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Abstract. Topography exerts significant influences on the incoming solar radiation at the land surface. A few stand-alone 

regional and global atmospheric models have included parameterizations for sub-grid topographic effects on solar radiation. 

However, nearly all Earth System Models (ESMs) that participated in the Coupled Model Intercomparison Project (CMIP6) 

use a plane-parallel (PP) radiative transfer scheme that assumes the terrain is flat. In this study, we incorporated a well-15 

validated sub-grid topographic (TOP) parameterization in the Energy Exascale Earth System Model (E3SM) Land Model 

(ELM) version 1.0 to quantify the effects of sub-grid topography on solar radiation flux, including the shadow effects and 

multi-scattering between adjacent terrain. We studied the role of sub-grid topography by performing ELM simulations with 

the PP and TOP schemes over the Tibetan Plateau (TP). Additional ELM simulations were performed at multiple spatial 

resolutions to investigate the role of spatial scale on sub-grid topographic effects on solar radiation. The Moderate 20 

Resolution Imaging Spectroradiometer (MODIS) data was used to compare with the ELM simulations. The results show that 

topography has non-negligible effects on surface energy budget, snow cover, snow depth, and surface temperature over the 

TP. The absolute differences in surface energy fluxes for net solar radiation, latent heat flux, and sensible heat flux between 

TOP and PP exceed 20 W/m2, 10 W/m2, and 5 W/m2, respectively. The differences in land surface albedo, snow cover 

fraction, snow depth, and surface temperature between TOP and PP exceed 0.1, 0.1, 10 cm, and 1 K, respectively. The 25 

magnitude of the sub-grid topographic effects is dependent on seasons and elevations, and is also sensitive to the spatial 

scales. Although the sub-grid topographic effects on solar radiation are larger with more spatial details at finer spatial scales, 

they cannot be simply neglected at coarse spatial scales. When compared to MODIS data, incorporating the sub-grid 

topographic effects overall reduces the biases of ELM in simulating surface energy balance, snow cover and surface 

temperature especially in the high-elevation and snow-cover regions over the TP. The inclusion of sub-grid topographic 30 

effects on solar radiation parameterization in ELM will contribute to advancing our understanding of the role of the surface 

topography on terrestrial processes over complex terrain. 
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1. Introduction 

Earth system models (ESMs), which simulate the interactions between atmosphere, land, ocean and cryosphere systems, are 
powerful tools for understanding, reconstructing and projecting the Earth’s climate (Bonan and Doney, 2018). Land surface 35 
models (LSMs) in ESMs represent the terrestrial water, energy, and carbon cycles (Dickinson et al., 2006). However, most 
of the state-of-the-art LSMs necessarily adopt some oversimplified and unrealistic schemes to treat the transfer of radiation, 
heat, water and carbon. For example, lateral transport of water and energy in the subsurface and sub-grid topographic effects 
on solar radiation are neglected (Fan et al., 2019). These simplifications could lead to large uncertainties especially at finer 
spatial scales (Fisher and Koven, 2020; Prentice et al., 2015). 40 

The Energy Exascale Earth System Model (E3SM), a relatively new fully coupled ESM supported by the U.S. Department 
of Energy (DOE), aims to tackle the grand challenge of actionable predictions of Earth system variability and change (Leung 
et al., 2020; Golaz et al. 2019). With the capabilities to run at relatively high resolution (Caldwell et al., 2019) and including 
more realistic human-natural processes (Zhou et al., 2020), E3SM provides a good opportunity to better understand the 
complex earth system processes and their interactions. However, improving the representations of the complex, multi-scale 45 
processes in the earth system is important to more fully realize the benefits of high-resolution modeling. 

As the horizontal grid spacing of ESMs increases, topography is expected to exert more significant influences on many land 
surface processes including surface energy balance, surface hydrology, and snowmelt. The incoming and reflected solar 
radiations, as well as their direct and diffuse components, depend on surface topography (Dubayah and Rich, 1995; Hao et 
al., 2019a, 2019b). Topography modifies the direct radiation reaching the Earth surface through self-shadowing or blocking 50 
by adjacent topography. Topography also decreases the diffuse radiation from sky by decreasing the portion of the visible 
sky and increases the reflected radiation from adjacent topography due to the multi-scattering effects (Dubayah, 1992; Proy 
et al., 1989). The changes in net solar radiation due to topography significantly influence surface energy budget (Gu et al., 
2012; Lee et al., 2019; Liou et al., 2007), surface hydrology (Lee et al., 2015; Zhang et al., 2018), snowmelt (Zaramella et 
al., 2018), precipitation (Gu et al., 2020), and vegetation distribution (Alexander et al., 2016). Incorporating the sub-grid 55 
topographic effects on solar radiation into LSMs such as the E3SM Land Model (ELM) is key to enhancing our 
understanding and modeling of surface processes and land-atmosphere interactions in regions of complex terrain, with 
potential remote effects through excitation of Rossby waves in the atmosphere (Koster et al., 2016). 

However, nearly all ESMs (including E3SM) that participated in the Coupled Model Intercomparison Project Phase 6 
(CMIP6) neglect the sub-grid topographic effects on solar radiation. Sub-grid topographic effects have been recognized and 60 
parameterized in a few regional weather and climate models (Arthur et al., 2018; Gu et al., 2020) and global climate models 
(Lee et al., 2015). Most CMIP6-class ESMs adopt simple plane-parallel (PP) radiative transfer schemes based on a two-
stream approximation, which assumes that topography is flat (Dai et al., 2004; Dickinson, 1983; Sellers, 1985). Such 
simplified radiation parameterizations do not account for sub-grid topographic effects and can lead to large systematic biases 
in simulating land surface processes over complex terrain (Fan et al., 2019; Lee et al., 2019; Song et al., 2020). Song et al. 65 
(2020) reported that both CLM4.5 and CLM5.0 failed to capture the asymmetric diurnal cycles of solar radiation, surface 
albedo and carbon fluxes in a mountainous rainforest in Costa Rica. Lee et al. (2019) showed that accounting for the sub-grid 
topographic effects in the Community Land Model (CLM)-4.0 with a spatial resolution of 0.9° × 1.25° reduced the biases of 
reflected solar radiation in winter over the Tibetan Plateau (TP). However, the sub-grid topographic effects on solar radiation 
at a fine spatial resolution (e.g., 0.125°), the contributions of different factors, the sensitivity to elevations, seasons and 70 
spatial scales, and the consistencies with high-resolution observation data from remote sensing over the TP still need further 
investigations. 

Sub-grid topographic parameterizations for solar radiation in the LSMs need to account for the effects of sub-grid 
topography without significantly increasing the computational cost. Sub-grid radiation fluxes can be explicitly calculated 
using a high-resolution digital elevation model (DEM) and then averaged to derive grid-scale radiation fluxes (Dubayah, 75 
1992). However, this approach involves a vast data processing and thus introduces substantial computational burden (Helbig 
and Löwe, 2012). Parameterizations for sub-grid topography based on the statistical characteristics of sub-grid topography 
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(Dubayah, 1990; Essery and Marks, 2007; Gu et al., 2020; Helbig and Löwe, 2012; Lee et al., 2011; Müller and Scherer, 
2005) provide a computationally efficient approach for LSMs. Lee et al. (2011) used 3D Monte Carlo photon tracing 
simulations to develop a parameterization scheme where a set of multiple linear regression equations associate the sub-grid 80 
topographic effects on solar radiation with the domain-averaged topographic factors. The parameterization scheme 
developed by Lee et al. (2011) is computationally efficient because the domain-averaged topographic factors can be 
calculated a priori based on high-resolution DEM. This parameterization has been successfully applied in the Weather 
Research and Forecasting (WRF) model (Gu et al., 2012; Liou et al., 2013), CLM4.0 (Lee et al., 2015, 2019), and Taiwan 
Earth System Model Version 1 (TaiESM) (Lee et al., 2020), and is promising to be incorporated in ELM.  85 

The objective of this study is to update and evaluate the radiative transfer scheme to account for sub-grid topographic effects 
on solar radiation in ELM. We implemented the computationally efficient and physically realistic sub-grid parameterization 
scheme for solar radiation of Lee et al. (2011) into ELM. ELM simulations over the TP were performed with and without the 
sub-grid topographic parameterizations for solar radiation from 2000-2010 at multiple spatial resolutions. The sub-grid 
topographic effects on surface energy balance, snow cover/depth and surface temperature were investigated based on the 90 
ELM simulations. The contributions of different factors to the sub-grid topographic effects and the dependence of the sub-
grid topographic effects on seasons, elevations and spatial scales were also analyzed. A suite of remotely sensed data from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) were used to compare with the ELM simulations with 
different parameterizations for solar radiation in different seasons.  

2. Materials and methods 95 

2.1. Model overview 

ELM (Version 1.0) is based on the Community Land Model Version 4.5 (CLM4.5) (Golaz et al., 2019). ELM calculates 
canopy radiation flux using the two-stream approximation methods, snow albedo using the Snow, Ice, and Aerosol Radiative 
Model (SNICAR) model (Flanner et al., 2007), and snow cover fraction based on snow water equivalent (Swenson and 
Lawrence, 2012). ELM also represents the snow hydrological processes including snowfall accumulation, melting, 100 
refreezing, compaction, aging, water transfer across layers, etc. New features in ELM to better represent land surface 
processes include an updated representation of soil hydrology, improved treatment of ecosystem carbon dynamics, a novel 
topography-based sub-grid spatial structure, and an irrigation scheme constrained by water management (Bisht et al., 2018; 
Tang and Riley, 2018; Tesfa and Leung, 2017; Zhou et al., 2020).  

2.2. Sub-grid topographic parameterizations for solar radiation 105 

The incoming solar radiation for a flat surface is composed of direct radiation (𝐹ௗ
) from sun, diffuse radiation (𝐹ௗ

 ) from 
sky, and coupled radiation (𝐹௨

 ) that represents surface reflected radiation that is further reflected or scattered by 
atmospheric particles. ELM-v1.0 assumes flat surfaces and accounts for 𝐹ௗ

  and 𝐹ௗ
 , while neglecting 𝐹௨

 . The solar 
radiation scheme of ELM-v1.0 uses the two-stream approximations (Oleson et al, 2013). In contrast, the incoming solar 
radiation parametrization of Lee et al. (2011) over mountainous regions includes five components (illustrated in Figure 1): 1) 110 
direct flux (𝐹ௗ

்ை) represents photons that are transmitted from the sun to the ground surface without encountering any 
reflection or scattering; 2) the direct-reflected flux (𝐹ௗ

்ை) represents photons that are not scattered photons reflected by 
surrounding terrain; 3) diffuse flux (𝐹ௗ

்ை) represents photons that are scattered by atmospheric particles, but are not 

reflected by the ground surface; 4) diffuse-reflected flux (𝐹ௗ
்ை) represents scattered photons reflected by surrounding 

terrain; and 5) coupled flux (𝐹௨
்ை ) represents remaining photons that are reflected multiple times or scattered by ground 115 

surface and atmospheric particles. 𝐹ௗ
்ை is different from 𝐹ௗ

  because of the adjustment of solar illumination geometry and 
shadowing effects. 𝐹ௗ

  is different from 𝐹ௗ
்ை because the sky hemisphere is occluded by adjacent terrain. Lee et al. (2011) 

used the radiation fluxes over flat surfaces (i.e., 𝐹ௗ
  and 𝐹ௗ

 ) to calculate the radiation fluxes over mountainous terrain 
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based on sub-grid topographic factors. The relative deviation (𝑓ௗ) of direct flux between flat surface and mountain under 
the same atmospheric condition is defined as: 120 

 𝑓ௗ =
ிೝ

ೀುିிೝ
ುು

ிೝ
ುು         (1) 

 

Figure 1. A schematic diagram of the five components of incoming solar radiation over mountains, adapted from Lee et al. 
(2011). The components of incoming solar radiation include (1) direct flux, (2) diffuse flux, (3) direct-reflected flux, (4) 
diffuse-reflected flux and (5) coupled flux, respectively. Local solar zenith angle (𝜃), sky view factor (𝑉ௗ ) and terrain 125 
configuration factor (𝐶்) are also marked. 

The relative deviation (𝑓ௗ) of direct-reflected flux over mountains to direct flux over flat surfaces is defined as: 

 

𝑓ௗ =
ிೝೝ

ೀು

ிೝ
ುು        (2) 

Similarly, the relative deviations (𝑓ௗ  and 𝑓ௗ) of diffuse and diffuse-reflected fluxes are expressed as: 130 

𝑓ௗ =
ி

ೀುିி
ುು

ி
ುು        (3) 

𝑓ௗ =
ிೝ

ೀು

ி
ುು        (4) 

In theory, these four relative deviations (i.e., 𝑓ௗ , 𝑓ௗ ,𝑓ௗ  and 𝑓ௗ) depend on solar illumination geometry and sub-

grid topographic distribution. Based on a series of 3D Monte Carlo photon tracing simulations, Lee et al. (2011) built 
a multiple linear regression parameterization to well predict these four relative deviations. The parameterization of 135 
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Lee et al. (2011) uses four variables that include the standard deviation of elevation (𝜎) within a gridcell, grid averaged 
values of cosine of the local solar incident angle (�̅�), sky view factor (𝑉ௗ

തതത) and terrain configuration factor (𝐶்
തതത ). Lee et al. 

(2011) parameterization is given as: 

ൣ𝑓ௗ  𝑓ௗ 𝑓ௗ 𝑓ௗ൧
்

= 𝐴 ∙ [�̅� 𝜎 𝑉ௗ
തതത 𝐶்

തതത 1]்    (5) 

where 𝐴 represents the fitted parameter matrix, which was obtained based on the data generated by the 3D Monte Carlo 140 
simulations. The sky view factor (𝑉ௗ) represents the portion of visible sky limited by surrounding terrain (Zakšek et al., 
2011), while the terrain configuration factor ( 𝐶் ), the counterpart of the sky view factor, represents the portion of 
surrounding terrain which is visible to the ground target (Dozier and Frew, 1990). For an unobstructed infinite slope with the 
slope of 𝛼 and aspect of β and a given solar illumination geometry (i.e., solar zenith angle (SZA) and solar azimuth angle 
(SAA)), the cosine of the local solar incident angle (𝜇) can be calculated by: 145 

𝜇 = cos(𝑆𝑍𝐴) ∙ cos(α) + sin(𝑆𝑍𝐴) ∙ sin(α) ∙ cos(𝑆𝐴𝐴 − β)    (6) 

The SZA and SAA are assumed to be constant within a gridcell, but 𝛼 and β vary within a gridcell. The gridcell average 
solar incident angle, �̅�, can be expressed as: 

�̅� = cos(𝑆𝑍𝐴) ∙ cos(α)തതതതതതതതതതതതതതതതതതതതതതത + sın(𝑆𝑍𝐴) ∙ sın(α) ∙ cos(𝑆𝐴𝐴 − β)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 

    = cos(𝑆𝑍𝐴) ∙ cos(α)തതതതതതതതത + sin(𝑆𝑍𝐴) ∙ cos(𝑆𝐴𝐴) ∙ sın(α) ∙ cos(β)തതതതതതതതതതതതതതതതതതത 150 

        + sin(𝑆𝑍𝐴) ∙ sin(𝑆𝐴𝐴) ∙ sın(α) ∙ sın(β)തതതതതതതതതതതതതതതതതത    (7) 

where overlines represent grid averaged values. To further improve the regression parameterization, 𝜇 , 𝑉ௗ  and 𝐶்  are 
normalized by cos(α). The land surface albedo is adjusted, instead of modifying incoming solar radiation, to maintain the 
surface energy conservation and the consistency between the surface and the first levels of atmosphere above the surface 
(Lee et al., 2015). Specifically, to keep the absorbed solar radiation of the ground surface unchanged, Lee et al. (2015) built 155 
the relationship between direct (𝛼ௗ

்ை) and diffuse (𝛼ௗ
்ை) albedo over mountains and those (𝛼ௗ

  and 𝛼ௗ
 ) over flat surfaces 

as: 

𝐹ௗ
 ∙ (1 − 𝛼ௗ

்ை) = (𝐹ௗ
்ை + 𝐹ௗ

்ை) ∙ (1 − 𝛼ௗ
 )   (8) 

𝐹ௗ
 ∙ (1 − 𝛼ௗ

்ை) = (𝐹ௗ
்ை + 𝐹ௗ

்ை) ∙ (1 − 𝛼ௗ
 )   (9) 

Substituting equations (1-4) into equations (8-9) leads to 160 

𝛼ௗ
்ை = 1 − (1 + 𝑓ௗ + 𝑓ௗ) ∙ (1 − 𝛼ௗ

 )    (10) 

𝛼ௗ
்ை = 1 − (1 + 𝑓ௗ + 𝑓ௗ) ∙ (1 − 𝛼ௗ

 )    (11) 

The parameterizations represented by equations (5, 10-11) were implemented in ELM to account for the sub-grid 
topographic effects on solar radiation fluxes. In this study, the 𝐹௨

்ை  is neglected due to its limited impacts and nonlinear 
relationship with land surface albedo (Lee et al., 2011) and will be further considered in the future study. The fitted 165 
parameter matrix 𝐴 in equation 5 for different SZAs was pre-calculated using high resolution DEM (see Section 2.5), which 
are shown in Tables S1 and S2. These parameterizations were developed at a 10 km × 10 km spatial scale, and Lee et al. 
(2013) demonstrated that they can be applied to various spatial resolutions larger than 10 km × 10 km. 
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2.3. Model setup and experiment design 

The Tibetan Plateau (TP), also known as the Third Pole, plays an important role in regulating the earth climate system (Lu et 170 
al., 2020; Yang et al., 2009). TP has complex topographic features, where the central part is relatively flat, and the western 
and southern regions have remarkable terrain undulations (Figure 2). Figure S1 shows the heterogeneous spatial variations of 
the topographic factors used in the solar radiation parameterizations. Therefore, TP is an ideal region to study topography-
related land surface processes in ELM.  

 175 

 
Figure 2. Geographical distributions of the a) mean and (b) standard deviations of elevation derived from 90 m DEM at 0.125°𝗑0.125° 
spatial resolution over the TP. The black line represents the contour line of 1.5 km. 
 

Offline ELM simulations over the TP were performed for the period of 2000 to 2010 with and without the topographic 180 
parameterization, and the simulations are denoted as TOP and PP, respectively. The simulations were performed in the 
prescribed satellite vegetation phenology mode in which seasonally varying leaf area index is prescribed based on the 
MODIS data (Lawrence and Chase, 2007). The 3-hourly Global Soil Wetness Project meteorological forcing data set version 
1 (GSWP3v1) (Dirmeyer et al., 2006; Yoshimura and Kanamitsu, 2013) with 0.5° × 0.5° spatial resolution was used to drive 
all the model simulations. The bilinear interpolation technique was used to downscale the GSWP3v1 data to the required 185 
spatial resolution, and the coszen (i.e., the cosine of the solar zenith angle)-based, nearest neighbor, and linear interpolation 
methods were used to downscale the solar, precipitation and other data to the half-hourly temporal resolution, respectively. 
ELM was configured to run over the TP at five different spatial resolutions including r0125 (0.125°), r025 (0.25°), r05 
(0.5°), f09 (about 1°) and f19 (about 2°). The model outputs were archived at half-hourly frequency. The impact of initial 
conditions on subsequent analysis was avoided by discarding the results of the first year.  190 

2.4. Model analysis 

The ELM-based simulations, TOP and PP, at r0125 resolution were used to analyze the sub-grid topographic effects on 
surface energy budget (i.e., land surface albedo, net solar radiation, sensible heat flux and latent heat flux), snow cover 
fraction, snow depth and surface temperature. Surface temperature was calculated from the emitted longwave radiation using 
the Stefan‐Boltzmann law, with the assumption that surface emissivity is equal to 1. The seasonally-averaged values were 195 
computed from the half-hourly ELM outputs for different seasons: winter (DJF), spring (MAM), summer (JJA) and autumn 
(SON). Both the absolute differences (i.e., TOP-PP) and relative differences (i.e., (TOP-PP)/PP) were used to analyze the 
sub-grid topographic effects as well as their spatial patterns.  

The relationship between sub-grid topographic effects and elevations was analyzed by dividing the elevations into four 
intervals: 1.5-2.5 km, 2.5-3.5 km, 3.5-4.5 km and >4.5 km, which account for about 11%, 9%, 14% and 23% of the 200 
rectangular region shown in Figure 2, respectively. Regions with elevations lower than 1.5 km were not included in the 
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analysis due to their flat topography (Figure 2. Gridcells with a mean slope of zero were also excluded from this analysis. 
Additionally, gridcells with zero snow cover fraction were excluded when analyzing results for snow cover and snow depth.  

A random forest model was used to quantitatively analyze the relative contribution of different factors to the topography-
driven differences. The random forest model is a regression tree-based bootstrapped non-parametric machine learning model, 205 
which allows the calculation of the variable importance by estimating the out-of-bag (OOB) errors (Breiman, 2001). The 
OOB error represents the averaged prediction error for each sample zi, calculated by only using the prediction trees that do 
not include zi in the bootstrap samples. The variable importance can be measured by permutating the driving variables and 
then calculating the averaged decrement of OOB errors after permutation. Specifically in this study, based on equations 5 
and 7, we selected the quantities sın(α) ∙ cos(β)തതതതതതതതതതതതതതതതതതത, sın(α) ∙ sın(β)തതതതതതതതതതതതതതതതതത, 𝜎, 𝑉ௗ

തതത, 𝐶்
തതത, and the PP simulated land surface albedo as the 210 

driving variables. Combined with the driving variables, all the ELM-derived seasonally-averaged data was used to train the 
random forest model to measure the relative importance of different factors in controlling the sub-grid topographic effects. 

ELM outputs for TOP and PP at the remaining four spatial resolutions (r025 to f19) were processed to derive seasonally-
averaged values for studying the sensitivity of the sub-grid topographic effects to spatial scales.  

 215 

2.5. Remote sensing data 

The Shuttle Radar Topography DEM (SRTM) data at 90 m spatial resolution was used to derive the topographic factors 
required for the TOP simulations. The spatial mean and standard deviations of elevation, slope, aspect, sky view factor, and 
terrain configuration factor were computed for each ELM gridcell at all five spatial resolutions. 

The MODIS data from 2001-2010 was used to compare with the ELM simulations. All MODIS data listed in Table 1 were 220 
downloaded from the Google Earth Engine Platform (Gorelick et al., 2017). Specifically, these data included both direct (i.e., 
black-sky) and diffuse (i.e., white-sky) albedo data from the daily MCD43A3 v6 products with 500m spatial resolution 
(Schaaf et al., 2002); snow cover data from daily MOD10A1 v6 products at 500m spatial resolution (Hall et al., 2002); both 
daytime and nighttime surface temperature data from the daily MOD11A1 v6 products with 1 km spatial resolution (Wan, 
2014); and latent heat flux data from the 8-day MOD16A2 v6 products with 500m spatial resolution (Mu et al., 2007, 2011). 225 
Only the MODIS pixels with good quality indicated by the Quality Assurance flag were used in the analysis. All MODIS 
data were upscaled using the area-weighted averaging method to conform with the ELM resolutions. 

 

Table 1. Specifications of the remote sensing data used in the study. 

Parameters Product Names Spatial 
resolution 

Temporal 
resolution 

Periods References 

Land surface albedo MCD43A3.006  500 m daily 2000.02-2010.12 (Schaaf et al., 2002) 

Snow cover MOD10A1.006 500 m daily 2000.02-2010.12 (Hall et al., 2002) 

Surface temperature MOD11A1.006 1 km daily 2000.03-2010.12 (Wan, 2014) 

Latent heat flux MOD16A2.006  500 m 8-day 2001.01-2010.12 (Mu et al., 2007, 2011) 

DEM SRTM 90 m - - (Jarvis et al., 2008) 

  230 
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2.6. Comparison with remote sensing data 

MODIS data (introduced in Section 2.5) was used to compare with both TOP and PP at r0125 resolution. All MODIS data 
from 2001-2010 was averaged to the seasonal scales. The MODIS instantaneous surface diffuse and direct albedo datasets 
were derived for the local solar noon, and the MODIS instantaneous surface temperature data was derived for daytime and 
nighttime corresponding to the MODIS overpass time: 10:30 and 22:30 (local solar time), respectively. The ELM simulated 235 
surface albedo and surface temperature were extracted at the corresponding MODIS time to compute the seasonally-
averaged values. The consistencies between ELM simulations and MODIS data were evaluated by computing the difference 
between MODIS data and PP (𝛅PP) and TOP (𝛅TOP). Furthermore, the change in the bias with respect to the MODIS data was 
computed as |𝛅TOP|-|𝛅PP|.  

3. Results 240 

3.1. Sub-grid topographic effects on surface energy budget, surface temperature and snow cover/depth 

Compared to PP, TOP overall has higher net solar radiation (Figure 3) and lower land surface albedo (Figure 4, S2 and S3) 
for all seasons. The net solar radiation for PP shows an expected and opposite spatial pattern to the land surface albedo. The 
absolute differences in net solar radiation between TOP and PP can be as large as around 20 W/m2 for all seasons, and the 
relative differences in the winter season can be as large as 25%. In some small portions of the northern regions, TOP also 245 
shows lower net solar radiation than PP in winter and autumn, possibly due to the self-shadow or cast-shadow from the 
surrounding terrain. For PP, the spatial differences in surface albedo between the northwest and southeast of the study region 
are caused by the spatial differences in snow cover (Figures 4a and 4b). In summer, the land surface albedo in the western 
regions decreases due to snow melt. The land surface albedo for all seasons in the western and southern regions shows large 
absolute and relative differences between TOP and PP that can be as large as 0.1 and 50%, respectively, during winter. The 250 
spatial pattern of the difference in land surface albedo between TOP and PP is similar to the heterogeneous spatial pattern of 
topography (Figure 2).  

Larger net solar radiation in TOP compared to PP leads to lower snow cover/depth and higher surface temperature (Figures 
4, S2 and S3). TOP has lower snow cover fractions for most western regions in winter and spring (Figure 4). Compared to 
PP, the absolute and relative decreases in snow cover fraction of TOP can be larger than 0.1 and 20%. The absolute 255 
difference in snow depth can reach up to 10 cm. Snow albedo feedback may have contributed to the large differences 
between TOP and PP, as larger net solar radiation in TOP reduces snow cover, which may further increase the net solar 
radiation. Surface temperature has a similar spatiotemporal pattern as the net solar radiation (Figure 4). The absolute 
difference in surface temperature between TOP and PP is generally within 1 K for all seasons. The western regions have 
large differences in surface temperature and snow cover during winter.  260 

TOP has higher sensible and latent heat fluxes than PP, due to the higher net solar radiation (Figures 4, S2 and S3). TOP 
shows higher sensible heat flux than PP for all seasons, and the absolute and relative differences can be as large as 10 W/m2 
and 20%, respectively (Figure 4 and S3). The difference in the latent heat flux is smaller compared to the difference in the 
sensible heat flux (Figure 4) and is generally within 5 W/m2. But the relative difference in latent heat flux may be larger than 
20% in winter (Figure S3). How the partitioning of surface heat flux between sensible and latent heat fluxes responds to the 265 
difference in net solar radiation between TOP and PP may vary by seasons and regions depending on the soil moisture, 
vegetation, and other factors.  
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Figure 3. PP simulated net solar radiation for different seasons (top row), and absolute (middle row) and relative (bottom row) differences 270 
between TOP and PP for different seasons. 
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Figure 4. Absolute differences between TOP and PP for four seasons in different variables (from top to bottom): land surface albedo, 275 
snow cover fraction, snow depth, surface temperature, sensible heat flux and latent heat flux.  
 

 

 

 280 
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3.2 Contribution of different factors 

The random forest model can well predict the sub-grid topographic effects on solar radiation with high coefficients of 
determination (R2) for all seasons (Figure 5a-d), which demonstrates that the topographic factors can well explain the 285 
difference between TOP and PP in land surface albedo. Further variable importance analysis (Figure 5e-h) shows that the 
contributions of different factors to the sub-grid topographic effects are different. The first two terms (i.e., sın(α) ∙ cos(β)തതതതതതതതതതതതതതതതതതത 
and sın(α) ∙ sın(β)തതതതതതതതതതതതതതതതതത), related to the sub-grid distribution of slope and aspect, can account for 62.5% of the differences in 
surface albedo during winter (Figure 5e). The slope and aspect affect the direct solar radiation, which dominates the total 
solar radiation under clear-sky conditions. The sky view factor, terrain configuration factor and land surface albedo for PP, 290 
which mainly affect the diffuse and reflected radiation, account for 2.7%, 2.3% and 24.7% in winter, respectively. The 
dominant factors for the differences between TOP and PP can be different in different seasons (Figure 5e-h). In summer, the 
contributions of the first two terms decrease to 47.1% (Figure 5g). This is because the solar position (i.e., solar illumination 
geometry) is different in different seasons. In winter, the solar zenith angle is large over the TP and thus there are strong 
shadowing effects, while the sun is moving northward and getting closer to the nadir position from spring to summer, which 295 
can lead to the reduced shadowing effects. Similar results were obtained for other variables (e.g., net solar radiation and 
surface temperature) and thus are not shown in this paper. 

 

 
Figure 5. The performance of the random forest modeling in predicting the relative difference in land surface albedo between TOP and PP 300 
for four seasons (top row; a-d). The relative importance of different factors in predicting the differences in surface albedo between TOP 
and PP for four seasons (bottom row; e-h). R2 is the coefficient of determination and the different factors are described in the text. 
 

3.3. Sensitivity to elevations 

The differences of surface energy budget, surface temperature and snow cover/depth between TOP and PP show elevation-305 
dependent patterns (Figures 6-7). Generally, as the elevation increases, TOP has a lower land surface albedo and snow cover 
fraction than PP, therefore a higher net solar radiation, surface temperature and sensible and latent heat flux than PP. These 
elevation-dependent patterns are similar for all seasons, although the differences between TOP and PP are larger in winter 
than in summer (Figure 6). Taking land surface albedo in winter as an example (Figure 6a), for elevation between 1.5-2.5 
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km, TOP has smaller values than PP in 53% of the regions; for elevation between 2.5 and 3.5 km, the area fraction is 57%; 310 
for elevation between 3.5 and 4.5 km, the area fraction is 68%; and for elevation above 4.5 km, the area fraction is 74%. At 
higher elevations, the larger decrease in land surface albedo of TOP leads to a larger increase in surface fluxes (Figure 7a, e-
f) and surface temperature (Figure 7d), along with larger decrease in snow cover and snow depth (Figure 7b-c). In addition, 
the quantiles in Figure 7 also show that as the elevation increases, the relative differences of net solar radiation, snow cover 
fraction, snow depth, surface temperature and sensible and latent heat flux between TOP and PP can become larger, and the 315 
relative differences of land surface albedo can exceed 10% for all elevation bands. 

 

 

Figure 6. Boxplots of the relative differences in land surface albedo between TOP and PP for all seasons at four different elevations bands. 
Red points represent the mean values. 320 
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 325 

Figure 7. Boxplots of the relative (or absolute for surface temperature) differences in net solar radiation (a), snow cover fraction (b), snow 
depth (c), surface temperature (d), sensible heat flux (e) and latent heat flux (f) between TOP and PP in winter at four different elevations 
bands. Red points represent the mean values. 

3.4. Sensitivity to spatial scales 

The sub-grid topographic effects on surface energy balance, snow cover and surface temperature are sensitive to the 330 
spatial scales. The sub-grid topographic effects on land surface albedo in winter show similar spatial patterns across spatial 
scales (Figure 8a-e). There are similar trends of the sub-grid topographic effects on land surface albedo with elevations at 
different spatial scales (Figure S4). The relative contributions of different topographic variables are similar at different 
spatial scales (Figure S5). Larger spatial heterogeneity in land surface albedo is present at finer spatial scales, but the pattern 
is smoothed at coarser spatial scales (Figures 8 and S4). As the spatial resolution becomes coarser, the terrain becomes flatter 335 
and thus the differences between TOP and PP are smaller. However, the relative difference between TOP and PP can still be 
as large as 15% at coarse spatial scales (i.e., f19; Figure 8e). The statistical distributions of the relative differences in land 
surface albedo over the TP at different spatial scales are similar, with 0~-5% as the frequent value (Figure 8f). For snow 
cover, surface temperature and other energy balance variables, similar results are noted from Figures S6-S10 and the sub-
grid topographic effects are still large even at a spatial resolution as low as around 2°. For instance, for the spatial resolution 340 
of f19, the relative differences of net solar radiation, sensible heat and latent heat flux and snow cover fraction can be larger 
than 8%, 20%, 20% and 20%, respectively. The absolute difference in surface temperature for f19 is within 0.1 K, but that 
for f09 is still large as 0.5 K.  
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 345 

Figure 8. The relative differences of land surface albedo between TOP and PP in winter at different spatial scales (a-e) and the statistical 
histogram of their frequent distributions (f). 
 

3.5. Comparison with MODIS data 

Overall, TOP shows better consistencies with the MODIS land surface albedo data than PP (Figures 9 and S11). In the 350 
western regions, PP overestimates direct and diffuse albedo in winter, and underestimates them in spring (Figure S11), 
possibly due to the bias of snow cover in the model simulations (Figure S11). In most other regions, PP generally 
overestimates direct albedo for all seasons, and underestimates diffuse albedo except in summer. The bias in PP, 𝛅PP, for 
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direct and diffuse albedo can exceed 0.2. Compared to PP, direct albedo of TOP overall has smaller bias relative to the 
MODIS data in the western regions, except in spring (Figure 9). The improvement of TOP in direct albedo can be larger than 355 
0.1. However, for diffuse albedo, the performance of TOP in most regions is similar to or even worse than PP (Figure 9). 
The difference in diffuse albedo between 𝛅TOP and 𝛅PP is within 0.02 in about 86% of the whole domain in Figure 9, in 
winter. 

TOP generally outperforms PP in winter, when compared to MODIS snow cover, surface temperature, latent heat flux data 
(Figure 9 and S11). In the western regions, PP has higher snow cover fractions than MODIS data in winter, but lower snow 360 
cover fractions in other seasons. In other regions, PP has lower snow cover fractions in all seasons (Figure S11). TOP has 
smaller biases relative to the MODIS data than PP in winter and the absolute value of |𝛅TOP|-|𝛅PP| can be larger than 0.1. TOP 
has slightly larger biases in spring but there is no large difference between TOP and PP in summer and autumn, due to the 
low snow cover. The spatial distribution of 𝛅PP in snow cover fraction is consistent with the pattern of biases in land surface 
albedo shown in Figure S11. For daytime surface temperature, there is a larger difference between PP and MODIS, which 365 
can exceed 5 K. TOP can reduce the biases by ~0.5-1 K in the central regions, especially in winter. For nighttime surface 
temperature, PP has systematically higher values than the MODIS data, and the difference between TOP and PP is small in 
summer and autumn but large in winter and spring (Figure 9). For latent heat flux, there are big differences between PP and 
the MODIS data. In contrast, TOP has a slightly better performance than PP in winter, but for other seasons, TOP possibly 
has worse performance than PP, when compared to the MODIS data (Figure 9). 370 

As the elevation increases, TOP shows higher consistencies with the MODIS data in winter (Figure 10). When the elevation 
is below 3.5 km, TOP and PP have similar performance, but at higher elevation TOP overall has lower biases in direct 
albedo (Figure 10a), snow cover fraction (Figure 10c), daytime surface temperature (Figure 10d) and latent heat flux (Figure 
10f). The bias in direct albedo is smaller in TOP as compared to PP for 54% and 63% of the study region in elevation bands 
3.5-4.5 km and >4.5 km, respectively. The difference in the bias for snow cover fraction between TOP and PP remains 375 
unchanged for the elevation bands 3.5-4.5 km and > 4.5 km. TOP has smaller bias in daytime surface temperature as 
compared to PP for 57% of the study region at elevation >4.5 km. The bias in latent heat flux is smaller for TOP than PP for 
elevation band 3.5-4.5 km and >4.5 km for ~60% of the study region. The differences in bias between PP and TOP are small 
for diffuse albedo and nighttime surface temperature in most of the regions. For example, when the elevation is above 4.5 
km, the difference in biases of diffuse albedo is within 0.01 for 73% of the regions, and is within 0.02 for 91% of the 380 
regions. For nighttime surface temperature, the difference in biases increases with elevation and is within 0.1 K in about 61% 
of the regions when the elevation is above 4.5 km. 
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Figure 9. The change in the bias (|𝛅TOP|-|𝛅PP|) with respect to the MODIS data for four seasons in different variables (from top to 
bottom): direct albedo, diffuse albedo, snow cover fraction, daytime and nighttime surface temperature, and latent heat flux. 
 390 
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Figure 10. Boxplots of the differences in bias for TOP and PP (|𝛅TOP|-|𝛅PP|) with respect to MODIS data for (a) direct albedo, (b) diffuse 
albedo, (c) snow cover fraction, (d) daytime surface temperature, (e) nighttime surface temperature, and (f) latent heat flux in winter at 
four different elevations bands. Red points represent the mean values. 395 
 

4. Discussion 

Sub-grid topographic effects on solar radiation play an important role in surface energy balance, surface temperature and 
snowmelt over complex terrain. Simply neglecting the sub-grid topography can lead to large errors in simulating surface 
energy balance. Compared to flat surfaces, the land surface albedo over the complex terrain of TP generally decreases and 400 
net solar radiation increases (Figures 3, 4 and S3), which increases the surface temperature (Figure 4). The snow cover 
fractions and snow depth decrease due to increased snow melt and possibly snow-albedo feedback (Figure 4), which may 
alleviate the snow depth overestimation over the TP in ESMs (Wei et al., 2015). The effects of sub-grid topography on solar 
radiation also show seasonal variations, which are more pronounced in winter, because larger solar zenith angles in winter 
over the TP can cause stronger shadowing effects (Hao et al., 2018b) and large snow cover areas in winter can cause stronger 405 
reflected radiation from adjacent topography (Helbig et al., 2010). In addition, the sub-grid topographic effects are elevation-
dependent (Figures 6-7), because mountain tops with higher elevations tend to receive more solar radiation due to the 
topographic effects and thinner atmosphere, while valley areas with lower elevations receive relatively less solar radiation 
due to the shadowing effects (Fan et al., 2019; Lee et al., 2015). Compared to PP, TOP produces results more consistent with 
the MODIS observations, especially in the high-elevation and snow cover regions over the TP (Figures 9-10), Generally, 410 
direct albedo of TOP shows higher consistencies with MODIS data than PP, when snow cover fraction is larger or the snow 
cover fraction of TOP has higher consistencies with MODIS (Figure 11). These demonstrate that accounting for the sub-grid 
topographic effects over complex terrain improves the performance of ELM. In a high-resolution coupled model, the highly 
concentrated differences between TOP and PP along the southern edge of the TP could lead to important differences in 
simulating clouds, convection, terrain-induced circulation and transport of aerosols, with potentially important implications 415 
for modeling the South Asian monsoon and its hydrologic impacts. Future studies including the sub-grid topographic effects 
in coupled simulations will address their impacts on coupled land-atmosphere processes.  
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Figure 11. Relationship between the differences in bias for TOP and PP (|𝛅TOP|-|𝛅PP|) with respect to MODIS data for direct albedo and PP 420 
simulated snow cover fraction (a) or the differences in bias for TOP and PP (|𝛅TOP|-|𝛅PP|) for snow cover fraction (b) in winter. Red line is 
the regression line, and R is the correlation coefficient. 

Sub-grid topographic effects are strongly dependent on spatial scales. The sub-grid topographic effects are more pronounced 
at the finer resolution (Figures 8 and S6-S10) and tend to be spatially smoothed at a coarse resolution (Lee et al., 2011, 
2013). Therefore, it is necessary to consider the sub-grid topographic effects on solar radiation in high-resolution land 425 
surface modeling. However, the relative differences in net solar radiation between TOP and PP can still reach up to 8% in 
some regions even at the coarse spatial resolution of 2° (Figure S6). This demonstrates that the sub-grid topographic effects 
on solar radiation cannot be neglected even for simulations at coarse spatial resolutions.  

Uncertainties of remote sensing data may affect their reliability as ground truth for evaluating the ELM simulations. The 
MODIS land surface albedo products have shown good consistencies with ground measurements (Moustafa et al., 2017; 430 
Wang, 2004), but the semi-empirical kernel-driven-model-based algorithms used to derive the MODIS land surface albedo 
do not account for topography explicitly (Schaaf et al., 2002; Hao et al., 2020), which may lead to large errors over rugged 
terrain (Hao et al., 2018a, 2018b). MODIS snow cover data has shown relatively poor performance when compared to 
ground measurements, especially over the regions of TP with higher elevation and shallower snow depth (Pu et al., 2007; 
Yang et al., 2015; Zhang et al., 2019). The accuracy of MODIS surface temperature products depends on the accuracy of 435 
land cover products and the prescribed surface emissivity values (Duan et al., 2019). The MODIS evapotranspiration product 
is sensitive to the algorithm used to account for the environmental stresses over the TP, as well as the atmospheric forcing 
data used to generate the product (Li et al., 2019b). However, the topography-induced differences between TOP and PP can 
be comparable to the errors of MODIS data. For example, Wang et al. (2004) reported that compared to ground 
measurements, MODIS albedo had a maximum error of 0.036 in a semi-desert region on the TP, which is smaller than the 440 
maximum difference of 0.1 between TOP and PP (Figure 4). Wang et al. (2007) showed that the mean and maximum errors 
of MODIS surface temperature were 0.27 K and 2.61 K, respectively at a semi‐desert site on the western TP, which is 
comparable to the maximum difference of 1 K between TOP and PP (Figure 4). Salomonson and Appel (2004) showed that 
using the Landsat 30 m observations as the benchmark, the mean error of MODIS snow cover fraction was smaller than 0.1, 
which is comparable to the difference of 0.1 between TOP and PP (Figure 4). Mu et al. (2007) showed that the 8-day 445 
MODIS latent heat flux had a mean bias from -5.8 to 39.9 W/m2, possibly larger than the difference between TOP and PP in 
our study (Figure 4). In addition, the SRTM data, used to derive the topographic factors for the parameterization, has shown 
large errors in some regions (Grohmann, 2018; Mukherjee et al., 2013). More accurate topographic factors can be derived 
using globally consistent, high-quality DEM data such as the Copernicus 30-meter global Digital Elevation Model (GLO-30) 
(https://spacedata.copernicus.eu). The quality of remote sensing data needs to be validated comprehensively before its use in 450 
evaluation of LSMs. 

The inclusion of sub-grid topographic parameterizations for solar radiation in ELM improves the representations of surface 
energy balance to some degree, but many shortcomings in ELM’s existing radiative transfer modeling scheme limit the 
potential for further improving the ELM simulations. The 1D two stream approximation method used in ELM represents the 



19 
 

vegetation canopy as a homogeneous “big leaf” (Yuan et al., 2017) and neglects the vertical multi-layer structure (Bonan et 455 
al., 2018) and the horizontal leaf clumping (Bailey et al., 2020; Braghiere et al., 2020; Li et al., 2019a). In the snow-covered 
regions, the ELM parameterizations for the effects of snow impurities (i.e., black carbon and dust mixing) on light scattering 
and absorption processes need to be refined to account for internal mixing and non-spherical shapes of snow grains (Dang et 
al., 2019; He et al., 2018). In addition, ELM also does not account for the influence of adjacent terrain on longwave thermal 
radiation (Yan et al., 2020). These may partly explain the inconsistencies between ELM simulations and MODIS data, 460 
especially for diffuse albedo and nighttime surface temperature (Figure 10). 

In this study, the same atmospheric forcings were used in the simulations at different spatial scales, which could be a source 
of error at a finer resolution (Fiddes and Gruber, 2014; Tesfa et al., 2020). Furthermore, the sub-grid parameterizations 
neglect the spatial correlation between sub-grid topography and plant functional types. The spatial pattern of vegetation 
types generally depends on the topographic distribution, which controls terrestrial water, energy, water, and carbon cycle 465 
(Reed et al., 2009). These aforementioned simplifications may affect the accurate representations of the sub-grid topographic 
effects on solar radiation in ELM at a coarse resolution. Combining the sub-grid topographic parameterizations for solar 
radiation implemented in ELM in this study with ELM’s new sub-grid topography structure (Tesfa et al., 2017) and 
downscaling of atmospheric forcing (Tesfa et al., 2020) is anticipated to further improve the representations of the land 
surface processes at different spatial scales (Ke et al., 2013). A future study will investigate the impact of sub-grid 470 
topographic parameterizations for solar radiation on the land-atmosphere interactions by performing ELM simulations with 
an active atmospheric model. 

5. Conclusions 

The computationally efficient sub-grid topographic parameterizations for solar radiation of Lee et al. (2011) were 
implemented in ELM in this study. The results show that topography has large effects on surface energy budget, snow 475 
cover/depth as well as surface temperature that cannot be neglected. The absolute differences with and without accounting 
for sub-grid topography on net solar radiation, sensible heat flux, and latent heat flux exceed 20 W/m2, 10 W/m2, and 5 
W/m2, respectively. Similarly, the differences in land surface albedo, snow cover fraction, snow depth, and surface 
temperature exceed 0.1, 0.1, 10 cm, and 1 K, respectively. Nearly all the relative differences of these variables, except 
surface temperature, reach up to 20%. The magnitude of the sub-grid topographic effects on solar radiation is seasonally-480 
dependent and elevation-dependent, and is also sensitive to the spatial scales. Although the sub-grid topographic effects on 
solar radiation are larger at finer spatial scales, they cannot be simply neglected even at coarse spatial scales. For example, 
the relative difference in land surface albedo when accounting for sub-grid topography in winter reaches up to 15% for the 
coarse spatial scale of 2°. ELM simulations with the sub-grid topographic parameterization for solar radiation have better 
agreements overall with the MODIS data for simulated surface energy balance, snow cover and surface temperature over the 485 
TP. These results highlight the necessity of accounting for the sub-grid topographic effects in LSMs and show that our 
improvements in ELM are promising to advance understanding and modeling of the role of the surface topography on 
terrestrial processes. 
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