2070-2099. This data is derived from the ensemble mean, with shading showing +/- 1 standard deviation of values in each ele-

vation band. The elevation limit in each time-period
::::
time

:::::
period corresponds to the threshold between seasonal and non-seasonal snow, or

glacier accumulation zones. This demonstrates the rising equilibrium-line altitude of glaciers over the 21st century in all RCP’s and extension

of seasonal snow into the former glacier zones.
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Table 1. CORDEX variables used in this study, together with the Climate and Forecast Conventions (CF) standard name.

Variable name Units Timestep h CF ong
:::
long

:
name CF standard name

::::::
Melodist

::::::
method

tas K 3
:::

daily
:

Near-Surface Air Temperature air_temperature
:::
sine

::::
mean

:

pr kg m−2 s−1 3
:::

daily
:

Precipitation precipitation_flux
::::
equal

:

ps Pa 3
:::

daily
:

Surface Air Pressure surface_air_pressure -
:

hurs % 3
:::

daily
:

Near-Surface Relative Humidity relative_humidity
:::::::
Humidity

::::
equal

:

rsds W m−2 3
:::

daily
:

Surface Downwelling Shortwave Radiation surface_downwelling_shortwave_flux_in_air
::
pot

:::
rad

:

rlds W m−2 3
:::

daily
:

Surface Downwelling Longwave Radiation surface_downwelling_longwave_flux_in_air
:
-

uas m s−1 6
:::

daily
:

Eastward Near-Surface Wind eastward_wind
:::::

random

vas m s−1 6
:::

daily
:

Northward Near-Surface Wind northward_wind
:::::

random

Table 2. CORDEX model chains used in this study.

GCM RCM Scenario Ensemble Version

CNRM-CERFACS-CNRM-CM5 CLMcom-CCLM5-0-6 Hist/RCP2.6/8.5 r1i1p1 v1

CNRM-CERFACS-CNRM-CM5 SMHI-RCA4 Hist/RCP2.6/8.5 r1i1p1 v1

ICHEC-EC-EARTH CLMcom-CCLM5-0-6 Hist/RCP2.6/8.5 r12i1p1 v1

ICHEC-EC-EARTH KNMI-RACMO22E Hist/RCP2.6/8.5 r12i1p1 v1

ICHEC-EC-EARTH SMHI-RCA4 Hist/RCP2.6/8.5 r12i1p1 v1

MIROC-MIROC5 CLMcom-CCLM5-0-6 Hist/RCP2.6/8.5 r12i1p1 v1

MPI-M-MPI-ESM-LR SMHI-RCA4 Hist/RCP2.6/8.5 r12i1p1 v1

NCC-NorESM1-M SMHI-RCA4 Hist/RCP2.6/8.5 r1i1p1 v1

NOAA-GFDL-GFDL-ESM2M SMHI-RCA4 Hist/RCP2.6/8.5 r1i1p1 v1
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Table 3. Statistics from the evaluation in Figure 3. Correlation (R), root mean squared error (RMSE) and percentage bias (PBIAS) are given

relative to downscaled ERA5 data T-CLIM
:::::
T-MET.

Statistic Scheme tas [K] pr [kg m−2 s−1] rsds [W m−2] rlds [W m−2] hurs [%]

R [-] CLIM 0.98 0.39 0.99 0.95 0.02

R [-] QM 0.98 0.35 0.98 0.95 -0.11

R [-] QM_MONTH 0.99 0.55 0.99 0.97 0.74

RMSE CLIM 2.27 2.17e-05 43.00 24.19 17.29

RMSE QM 1.04 1.75e-05 19.09 7.41 6.89

RMSE QM_MONTH 0.84 1.58e-05 10.46 5.67 3.94

PBIAS [%] CLIM 0.7 28.8 -21.1 9.1 23.3

PBIAS [%] QM 0 0.3 0.1 0.1 -0.1

PBIAS [%] QM_MONTH 0 0.2 0 0.1 -0.1

Table 4. Statistics from the evaluation in Figure 4. Correlation (R), root mean squared error (RMSE) and percentage bias (PBIAS) are given

relative to station measurements at Weissfluhjoch (STATION).

Statistic Scheme tas [K] pr [kg m−2 s−1] rsds [W m−2] rlds [W m−2] hurs [%]

R [-] CLIM 0.99 0.22 0.97 0.97 -0.16

R [-] QM 0.98 0.20 0.97 0.96 -0.30

R [-] QM_MONTH 0.98 0.32 0.97 0.94 0.76

R [-] T-CLIM
:::::
T-MET 0.98 0.35 0.97 0.94 0.76

RMSE CLIM 1.86 2.59e-05 29.41 15.61 16.94

RMSE QM 1.01 2.82e-05 22.89 11.59 9.31

RMSE QM_MONTH 1.15 2.76e-05 23.78 12.94 5.34

RMSE T-CLIM
:::::
T-MET 1.15 2.85e-05 24.27 13.45 5.24

PBIAS [%] CLIM 0.6 2.6 -13.9 5.4 21

PBIAS [%] QM -0.1 -20.1 9.1 -3.3 -2

PBIAS [%] QM_MONTH -0.1 -20.2 9.1 -3.3 -2

PBIAS [%] T-CLIM
:::::
T-MET -0.1 -20.3 9 -3.4 -1.9
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Table 5. Statistics from Figure 6 evaluation comparing TopoSCALE
:::::
T-MET results against IMIS station data for the historical period.

Variable Mean IMIS Mean TopoSCALE
:::::
T-MET R Bias RMSE

TA [K] 273.8 273.7 0.998 -0.12 0.63

HS [m] 0.70 0.63 0.995 -0.07 0.095
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