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Abstract. Terrestrial Biosphere Models (TBMs) are invaluable tools for studying plant-atmosphere interactions at multiple15

spatial and temporal scales, as well as how global change impacts ecosystems. Yet, TBM projections suffer from large16

uncertainties that limit their usefulness. Forest structure drives a significant part of TBM uncertainty as it regulates key17

processes such as the transfer of carbon, energy, and water between the land and the atmosphere, but remains challenging to18
observe and reliably represent. The poor representation of forest structure in TBMs might actually result in simulations that19

reproduce observed land fluxes, but that fail to capture carbon pools, forest composition, and demography. Recent advances20

in Terrestrial Laser Scanning (TLS) offer new opportunities to capture the three-dimensional structure of the ecosystem and21

to transfer this information to TBMs in order to increase their accuracy. In this study, we quantified the impacts of22
prescribing initial conditions (tree size distribution), constraining key model parameters with observations, as well as23

imposing structural observations of individual trees (namely tree height, leaf area, woody biomass, and crown area) derived24
from TLS into the state-of-the-art Ecosystem Demography model (ED2.2) at a temperate forest site (Wytham Woods, UK).25

We assessed the relative contribution of initial conditions, model structure, and parameters to the overall output uncertainty26

by running ensemble simulations with multiple model configurations. We show that forest demography and ecosystem27

functions as modelled by ED2.2 are sensitive to the imposed initial state, the model parameters, and the choice of key model28
processes. In particular, we show that:29
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- parameter uncertainty drove the overall model uncertainty with a mean contribution of 63% to the overall variance30
of simulated gross primary production;31

- model uncertainty on the gross primary production was reduced fourfold when both TLS and trait data were32

integrated into the model configuration;33

- land fluxes and ecosystem composition could be simultaneously and accurately simulated with physically realistic34

parameters when appropriate constraints were applied to critical parameters and processes.35
We conclude that integrating TLS data can inform TBMs on the most adequate model structure, constrain critical parameters,36

and prescribe representative initial conditions. Our study also confirms the need for simultaneous observations of plant traits,37

structure and state variables if we seek to improve the robustness of TBMs and reduce their overall uncertainties.38

39



3

1 Introduction40

Terrestrial biosphere models (TBMs) are key tools to understand the ecosystem response to anthropogenic disturbances and41

climate change (Medvigy and Moorcroft 2012; McGuire et al. 2001). Nowadays they are intensively used, as is or embedded42

in Earth system models, to study plant-atmosphere interactions and predict the future of ecosystems facing global change43
(e.g., Poulter et al. 2010). Yet, the usefulness of TBMs is currently limited by the large uncertainties in their projections44

which originate from different sources (Lin et al. 2011).45

Forest structure has long been recognized as a critical component to understand forest dynamics (Hurtt et al. 2010). It46

influences the climatically important fluxes of carbon, energy, and water (Bonan 2008). Yet, its realistic representation is47

challenging and an urgent priority in the development of next-generation TBMs (Fisher et al. 2018). The representation of48
the forest structure within TBMs is associated with three sources of uncertainty: model structure, model initialisation, and49

model parameter uncertainty.50

The model structure entails by definition all the processes included in a model, how they are implemented, and all the51

underlying assumptions (Bonan 2019). Model structure complexity varies among TBMs and also depends on the user52

configuration choices: different formulations of the same process can co-exist within a TBM. This complexity results from53

the necessary compromise between an accurate representation of reality on the one hand and the computational demand and54
observational requirements on the other (Shiklomanov et al. 2020). Model intercomparison studies have demonstrated that55

discrepancies in the representation of key processes such as forest structure (Fisher et al. 2018) or photosynthesis (Rogers et56

al. 2017) lead to significant uncertainties in the projections of critical variables such as the overall land carbon sequestration57

capacity (Friedlingstein et al. 2014; Lovenduski and Bonan 2017; Friedlingstein et al. 2006).58

The initialisation uncertainty reflects the error made when determining the initial conditions of the modelled ecosystem.59
Several approaches exist for initialising TBMs, the most common of which is probably to start runs from near-bare ground60

conditions, force the simulations with relevant climate-forcings, and wait for the model to reach an equilibrium state, the so-61

called potential vegetation (Antonarakis et al. 2011). Yet, such a spin-up approach does not guarantee reliable initial62

demography, carbon pools, or ecosystem structure. Alternatively, forest inventories can be used to prescribe the initial63
composition of the ecosystem (Medvigy et al. 2009). The derivation of the initial states of critical variables, such as the64

aboveground biomass or the total leaf area from the plant size distribution, then relies on model default allometries which are65

often derived from other, potentially non-representative site-specific data.66

Parameter uncertainty arises among other things from the necessary simplification of the natural complexity into a coherent67

list of model parameters, the uncertainty in the measurements used to calibrate the model, or the methods used to upscale68
local measurements to scales on which TBMs operate (Zaehle et al. 2005). Previous sensitivity analyses have underlined the69

critical importance of parameter uncertainty for the projections of ecosystem demography and productivity (Dietze et al.70

https://www.zotero.org/google-docs/?05ab5q
https://www.zotero.org/google-docs/?EyB6OL
https://www.zotero.org/google-docs/?fZBMBo
https://www.zotero.org/google-docs/?6woyfr
https://www.zotero.org/google-docs/?08Fzof
https://www.zotero.org/google-docs/?Hsao6p
https://www.zotero.org/google-docs/?KZ8IkQ
https://www.zotero.org/google-docs/?QQe4mS
https://www.zotero.org/google-docs/?2Q26ii
https://www.zotero.org/google-docs/?wCx3lh
https://www.zotero.org/google-docs/?wCx3lh
https://www.zotero.org/google-docs/?ofQcyW
https://www.zotero.org/google-docs/?itVAgr
https://www.zotero.org/google-docs/?A7Kb6T
https://www.zotero.org/google-docs/?czenPV
https://www.zotero.org/google-docs/?UAojYv
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2014; Massoud et al. 2019; Raczka et al. 2018; Wramneby et al. 2008). In a recent comparative study, parameter uncertainty71
was even shown to dominate the overall model uncertainty over process uncertainty (Shiklomanov et al. 2020). Among72

model parameters, allometric coefficients scale the shape and mass of the plants or of its components with their size (Chave73

et al. 2014). Not surprisingly, multiple TBMs were shown to be sensitive to such allometric parameters (Collalti et al. 2019;74
Cano et al. 2020; Esprey et al. 2004). Parameter uncertainty can be reduced by constraining the range of variation of model75

parameters through the assimilation of different sources of observations or via model optimization (LeBauer et al. 2013). In76

the past, TBMs have often been calibrated with eddy covariance data (Fer et al. 2018; Rezende et al. 2016; Collalti et al.77

2016). While this approach ensures that the model correctly reproduces the short timescale (diurnal/seasonal) dynamics of78
land fluxes, it does not ensure an accurate representation of forest structure and carbon pools. This is especially true because79

forest structure-related parameters can present a low sensitivity to those observations (LeBauer et al. 2013; Richardson et al.80

2010), and the equifinality in TBMs (Luo et al. 2009) can lead to acceptable land fluxes with a poor representation of81

ecosystem structure (i.e. fluxes can be reproduced from an almost infinite range of structural possibilities, some of which82
will be much more likely than would be others).83

Among the different sources of observations used to reduce model uncertainties, remote sensing from various platforms84

(terrestrial, air- and space borne) has increasingly been used to monitor and understand terrestrial ecosystems (Jones and85

Vaughan 2010). LiDAR (Light Detection And Ranging) data in particular have been used in the past to initialise forest86

biomass and constrain predictions of TBMS (Thomas et al. 2008; Hurtt et al. 2019). The recent revolution in Terrestrial87
Laser Scanning (TLS, also called terrestrial LiDAR) provides new opportunities for constraining TBMs, and reducing the88

uncertainties related to the vegetation structure representation (Fischer et al. 2019). The ability of TLS to measure the89

distance to reflecting surfaces was initially used in ecological studies to measure simple metrics like DBH and tree heights90

(Maas et al. 2008; Hopkinson et al. 2011). Since then, TLS methods have rapidly evolved to derive more complex metrics,91
such as the vertical profiles of the forest structure (Jupp et al. 2009; Calders et al. 2018) and whole-tree volumetric92

assessments (Fan et al. 2020), leading to an accurate determination of forest structure across various forest types (Calders et93

al. 2015; Tanago et al. 2018; Takoudjou et al. 2018; Ehbrecht et al. 2017; Stiers et al. 2018; Saarinen et al. 2021.). Today, the94

ability of TLS to accurately represent the 3D structure of forests via quantitative structure modelling (QSM), see Raumonen95
et al. (2013) and Hackenberg et al. (2015) represents a unique opportunity to improve our understanding of forest ecosystems96

under changing climates (Calders et al. 2020). In particular, TLS snapshots of vegetation ecosystems could simultaneously97

provide important state variables to initialise TBMs, strong constraints to some critical allometric parameters, and help98

determine the most appropriate model structure for some key processes.99
In this study, we evaluated the relative contribution of different sources of uncertainty (parameters, processes, initial100

conditions) to the overall uncertainty of multiple simulated outputs of a specific TBM, namely the Ecosystem Demography101

model version 2 (ED2.2). We also explored the benefits of constraining vegetation structure related parameters and processes102

using TLS on the model performance and output variability. To do so, we ran ED2.2 simulation ensembles for a temperate103

https://www.zotero.org/google-docs/?UAojYv
https://www.zotero.org/google-docs/?31bybP
https://www.zotero.org/google-docs/?GOdQvD
https://www.zotero.org/google-docs/?GOdQvD
https://www.zotero.org/google-docs/?FX8jfT
https://www.zotero.org/google-docs/?FX8jfT
https://www.zotero.org/google-docs/?NhlbEw
https://www.zotero.org/google-docs/?J5M3MV
https://www.zotero.org/google-docs/?J5M3MV
https://www.zotero.org/google-docs/?RCnrPZ
https://www.zotero.org/google-docs/?RCnrPZ
https://www.zotero.org/google-docs/?pwsxIW
https://www.zotero.org/google-docs/?3Rwic3
https://www.zotero.org/google-docs/?3Rwic3
https://www.zotero.org/google-docs/?tp7ei3
https://www.zotero.org/google-docs/?8i2IpT
https://www.zotero.org/google-docs/?cEAd09
https://www.zotero.org/google-docs/?4dDFOV
https://www.zotero.org/google-docs/?mpb98d
https://www.zotero.org/google-docs/?6RIDD1
https://www.zotero.org/google-docs/?6RIDD1
https://www.zotero.org/google-docs/?RE5Pfu
https://www.zotero.org/google-docs/?RE5Pfu
https://www.zotero.org/google-docs/?0GoEmf
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forest in the UK considering different initial states for the modelled ecosystem, and varying multiple model parameters and104
process settings with or without TLS constraints. In other words, we assessed: (i) the relative importance of the model105

structure, initialisation, and parameter uncertainties in the ED2.2 model representation of a temperate forest; (ii) the potential106

added value of TLS data for vegetation modelling. To the best of our knowledge, this study is the first attempt to constrain107
fuse TLS data and a TBM using TLS.108

109
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2 Material and Methods110

2.1 Study site and data111

2.1.1 Study site112

Wytham Woods is a mixed deciduous forest, predominantly broadleaved, covering approximately 40 ha. It is located 5 km113

northwest of Oxford in southern England (Thomas et al. 2011). Owned by Oxford University, Wytham Woods has been part114
of the UK Environmental Change Network (ECN) and of the Smithsonian Global Earth Observatory (SIGEO) network since115

1992 and 2008, respectively, and has hosted numerous ecological studies (Savill et al. 2010). The site is classified as an116

ancient semi-natural woodland (Hall et al. 2001), which means that the site has been continuously covered by trees through117

recorded history (since at least 1600), occasionally managed, and experienced minimal intervention (i.e. no silvicultural118
management) since WWII (Fenn et al. 2015). Over the 1993-2008 time period, the site was characterised by a mean annual119

temperature of 10°C and a mean annual precipitation of 726 mm (Butt et al. 2009). The area we simulate in this study is a120

1.4 ha forest plot nested within the 18 ha long-term monitoring site part of the ForestGEO global network of forest inventory121

plots. This 140 m × 100 m area has a local SW-coordinate (0, 100) and local NE-coordinate (140, 200) boundary. The local122
origin coordinate (0,0) was located with a differential GPS at Lat 51.7750579 and Lon -1.33904729.123

2.1.2 Field inventory and Terrestrial Laser Scanning data124

The studied plot was inventoried during the summer of 2016. All trees were located, measured, and identified at the species125

level. The plot is largely dominated by sycamore (Acer pseudoplatanus, 65.3% of the 815 inventoried trees in the 1.4 ha plot,126
see Table 1, Figure 1 and Supplementary Figure S1), ash (Fraxinus excelsior, 10.3% of the stems), and hazel (Corylus127

avellana, 8.2% of the stems). Oaks (Quercus robur) represent a limited fraction of the woody stems (4.3%) but128

disproportionately contribute (23.4%) to the total basal area as they mostly consist of large trees (Table 1 and Figure 1).129

From the inventory, tree DBH is 24.4 cm on average (DBH median is 19.8 cm), and ranges from 2.9 cm to 141.2 cm.130

Three-dimensional forest structure data were collected using a RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser131
Measurement Systems GmbH) in leaf-on (June and July 2015) and leaf-off (December 2015 and January 2016) conditions132

(Calders et al. 2018). The RIEGL instrument uses on-board waveform processing and records multiple return LiDAR data,133

which improves vertical sampling (Lovell et al. 2003; Calders et al. 2014). Individual trees were extracted using treeseg134

(Burt, et al. 2019), and their structure modelled with TreeQSM (Raumonen et al. 2013) with the leaf-off TLS point cloud.135
Leaves were then added to the individual tree branches using both the leaf-off and -on TLS datasets with the FaNNI136

algorithm (Åkerblom et al. 2018). Doing so, TLS allowed retrieving of individual tree height, aboveground woody biomass137

(modelled through estimates of volume combined with species-specific wood density), and leaf area. In addition, the138

individual tree crown area was computed from the vertical projection of the leaf-off point clouds of individual trees. For139

https://www.zotero.org/google-docs/?LvQ3CC
https://www.zotero.org/google-docs/?4vu3wU
https://www.zotero.org/google-docs/?SZMqrA
https://www.zotero.org/google-docs/?O42lG7
https://www.zotero.org/google-docs/?3NPQPB
https://www.zotero.org/google-docs/?9j2aii
https://www.zotero.org/google-docs/?z1EbCE
https://www.zotero.org/google-docs/?vnanNB
https://www.zotero.org/google-docs/?nDMvgP
https://www.zotero.org/google-docs/?1op00j
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more details, a complete description of the TLS data collection and forest stand reconstruction is available in Calders et al.140
(2018).141

2.1.3 Flux tower data and species traits142

Stand-scale carbon and water fluxes have been occasionally measured in Wytham Woods using the eddy covariance143
technique. We digitised the most recent (to our knowledge) data collection of CO2 fluxes that was reported by Thomas et al.144

(2011) for the period May 2007-April 2009. To do so, we digitised the weekly mean values of ecosystem gross primary145

productivity (GPP), ecosystem respiration (Reco), and net ecosystem productivity (NEP) from Figure 6 of the aforementioned146

reference using the Plot digitizer software (v.2.6.8, http://plotdigitizer.sourceforge.net/). For a more detailed description of147
the eddy covariance data (including the data frequency of the original data, and the data quality filtering), we refer the148

readers to the original publication by Thomas et al. (2011).149

In addition, we extracted all existing records of specific leaf area (SLA) and maximum rate of carboxylation (Vc,max) for the150

five most important species in Wytham woods (Acer pseudoplatanus, Corylus avellana, Crataegus monogyna, Fraxinus151

excelsior, and Quercus robur) from the TRY database (Kattge et al. 2020), see Table 1 (the complete list of references from152
which the data originate is available in supplementary section 1). Individual traits were converted into ED2.2 units (m² kgC-1153

for SLA with a fixed leaf carbon content of 0.5 and µmolC m-2 s-1 for Vc,max). Vc,max data were also rescaled to the ED2.2154

reference temperature (15°C) using the model default value for the temperature coefficient Q10 of 2.4. Following Asner et al.155

(2017), we calculated the community-weighted mean (CWM) and community-weighted standard deviation (CWSD) for both156
traits based on the species composition and species-level average values, using species basal area as weights:157

Equation (1)

158

Equation (2)

where is the total number of species for which data was available in TRY for each trait , is the mean trait value for159

species , and is the species weight (here the basal area of species ).160

Flux tower data were used as a validation dataset while the TRY data were used to constrain parameters of the TBM used in161
this study and described just below.162

https://www.zotero.org/google-docs/?4PMCnP
https://www.zotero.org/google-docs/?3ycvhB
http://plotdigitizer.sourceforge.net/
https://www.zotero.org/google-docs/?u3Q2Zf
https://www.zotero.org/google-docs/?aRkvzU
https://www.zotero.org/google-docs/?Eij5S3
https://www.zotero.org/google-docs/?Eij5S3
https://www.codecogs.com/eqnedit.php?latex=%20CWM%20%3D%20%5Cfrac%7B%5Csum_%7Bi%20%3D1%7D%5E%7BN%7D%20w_i%20%5Ccdot%20x_i%7D%7B%5Csum_%7Bi%3D1%7D%5E%7BN%7D%20w_i%7D%20
https://www.codecogs.com/eqnedit.php?latex=%20CWSD%20%3D%20%5Csqrt%7B%20%5Cfrac%7B%5Cfrac%7B%5Csum_%7Bi%20%3D1%7D%5E%7BN%7D%20w_i%20%5Ccdot%20%5Cleft(x_i%20-%20CWM%20%5Cright)%5E2%7D%7B%5Cleft(N%20-%201%20%5Cright)%20%5Csum_%7Bi%20%3D%201%7D%5E%7BN%7D%20w_i%7D%7D%7BN%7D%20%7D
https://www.codecogs.com/eqnedit.php?latex=N
https://www.codecogs.com/eqnedit.php?latex=x
https://www.codecogs.com/eqnedit.php?latex=x_i
https://www.codecogs.com/eqnedit.php?latex=i
https://www.codecogs.com/eqnedit.php?latex=w_i
https://www.codecogs.com/eqnedit.php?latex=i
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2.2 Model163

2.2.1 The terrestrial biosphere model ED2.2164

ED2.2 is a terrestrial biosphere model that can simulate the vegetation dynamics of a wide range of ecosystems from boreal165

to tropical forests (Longo et al. 2019). It is a cohort-based, spatially implicit model that approximates the behaviour of an166
individual-based, spatially distributed vegetation model through a system of size- and age-structured partial differential167

equations (Moorcroft et al. 2001). ED2.2 integrates modules of plant growth, mortality, phenology, disturbance, hydrology,168

and soil biogeochemistry to predict e.g., the demography, the succession, and the dynamics of water and carbon within the169

simulated ecosystem.170

In ED2.2, the inter- and intra-specific diversity is represented by a set of plant functional types (PFTs) that differ by their171

leaf physiology, phenology, growth and allocation strategies, mortality, and sensitivity to environmental conditions (D.172
Medvigy et al. 2009). The trees inventoried in Wytham Woods were classified as either mid- or late-successional temperate173

deciduous trees (see below for the reasoning of the mapping). These PFTs are cold-deciduous, i.e. leaf phenology is174

prognosed by the accumulation of growing degree-days (growing season) and chilling days (senescing season) (Longo et al.175

2019). A comprehensive model description, including photosynthesis, allometries, radiative transfer, and phenology, is176
available in Longo et al. (2019).177

The ED2.2 model is available at https://doi.org/10.5281/zenodo.3365659.178

2.2.2 Model initialisation and forcings179

In this study, the ED2.2 model was initialised using i) near-bare ground (NBG) initial conditions (i.e. seedlings only), ii) the180

field inventory, or iii) the TLS-reconstructed size distribution. In the latter two configurations, the 1.4 ha site was initially181
divided into 35 square patches of 20 x 20 m. These three types of initial conditions are referred to below as NBG, Census,182

and TLS respectively. Simulations were run for multiple years using the local forcing data of the corresponding years of the183

CRU-NCEP reanalysis dataset (Viovy 2018). Simulations were run for either five years (Census and TLS configurations) or184

the approximate age since the last large-scale disturbance (100 years, NBG configuration), see Table 5. Soil texture was set185
according to the dominant soil type (clay), based on site-level observation (Butt et al. 2009).186

2.2.3 Allometries and model parameters187

In ED2.2, the carbon made available from net assimilation is partitioned at the cohort level into the different plant pools188

according to DBH-dependent allometries (Longo et al. 2019). In other words, plant cohorts allocate the carbon assimilated189

through photosynthesis to living tissues (i.e. fine roots, sapwood, leaves, seeds), the non-structural storage pool, and the dead190
tissues (i.e. coarse roots, and aboveground woody biomass) depending on (i) a set of allometries and (ii) whether the plant191

carbon balance and environmental conditions are favourable for growth. In ED2.2, aboveground woody biomass, height, leaf192

https://www.zotero.org/google-docs/?qWXoQl
https://www.zotero.org/google-docs/?9O1O2S
https://www.zotero.org/google-docs/?tJNnhV
https://www.zotero.org/google-docs/?tJNnhV
https://www.zotero.org/google-docs/?kCbDyd
https://www.zotero.org/google-docs/?kCbDyd
https://www.zotero.org/google-docs/?Yhp2fl
https://doi.org/10.5281/zenodo.3365659
https://www.zotero.org/google-docs/?FuFSmW
https://www.zotero.org/google-docs/?JmiK7q
https://www.zotero.org/google-docs/?HGGbmt
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biomass, and crown area are scaled through DBH-dependent allometries (Table 3). The ED2.2 default allometric models and193
parameters are defined according to Medvigy et al. (2009) for the leaf biomass and height, Dietze et al. (2008) for the crown194

area, and Albani et al. (2006) for the aboveground woody biomass.195

To estimate the relative contribution of the parameter uncertainty to the variability of the model outputs, we used parameter196

distributions from previous ED2.2 parameter uncertainty studies (Dietze et al. 2014; Shiklomanov et al. 2020; Raczka et al.197
2018; Viskari et al. 2019). We only targeted those parameters that were shown to significantly contribute to the overall198

parameter uncertainties in the aforementioned studies (Table 4) and set the rest to their ED2.2 default values for all199

simulations. For SLA and Vc,max in particular, we defined two types of parameter distributions: either relatively wide priors200

as in the previous sensitivity analyses listed above (Table 4) or constrained posteriors generated by the trait meta-analysis of201
the Predictive Ecosystem Analyzer (PEcAn) run with the existing data in TRY and without random effects, see (LeBauer et202

al. 2013; Meunier et al. 2021; Raczka et al. 2018). The meta-analysis was informed by TRY data only. Those distributions203

are referred to below as without or with TRY-constraints, respectively. The uncertainty of the allometric coefficients was204

determined either by the range of variation of those parameters in the ED2.2 model for hardwood tree PFTs (NBG and205
Census configurations) or by the posterior distributions of these parameters generated when fitting the TLS data (see below).206

2.2.4 Model configurations207

To assess the importance of the model structure uncertainty, we targeted processes that were shown to induce significant208

variability in the model outputs in previous studies (Shiklomanov et al. 2020). In detail, we ran the model with multiple209
combinations of the following configurations: (i) closed canopies versus crowns of finite radii; (ii) two-stream versus210

multiple-scatter canopy radiative transfer models (RTMs); (iii) static versus plastic (varying with available light level) SLA211

and Vc,max; and (iv) a single versus two plant functional types (Table 2).212

By default in ED2.2, plant canopies are represented as infinitely thin flat crowns (a.k.a. complete shading or closed canopy)213

that virtually occupy the entire horizontal space of the patch in which the cohort is located. In an alternative configuration,214

cohorts are still stacked on top of each other but have a finite radius and hence tallest plants only partially shade the215
underlying cohorts. In other words, the crown sub-model of ED2.2 determines the nature of the light competition between216

cohorts. Closed canopies have been shown to dramatically suppress competition from sub-dominant PFTs and typically217

result in unrealistically homogeneous patches (Fisher et al. 2015) while understorey cohorts receive more incoming diffuse218

and direct light if finite crowns are simulated.219
The second sub-model we investigated was the choice of RTM. In both options (two-stream and multi-scatter), the full220

vertical radiation profile within each patch is resolved as a function of the canopy structure (e.g. leaf and wood area,221

clumping) and the environmental conditions (e.g. incident solar radiation, solar angle) following the approach of CLM 4.5222

(Oleson et al. 2013). Both RTMs differ in the numerical resolution of the radiative transfers. By default (two-stream), the223
special multi-canopy solution of the two-stream approximation for vegetation canopies (Sellers 1985) is used as described in224

https://www.zotero.org/google-docs/?2NesCy
https://www.zotero.org/google-docs/?cVVmHb
https://www.zotero.org/google-docs/?BvxkcC
https://www.zotero.org/google-docs/?p5dLzl
https://www.zotero.org/google-docs/?p5dLzl
https://www.zotero.org/google-docs/?Lul5c6
https://www.zotero.org/google-docs/?Lul5c6
https://www.zotero.org/google-docs/?Lul5c6
https://www.zotero.org/google-docs/?Lul5c6
https://www.zotero.org/google-docs/?ApCFFy
https://www.zotero.org/google-docs/?8J9odO
https://www.zotero.org/google-docs/?kf7wTD
https://www.zotero.org/google-docs/?Mrtoxl
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Longo et al. (2019) while the multiple-scatter is derived from first principles by Zhao and Qualls (2005) to address the long-225
known issues and biases of the two-stream model (Wang 2003). The multiple-scatter configuration increases diffuse light226

levels in the understorey as compared to the default two-stream approach (Shiklomanov et al. 2020).227

The third sub-model that we evaluated is related to trait plasticity. By default (static), all cohorts of a given PFT share the228

same set of parameters which do not evolve over time, in contradiction with well-documented intra-specific variability of229
plant traits with environmental conditions (e.g. Keenan and Niinemets 2016). In the alternative configuration (plastic),230

cohort SLA and Vc,max respectively decrease and increase with light availability, following empirical relationships from the231

tropics (Lloyd et al. 2010).232

Finally, we also evaluated the impact of simulating one or multiple PFTs by either classifying all trees in the Wytham233

Woods inventory as belonging to the mid-successional hardwood tree PFT of ED2.2 (NPFT = 1) or according to a234
classification similar to the one of Dietze and Moorcroft (2011), (NPFT = 2), supplemented by a clustering analysis of the235

allometric relationships derived from the TLS data (see below).236

2.3 Analyses237

2.3.1 Impact of TLS data on model allometries and initial conditions238

We first compared the model default allometries with site-specific ones constrained from the TLS data. To do so, we fitted239
the individual plant metrics (height, crown area, aboveground woody biomass, and leaf area) versus DBH relationships240

derived from TLS with the set of equations used in ED2.2 (Table 2). More specifically, we fitted the parameters of the four241

allometries of ED2.2 using a Bayesian approach and the ‘brms’ package of R (Bürkner 2017). To account for the uncertainty242

of the data we repeated the same analysis multiple times (N = 100) using data random sampling with replacement and243
aggregating the resulting allometric parameter posterior distributions. To convert the leaf area obtained from TLS into leaf244

biomass, we used the CWM of SLA. We evaluated the quality of fit of the allometric models by computing the root-mean-245

square deviations (RMSD, van Breugel et al. 2011) normalised by the observed mean and the Watanabe information246

criterion (WAIC) for all four allometric models (height, crown area, aboveground woody biomass, leaf biomass). We fitted247
all allometric models using multiple possible species-to-PFT classifications and only retained the classifications that248

minimised the WAIC for the configurations NPFT = 1 and NPFT > 1.249

To assess the relative importance of TLS for the model initialisation, we compared the tree size distributions obtained from250

the field inventory and the TLS data and computed the absolute and relative differences between both DBH distributions251
(ground-truthing of TLS).252

https://www.zotero.org/google-docs/?WlRHtG
https://www.zotero.org/google-docs/?oXMsWM
https://www.zotero.org/google-docs/?qkror0
https://www.zotero.org/google-docs/?J5RSeM
https://www.zotero.org/google-docs/?zyW0GT
https://www.zotero.org/google-docs/?qQ9ZWd
https://www.zotero.org/google-docs/?5PLEjL
https://www.zotero.org/google-docs/?OHjJIL
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2.3.2 Ensemble runs253

For each type of initial conditions (NBG, Census, and TLS), we ran ensembles of 500 simulations with parameters randomly254

sampled from the parameter distributions (Table 4) and with process configuration randomly selected from the different255

options (Table 5). Each ensemble was equally split between runs with (250) and without (250) TRY constraints on SLA and256
Vc,max. The same parameter samples and process configurations were used for all three types of initial conditions, and with257

and without TRY restrictions on SLA and Vc,max to allow independently evaluating the impact of the initial conditions, TRY-258

and TLS-constraints at specific parameter values.259

2.3.3 Sensitivity analyses and variance decomposition260

Finally, we assessed which processes and parameters contributed the most to the overall model variance by performing a261

sensitivity and a variance decomposition analysis following Dietze et al. (2014) and Lebauer et al. (2013). This analysis262

allows predicting the fraction of the variance in target output variables attributable to individual parameters and processes (or263

“partial variance”). We chose as target output variables the ecosystem GPP during the most productive month (June) or over264
the leaf-on season (May-October), the total leaf area index (LAI) and the understorey photosynthetically active radiation265

(PAR) in leaf-on conditions, as well as the aboveground woody biomass at the end of the simulation. For the NBG266

configuration, we also decomposed the variance of the total stem density (which is prescribed in the other two267

configurations). Parameters included in the variance decomposition analyses were re-classified as belonging to one of these268
three categories: allometric parameters, TRY-constrainable parameters (SLA and Vc,max), and others. All five years of the269

Census and TLS configurations were kept for analysis while only the last five years of the NBG runs were considered. Note270

that the variance partitioning algorithm that we used only attributes to the parameters and processes their direct effect:271

interactions are not accounted for in the variance decomposition.272

All analyses presented in this study were performed using R 3.6 (R Core Team, 2019). Code and supporting data (including273

initialization and setting files) for reproducing the results presented below are publicly available in Zenodo and have the274
permanent DOI 10.5281/zenodo.6363617.275

276



12

3 Results277

3.1 Impact of TLS data on model allometries and initial conditions278

TLS-extracted and field inventory DBHs were very well correlated (R² = 0.98, slope of the inventory vs TLS linear model =279

0.998, see supplementary Figure S4). The mean (resp. median) relative difference between the TLS and field inventory280
DBHs was -0.2% (resp. -1.7%), see Supplementary Figure S5. The minimum and maximum absolute differences in DBH281

were -13.8 and 32.9 cm, respectively; the minimum and maximum relative differences were -42 and 101%, respectively282

(Supplementary Figure S5). The total tree basal area from the inventory was 36.8 cm2 m-2 while the total tree basal area283

obtained from TLS tree reconstruction was 36.2 cm2 m-2.284

Individual tree measurements from QSMs applied to the TLS point cloud could all be satisfactorily represented by the ED2.2285

allometric equations and a single PFT (Figure 2). R² of the allometric models for the individual aboveground woody biomass,286
height, crown area, and leaf biomass respectively reached 0.95, 0.83, 0.67, and 0.77. The normalised RMSD changed from287

18.3 to 16.9% (height), from 85.1 to 75.7% (crown area), from 146.1 to 95.0% (woody biomass), and from 151% to 83.5%288

(leaf biomass) when switched from ED2.2 default allometries for the mid-successional hardwood tree PFT to TLS-derived,289

site-specific ones (Table 3).290

Over the DBH range in Wytham Woods, TLS-derived allometries led to systematically larger allocations to291

aboveground woody biomass (+73% on average, up to +177% for the smallest tree) and leaf biomass (+75% on292

average), and smaller tree height (-1.9 m on average) as compared to ED2.2 defaults (Figure 2). Individual293

crown areas derived from TLS measurements varied between 0.2 and 465.4 m², with a mean of 26 m². As294

compared to the TLS-calibrated allometries, default model coefficients predicted larger crown areas for trees with295

DBH < 64 cm (-22% on average), and smaller crown areas for trees with DBH ≥ 64 cm (+17% on average),296

see Figure 2. The latter category (DBH ≥ 64 cm) comprised 30 trees (3.7% of the total) and contributed to297

30.7% of the total basal area and 24.9% of the total leaf area.298

Increasing the number of PFTs only slightly improved the goodness of fit of all four allometric models. The best species-to-299

PFT mapping according to the literature-informed minimization of the Watanabe information criterion was to classify Acer300

pseudoplatanus as belonging to the late-successional hardwood PFT and the rest of the tree species as belonging to the mid-301
successional hardwood PFT (Table 1, Supplementary Figures S2 and S3). Using this classification, the normalised RMSD of302

the allometric models decreased from 16.9 to 16.8% (height), 75.7 to 71.1% (crown area), 95.0 to 77.9% (aboveground303

woody biomass), and 83.5 to 73.9% (leaf biomass). This mapping resulted in larger crown areas and larger carbon allocation304

to woody and leaf tissues for small (DBH < 50 cm) trees of the mid-successional tree PFT and taller late-successional trees305
across all DBHs (+1.16 m on average).306



13

3.2 Ensemble runs307

Regardless of the TRY constraints and the initial conditionsmodel configurations, the model ensembles could on average308

reproduce both the amplitude and the seasonality of the gross ecosystem productivity, as observed by the eddy covariance309

flux tower, with a maximum GPP in June and a leaf-off season with close-to-zero GPP in December-February (Figure 3). R²310
of observed vs simulated monthly mean of mean of the monthly GPP was larger than 0.93 for all configurations (NBG,311

Census, TLS) while the RMSE varied between 1.2 (NBG), 1.3 (TLS) and 1.9 (Census) µmol m-2 s-1, much lower than the312

mean and standard deviation of the two years of observational data of GPP (5.5 and 4.7 µmol m-2 s-1, respectively). Because313

we only simulated fully deciduous tree PFTs, model ensembles underestimated GPP during winter: simulated ecosystem LAI314
and hence ecosystem gross productivity dropped to almost zero in December-February (Supplementary Figure S6) while315

measured ecosystem productivity was non-null during the same period (Figure 3), driven by evergreen understory plants316

such as shrubs that were not included in our simulations.317

The variability of the simulated GPP was critically influenced by the model configuration and the application of constraints318

on SLA and Vc,max (Figure 3). The standard deviation of the ensemble runs for the simulated GPP was not unexpectedly the319
largest for the configuration with the least information on the ecosystem (the NBG configuration without TRY constraints),320

and reached 6.33 µmol m-2 s-1 for June (Figure 3). More than 23% of the runs in that e NBG configuration without TRY321

constraints led to unvegetated conditions (LAI < 0.1 m2 m-2, all year long, see Supplementary Figure S6) after 100 years of322

simulations while about 5% of the runs simulated unrealistically dense tree covers (LAI > 10 m2 m-2 in summerwhen the tree323
covers reaches its maximum). Combined with the uncertainty of all other parameters, including the photosynthetic324

onesparameters, the LAI variability explainsed the extreme variability of the simulated ecosystem's gross productivity. The325

95% confidence interval of the simulated ecosystem GPP in June for the NBG configuration without TRY constraints (0 -326

19.8 µmol m-2 s-1) was almost twice as large as the observed GPP at that moment (13.2 µmol m-2 s-1).327

Prescribing initial conditions reduced the variability of the simulated outputs: ensemble standard deviation of GPP in June328

for the Census configuration without TRY constraints was 4.83 µmol m-2 s-1. However, for the ecosystem productivity329
constraining SLA and Vc,max was even more critical: ensemble standard deviation of GPP in June for the Census330

configuration with TRY constraints decreased to 1.99 µmol m-2 s-1 (see Figure 3 and also Figure 4 where the pie chart331

radius is set proportional to the variance of the simulated ecosystem GPP). When both parameters were constrained and332

realistic initial conditions were prescribed to the model (i.e. going from the NBG-without TRY constraints to the Census-333
with TRY constraints configuration), the variability of the simulated GPP experienced a three-fold decrease. Similarly, the334

variability of LAI (supplementary Figure S6-7) and AGB (supplementary Figure S8) was drastically reduced, with a four-335

fold and and a two-fold decrease respectively.336

Given the similarities of the tree size distributions derived from the inventory and TLS (see results section 3.1), prescribing337

initial conditions had a similar impact on the variability of the outputs for the TLS and for the Census configurations.338
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Combined with the constraints on allometries, it led to a reduction of the ensemble standard deviation for GPP in June to339
3.78 µmol m-2 s-1 for the TLS configuration without TRY constraints. As for the Census configuration, constraining SLA340

and Vc,max with TRY data had a larger impact on the model uncertainty: ensemble standard deviation of GPP in June for341

the TLS configuration with TRY constraints decreased to 1.54 µmol m-2 s-1. Incrementally adding the TLS-related342
information to the Census-with TRY constraints configuration had a positive, yet more limited effect on the reduction of the343

model variability of GPP: ensemble standard deviation of GPP in June was reduced by 30% between the Census and TLS344

configurations with TRY constraints. Constraining allometries with TLS had a more significant impact on LAI345

(supplementary Figures S6-S7) and AGB (supplementary Figure S8), with a three-fold decrease of the ensemble standard346
deviation from the Census-with TRY constraints to the TLS-with TRY constraints configurations.347

All in all, Tthe predicted variability of the ecosystem LAI and GPP was on the contrary very lowest for the TLS348

configuration with TRY constraints: 3.79 ± 0.50 m2 m-2 for the ensemble mean (± one standard deviation) of the ecosystem349

LAI (Supplementary Figure S6), 9.86 ± 2.89 µmol m-2 s-1 for the ensemble mean (± one standard deviation) of the ecosystem350

GPP (Figure 3), both during leaf-on conditions, which compared well with independent observations (Table 6). The351
confidence interval of the simulated ecosystem GPP in June for the TLS configuration with TRY constraints was352

significantly reduced (11.8 - 17.6 µmol m-2 s-1) and much closer to the confidence interval of the observations (11.5 - 14.6353

µmol m-2 s-1). In total, the variability of the simulated GPP experienced a four-fold decrease when parameters were354

constrained, realistic initial conditions were prescribed, and TLS data were used to constrain the allometries (i.e. going from355
the NBG-without TRY constraints to the TLS-with TRY constraints configuration).356

Prescribing realistic initial conditions reduced the variability of the simulated outputs (ensemble standard deviation of GPP357

in June for the Census configuration without TRY constraints was 4.83 µmol m-2 s-1), just like imposing the TLS-constrained358

allometries (ensemble standard deviation of GPP in June for the TLS configuration without TRY constraints was 3.78 µmol359

m-2 s-1). However, for the ecosystem productivity constraining SLA and Vc,max was even more critical: ensemble standard360
deviation of GPP in June for the Census and TLS configurations with TRY constraints decreased to 1.99 and 1.54 µmol m-2361

s-1, respectively (Figure 3 and Figure 4 where the pie radius is proportional to the variance of ecosystem GPP).362

3.3 Variance decomposition and sensitivity analyses363

The variance of the ecosystem GPP was dominantly driven by the parameter uncertainty regardless of the configuration and364

the application of TRY constraints (Figure 4). Together, TRY-constrainable parameters, allometric coefficients, and the365
other ED2.2 parameters included in the sensitivity analysis, contributed on average to 63% of the total variance of GPP in366

June. Constraining SLA and Vc,max with TRY datasets dramatically decreased the relative contribution of these two367

parameters to the overall variance: moving from uninformed priors to posteriors generated by the trait meta-analysis of368

PEcAn made the sum of their partial variances drop from a majority (57% on average for all three configurations) to a small369
contribution (7% on average for all three configurations), their share being mainly replaced by unconstrained parameters370
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which increased from 6% to 50% on average across all configurations (Figure 4), especially the Quant. Eff., the Clumping371
and the Growth resp. parameters (Figure 5). The variance decomposition of the simulated ecosystem LAI and aboveground372

biomass led to very similar results, yet with a larger contribution of allometric parameters: allometric parameters contributed373

on average to 6 and 20% of the variance for LAI and AGB respectively, a larger contribution than theirs for the variance of374
GPP (3%), which illustrates the importance of TLS to constrain the ecosystem structure (Figure 5 and Supplementary375

Figures S7-S8).376

On average, processes only accounted for 121% of the overall variance of GPP with a maximum (resp. minimum) for the377

TLS configuration with TRY constraints with 20% (resp. for the NBG without TRY constraints with 5%). Constraining SLA378

and Vc,max with TRY datasets dramatically decreased the relative contribution of these two parameters to the overall variance:379
moving from uninformed priors to posteriors generated by the trait meta-analysis of PEcAn made the sum of their partial380

variances drop from a majority (57% on average for all three configurations) to a small contribution (7% on average for all381

three configurations), their share being mainly replaced by unconstrained parameters which increased from 6% to 50% on382

average across all configurations (Figure 4), especially the Quant. Eff., the Clumping and the Growth resp. parameters383
(Figure 5). Process uncertainty was dominated by the type of crown model (5%) and the radiative transfer model (4%). Trait384

plasticity only contributed marginally to the overall variance (< 1% on average).385

The variance decomposition of the simulated ecosystem LAI and aboveground biomass led to very similar results, yet with a386

larger contribution of allometric parameterses (. With an average contribution of 6 and 20% for LAI and AGB respectively (,387

to be compared with anthe mean average contribution of of 3% for GPP), allometric parameters had) and hHence a stronger388
impact of TLS-constraints on the variance of thesethose output variables, which reinforced the impact of TLS-constraints on389

the ecosystem structure (Figure 5 and Supplementary Figures S7-S8). Processes (especially the choice of the RTM) played a390

stronger role for the available light in the understorey (on average 40% of the total variance), especially in runs with391

prescribed initial conditions (on average 56% of the total variance, see Supplementary Figure S9). Due to compensatory392
effects (Supplementary Figure S2), the number of simulated PFTs had a limited impact on all of the considered model393

outputs: NPFT only contributed to 3% of the variance of ecosystem GPP, 2% of the variance of LAI and PAR, and 1% of the394

variance of AGB.395

3.4 Ecosystem structure and functions396

Despite similar seasonal cycles of ecosystem productivity (Figure 3), ensemble means exhibited very contrasted ecosystem397
structure (Figures 6-7). None of the unprescribed simulations (NBG configuration) could capture the size distribution398

observed through the inventory (Figure 6). Small-size stem (especially DBH < 50 cm) densities were underestimated while399

large tree (DBH > 100 cm) densities were overestimated in the vegetated simulations (LAI > 0.1 m2 m-2) of the NBG400

configuration with or without TRY constraints. Switching from closed canopy to finite crowns systematically increased the401
density of small (DBH < 50 cm) trees, by 73% on average; just like constraining SLA and Vc,max with TRY data. While the402
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ecosystem LAI of the NBG configuration with closed canopies compared well with independent observations from the403
literature (3.83 ± 1.94 versus the range of 3.6 - 4.1 m2 m-2 observed in Wytham Woods, Table 6), the vertical arrangement of404

the leaves significantly differed from what was observed by TLS and imposed in the TLS configuration (Figure 7), as a405

result of the differences in tree size distribution (Figure 6).406

Despite lower total leaf areas, the infinitely wide crown configuration (closed canopies, Table 6) made the forest more407
opaque to the incoming solar radiation than the finite crowns. Across all configurations, the PAR available in the understory408

decreased by 15% throughout the year while the ecosystem LAI decreased by 18% when closed canopies were simulated409

(Table 6). For near bare-ground configurations, the LAI of the potential vegetation simulated was 23% lower with infinite410

crowns, and 16% less PAR reached the understorey.411

As the soil received more radiation when finite crowns were simulated, it was warmer and as a result, heterotrophic (and412
ecosystem respiration, see Table 6) increased (+ 25% on average) when switching from infinite to finite crowns. Forest413

carbon stocks also diverged between configurations: driven by higher allocations to leaf and aboveground woody biomass414

(Figure 2), aboveground carbon storage was larger (+74% on average) in TLS-derived runs than when default allometries415

were applied (Table 6). Aboveground woody biomass from configurations starting from near bare-ground conditions was416
systematically underestimated compared to the TLS estimates (11.4 kgC m-2 on average for the NBG configuration versus417

24.5 kgC m-2 on average for the TLS configuration). However, the larger allocation to woody biomass induced by the use of418

TLS-derived allometries mostly did not impact any other model outputs (Figure 5) as that carbon pool is inert and does not419

influence a lot of processes downstream (e.g. more woody biomass does not translate into exacerbated light interception).420
Leaf biomass allometry derived from TLS both reduced the simulated LAI and ecosystem GPP to more realistic values and421

constrained its variability (Figures 3, Table 6, and Supplementary Figure S6).422

None of the simulation/configurations could accurately represent all features of Wytham woods. The model simulations423

starting from near bare-ground conditions failed to capture the vertical distribution of leaves (Figure 6) and the tree size424

distribution (Figure 7); the model simulations prescribed with the inventory overestimated the ecosystem GPP (Table 6); and425

the model simulations from the three configurations all overestimated the net ecosystem productivity (NEP), due to an426
overestimation of GPP (Census) and/or an underestimation of the ecosystem respiration (Census, NBG, and TLS), see Table427

6. Model simulations underestimated Reco on average by -17% leading to unrealistic NEP predictions, which illustrates the428

need for constraining or optimising autotrophic and heterotrophic respiration parameters along with the photosynthetic and429

allometric parameters to align those with observational data.430
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4 Discussion431

4.1 The relative weight of the different sources of uncertainty432

The different model configurations tested in this study led to contrasting predictions of vegetation states. Depending on the433

chosen model outputs, the relative weights of the sources of uncertainty considerably varied. Near bare-ground simulations434
generated potential vegetations that significantly differed in their demography from observations (Figure 4) while435

prescribing initial tree size distribution was not a guarantee for accurately reproducing observed land fluxes (Figure 3, Table436

6). The finite crown area representation also had a substantial impact on the model outputs. In particular, limiting the crown437

radius to finite values promoted smaller plants in the understorey (Figure 6), increased the simulated LAI (Table 6) and438
profoundly modified the vertical distribution of light in the canopy (Figure 8 and Table 6). Carbon pools also considerably439

diverged between model configurations, especially when TLS-derived allometries were taken into account (Table 6).440

However, in general, it was the parameter uncertainty that dominated the overall model uncertainty (Figure 3,441

Supplementary Figure S7 and S8), just like it was previously observed for ED2.2 simulations of temperate forests442

(Shiklomanov et al. 2020). The parameters that dominated the variance depended on the use of TRY and/or TLS constraints.443

When observations were available, uncertainty was transferred to other unconstrained parameters while the overall variance444
was reduced, like in previous similar studies (Meunier et al. 2021), which supports the process of progressively integrating445

observations of most sensitive parameters until the model variance is reduced to satisfactorily levels in an efficient data-446

model fusion loop (Dietze et al. 2014).447

Although parameter uncertainty was larger in magnitude than process uncertainty, crown size representation and the choice448

of RTMs appear to drive a significant part of the model process uncertainty and should be paid more attention to in future449
analyses. Especially, because the implementation and the sensitivity of the radiative transfer processes are currently450

overlooked in ED2.2 like other vegetation models (Fisher et al. 2018; Viskari et al. 2019).451

4.2 The added value of TLS for vegetation modelling452

The quantitative information that remote sensing generates at unprecedented spatial and temporal scales can serve the453
purpose to reduce uncertainties in TBM projections. It has already been shown that airborne laser scanning (ALS) combined454

with an individual-based forest model could offer new insights into the contribution of plant size to ecosystem functioning455

(Fischer et al. 2019). Similarly, ALS and synthetic-aperture Radar have successfully been applied to prescribe the initial456

structure and composition of tropical forests (Antonarakis et al. 2011; Antonarakis et al. Moorcroft 2014; Longo et al. 2020),457
and LiDAR data have been coupled to allometric models to estimate carbon stocks and fluxes at large scale (Hurtt et al. 2019;458

Thomas et al. 2008). Yet, our study is the first attempt to inform a TBM withfuse TLS data and TBMs. As compared to ALS,459

TLS offers a few significant advantages, as well as some drawbacks, that are important to remember. Airborne techniques460

allow for wall-to-wall coverage characterising 3D forest structure at the regional scale, whereas TLS offers far more detailed461

https://www.zotero.org/google-docs/?IMgsMX
https://www.zotero.org/google-docs/?0vUdKB
https://www.zotero.org/google-docs/?pOIJM4
https://www.zotero.org/google-docs/?PcHXT4
https://www.zotero.org/google-docs/?03dFEH
https://www.zotero.org/google-docs/?zPA5oG
https://www.zotero.org/google-docs/?WBDh7n
https://www.zotero.org/google-docs/?WBDh7n
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information but only at the local (up to a few ha) scale. However, TLS is can capable of estimating the volume of individual462
trees directly, instead of relying on allometries that require calibration and thus field measurements. In addition, it can463

accurately capture the entire size distribution (DBH and height) of the sample plot while smaller trees can easily be missed464

with airborne surveys (Wang et al. 2016) leading to incorrect demography, especially in dense forests.465

Because TLS data are complementary to the datasets that are frequently used for model calibration (e.g. eddy covariance466
data), they can contribute in a collective effort towards realistic representations of ecosystems in TBMs. TLS has the467

potential to fill important parameter and process gaps and in doing so, to help reduce the uncertainties in vegetation model468

simulations. The steep increase in the amount of available forest TLS data over the past decade (Calders et al. 2020) makes469

its coupling with TBMs even more timely. As demonstrated in this study, TLS observation can ensure a more adequate470
model structure, constrain model allometric parameters and prescribe representative initial conditions. Yet, only a471

combination of constraints on both allometries (using TLS data) and photosynthetic parameters (thanks to TRY data) could472

satisfactorily reduce the model uncertainties to its lowest level, which supports the integration of multiple data sources into473

TBMs for more realistic simulations (Peylin et al. 2016). Such a combinationfusion of a TBM and multiple data streams474
allowed us to accurately simulate both ecosystem productivity and ecosystem community composition with physically475

realistic parameters, which was previously highlighted as a challenge for dynamic vegetation models (Shiklomanov et al.476

2020; Fisher et al. 2010).477

In the future, TLS could inform vegetation models even more. The TLS community is indeed actively working on the478

derivation of additional tree- or stand-scale parameters from lidar raw data and 3D point clouds. Those parameters include479
leaf angle distributions (Boni Vicari et al. 2019), clumping (Zhao et al. 2012), and reflectance (Calders et al. 2017), which480

have been shown to significantly contribute to the overall model uncertainty (Meunier et al. 2021; Shiklomanov et al. 2020;481

Viskari et al. 2019). Yet, theoretical, technological, and technical challenges specific to each parameter still need to be raised482

before one can constrain these sensitive traits with TLS in a study similar to this one.483

4.3 Model equifinality484

Some runs from all three configurations (prescribed or not with initial size distributions) could reproduce the seasonal cycle485

of GPP observed by the flux tower (Figure 3). However, those ‘optimal’ simulations were very different from the forest486

structure point of view (Table 6, Figures 6-7). This situation illustrates the low identifiability of numerous TBM parameters487

and the need for multiple simultaneous constraints and observations. While aboveground carbon storage is critical to488
estimate forest sink strength and the overall carbon storage capacity of the ecosystem (Keeling and Phillips 2007), it has a489

limited impact on simulated land fluxes (GPP in particular, see Figure 5) that are often used to calibrate TBMs. The490

parameters controlling land fluxes, namely those controlling ecosystem LAI (Williams and Torn 2015; Wei et al. 2013) and491

those related to photosynthesis (Figure 5), are also confounded, echoing observed trade-offs of the Leaf Economic Spectrum492
(Wright et al. 2004; Peaucelle et al. 2019). TLS has the potential to discriminate equifinal model simulations with similar493

https://www.zotero.org/google-docs/?DQWClF
https://www.zotero.org/google-docs/?Rn5aGw
https://www.zotero.org/google-docs/?Pta5cb
https://www.zotero.org/google-docs/?Pta5cb
https://www.zotero.org/google-docs/?eH2Tnv
https://www.zotero.org/google-docs/?tzXj1W
https://www.zotero.org/google-docs/?7hEUTv
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land fluxes but contrasting structure. On-site trait measurements (Figure 3) could further help avoid those risks of494
equifinality (Babst et al. 2020; Peaucelle et al. 2019).495

4.4 Study limitations496

Our findings come with several important limitations. First, the eddy covariance flux data (2007-2009) preceded the497
observation of the forest structure (TLS and field inventory occurred over the 2015-2016 period) by almost a decade. The498

forest composition and demography might have changed in the meanwhile, which reduces the confidence of the validation499

with eddy covariance data (Figure 3). This is even more true as one realises that the validation dataset is rather limited in size500

and information content (very low year-to-year variability in observed fluxestwo very similar seasonal cycles of GPP). Yet,501
in this study we were more interested in the variance decomposition for different model configurations (Figures 3-4) than the502

actual goodness of fit of every single configuration. In addition, in the absence of locally observed meteorological drivers,503

we had to force the model simulations with regional datasets that cannot serve the purpose of capturing the day-to-day504

variability or the diel cycle, which forced us to only compare the modelled and observed seasonal GPP cycle. Furthermore,505
GPP is not directly observed but rather a derived (modelled) quantity as opposed to the net ecosystem exchange of carbon506

and the latent heat flux of water that are directly measured. We could not access water flux raw data nor were they reported507

in publications that we knew of. GPP uncertainties were also not quantified in the original publication of Thomas et al.508

(2011). While NEP values were reported, validating the model simulations with those values would have biassed our509
analyses as we could not constrain respiration parameters with data. Mismatches between different data sources and/or the510

low availability of good-quality data are recurrent issues in vegetation modelling exercises. Despite multiple initiatives to511

standardise high quality data such as Fluxnet (Baldocchi et al. 2001), we emphasise here the need for concomitant512

observations in experimental and observational plots.513

Second, the comparison between the potential vegetations as simulated by ED2.2 and the field inventory data are also514
imperfect as Wytham Woods is a managed forest that has been frequently coppiced and pollarded. Disturbance history515

experienced by the ecosystem is mostly unknown, preventing us from reproducing the current forest demography by the516

model.517

Third, the trait meta-analysis was run with random effects turned off, which can generate too narrow parameter posterior518

distributions (Raczka et al. 2018), and hence underestimate the contribution of the TRY-constrained parameters (see e.g.519

Figure 4). A similar analysis including random effects should be repeated to evaluate such an underestimation.520

Finally, the ecosystem growth form complexity was neglected in this study. We only simulated tree PFTs while shrubs and521
grass species also coexist in Wytham Woods. Integrating this ecological complexity would not have brought additional522

information or robustness regarding the objectives of our study on the variance decomposition while increasing the523
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dimensionality and complexity of the problem. Future research should investigate whether the main findings highlighted in524
this study hold with other PFTs, across other sites and biomes, or even in other vegetation models (Dokoohaki et al. 2021).525

526
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5 Conclusion527

Vegetation models are important tools to predict the fate of ecosystems in a changing climate but are often used as black-box528

tools due to their complexity. They have been designed to realistically represent the ecosystem that they simulate, but often529

fail to do so primarily because of considerable parameter uncertainties as well as process and initialisation errors. Even for530
the state-of-the-art process-based terrestrial biosphere models, not all parameters can be constrained with data: some cannot531

be observed in the field, require calibration, or the appropriate observational trait data may be missing. In addition, model532

initialisation and the choice of model structure necessarily lead to additional uncertainties. We demonstrate in this study that533

TLS has the potential to provide initial condition estimates and to constrain some critical vegetation model parameters534
(allometries) and processes (crown representation). Combined with trait-based constraints on a few key parameters, TLS was535

able to define a model configuration that could reproduce both the ecosystem productivity and the plant community536

composition of the simulated site with physically realistic parameters, as well as considerably reduce model uncertainties.537

538
539
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Tables915

Table 1: Mean (± one standard deviation) of plant traits (Specific Leaf Area or SLA, and maximum rate of carboxylation or Vc,max)916
available in the TRY database for each of the five dominant species in Wytham woods, and their local prevalence (in terms of917
individual density and basal area). Missing traits were unavailable in TRY. The table also summarises the abundance of those five918
dominant species in the 1.4 ha plot in terms of absolute and relative density and basal area, as well as the PFT mapping when more919
than one PFT were simulated (NPFT > 1). The community weighted means (CWM) and standard deviations (CWSD) were obtained920
using the basal areas as weights.921

Ap = Acer pseudoplatanus, Ca = Corylus avellana, Cm = Crataegus monogyna, Fe = Fraxinus excelsior, and Qr = Quercus robur.922
The colours of the different species in the first row of the Table are consistent with Figures 1 and 2.923

924

925
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Table 2: List of varying processes included in the model ensembles in order to evaluate the model structural uncertainty as well as926
their different possible configurations. Adapted from Shiklomanov et al. 2020.927

928
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Table 3: List of allometries modified in this study, ED2.2 default and TLS-derived allometric coefficients (for one or multiple929
simulated PFTs). The corresponding curves are plotted in Figure 2.930

931
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Table 4: Description of the ED2.2 parameters varied in this stuy, their unit, and the definition of their prior used to evaluate the932
model parameter uncertainty. “Source code name” is the name of the parameter as it appears in the ED2.2 source code. When933
trait plasticity is enabled, both SLA and Vc,max may change over time and for different cohorts of the same PFT.934

935
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Table 5: Summary of the model configurations used in this study and the underlying model settings.936

937
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Table 6: Summary of most important states and fluxes variables in all three model configurations and how they compare with938
observational datasets, including flux tower data of ecosystem respiration and net ecosystem productivity. Those numbers take939
into account the full five years of simulation for the prescribed model configurations (Census and TLS), and the last five years of940
simulation for the near bare-ground conditions (NBG), and the two years of eddy covariance observational data. For the941
observations of LAI in the leaf-on season, we provide a range of variation.942

LAI = Leaf Area Index, AGB = Aboveground Biomass, GPP = Gross Primary Production, NEP = Net Ecosystem Productivity,943
PAR = Photosynthetically Active Radiation944

945
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948

Figures949

950

951

Figure 1: Initial conditions in terms of tree size distribution and species composition (A), horizontal position, basal area (the size of952
the circles in panel B is proportional to the individual basal area), and species composition (B). The species colour legend applies to953
both panels and is kept the same for Figure 2 and Table 1. In the simulations, all trees were classified into either a single or954
multiple plant functional types according to the species-PFT of Table 1.955
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956
Figure 2: TLS-derived (grey, considering all tree species belonging to a single PFT) and model default (black, mid successional957
hardwood trees in ED2) allometries for the aboveground woody biomass (A), tree height (B), crown area (C), and leaf biomass (D).958
The data to which the TLS allometries were fitted (coloured points corresponding to the tree species detailed in Figure 1) were959
obtained using TLS. Coefficients used to plot the best fit and default allometries can be found in Table 3.960
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961
Figure 3: Seasonal cycle of the ecosystem GPP, as observed by eddy-covariance data (black dots) or as simulated by ED2.2 for962
multiple model configurations (columns) and with or without TRY constraints on SLA and Vc,max (rows). The green thick lines are963
the ensemble means while the shaded envelopes encompass 95% of the ensemble members. The individual ensemble members are964
also plotted as thin grey lines. The vertical error bars for the flux tower data represent the 95% confidence interval of the monthly965
GPP. The settings of the model configurations are detailed in Table 5.966
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967
Figure 4: Decomposition of the simulated GPP variance into process (orange), parameter (green), and residual (mauve)968
uncertainty for multiple model configurations (columns) and with or without TRY constraints on SLA and Vc,max (rows). The969
parameter uncertainty was further decomposed into the contribution of the allometric, TRY-constrainable (SLA and Vc,max), and970
other parameters (shades of green). The radii of the pie charts are proportional to the total variance of the ecosystem GPP in each971
configuration for the month of June (maximum GPP). The settings of the model configurations are detailed in Table 5.972

973
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974

Figure 5: Contribution of individual or allometric parameters (Bd, Bl, CA and height include all parameters for the respective975
allometries, see Table 2) to the predicted uncertainty in ED2.2 of multiple state variables (PAR = photosynthetically active976
radiation reaching the ground, LAI = leaf-on ecosystem leaf area index, AGB = final ecosystem aboveground biomass, GPP = leaf-977
on ecosystem gross primary production) for multiple model configuration (columns) and with or without TRY constraints on SLA978
and Vc,max (rows). Only those parameters that contributed at least once to 5% or more of the total variance were included in the979
panels. Parameter description and distributions are given in Table 4. The settings of the model configurations are detailed in Table980
5.981
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982
Figure 6: Tree size distribution for multiple model configurations starting from near bare-ground conditions after 100 years of983
simulations (coloured bars), and how they compare to the field inventory (grey). The histograms and the vertical error bars984
represent the means ± one standard deviation of the ensemble member runs. Only runs that generated vegetation were kept for985
plotting this figure.986
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987
Figure 7: Ecosystem average of the leaf area density vertical distribution for the month of June for different model configurations988
(colourd lines and envelopes) without (left) and with (right) TRY constraints on SLA and VC,max. The envelopes encompass the989
mean ± one standard deviation of the 500 ensemble member runs. Only runs that generated vegetation were kept for plotting the990
NBG envelopes. The settings of the model configurations are detailed in Table 5.991
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