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Abstract. Terrestrial Biosphere Modeling (TBM) is an invaluable approach for studying plant-atmosphere interactions at

multiple spatial and temporal scales, as well as the global change impacts on ecosystems. Yet, TBM projections suffer from15

large uncertainties that limit their usefulness. A large part of this uncertainty arises from the empirical allometric (size-to-

mass) relationships that are used to represent forest structure in TBMs. Forest structure actually drives a large part of TBM

uncertainty as it regulates key processes such as the transfer of carbon, energy, and water between the land and atmosphere,

but remains challenging to measure and reliably represent. The poor representation of forest structure in TBMs results in

models that are able to reproduce observed land fluxes, but which fail to realistically represent carbon pools, forest20

composition, and demography. Recent advances in Terrestrial Laser Scanning (TLS) techniques offer a huge opportunity to

capture the three-dimensional structure of the ecosystem and transfer this information to TBMs in order to increase their

accuracy. In this study, we quantified the impacts of integrating structural observations of individual trees (namely tree

height, leaf area, woody biomass, and crown area) derived from TLS into the state-of-the-art Ecosystem Demography model

(ED2.2) at a temperate forest site. We assessed the relative model sensitivity to initial conditions, allometric parameters, and25

canopy representation by changing them in turn from default configurations to site-specific, TLS-derived values. We show

that forest demography and productivity as modelled by ED2.2 are sensitive to the imposed initial state, the model structural

parameters, and the way canopy is represented. In particular, we show that: 1) the imposed openness of the canopy

dramatically influenced the potential vegetation, the optimal ecosystem leaf area, and the vertical distribution of light in the

forest, as simulated by ED2.2; 2) TLS-derived allometric parameters increased simulated leaf area index and aboveground30
biomass by 57 and 75%, respectively; 3) the choice of model structure and allometric coefficient both significantly impacted

the optimal set of parameters necessary to reproduce eddy covariance flux data.
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We conclude that integrating vegetation structure information derived from TLS can inform TBMs on the most adequate

model structure, constrain critical parameters, and prescribe representative initial conditions. Our study also confirms the

need for simultaneous observations of plant traits, structure and state variables if we seek to improve the robustness of TBMs35

and reduce their overall uncertainties.

1 Introduction

Terrestrial biosphere models (TBMs) are key tools to understand the ecosystem response to anthropogenic disturbances and

climate change (Medvigy and Moorcroft 2012; McGuire et al. 2001). Nowadays they are intensively used, as is or embedded

in Earth system models, to study plant-atmosphere interactions and predict the future of ecosystems facing global change40
(e.g., Poulter et al. 2010). Yet, the usefulness of TBMs are currently limited by the large uncertainties in their projections

which originate from different sources (Lin et al. 2011).

Forest structure has long been recognized as a critical component to understand forest dynamics (Hurtt et al. 2010). It

influences the climatically important fluxes of carbon, energy, and water (Bonan 2008). Yet, its realistic representation is

complex, challenging and an urgent priority in the development of next-generation TBMs (Fisher et al. 2018). The45

representation of the forest structure within TBMs is associated with three sources of uncertainty: the model structure, the

initialization, and the parameter uncertainty.

The model structure entails by definition all the processes included in a model, how they are implemented, and all the

underlying assumptions (Bonan 2019). Model structure complexity varies among TBMs and also depends on the user

configuration choices: different formulations of the same process can co-exist within a TBM. This complexity results from50

the necessary compromise between an accurate representation of the reality on the one hand and the computational demand

and observational requirements on the other (Shiklomanov et al. 2020). Model intercomparison studies have demonstrated

that discrepancies in the representation of key processes such as forest structure (Fisher et al. 2018) or photosynthesis

(Rogers et al. 2017) lead to significant uncertainties in the projections of critical variables such as the overall land carbon

sequestration capacity (Friedlingstein et al. 2014; Lovenduski and Bonan 2017; Friedlingstein et al. 2006).55

The initialization uncertainty reflects the error made when determining the initial conditions of the modelled ecosystem.

Several approaches exist for initializing TBMs, the most common of which is probably to start runs from near-bare ground

conditions, force the simulations with relevant climate-forcings, and wait for the model to reach an equilibrium state, the so-

called potential vegetation (Antonarakis et al. 2011). Yet, such a spin-up approach does not guarantee reliable initial

demography, carbon pools or ecosystem structure. Alternatively, forest inventories can be used to prescribe the initial60
composition of the ecosystem (Medvigy et al. 2009). The derivation of the initial states of critical variables, such as the

aboveground biomass or the total leaf area from the plant size distribution, then relies on model default allometries which are

often derived from other, potentially non-representative site-specific data.

https://doi.org/10.5194/gmd-2021-59
Preprint. Discussion started: 12 April 2021
c© Author(s) 2021. CC BY 4.0 License.



3

Parameter uncertainty arises e.g. from the necessary simplification of the natural complexity into a coherent model structure,

the uncertainty in the measurements used to calibrate the model, or the methods used to upscale local measurements to scales65

on which TBMs operate (Zaehle et al. 2005). Previous sensitivity analyses have underlined the critical importance of

parameter uncertainty for the projections of ecosystem demography and productivity (Dietze et al. 2014; Massoud et al. 2019;

Raczka et al. 2018; Wramneby et al. 2008). In a recent comparative study, parameter uncertainty was even shown to drive

the overall model uncertainty (Shiklomanov et al. 2020). Among model parameters, allometric coefficients scale the shape

and mass of the plants or of its components with their size (Chave et al. 2014). Not surprisingly, multiple TBMs were shown70

to be sensitive to such allometric parameters (Collalti et al. 2019; Cano et al. 2020; Esprey et al. 2004). Parameter

uncertainty can be reduced by constraining the range of variation of model parameters through the assimilation of different

sources of observations or via model optimization (LeBauer et al. 2013). In the past, TBMs have often been calibrated with

eddy covariance data (Fer et al. 2018; Rezende et al. 2016; Collalti et al. 2016). While this approach ensures that the model

correctly reproduces the short timescale (diurnal/seasonal) dynamics of land fluxes, it does not ensure an accurate75
representation of forest structure and carbon pools. This is especially true because forest structure-related parameters can

present a low sensitivity to those observations (LeBauer et al. 2013; Richardson et al. 2010), and the large equifinality in

TBMs (Luo et al. 2009) can lead to acceptable land fluxes with a poor representation of ecosystem structure (i.e. fluxes can

be reproduced from an almost infinite range of structural possibilities, some of which will be much more likely that would be

others).80

Among the different sources of observations used to reduce model uncertainties, remote sensing from various platforms

(terrestrial, air- and space borne) has increasingly been used to monitor and understand vegetation ecosystems (Jones and

Vaughan 2010). The recent revolution in Terrestrial Laser Scanning (TLS, also called terrestrial LiDAR) provides new

opportunities for constraining TBMs, and reducing the uncertainties related to the vegetation structure representation

(Fischer et al. 2019). The ability of TLS to measure the distance to reflecting surfaces was initially used in ecological studies85

to measure simple metrics like DBH and tree heights (Maas et al. 2008; Hopkinson et al. 2011). Since then, TLS methods

have rapidly evolved to derive more complex metrics, such as the vertical profiles of the forest structure (Jupp et al. 2009;

Calders et al. 2018) and whole-tree volumetric assessments (Fan et al. 2020), leading to an accurate representation of forest

structure across various forest types (Calders et al. 2015; Tanago et al. 2018; Takoudjou et al. 2018; Ehbrecht et al. 2017;

Stiers et al. 2018; Saarinen et al. 2021.). Today, the ability of TLS to accurately represent the 3D structure of forests via90

quantitative structure modelling or QSM (Raumonen et al. 2013; Hackenberg et al. 2015) represents a huge opportunity to

improve our understanding of forest ecosystems under changing climates (Calders et al. 2020). In particular, TLS snapshots

of vegetation ecosystems could simultaneously provide important state variables to initialize TBMs, strong constraints to

some critical allometric parameters, and help determine the most appropriate model structure for key processes.

In this study, we quantified the sensitivity of a specific TBM, namely the Ecosystem Demography model version 2 (ED2.2),95
to vegetation structure by varying the initial state of the modelled ecosystem and the model allometric parameters that

control the structural representation of the canopy within the model. More specifically, we investigated the benefits of
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integrating TLS measurements of forest structure on the simulated demography and productivity, as well as on the model

calibration when using flux tower data. We were particularly interested to: (i) assess the relative importance of model

structure, initialization, and parameter uncertainties in the ED2.2 model in a temperate forest; (ii) quantify the potential100

added value of TLS data for vegetation modelling (as, to the best of our knowledge, this study is the first attempt to couple

TLS data and a TBM); and (iii) determine if equifinal ecosystem simulations could be discriminated from a structural point

of view.

2 Material and Methods

2.1 Study site and data105

2.1.1 Study site

Wytham Woods is a mixed deciduous forest, predominantly broadleaved, covering approximately 40 ha. It is located 5 km

northwest of Oxford in southern England (Thomas et al. 2011). Owned by Oxford University, Wytham Woods has been part

of the UK Environmental Change Network (ECN) and of the Smithsonian Global Earth Observatory (SIGEO) Network since

1992 and 2008, respectively, and has hosted numerous ecological studies (Savill et al. 2010). The site is classified as an110
ancient semi-natural woodland (Hall et al. 2001). This classification means that the site has been continuously covered by

trees through recorded history (since at least 1600), occasionally managed, and experienced minimum intervention (i.e. no

silvicultural management) since WWII (Fenn et al. 2015). Over the 1993-2008 time period, the site was characterized by a

mean annual temperature of 10°C and a mean annual precipitation of 726 mm (Butt et al. 2009). The study took place on a

1.4 ha forest plot nested within the 18 ha long-term monitoring site part of the ForestGEO global network of forest inventory115

plots. This 140 × 100 m area has a local SW-coordinate (0, 100) and local NE-coordinate (140, 200) boundary. The local

origin coordinate (0,0) was measured with a differential GPS and located at Lat 51.7750579, Lon -1.33904729.

2.1.2 Field inventory and Terrestrial Laser Scanning data

The studied plot was inventoried during the summer of 2016. All trees were located, measured, and identified at the species

level. The plot is largely dominated by sycamore (Acer pseudoplatanus, 65% of the 821 inventoried trees in the 1.4 ha plot,120

see Table 1 and Figure 1), ash (Fraxinus excelsior, 10%), and hazel (Corylus avellana, 8%). Oaks (Quercus robur) represent

a limited fraction of the woody stems (4%) but disproportionately contribute (23%) to the total basal area (BA) as they

mostly consist of large trees (Table 1 and Figure 1). The mean (resp. median) DBH is 24.4 (resp. 19.8) cm, ranging from 2.9

cm to 141.2 cm.

Three-dimensional forest structure data were collected using a RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser125

Measurement Systems GmbH) in leaf-on (June and July 2015) and leaf-off (December 2015 and January 2016) conditions

(Calders et al. 2018). The RIEGL instrument uses on-board waveform processing and records multiple return LiDAR data,

which improves vertical sampling (Lovell et al. 2003; Calders et al. 2014). Individual trees were extracted using treeseg

https://doi.org/10.5194/gmd-2021-59
Preprint. Discussion started: 12 April 2021
c© Author(s) 2021. CC BY 4.0 License.



5

(Burt, et al. 2019), and their structure modelled with TreeQSM (Raumonen et al. 2013) with the leaf-off TLS point cloud.

Leaves were then added to the individual tree branches using both the leaf-off and -on TLS datasets. Doing so, TLS allowed130

retrieving of individual tree height, aboveground woody biomass (modelled through estimates of volume combined with

species-specific wood density), and leaf area. In addition, the individual tree crown area was computed from the vertical

projection of the leaf-off point clouds of individual trees. For more details, a complete description of the TLS data collection

and forest stand reconstruction is available in Calders et al. (2018).

2.1.3 Flux tower data and species traits135

Stand-scale carbon and water fluxes have been occasionally measured in Wytham Woods using the eddy covariance

technique. We digitized the most recent (to our knowledge) data collection of CO2 flux that was reported by Thomas et al.

(2011) for the period between May 2007 and April 2009. To do so, we digitized the weekly mean values of ecosystem gross

primary productivity (GPP), ecosystem respiration (Reco) and net ecosystem productivity (NEP) from Figure 6 of the

aforementioned reference using the Plot digitizer software (v.2.6.8, http://plotdigitizer.sourceforge.net/).140
In addition, we extracted all existing records of specific leaf area (SLA) and maximum rate of carboxylation (Vcmax) for the

five most important species in Wytham woods from the TRY database (Kattge et al. 2020), see Table 1 (the complete list of

references used is available in Appendix). Individual traits were converted into ED2.2 units (m² kgC-1 for SLA with a

constant leaf carbon content of 0.5 and µmolC m-2 s-1 for Vcmax). Vcmax data were also rescaled to the ED2.2 reference

temperature (15°C) using the model default value for the temperature coefficient Q10. Following Asner et al. (2017), we145

calculated the community-weighted mean (CWM) and community-weighted standard deviation (CWSD) for both traits

based on the species composition and species-level average values, using species basal area as weights:

(1)

(2)

150

where is the total number of species for which data was available in TRY for trait , is the mean trait value for species

, and is its weight (here, the total basal area of species ). Those trait data were not used to calibrate nor validate the

model as such but simply simply compared with the optimized parameters after calibration (see below).
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2.2 Model

2.2.1 The terrestrial biosphere model ED2.2155

ED2.2 is a terrestrial biosphere model that can simulate the vegetation dynamics of a wide range of ecosystems from boreal

to tropical forests (Longo et al. 2019). It is a cohort-based, spatially implicit model that approximates the behavior of an

individual-based, spatially distributed vegetation model through a system of size- and age-structured partial differential

equations (Moorcroft et al. 2001). ED2.2 integrates modules of plant growth, mortality, phenology, disturbance, hydrology,

and soil biogeochemistry to predict e.g., the demography, the succession, and the dynamics of water and carbon within the160

simulated ecosystem.

In ED2.2, the inter- and intra-specific diversity is represented by a set of plant functional types (PFTs) that differ by their

leaf physiology, phenology, growth and allocation strategies, mortality, and sensitivity to environmental conditions. All trees

inventoried in Wytham Woods were classified as mid-successional temperate deciduous trees. This PFT is cold-deciduous,

i.e. leaf phenology is prognosed by the accumulation of growing degree-days and chilling days during the extended growing165
and senescing season, respectively (Longo et al. 2019).

By default in ED2.2, plant canopies are represented as infinitely thin flat crowns (a.k.a. complete shading) that virtually

occupy the entire horizontal space of the patch in which the cohort is located. In an alternative configuration, cohorts are

stacked on top of each other but have finite radius and hence tallest plants only partially shade the underlying cohorts. A

comprehensive model description (including photosynthesis, radiative transfer, and phenology) is available in Longo et al.170

(2019).

2.2.2 Model default and TLS-derived allometries

In ED2.2, the carbon made available from net assimilation is partitioned at the cohort level into the different plant pools

according to DBH-dependent allometries (Longo et al. 2019). In other words, plant cohorts allocate the carbon assimilated

through photosynthesis to living tissues (i.e. fine roots, sapwood, leaves, seeds), the non-structural storage pool, and the dead175

tissues (i.e. coarse roots, and aboveground woody biomass) depending on (i) a set of allometries and (ii) whether the plant

carbon balance and environmental conditions are favorable for growth. As such in ED2.2, aboveground woody biomass,

height, leaf biomass, and crown area are scaled through DBH-dependent allometries (Table 2). The ED2.2 default allometric

parameters are defined according to Medvigy et al. (2009) for the leaf biomass and height, Dietze et al. (2008) for the crown

area, and Albani et al. (2006) for the aboveground woody biomass.180

We compared those default allometric parameterization with site-specific, TLS-derived ones. To do so, we fitted the

individual plant metrics (height, crown area, aboveground woody biomass, and leaf area) vs DBH relationships derived from

TLS using the ED2.2 default set of equations (Table 2). More specifically, the parameters of the four allometric equations of

the ED2.2 model were optimized with the ‘nlsLM’ function of the minpack.lm R package (Elzhov et al. 2016) for the height

and the ‘lm’ function of the ‘stats’ R package applied to the log-transformation of the allometric power equations for the185
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crown area, the leaf biomass, and the aboveground woody biomass. To convert the leaf area obtained from TLS into leaf

biomass, we used the CWM of SLA.

2.2.3 Model initialization and forcings

In this study, the ED2.2 model was initialized using i) near-bare ground initial conditions (i.e. seedlings only), ii) the DBH

distribution available through the field inventory, or iii) the TLS-reconstructed size distribution. In the latter two190

configurations, the 1.4 ha site was initially divided into 35 square patches of 20 x 20 m that were allowed to fuse along the

simulation. Simulations were run for multiple years using the corresponding years of the CRU-NCEP reanalysis forcing

dataset (Viovy 2018).

2.3 Analyses

To achieve the overarching objective of this study, we designed three different main analyses that explore the sensitivity of195

the model to TLS data. Those analyses aim to compare the potential vegetation, the forest structure and its functioning, as

well as the model calibration between the default model configuration and when the model is informed by TLS data. The

overall workflow of this study together with the three main analyses are schematically represented in Figure 2.

2.3.1 Impact of TLS data on model allometries and initial conditions

We first compared the model default allometries with the site-specific ones derived from the TLS data. To do so, we200

evaluated the quality of fit of both allometric models by computing the corresponding mean relative errors (van Breugel et al.

2011) for all four considered allometric metrics. To assess the relative importance of TLS for the model initialization, we

compared the tree size distributions obtained from the field inventory and from the TLS data using a linear model and by

computing the absolute and relative differences between both DBH distributions.

2.3.2 Sensitivity of the potential vegetation to TLS data (Analysis I)205

To evaluate the impact of TLS data on potential vegetation, we compared uncalibrated simulations, initialized from near-

bare ground (NBG) conditions and run for 100 years, which approximately corresponds to the latest large-scale disturbance

(Analysis I). We specifically considered three model configurations: the model default (NBG-Default), the finite crown

(NBG-FC), and one constrained with TLS data (NBG-TLS). NBG-Default represents the most traditional version of ED2.2.

It uses the model default coefficients for all allometric equations and the default infinite size representation of tree crowns.210
NBG-FC is identical to NBG-Default, except for the finite crown (FC) representation. Finite crowns are expected to increase

light availability for short cohorts by reducing the light intercepted by the tallest ones (Dietze et al. 2008). Finally, NBG-TLS

was configured according to the allometric coefficients fitted to the TLS data for the individual plant height, the leaf biomass,

the aboveground woody biomass, and the crown area. Table 4 summarizes all model configurations used in this study

alongside with their most important features. To evaluate the impact of the model structure and TLS-derived allometries, we215
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compared the size distribution of the potential vegetations as simulated by ED2.2 for the three model configurations with the

inventory data.

2.3.3 Short-term model sensitivity to TLS-derived allometries (Analysis II)

To quantify the impact of TLS-derived allometries on ED2.2 outputs at short-time scales, we ran a batch of sixteen

uncalibrated sensitivity analysis (SA) simulations prescribed with field inventory data (Analysis II). In those simulations, we220

progressively incorporated the allometric parameters optimized from the TLS data, by changing a single or a combination of

allometric equations from the default set of relationships. We then compared the relative changes of some of the most

relevant model outputs (i.e., the ecosystem GPP, the total leaf area index (LAI), the understorey photosynthetically active

radiation (PAR), and the aboveground woody biomass) between the sensitivity analysis runs and a reference one that used all

default allometric parameters. In this analysis, we calculated those relative changes as the direct or the indirect impact of225

each allometric equation. The direct impact corresponds to the effect of changing a single allometric equation from the

default model parameterization while the indirect impact reflects the incremental effect when changing an additional

allometric equation in a combination.

2.3.4 Parameter data assimilation and model equifinality (Analysis III)

Finally, we also investigated the impact of TLS data on model calibration. To do so, we repeated a parameter optimization230

by Bayesian data assimilation for another set of three model configurations (Analysis III). The model configurations

included a default model version (default allometric parameters, infinite crown area), and a finite crown representation

(default allometric parameters, finite crown radius), which were both initialized with field inventory data, as well as a TLS

informed configuration (TLS-derived allometric parameters, finite crown radius), whose initial condition was prescribed

with the TLS size distribution. These three model setups are here-after referred to as IC-Default, IC-FC, and IC-TLS and are235
again fully detailed in Table 4.

More precisely, we optimized a set of two parameters (SLA and Vcmax) according to the IC-Default, IC-FC, and IC-TLS

model setups. In ED2.2, SLA is used to convert the leaf biomass into leaf area. Therefore, it strongly regulates the radiative

transfer within forest patches and hence mediates light competition between cohorts. The maximum rate of carboxylation

Vcmax is one of the most important drivers of plant net assimilation, and hence determines the carbon available for each240

cohort (Dietze et al. 2014; Longo et al. 2019). Those two parameters are excellent candidates to calibrate the ecosystem's

land fluxes and are often used to do so, including in ED2.2 (Camino et al. 2019; Fer et al. 2018; Rezende et al. 2013;

Sakschewski et al. 2015; Tan et al. 2010).

Model calibrations were achieved within the Predictive Ecosystem Analyzer (PEcAn), an ecological workflow management

software (LeBauer et al. 2013). Specifically, the Bayesian emulator framework developed by Fer et al. (2018) was used to245

optimize the parameter set to the two years of GPP data. For the calibration, we only used the GPP flux, letting aside the

Reco and NEP data, as we focus here on plant parameters calibration. Using Reco and/or NEP would have necessitated the
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additional tuning of respiration parameters, which was beyond the scope of this study. The emulator approach replaces

computationally expensive models such as ED2.2 by a statistical model compatible with Markov chain Monte Carlo

(MCMC) chains algorithms. It consists in a statistical model constructed by interpolating the response curve between the250

knots (i.e. the points where the model goodness of fit was previously evaluated). The Emulator calibration was

systematically run in three rounds, each with 100,000 iterations of three MCMC chains, using a total of 300 knots (100 per

round). After calibration, we ran ensemble runs of 100 members for three years for each configuration, with SLA and Vcmax

sampled from the posterior distribution generated by the emulators. We used uninformative uniform distributions covering

all trait data from TRY as priors for both parameters (Table 3).255

3 Results

3.1 Impact of TLS data on model allometries and initial conditions

Individual tree measurements from QSMs applied to the TLS point cloud could all be satisfactory represented by ED2.2

allometric equations (Figure 3). R² of the allometric models for the individual aboveground woody biomass, height, crown

area, and leaf biomass respectively reached 0.95, 0.83, 0.67, and 0.77. The mean relative errors changed from -46.9 to 1.42%260

(woody biomass), from 14.7 to -4.8% (height), from 109.0 to 9.1% (crown area), and from -26.8% to 2.8% (leaf biomass)

when switched from ED2.2 default allometries to TLS-derived, site-specific ones.

Over the DBH range in Wytham Woods, TLS-derived allometric coefficients led to systematically larger allocations to

aboveground woody biomass (+73% on average, up to +177% for the smallest tree) and leaf biomass (+75% on average),

and smaller tree height (-1.9 m on average) as compared to ED2.2 defaults (Figure 3). Individual crown areas derived from265

TLS measurements varied between 0.2 and 465.4 m², with a mean of 26 m². As compared to the TLS-calibrated allometry,

default model parameters predicted larger crown areas for trees with DBH < 64 cm (-22% on average), and smaller crown

areas for trees with DBH ≥ 64 cm (+17% on average). The latter category (DBH ≥ 64 cm) comprised 30 trees (3.7% of the

total) and contributed to 30.7% of the total basal area.

TLS-derived and field inventory DBHs were well correlated (R² = 0.98, RMSE = 2.3 cm, slope of the inventory vs TLS270

linear model = 0.998, see supplementary Figure S1). The mean (resp. median) relative difference between the TLS and field

inventory DBHs was -0.2% (resp. -1.7%). The minimum and maximum difference in DBH reached -13.8 and 32.9 cm,

respectively (Supplementary Figure S2).

3.2 Sensitivity of the potential vegetation to TLS data (Analysis I)

None of the unprescribed simulations (NBG-Default, NBG-FC and NBG-TLS) captured the size distribution observed275

through the inventory (Figure 6). While the infinite crown configuration (NBG-Default) generated large trees (DBH > 70

cm), yet smaller than the observations (the biggest tree cohort in the NBG-Default reached 74.4 cm in DBH while the

biggest tree based on the field inventory had a DBH of 127.4 cm), it systematically underestimated the density of small
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(DBH < 50 cm) trees, by 46% on average. The opposite trend could be observed for both configurations with finite crowns

(NBG-FC and NBG-TLS), with a smaller density of large trees when allometric coefficients were derived from TLS data280

(NBG-TLS). When starting from near-bare ground conditions, model structure (NBG-FC vs NBG-Default, +53% on average)

had a bigger impact on the tree size distribution than the allometric coefficients (NBG-TLS vs NBG-FC, -7% on average),

see Figure 4.

3.3 Short-term model sensitivity to TLS-derived allometries (Analysis II)

Direct and indirect impacts of TLS-derived allometries were well correlated for every model output considered (the slope of285

the linear model of all indirect vs all direct impacts = 0.96, R² = 0.96). Direct and indirect impact systematically agreed on

the direction of the output changes and only slightly changed in magnitude (1.5% on average across all outputs and

allometries) when allometric equations were considered alone or in combination with one another (Figure 5).

Leaf biomass allometry as derived from TLS had the largest impact on the simulated LAI (+57% for the direct effect) and

consequently on ecosystem GPP (+21%). Those simulated increments can be explained by the larger carbon allocation to290
leaves (Figure 3). The large variability around those mean relative changes are due to the large fluctuations between the

winter (leaf-off season for the reference as well as the sensitivity runs) and the summer (leaf-on season, LAI and GPP

respectively increased on average by 91% and 50% in the sensitivity runs).

The simulated aboveground woody biomass was mostly sensitive to the wood biomass allometry parameters. The

consistently larger allocation to woody biomass induced by the use of TLS data (Figure 3) resulted in a 75% increase in295

ecosystem carbon storage in aboveground dead tissues. Yet, it did not influence any of the other model outputs (Figure 5) as

that carbon pool is mainly inert and does not influence a lot of processes downstream.

The updated crown area allometry reduced ecosystem LAI and hence its GPP. That was due to the reduction in crown area

for most simulated trees induced by the use of TLS-derived allometries (Figure 3), which reduced individual tree light

interception, and as a result, increased light availability in the understory (by 7% on average) while leaf development and300

tree productivity decreased by -2% and -5%, respectively.

3.4 Parameter data assimilation and model equifinality (Analysis III)

All three model configurations for which parameters were calibrated (IC-Default, IC-FC, and IC-TLS) were able to capture

both the amplitude and the seasonality of the gross ecosystem productivity, as observed by the eddy covariance flux tower

(Figure 6). The posterior ensemble runs from calibrated configurations (IC-Default, IC-FC, and IC-TLS) were almost305

indistinguishable in terms of goodness of fit. R² of observed vs modelled monthly GPP reached 0.94 for all three

configurations (Figure 6A) while the RMSE varied between 0.1 (IC-Default) and 0.3 (IC-TLS) µmol m-2 s-1, much lower

than the mean and standard deviation of the two years of observational data of GPP (5.5 and 4.7 µmol m-2 s-1, respectively).

Because we only simulated one fully deciduous PFT, the model underestimated GPP during the winter: simulated ecosystem
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LAI and hence gross assimilation dropped down to zero from January to March while measured ecosystem productivity was310
non-null during the same period (Figure 6B) due to understorey plants (such as shrub not simulated here).

Despite the similarities in simulated GPP, those runs resulted in very different parameter posterior distributions (Figure 7).

When infinitely wide crowns were simulated (IC-Default), predicted median SLA (14.4 m² kgC-1) was lower than the CWM

(25.1 m² kgC-1), the model default (24.3 m² kgC-1), and the posterior median of the two configurations with a finite crown

representation (36.9 and 26.8 m² kgC-1 for IC-FC and IC-TLS, respectively), see Tables 1 and 3. Contrastingly, posterior315

median Vcmax of the IC-Default configuration (47.3 µmol m-2 s-1 ) was considerably larger than the ED2.2 default (17.5

µmol m-2 s-1), the CWM (32.6 µmol m-2 s-1), and than in the other two configurations (13.2 and IC-TLS 16.7 µmol m-2 s-1 for

IC-FC and IC-TLS, respectively).

Modelled GPP was sensitive to both SLA and Vcmax with a slightly higher responsiveness to SLA (Supplementary Figure

S3). SLA was therefore the primary driver of the cost function to evaluate the model fitness, and was negatively correlated320

with Vcmax (Table 3). The IC-TLS configuration resulted in the posterior median SLA that was the closest to the CWM

(26.9 vs 25.1 m² kgC-1) while calibrated Vcmax in the IC-TLS and IC-Default configurations were equidistant to the CWM

(Figure 7).

3.5 TLS-derived impacts on ecosystem structure and functions

Simulated ecosystems were all characterized by contrasting structures and functioning as a result of the discrepancies325
between configurations and parameterization. Both the model structure and the allometric coefficients had large impacts on

critical model outputs. The ecosystem LAI of the IC-Default configuration was smaller (1.8 m2 m-2 on average during the

leaf-on season) compared to other prescribed model runs (4.5 m2 m-2) and the range of observations in the literature (3.6 - 4.1

m2 m-2), see Table 5. Yet despite smaller leaf areas, the infinitely wide crowns configuration (IC-Default) made the forest

more opaque to the incoming solar radiation than the other calibrated configurations (IC-FC and IC-TLS): the PAR available330

in the understorey decreased by 14%. When comparing prescribed model configurations with finite crown areas (IC-FC and

IC-TLS), the smaller carbon allocation to leaves imposed by ED2.2 default allometries (Figure 3) was compensated by the

larger calibrated values of SLA (Figure 7) resulting in a similar total ecosystem leaf area (Table 5) and its vertical

distribution (Figure 8) after calibration. Similarly, the LAI of the potential vegetation simulated from near bare-ground

configurations was 32% higher with infinite crowns, but at the same time 14% less PAR reached the understorey (Table 5).335

As the soil received more radiation when finite crowns were simulated, it was warmer and as a result, heterotrophic (and

ecosystem respiration) largely increased (+26% on average) when switching from closed to finite crowns (Table 5). Forest

carbon stocks also diverged between configurations: driven by higher allocations to leaf and aboveground woody biomass,

aboveground carbon storage was much larger (+70% on average) in TLS-derived runs (NBG-TLS and IC-TLS) than when

default allometries were applied (Table 5). Estimates of aboveground woody biomass from configurations starting from near340

bare-ground conditions were also contrasted but systematically lower than the TLS estimates (23.9 kgC m-2 for the IC-TLS

configuration, see Table 5).
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Alone, allometric coefficients were responsible for a large variability for all investigated variables: the range of variation in

SA runs (Analysis II) was as large and even sometimes larger than in all simulations from Analyses I and III combined

(Table 5). Yet, none of the simulation/configurations accurately represented all features of Wytham woods. All model345

configurations starting from near bare-ground conditions overestimated GPP, Reco, and NEP, on average by 26%, 30% and

343%, respectively (Table 5). Calibrated model configurations underestimated Reco on average by -19% and hence

overestimated NEP by 256%, illustrating the need for optimizing autotrophic and heterotrophic respiration parameters to

align those with observational data.

4 Discussion350

4.1 The relative weight of the different sources of uncertainty

The different model configurations tested in this study led to very contrasting predictions of vegetation states. Near bare-

ground simulations generated potential vegetations that differed in their demography (Figure 4) and land fluxes (Table 5), as

a result of the configuration-specific choice of allometries and model structure related to canopy. The finite crown area

representation had a substantial impact on the model outputs when using both near bare-ground and prescribed initial355

conditions. In particular, limiting the crown radius to finite values promoted smaller plants to the detriment of the largest

ones (Figure 4), made the simulated LAI closer to the expected value (Table 5), and profoundly modified the vertical

distribution of leaves and light in the canopy (Figure 8 and Table 5). Crown size representation appears to drive a large part

of the model uncertainty and should be paid more attention to in future analyses of variance decomposition. Especially,

because the implementation and the sensitivity of the radiative transfer processes are currently overlooked in ED2.2 like in360

other vegetation models (Fisher et al. 2018; Viskari et al. 2019). Carbon pools also considerably diverged between model

configurations, especially when TLS-derived allometries were taken into account (Table 5). Not surprisingly, leaf and

aboveground woody biomass allometries had the largest impact on the corresponding carbon pools (Figure 5).

4.2 The added value of TLS for vegetation modelling

The quantitative information that remote sensing generates at unprecedented spatial and temporal scales can serve to reduce365

uncertainties in TBM projections. It has already been shown that airborne laser scanning (ALS) combined with an

individual-based forest model could offer new insights into the contribution of plant size to ecosystem functioning (Fischer

et al. 2019). Similarly, ALS and synthetic-aperture Radar have also successfully been applied to prescribe the initial structure

and composition of tropical forests (Antonarakis et al. 2011; Antonarakis et al. Moorcroft 2014; Longo et al. 2020). Yet, our

study illustrates the first attempt to couple TLS and TBMs. As compared to ALS, TLS offers a few significant advantages, as370

well as some drawbacks, that are important to remember. Airborne techniques allow for wall-to-wall coverage characterizing

3D forest structure at regional scale, whereas TLS offers far more detailed information but only at the local (up to a few ha)

scale. Yet, TLS is capable of estimating the volume of individual trees directy, instead of relying on allometric equations that
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require calibration and thus field measurements. In addition, it can accurately capture the entire size distribution (DBH and

height) of the sample plot while smaller trees can easily be missed with airborne surveys (Wang et al. 2016) leading to375

incorrect demography, especially in dense forests.

Because TLS data are complementary to the datasets that are frequently used for model calibration (e.g. eddy covariance

data), they can participate in a collective effort towards realistic representations of ecosystems in TBMs. TLS has the

potential to fill important data and process gaps and doing so, to help reduce the uncertainties in vegetation model

simulations. The steep increase in the amount of available forest TLS data over the past decade (Calders et al. 2020) makes380

its coupling with TBMs even more timely. As demonstrated in this study, TLS observation can ensure a more adequate

model structure, constrain model allometric parameters and prescribe representative initial conditions.

4.3 Model equifinality

Even though we limited our analysis to a single PFT, hundreds of plant traits can still be calibrated in a vegetation model like

ED2.2. Therefore, it is not surprising that multiple sets of parameters can lead to equifinal states. Yet, it is striking to see385
how critical parameters like SLA and Vcmax can end up being so different after calibration when the crown representation

or default model allometries changed. All configurations prescribed with initial conditions could accurately simulate the

seasonal cycle of GPP observed by the flux tower after calibration (Figure 6). However, those ‘optimal’ vegetation states

were very different from the forest structure point of view (Table 5, Figure 8). This situation perfectly illustrates the low

identifiability of numerous TBM parameters and the need for multiple simultaneous constraints and observations. While390

aboveground carbon storage is critical to estimate forest sink strength and the overall carbon storage capacity of the

ecosystem (Keeling and Phillips 2007), it has a limited impact on simulated land fluxes (GPP in particular) that are often

used to calibrate TBMs. The parameters controlling land fluxes, namely those controlling ecosystem LAI (Williams and

Torn 2015; Wei et al. 2013) and those related to photosynthesis, are highly confounded, echoing observed trade-offs of the

Leaf Economic Spectrum (Wright et al. 2004; Peaucelle et al. 2019). TLS has the potential to discriminate equifinal model395

simulations with similar land fluxes but contrasting structure. On-site trait measurements (Figure 7) could further help avoid

those risks of equifinality (Babst et al. 2020; Peaucelle et al. 2019).

4.4 Study limitations

As for any study, the present one has limitations. First, the eddy covariance flux data (2007-2009) preceded the observation

of the forest structure (TLS and field inventory occurred in 2015-2016) by almost a decade, which reduces the confidence of400

the posterior distributions resulting from the calibration. This is even more true as one realizes that the calibration dataset is

rather limited in size and information content (two very similar seasonal cycles of GPP). Yet, here we were more interested

in the differences of posterior distributions than their actual shapes. In addition, an imperfect match between different

sources of data and/or the low availability of good-quality data are cruel situations that faced any vegetation modeller at least

once. We dare to say that as of today, it remains more the rule than the exception, despite very valuable initiatives to405
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standardize high quality data such as Fluxnet (Baldocchi et al. 2001)). Second, the comparison between the potential

vegetations as simulated by ED2.2 and the field inventory data are also imperfect as Wytham Woods is a managed forest that

has been frequently coppiced and pollarded. Without a better knowledge of the disturbance history experienced by the

ecosystem (which is mostly unknown), a perfect reproduction of the current forest demography by the model would only be

obtained by compensation processes. Finally, the actual forest composition complexity was completely neglected in this410

study: we only simulated one PFT while several tree, shrub, and grass species coexist in Wytham Woods. However,

integrating this ecological complexity could only have decreased the parameter identifiability while increasing the

methodological complexity of this study.

5 Conclusion

Vegetation models are important but are too often used as blackbox tools due to their complexity. They have been415

intrinsically designed to realistically and accurately represent the ecosystem that they simulate, but often fail to do so

primarily because of considerable parameter uncertainties as well as process and initialization errors. Even for the state-of-

the-art process-based terrestrial biosphere models, not all parameters can be constrained with data: some cannot be observed

in the field, require calibration, or the appropriate observational trait data may be missing. Model calibration can

simultaneously lead to satisfactory runs from a fitness perspective while giving unrealistic optimal parameter sets. In420

addition, model initialization and the choice of model structure necessarily leads to additional uncertainties. We demonstrate

in this study that TLS has the potential to provide initial condition estimates and to constrain some critical vegetation model

parameters (allometries) and processes (crown representation). Hence, TLS data can help reduce the initialization, model

structure and parameter uncertainties. By informing TBMs, TLS can help discriminate realistic states from ‘right for the

wrong reasons’ equifinal vegetation model states.425
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Figures and Tables755

Tables

Table 1: Mean (± one standard deviation) of traits (Specific Leaf Area or SLA, and maximum rate of carboxylation or Vcmax)
available in the TRY database for each of the five dominant species in Wytham woods, and their local prevalence (in terms of
individual density and basal area). The community weighted means (CWM) and standard deviations (CWSD) were obtained using
the basal areas as weights. Missing traits were unavailable in TRY when we consulted it. Total number of inventoried trees = 821,760
total basal area = 50.71 m² for the 1.4 plot.

Ap = Acer pseudoplatanus, Ca = Corylus avellana, Cm = Crataegus monogyna, Fe = Fraxinus excelsior, and Qr = Quercus robur.
The colours of the different species in the first row of the Table are consistent with Figures 1 and 3.

765
Trait Ap Ca Cm Fe Qr Others CWM (± CWSD)

SLA
(m² kgC-1) - 34.7 (± 36.1) 62.8 (± 65.5) - 22.9 (± 23.9) - 25.1 (± 1.5)

Vcmax

(µmol m-2 s-1) 31.9 (± 16.1) - - 39.7 (± 18.0) 31.1 (± 18.8) - 32.6 (± 0.9)

Density
(-) 532 67 24 84 35 79

Basal area
(m²) 31.59 0.48 0.24 5.96 11.87 0.57
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Table 2: List of allometries modified in this study, ED2.2 default and TLS-derived allometric coefficients. DBH = Diameter at
Breast Height (cm).

770

Allometry Equation Parameter Default TLS

Height, h (m)

1.3 -3.1

25.18 26.11

-0.050 -0.073

Aboveground woody biomass, Bd (kg)

0.11 0.37

2.46 2.29

Crown area, CA (m²)

2.49 0.63

0.81 1.14

Leaf biomass, Bl (kg)

0.048 0.081

1.46 1.46
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Table 3: Model prior distributions, default values, and posterior medians.775

Parameter Prior(a,b) ED2.2 default
Posterior median

IC-Default IC-FC IC-TLS

Vcmax

(µmol m-2 s-1) unif(5,60) 17.5 47.3 13.2 16.7

SLA
(m² kgC-1) unif(5,70) 24.2 14.4 39.8 26.9

https://doi.org/10.5194/gmd-2021-59
Preprint. Discussion started: 12 April 2021
c© Author(s) 2021. CC BY 4.0 License.



25

Table 4: Summary of the model configurations used in this study and the underlying model setups.

780

Configuration

Analysis I Analysis II Analysis III

NBG-Default NBG-FC NBG-TLS SA IC-Default IC-FC IC-TLS

Process

Initial conditions Near-bare
ground

Near-bare
ground

Near-bare
ground Inventory Inventory TLS TLS

Crown
representation Infinitely wide Finite radius Finite radius Finite radius Infinitely

wide Finite radius Finite
radius

Allometric
parameters Default Default TLS Default or

TLS Default Default TLS

Run length (years) 100 100 100 3 3 3 3
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Figures

Figure 1: Initial conditions in terms of tree size distribution and composition (A), horizontal position, basal area (not to scale), and
composition (B). The species colour legend applies to both panels and is kept the same for Figure 3 below. In the simulations, all
trees were classified into a single plant functional type (Mid-successional temperate deciduous).785
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Figure 2: Schematic workflow of this study. Terrestrial LiDAR scanning (TLS) data were used to feed the Ecosystem Demography
model, version 2.2 (ED2.2), and impose model allometric equations, vegetation structure and initial conditions. The study was
separated into three main analyses that aim to assess the impact of vegetation structure, as derived from TLS data, on model790
outputs. More specifically, simulated potential vegetations (Analysis I), short-term forest functioning (Analysis II), and model
calibration (Analysis III) were each time compared between simulations that were informed by TLS data and simulations run with
default model configuration.
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795
Figure 3: TLS-derived (black) and default (grey) model allometries for the aboveground woody biomass (A), tree height (B),
crown area (C), and leaf biomass (D). The data to which the TLS allometries were fitted (coloured points corresponding to the tree
species detailed in Figure 1) were obtained using TLS.
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800
Figure 4: Size distribution of the three configurations starting from near bare-ground initial conditions after 100 years of
simulations (Analysis I), and how they compare to the field inventory (grey).
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Figure 5: Relative impact of the TLS-derived allometries on several outputs of the ED2.2 model, when prescribed with initial805
conditions (Analysis II). For each allometry, direct and indirect (i.e. combined with one or several other allometries) changes are
plotted as the dark and light bars, respectively. Bd, Bl, CA, and h respectively refer to the aboveground woody biomass, leaf
biomass, crown area and height allometries (see Table 2).
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Figure 6: Goodness of fit for the Default (black), the finite crown (blue) and the TLS (grey) configurations (Analysis III). Model
fitness is illustrated as observed vs modelled GPP (A) for all three configurations and as the seasonal cycle of modelled (grey, IC-
TLS configuration only) and observed (black) GPP (B). The vertical error-bars of the measurements represent the mean ± one
standard deviation of the observed flux for each month. The horizontal errorbars (A) and the shaded envelopes (B) encompass the
mean ± one standard deviation of the 100 ensemble member posterior runs. For sake of clarity in subplot A, the errorbars are only815
shown for the IC-TLS configuration.
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Figure 7: Posterior distributions of SLA (A) and Vcmax (B) when using the default allometries and inventory initial conditions
(black), the inventory initial conditions and finite crown representation (blue) or the TLS-derived allometries and initial conditions820
(grey) to fit model parameters (Analysis III). Those distributions can be compared to the measured traits (coloured dots) and the
community-weighted means (black dots). The radius of the dots is proportional to the basal area of the respective species (or the
total basal area for the CWM) in the inventory (see also Table 1). The vertical dashed lines (red) indicate ED2.2 default values for
both parameters.
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Figure 8: Ecosystem average vertical LAI distribution for the default configuration (black), the finite crown representation (blue),
and the TLS (grey) posterior ensemble runs. The envelopes encompass the mean ± one standard deviation of the 100 ensemble
member posterior runs.
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