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Abstract. To localize and quantify greenhouse gas emissions from cities, gas concentrations are typically measured at a small

number of sites and then linked to emission fluxes using atmospheric transport models. Solving this inverse problem is chal-

lenging because the system of equations often has no unique solution and the solution can be sensitive to noise. A common

top-down approach for solving this problem is Bayesian inversion with the assumption of a multivariate Gaussian distribution

as the prior emission field. However, such an assumption has drawbacks when the assumed spatial emissions are incorrect or5

not Gaussian distributed. In our work, we investigate sparse reconstruction (SR), an alternative reconstruction method that can

achieve reasonable estimations without using a prior emission field by making the assumption that the emission field is sparse.

We show that this assumption is generally true for the cities we investigated and that the use of the discrete wavelet transform

helps to make the urban emission field even more sparse. To evaluate the performance of SR, we created concentration data

by applying an atmospheric forward transport model to CO2 emission inventories of several major European cities. We used10

SR to locate and quantify the emission sources by applying compressed sensing theory and compared the results to regularized

least squares (LS) methods. Our results show that SR requires fewer measurements than LS methods and that SR is better at

localizing and quantifying unknown emitters.

1 Introduction

Understanding anthropogenic greenhouse gas (GHG) emissions is important for scientists and decision makers fighting climate15

change. Based on a growing amount of atmospheric observations, studies estimating emission fields of GHG sources and sinks

from these observations have been performed on local (Chen et al. (2016); Viatte et al. (2017); Toja-Silva et al. (2017)),

metropolitan (Jones et al. (2021); Turner et al. (2020); Hase et al. (2015)), country (Miller et al. (2013); Shekhar et al. (2020)),

and global (Hirsch et al. (2006); Mueller et al. (2008); Turner et al. (2015); Jacob et al. (2016)) scale. One of the main reason for

such studies is to verify and improve GHG emission inventories created by bottom up methods. Verification and improvements20

include, but are not limited to:

– Determining the difference between the real emissions and the emissions captured by inventories.

– Determining differences between the real and bottom up estimated emissions for individual emitters.

– Finding emitters which are not captured by inventories (unknown emitters).
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Atmospheric inverse modeling methods use column or in situ GHG concentration measurements to estimate emission fields.25

Due to a lack of measurements and high modeling and measurement uncertainties, estimating each grid cell of an emission field

independently is not possible. Instead, sectors (Jones et al., 2021), spatial correlations (Wesloh et al., 2020), and/or temporal

correlations (Jones et al., 2021; Wesloh et al., 2020) are used to construct alternative parameterizations of emission fields to

prevent overfitting.

An alternative to overcome these issues are sparse reconstruction (SR) methods (Ray et al., 2015). SR methods can use30

concentration measurements to estimate sparse emission fields, meaning that only a small number of large emitters contribute

significantly to the total emissions. These methods determine the critical emission grid cells and adjust the emissions of only

those cells until the model best matches the observations. All other grid cells are set to zero. Once conditions of compressed

sensing (CS) are fulfilled, SR methods are guaranteed to determine the best possible emission fields and provide a good

estimation of their emissions.35

SR for the recovery of GHGs has been proposed by several recent studies. Ray et al. (2014, 2015) used stagewise orthogonal

matching pursuit (StOMP), a reconstruction method known from compressed sensing, and modified it to enforce positive

emission estimates. To overcome the restriction of sparse reconstruction of only being able to reconstruct sparse fields, they

used a multi scale resolution field based on wavelets. In Ray et al. (2015), StOMP has been modified so that prior information

can be included. Both studies reconstructed fossil fuel CO2 emissions in an idealized scenario with synthetic measurements40

and very low measurement noise (SNR> 40 dB). Hase et al. (2017) demonstrated sparse reconstruction with enforced positive

emissions estimates of anthropogenic CH4 emissions from synthetic observations in the US. To increase the sparsity of the

emission field, Hase et al. (2017) used a redundant dictionary representation, where the representation of the emission field is

not unique. Yan et al. (2012) proposed compressed sensing, i.e. sparse reconstruction with guaranteed best feature selection,

for environmental monitoring with the focus on undersampling.45

In this paper, we apply SR for assessing urban GHG emissions. Current GHG emission monitoring systems in cities, such

as Dietrich et al. (2021); Shusterman et al. (2016) and Sargent et al. (2018), acquire GHG concentration in the atmosphere

as column or in situ concentration measurements. These measurements are then related to city emissions and background

concentrations, where the city emissions are the unknowns of interest while the background is (partially) known. Göckede

et al. (2010) have shown that on smaller domains, uncertainties in the background has a high influence on the estimation50

of the city emissions. Therefore, modern approaches, such as Jones et al. (2021) and Klappenbach et al. (2021), use the

measurements acquired to additionally improve the certainty of background concentrations using a Bayesian approach. In this

work, we ignore the background and make the assumption that it is known in full detail. Extending our approach to include

background concentrations is straightforward.

As urban emissions, we are using anthropogenic emission inventories from multiple European cities. To overcome the55

sparsity constraints of SR for non-sparse emissions, we use a wavelet transformation.

We are the first to apply SR to the estimation of urban GHG emissions. The findings of our work are the following:

– Urban emissions are mostly sparse and a 3rd level wavelet transform performs well in sparsifying urban emissions further.
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– SR needs less measurements than Gaussian prior methods to achieve a similar performance if the emissions are sparse

enough.60

– SR performs well on localizing and quantifying large emitters, leading to the application of finding unknown emitters

not captured by emission inventories.

The paper is structured as following: Sec. 2 gives a formulation of inverse problems, introduces the reader to sparse recon-

struction methods, compressed sensing, and compressible emissions and provides a discription of the algorithms used in this

paper. The compressability of the anthropogenic emissions in European cities is discussed in Sec. 3. Section 4 shows selected65

scenarios of our reconstruction method, highlighting beneficial conditions and use cases of our reconstruction method, as well

as discussing measurement noise. In Sec. 5 we create case studies for different European cities in an idealized and noisy case.

2 Methodology

This section gives the problem statement of atmospheric inverse problems (Sec. 2.1), provides an introduction to the theory of

sparse reconstruction (Sec. 2.2, Sec. 2.3, and Sec. 2.4), and introduces measures (Sec. 2.5) and algorithms (Sec. 2.6) for sparse70

reconstruction.

2.1 Inverse Problems

An inverse problem is a problem in which input parameters should be determined from the observation of a process. For the

problem in this paper, those input parameters x ∈ Rn are the GHG emission fluxes for each grid cell in an emission field and

the measurements y ∈ Rm are in situ or column measurements of GHG concentrations in the atmosphere. These quantities are75

connected by an atmospheric process, referred to as forward model F , y = F (x). In practice, such a forward model can be a

linear, non-linear, or even a stochastic process. For this analysis, we limit the forward model to linear cases. Therefore, we can

write y =Ax, where A ∈ Rm×n is called the sensing matrix. A least squares estimation of the GHG emission fluxes x is given

by

x̂= argmin
x
‖Ax− y‖22 . (1)80

Often, however, such inverse problems are ill-posed, as in the cases we deal with in this paper. In such cases, no or no unique

solution exists or the solution does not depend smoothly on the data, therefore, being sensitive to noise. For ill-posed inverse

problems, the least squares estimation without regularization does not provide a useful reconstruction technique. For a more

detailed discussion of ill posed problems we refer to chapter 3 of Nakamura and Potthast (2015).

2.2 Bayesian Inversion85

A typical approach in atmospheric sciences to solve inverse problems is Bayesian inversion. In such a setup, the unknown

emissions are assumed to follow a known probability distribution. This probability distribution is referred to as a priori. Mea-

surements are used to update the a priori, which results in a new probability distribution referred to as a posteriori. From this
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posteriori distribution a parameter estimation can be made using a maximum likelihood (ML) detector on the a posteriori. Since

the ML detector acts on the a posteriori, this is commonly referred to as Maximum a posteriori (MAP) detector. Let us call the90

probability distribution of the a priori pX(x). Furthermore, probability distributions are assigned both to the observations and

the model to account for uncertainties. The measurement distribution is written as pY (y) and the distribution which maps x to

y is written as pY |X(y|x). Using Bayes’ theorem, a posteriori distribution for x under the condition of the observations y can

be derived:

pX|Y (x|y) =
pY |X(y|x)pX(x)

pY (y)
. (2)95

On this derived distribution the MAP detector can be applied. Since pY (y) is only a constant factor for some specific measure-

ments, the MAP detector can be written as

x̂= argmax
x

pY |X(y|x)pX(x), (3)

where x̂ are the estimated physical quantities. Typically the distributions are assumed to be Gaussian, where the a priori

distribution is assumed to be centered around an initial guess, xA. This allows for easier error analysis and makes the problem100

computationally feasible.

2.3 From Bayesian Inversion to Regularization

To show the relation between Bayesian inversion and regularization methods, we show how a Bayesian inversion problem,

using Gaussian priors, can be converted to a regularization problem. Assume that pY |X(y|x) is Gaussian distributed with the

covariance matrix So,105

pY |X(y|x) =
1√

(2π)mdet(So)
exp

(
−1

2

∥∥∥S−1/2o (Ax− y)
∥∥∥2
2

)
, (4)

where m are the number of measurements, and pX(x) to be a Gaussian prior of the form

pX(x) = C exp

(
−1

2

∥∥∥S−1/2A (x−xA)
∥∥∥2
2

)
, (5)

where C is a normalization constant. Applying the MAP detector from Eq. (3) gives an estimation of

x̂= argmax
x

pY |X(y|x)pX(x) (6)110

= argmin
x

[∥∥∥S−1/2o (Ax− y)
∥∥∥2
2

+
∥∥∥S−1/2A (x−xA)

∥∥∥2
2

]
. (7)

The idea of regularization methods on the other hand is to add a penalty term to the least squares problem from Eq. (1) to

prefer solutions of a certain kind,

argmin
x

[
‖C1 (Ax− y)‖22 +λR(C2x)

]
, (8)
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where R : Rn→ R is the regularization function and C1,C2 are correlation matrices. This equation is equivalent to Eq. (6)115

with λ= 1, C1 = S
−1/2
o , R=

∥∥∥S−1/2A (x−xA)
∥∥∥2
2
, and C2 = 1. For such a regularization function, the regularization scheme

is known as Tikhonov regularization or also ridge regression (Golub et al., 1999). While in Bayesian inversion it is most often

assumed that a prior value xA is known, in regularization xA is often unknown and assumed to be 0.

In this paper, we investigate sparse reconstruction (SR) methods. To achieve SR, the regularization term has to be changed

so that sparse solutions are preferred over non-sparse solutions. In statistics, such a regularization function is the Lasso regu-120

larization function, presented by Tibshirani (1996). The Lasso is given by

R(x) =
∑
j

|xj |= ‖x‖1 (9)

and is used especially when x is approximately sparse. The equivalent of the Lasso in Bayesian inversion is the assumption of a

Laplacian distributed prior. The Lasso is expected to select those elements in x which are important and meaningful, while the

irrelevant features are estimated to be zero. Su et al. (2017) showed that this is not necessarily the case, as coefficients which125

are zero in x are sometimes estimated to be important (which is referred to as false discovery). In the next section, we introduce

compressed sensing (CS), which provides sufficient conditions to prevent false discoveries in x using Lasso regularization.

2.4 Compressed Sensing

Compressed sensing (CS) is a theory which provides sufficient conditions to guarantee best possible reconstruction using the

Lasso regularizer, therefore, preventing false discoveries. The conditions of CS apply to the forward model A and are hard to130

examine. For this reason, the conditions are normally already considered in the design process. In the following, we provide

the very basics of CS needed to understand our work. For a more comprehensive introduction to CS, we refer to Boche et al.

(2015).

CS states that an s-sparse signal x ∈ Σns , where s-sparse is defined as s≥ |{j|xj 6= 0}| and Σns is the set of all s-sparse

signals which are in Rn, can be uniquely reconstructed by m measurements y ∈ Rm, defined by y =Ax, where A ∈ Rm×n, if135

certain conditions are satisfied for A. An overview of the symbols, norms, and measures used is given in Table 1. The unique

solution is found by solving the l0 minimization problem given by

x̂= argmin
x
‖x‖0 s.t. Ax= y. (P0)

Solving this minimization problem is NP-hard and not applicable to real world applications. Candès et al. (2006) showed that

for additional conditions in A, one can solve the l1 regularization problem instead, which is a convex problem:140

x̂= argmin
x
‖x‖1 s.t. Ax= y. (P1)

Then, solving Eq. (P1) leads to the same solution as Eq. (P0). A sufficient condition for recovering (P0) with (P1) is the

Restricted Isometry Property (RIP) introduced in Candès and Tao (2005). This property determines a Restricted Isometry

Constant (RIC) δs for a certain sparsity level s, which is calculated by

(1− δs)‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δs)‖x‖22 , (10)145
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where x ∈ Σns . The RIC tells how close the singular values of m× s submatrices of A are to 1. For δ2s < 1, any s-sparse

solution can be uniquely determined by solving the (P1) problem and for δ2s <
(√

2− 1
)

this is even possible if the signal

is superimposed by noise (noisy case) (Candès, 2008). In practice, calculating the RIC is NP-hard (see Tillmann and Pfetsch

(2014)) and it is not applicable to calculate this constant for a given matrix. However, the RIP might be used within a design

process, since there are known random distributions of matrices, which satisfy the RIP for large s considering sufficient large n150

and m (Baraniuk et al., 2008). Another property, which very loosely upper bounds the RIC, is the incoherence property (Wang

et al., 2015). The coherence µ of a matrix is defined by

µ= max |< ai|aj >| i 6= j, (11)

where ai and aj are distinct column vectors of Ã, where Ã is the column normalized matrix of A. The coherence bounds the

RIC by155

δ2s ≤ (2s− 1)µ. (12)

Therefore, s-sparse solutions can be uniquely recovered if µ < 1
2s−1 holds in the noiseless case or µ <

√
2−1

2s−1 in the noisy case.

In real world scenarios, coefficients are rarely sparse but often compressible. This means that the coefficients can be well

approximated by sparse coefficients. A more detailed explanation for compressible coefficients is found in Sec. 2.5. CS guar-

antees good estimates of compressible solutions if the RIP is satisfied for the noisy case. Then the reconstruction error can also160

be bounded (see Candès (2008) for the exact definitions and bounds).

2.5 Sparsifying Emissions

Sparsity is one of the key elements for SR. However, emissions are not always sparse. In order to make a non sparse emission

field sparse, a transformation into a different domain can be used. Such transformations include the Fourier transform, wavelet

transform, transformations tailored to specific data sets, e.g. by SVD truncation (see Hong et al. (2011)), or overcomplete165

dictionaries, where the representation does not have to be orthogonal and multiple representations for the same emission field

exist (see Candès et al. (2011)). In this paper, we only deal with the discrete wavelet transform (DWT) to sparsify emissions.

This transform is used for image compression (Lewis and Knowles, 1992) and was also used in Ray et al. (2014) and Ray et al.

(2015) to parameterize fossil fuel CO2 emissions for the US.

There are several ways to quantify the sparsity of an emission field. One possibility is to measure the error, using any lp170

norm, of an emission field x to its best s sparse approximation,

σs(x)p = inf
{
‖x− z‖p ,z ∈ Σns

}
. (13)

Independent of the norm used, the best approximation is given by an emission field z, which contains the same s highest values

of x and is zero otherwise. Often, it is more intuitive to give the relative sparsity srel, which is the fraction of non zero entries

as a percentage of all entries, instead of the sparsity level s. In this paper, both notations are used, e.g. σ10%(x)2 is the l2 error175

of the signal which best approximates x and maximally possesses 10 % non zero elements while σ10(x)2 is the l2 error of the
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signal approximating x with maximally 10 non zero elements. To show the distribution of values in x, a plot showing σs(x)

over all possible s can be used. An example is depicted in Fig. 1. The more hyperbolic the plot is, the more compressible the
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Figure 1. Visualization of the compressability of emission fields by plotting σs(x)1 over all s. The more hyperbolic the curve is, the more

compressible the emission field.

signal is. In order to get a measure for the compressability of the distribution, the Gini index is used, which was also proposed

as a sparsity measure for CS by Zonoobi et al. (2011). This index measures how unequal x is distributed, which is a similar180

measure as the hyperbolicity of a curve in the depicted figure. For the case of an equal distribution (yellow curve) the Gini

index becomes 0 and for a highly compressible distribution (orange curve) the Gini index gets close to 1. A Gini index of

exactly 1 is equal to a 1-sparse signal.

In this paper, a DWT is used to sparsify emissions, using Haar wavelets. Throughout the paper, we use the 3rd level wavelet

transform and refer to its matrix as W and its inverse transformation as W−1. For an introduction to wavelets, we refer to185

Graps (1995) and Mallat (1999). For the visualization of a 3rd level DWT, see Fig. 1.1 in Mallat (1999). The emission map x is

transformed into its wavelet coefficients c by Wx= c and vice versa by x=W−1c. To transform the forward model Ax= y

into the wavelet domain, we write

y =Ax=AW−1c= Āc, (14)

where Ā=AW−1 is the new forward model. The wavelet coefficients are then determined by the modified (P1) problem,190

ĉ= argmin
c
‖c‖1 s.t. Āc= y. (15)

Note that the CS conditions for Ā are not the same as for A. Once the wavelet coefficients ĉ are determined, the emissions are

estimated by x̂=W−1ĉ.
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2.6 Reconstruction Algorithms

There have been many algorithms proposed for the task of CS and SR. However, our goal in this paper is not to compare195

these algorithms, instead, we want to demonstrate the applicability of SR in general for urban GHG emission assessments. We,

therefore, only solve the initial SR problem, given in Eq. (P1). To find the minimum, we use the cvx library, a matlab package

for specifying and solving convex programs (Grant and Boyd (2014, 2008)), using the gurobi optimizer as a backend (Gurobi

Optimization, LLC, 2021).

For the noisy case, we solve a modified form of Eq. (P1), given by200

x̂= argmin
x
‖x‖1 s.t. ‖Ax− y‖22 ≤ ‖ε‖

2
2 , (P1ε)

where ε is the noise vector. This is equivalent to the Lasso with the right choice of λ. Since we generate the noise by design,

the optimization process simplifies by choosing ε without having to find the right λ value.

We compare our results to regularized least squares, which we refer to as least squares (LS) hereafter. The equation of the

LS is given by205

x̂= argmin
x
‖x‖2 s.t. Ax= y, (P2)

in the noiseless case. There, the solution is given by the pseudoinverse. In the noisy case, the equation is given by

x̂= argmin
x
‖x‖2 s.t. ‖Ax− y‖22 ≤ ‖ε‖

2
2 . (P2ε)

2.7 Data Evaluation

Table 1 gives an overview of the most important symbols and measures used in this paper. All of the measures we are using210

for evaluating the reconstruction results compare the estimations to the true emissions, which are the city emission inventories

in this paper. If the lp error is not specified, the l2 error is used. The primary measure we use for the error evaluation of our

estimates is the relative l2 error, since it provides a measure for the highest spatial resolution of the emissions (1 km × 1 km),

while the relative l2 smoothed error shows an error for a lower spatial resolution (5 km × 5 km) and eliminates errors which

are due to spatial errors. Because of the high spatial resolution of the emission fields reconstructed in this paper, relative l2215

error values greater then 1 are possible. Those are because of spatial errors, where an emission is assigned to the wrong spatial

location. The relative total error disregards these spatial errors and only evaluates the difference of the total estimated emission

to the true total emission of a city.

The mean relative error is used if the relative error of emission grid points independent of their contribution to the total

amount of emissions is of interest. This metric is useful to evaluate how well a reconstruction method estimates emitters of a220

certain kind.

8



Table 1. Table of symbols and measures used in the paper.

Expression Formulation Explanation

Norms

lp norm

(∑
i

xpi

) 1
p

lp norm for vectors x ∈ Rn.

l0 norm |{j|xj 6= 0}| Number of non zero elements in x.

Symbols

n dim(x) Number of unknown emissions in the model.

m dim(y) Number of measurements.

s ‖x‖0 Number of non zero entries in x.

relative sparsity / srel
‖x‖0

dim(x)
Number of non zero entries in x ∈ Rn, relative to the size of the

vector x.

Σn
s

{
x|‖x‖0 ≤ s,x ∈ Rn} Set of all s sparse vectors in Rn.

Sparsity measures

σs(x)p inf
{
‖x− z‖p ,z ∈ Σn

s

}
lp error of the best possible approximation of the true emissions

x by a s sparse emission field z. If s is given in a percentage,

srel instead of s is used.

Measures for evaluating reconstruction results

relative lp error
‖x− x̂‖p
‖x‖p

Relative error of how well the estimated emissions x̂ approxi-

mate the true emissions x.

relative smoothed lp error
‖x ∗�− x̂ ∗�‖p
‖x ∗�‖p

Relative error of smoothed reconstruction, smoothed by a peri-

odic convolution using a 5 km × 5 km square (�).

relative total error

∣∣∑
ixi−

∑
i x̂i
∣∣∣∣∑

ixi
∣∣ Relative error of the sum of the estimated emissions x̂ com-

pared to the true emissions x.

mean relative error
1

n

n∑
i=1

|xi− x̂i|
|xi|

Mean of the relative errors of single emission grid points.

3 The Sparsity/Compressibility of Emissions in European Cities

In the following, we determine the sparsity and compressibility of real world emissions. To do so, we study the CO2 emissions

of major European cities, such as Berlin, Hamburg, Munich, London, Paris, and Vienna using data from the TNO_GHGco_v1.1

emission inventory (van der Gon et al., 2019). This database provides annual grided anthropogenic emissions with a resolution225

of about 1 km × 1 km for the areas and species. Furthermore, the emissions are classified by a proxy, such as public power,

industry, stationary combustion, etc. Emissions of all proxies of the dataset are included for the emission data used, making the

assumption that this provides a good representation of typical emission fields for the cities investigated. We measure the sparsity

of the cities using the Gini index and σ10%(x)2 in the spatial and wavelet domain. The results are given in Table 2. For all

9



Table 2. Sparsity of the reported emission fields in different European cities. In the wavelet domain, in all of the cases a better, or at least as

good, sparse approximation of the emission map exists.

City number of emis-

sion fields n

Gini index Gini index DWT σ10%(x)2 σ10%(x)2 DWT

slightly compressible

London 2205 0.544 0.924 0.359 0.221

Paris 2655 0.673 0.937 0.217 0.150

highly compressible

Berlin 1554 0.772 0.956 0.070 0.058

Hamburg 1554 0.792 0.956 0.081 0.066

Vienna 750 0.831 0.962 0.070 0.070

Munich 528 0.712 0.956 0.077 0.048

the cities we consider, the wavelet domain of the emission fields achieves a higher Gini index compared to the spatial domain.230

Furthermore, the approximation error of srel = 10% of the signal is lower in the wavelet domain, except for Vienna, where

this error is identical for both domains. From these data, we conclude that a representation of the city emission fields in the

wavelet domain should generally be better suited for SR. We also split the cities into two groups, cities whose emission fields

are highly compressible (Berlin, Hamburg, Vienna, and Munich, Gini index > 0.7) and cities where the fields are significantly

less compressible (London and Paris, Gini index < 0.7).235

4 Evaluating Sparse Reconstruction of GHG Emissions

In the following, we define the estimation problem (Sec. 4.1) and apply SR to several European cities (Sec. 4.2).

4.1 Formulating the Estimation Problem

In the following, we assume that the influence of the background GHG concentration on the measurements is fully known.

Subtracting this influence from the measurements yields the enhancement produced by the GHG emissions in the domain of240

interest. Therefore, the background can be ignored and the model is simplified to a pure transport emission system. Let the

sensitivity of the GHG concentration measurements y to the city emissions x be given by the sensing matrix A,

y =Ax. (16)

The rows inA contain vectorized footprints, which determine the sensitivity of the measurements to the GHG fluxes of different

emission grid cells in the domain. These footprints are determined by backward transport models, such as the Stochastic Time-245

Inverted Lagrangian Transport (STILT) model (Lin et al., 2003; Gerbig et al., 2003). In this paper, a simplified linear model,
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the Gaussian plume model, is used as the transport model. This approach allows varying parameters within the transport model

without the computationally costly calculations of the STILT model. In Appendix B, we explain how the Gaussian plume

footprints are created and show two footprints, one calculated by STILT, the other by the Gaussian plume model (Fig. B1). In

our work, we use artificial wind data. These wind fields used, except in Sec. 4.2.1, possess a wind coverage of ∼ 143°. All of250

the footprints generated by those wind fields are available at https://doi.org/10.5281/zenodo.5901298 (Zanger et al., 2022a).

sensitivity to xi

Measurement yj

Sensing Matrix
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Figure 2. Visualization of a sensing matrix, where the values in the matrix are color encoded. The entryAji in the matrix gives the sensitivity

of the j th measurement to the ith grid cell.

Figure 2 visualizes the sensing matrix A, which represents the sensitivity of all measurements to each grid cell. Depending

on the footprints in A, there might be emissions in x which are not strongly sensed. The total sensitivity to a single grid cell

xi is determined by the sum of the corresponding column in the sensing matrix. If this sensitivity is below a certain threshold,∑
jAji ≤ γ, where γ = 10−9 ppm · km2 ·h ·mol−1 is the threshold, we remove the ith column from the sensing matrix and255

do not reconstruct this emission grid cell. For Fig. 2 this would be the first column of the sensing matrix, where all values are

0. This introduces some small perturbation between y and Ax, so that Ax≈ y. However, since we choose our threshold small

enough, this is not reflected in the solution but improves the conditioning of A and reduces the computational effort.

From a physical point of view, these removed emission grid cells are not situated upwind of the measurement stations and,

therefore, cannot be well reconstructed using the measurements. For the wavelet domain, we perform this step on the wavelet260

transformed sensing matrix. Therefore, wavelet coefficients which are weakly sensed and below the threshold are removed.

In our study, we use both artificially created emission fields and real emission fields (van der Gon et al., 2019). Both field

types have a spatial resolution of 1 km × 1 km. For the artificial emissions, a domain size of 32 km × 32 km is used, resulting

in n= 1024 unknown emission grids. For the emission inventory, the number of emission grids depends on the size of the city

(see Table 2). In order to compare emissions estimates of the different domains, we vary the number of measurement stations265
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Figure 3. Map of exemplary measurement locations for Munich using seven measurement stations, which represents a ratio m
n

of approxi-

mately 75 % (background: ©OpenStreetMap contributors 2020. Distributed under the Open Data Commons Open Database License (ODbL)

v1.0. (2020)).

used for each domain, so that the number of measurements per unknown emission grid (mn ) is roughly constant. During the

measurement period, each station takes 50 samples. The measurement stations were randomly distributed over a normalized

area of the emission map and scaled to the domain size of each city. An exemplary distribution of the stations for Munich is

depicted in Fig. 3, using m
n ≈ 75 %.

The measurements y are then created using the sensing matrix A and the emissions x: y =Ax. In the noisy case, we add a270

Gaussian distributed noise vector to the measurements, y =Ax+ ε, ε∼N (0,σ2
ε ). σε is chosen based on the SNR used.

4.2 Applying Sparse Reconstruction to European Cities

Reconstruction results for Munich in the noiseless case using LS, SR, and SR in the wavelet domain are depicted in Fig. 4, and

the reconstruction errors for the figure can be found in Table 3. A visual inspection indicates, SR in the wavelet domain does

resemble the real emissions best, while SR in the spatial domain is second best. Negative emitters are not visible because of275

the color scale. LS estimates a total of 171 such negative emitters with a total of 2139 µmol · (m2 · s)−1 negative emissions,

while SR estimates only 33 negative emitters with a total of 9 µmol · (m2 · s)−1 negative emissions. SR in the wavelet domain

estimates 50 negative emitters with a total of 59 µmol · (m2 · s)−1 negative emissions.

In the following, we identify properties of SR and compare them to the LS using the European city emission inventories.

The properties we identify are interconnection between SR and CS (Sec. 4.2.1), the wavelet domain to make emissions sparser280

(Sec. 4.2.2), the ability of identifying unknown emitters (Sec. 4.2.3), and the number of measurements needed (Sec. 4.2.4). We

first analyze these properties in the noiseless case (Sec. 4.2.1 to 4.2.4) and then extend those to the noisy case (Sec. 4.2.5).
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Figure 4. Visualization of the (a) emission inventory of Munich and estimated emission fields of the inventory by using (b) LS, (c) SR, and

(d) SR in the wavelet domain. The color scale is logarithmic and given in the unit of µmol · (m2 · s)−1. Negative emissions are colored dark

blue and can not be visually distinguished from low or 0 emitters. The emission inventory does not include negative emitters.
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Additionally, in Appendix A, we present an example using artificial, sparse emissions to better establish further connections

between SR and CS.

4.2.1 Influence of Wind Coverage285

We examine the effect of wind coverage on the effectiveness of the sensing matrix for SR. The term wind coverage is used to

measure the range of wind directions during the measurement period. A wind coverage of 0° corresponds to no changes in the

wind direction during the observations, while a wind coverage of 360° means that the wind blew from all directions during the

time of observation. The wind coverage is changed in an interval from 96° to 360°, with a step size of 24°, using a Gaussian
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Figure 5. Estimation errors for SR in the spatial and wavelet domain and LS reconstruction of (a) Munich’s and (b) Paris’s emissions with

footprints covering different amount of wind directions. With a higher wind coverage, the estimation result using SR improves. The LS

has no clear improvement for higher wind coverages, but its performance decreases with high coverages for Munich, while for Paris the

performance first increases until about a coverage of 150° before decreasing again.

plume model. As emission field we use the CO2 city emission inventories of Munich and Paris from Sec. 3. Figure 5 depicts290

the relative errors of the SR in the spatial and wavelet domain and LS estimates of (a) Munich’s and (b) Paris’s emission fields.

Errors of the estimates for both SR in the spatial and wavelet domain decrease with an increasing wind coverage for Munich

and Paris. In contrast, the LS estimates reveal no clear improvement for higher wind coverages, but its relative error increases

with high coverages for Munich, while for Paris the error initially decreases, until about a coverage of 150°, before increasing

again. A sensitivity analysis, given in Appendix F, reveals that error variations given by the different wind coverages are due295

to the shift of sensitivity to different parts of the domain, while the sum of the sensitivities do not change.

This major improvement of SR for higher wind coverage can be explained using the incoherence property from CS. The

coherence parameter, given in Eq. (11), calculates the maximum similarity of how two emission grid cells are measured.

For the spatial domain, by increasing the wind coverage, there is greater variety in the measurements and thus between the
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measurements of two different grid cells. In the wavelet domain, we determined the coherences at different wind coverages300

and found a similar behavior. Even though for both domains the coherence for a wind coverage of 360° is too high to offer

reconstruction guarantees, our example shows that including CS parameters in the design process can improve reconstruction

results.

4.2.2 Sparse Reconstruction in the Wavelet Domain

In the following, we compare reconstruction results of SR in the wavelet and spatial domains. Accordingly, s sparse city305

emission fields are used to compare these domains. More precisely, the s highest emitters of the CO2 inventory of London are

used to generate an s sparse emission field. This allows us to determine at which trade-off in sparsity the wavelet domain can

achieve better results compared to the spatial domain. We chose the inventory of London, since it has the emission field with

the lowest compressibility (see table 2).
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Figure 6. Comparison of the LS (yellow) and SR in the spatial (blue) and wavelet (red) domains in terms of relative sparsity srel. An

emission map artificially generated from London’s emission inventory with a total of 2205 unknown emitters was used. The x-axis represents

the portion of these emitters that were used (the emitters are sorted from large to small). In (a) 22 measurement stations with a total of 1100

measurements and (b) 33 measurement stations with a total of 1650 measurements are used.

Figure 6 shows the relative reconstruction error in the spatial and 3rd level wavelet domain for different sparsity levels using310
m
n ≈ 50 % and m

n ≈ 75 %. As expected, SR in the spatial domain performs better for sparse emission maps (low s). For less

sparse emission maps (higher s), however, the wavelet domain is superior.

With fewer measurements, the error in the wavelet domain already plateaus for srel ≈ 15 %, while for m
n ≈ 75 % the error

plateaus at srel ≈ 40 %. The results also indicate that for the entire emission map of London (srel = 1), the performance of SR in

the wavelet domain does not increase significantly when the measurements are changed from m
n ≈ 50 % to m

n ≈ 75 %, while the315

performance in the spatial domain benefits considerably. This improved performance is caused by the higher compressability
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of the emission map in the wavelet domain, where the highest wavelet coefficients already provide a good representation of

the entire emission map, while the spatial domain needs more coefficients for a representation with the same relative error.

Therefore, the wavelet domain requires fewer measurements compared to the spatial domain, to achieve the same performance

for cities with emission fields that have a low compressibility (for similar results see section 4.3.3).320

Our result demonstrates that the wavelet domain can help to improve SR in those instances for which the spatial domain

is not well suited. However, changing the domain also alters the conditions of CS; therefore, conclusions made for CS in the

spatial domain can not be directly transferred to the wavelet domain. For example, while a higher wind coverage is beneficial

for the spatial domain, such might not be the case for the wavelet domain.

4.2.3 Discovering Unknown Emitters325
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Figure 7. Qualitative and quantitative measure of how well SR and LS estimate the highest emissions for (a) Munich and (b) Paris.
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In the following, we evaluate how well SR can identify unknown emitters. Assuming a good prior estimation of the emission

field, where the relative error for the real emissions for each emitter is approximately constant and small, unknown emitters can

be assumed to make a huge contribution to the difference between the prior expected measurements and real measurements.

Therefore, we evaluate how well the highest emitters are reconstructed to assess the performance of finding unknown emitters.

To do this, we consider the emission inventory data for Munich and Paris. While Munich’s emissions inventory is highly330

compressible, the emission inventory of Paris is not. For the setup, seven measurement stations are used in Munich and 39 in

Paris. This results in m
n ≈ 75 % for both cities, making the estimation results comparable.

We employ a qualitative and a quantitative measure, both of which are depicted in Fig. 7. The x-axes show bins of emission

grids ranked by their emission strength. For example, the first bin (0 - 0.4%) contains the first 0.4% highest emission grids,

while the last bin in the lower panels of Fig. 7 contains emission grids which are among the 36.2−53.2% highest emission grids.335

Since the emissions have a high compressibility (the first highest emissions make a huge contribution to the total emissions),

we use a logarithmic scale for the bins.

The qualitative measure (see upper panels in Fig. 7) compares the fraction of the highest emitters in the inventory matching

with those of the estimation (the higher ratio, the better). In Munich, all three methods reconstruct the same largest 0.4 %

emitters. For Paris, SR in the spatial domain performs best followed by the LS in case of the largest 0.4 % emitters. For lower340

emitters, SR in the wavelet domain performs best for both cities. While the performance gain of SR and SR DWT over the LS

method is quite large in Munich, which has a highly compressible emission inventory, the gain is smaller in Paris, which has a

slightly compressible inventory.

The quantitative measure (see lower panels in Fig. 7) compares the relative error in the reconstructed emissions (the lower,

the better).345

For the largest 0.4 % emitters, SR in the spatial domain performs best and can reconstruct these emissions with an error less

than 0.7 % in Munich and 3 % in Paris. When analyzing slightly lower emissions, SR in the spatial domain performance drops

significantly and the wavelet domain performs best in both cities.

The results indicate that SR in the spatial domain works particularly well for the highest emitters (largest 0.4 % in our

examples), while SR in the wavelet domain performs well for a broader range of high emitters. The LS performance is much350

less sensitive to the emission strength of individual strong emitters, which is not beneficial for estimating large unknown

emitters.

These results for the same scenario but with fewer measurement stations (mn ≈ 50 %) can be found in Appendix D.

4.2.4 Number of Measurements needed

Previous scenarios have presented comparisons between SR and LS using m
n ≈ 50 % or mn ≈ 75 %. However, the question of355

how many measurements m are needed to produce results of a certain accuracy remains unanswered. To determine this, we

vary the number of measurements per station, which leads to a variation of mn .

Figure 8 depicts the relative estimation error for Munich and Paris for varying m
n . In Munich, where the emissions are highly

compressible, the reconstruction error for SR in the spatial domain already drops sharply for m
n & 10 %. SR in the wavelet
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Figure 8. relative error for SR, SR with DWT, and LS at different degrees of undersampling, for (a) Munich and (b) Paris.

domain needs more measurements but performs similar to the spatial domain using m
n & 23 % and performs even slightly360

better than the spatial domain for m
n > 50 %. The LS also sees a steep improvement with m

n ≈ 30 %, but does not produce

results as good as SR.

For Paris, where the emissions have a low compressibility, SR in the spatial domain performs worst for mn < 20 % while the

wavelet domain performs about the same as the LS for this number of measurements. For a higher number of measurements

(mn > 0.2), both SR methods show increased performance and both perform better than the LS. Overall, SR in the wavelet365

domain performs best.

These trends are also confirmed for the emissions of other cities (see supplement). These results demonstrate that when using

SR instead of the LS, a higher undersampling with fewer errors is possible, especially for highly compressible emissions (as in

Munich).

4.2.5 Measurement Noise370

To make the results applicable to real world scenarios, noise has also to be taken into consideration. There are different types of

noise, including measurement noise, transport error, and representation error. In the following, we assume measurement errors

with an SNR typical for column measurements. Chen et al. (2016) reports measurement errors for column measurements for

an average time of 10 minutes for CO2 as 0.04 to 0.05 ppm and for CH4 as 0.2 ppb. Jones et al. (2021) shows that CH4

concentration enhancements measured for the city of Indianapolis are in the order of several ppb. Below, we assume an SNR375

of 20 dB which corresponds to enhancements of 2 ppb for methane or 0.4 to 0.5 ppm for CO2. As emission fields, we use the

inventory data for Munich. Compared to the noiseless case, we increase the number of measurement stations to m
n ≈ 1.5, which

are 15 measurement stations with a total of 750 measurements. Figure 9 depicts how the relative l2 error changes for different

SNRs in the Munich simulation. The figure shows that the results we obtain for an SNR of 20 dB should not differ significantly
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Figure 9. Reconstruction errors of SR in the spatial and wavelet domain as well as LS for Munich when varying the SNR and m
n
≈ 1.5.

for slightly lower or higher SNRs, between 15 dB and 25 dB. Therefore, we believe that despite our noise assumptions which380

are optimistic compared to real world scenarios, our results are qualitatively valid. We provide a variance map for SR with an

SNR of 20 dB in Appendix E. Here, we show the relative error of the estimated emission fields for the noisy case at different
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Figure 10. Reconstruction errors uses SR in the spatial and wavelet domain as well as the LS for Munich with an SNR of 20 dB where (a)

shows the average relative error for the reconstruction on 250 different noise vectors at different levels of resolutions using m/n≈ 1.5 and

(b) the relative error for the highest resolution (1 km × 1 km) when varying the number of measurements.

spatial resolutions of the emissions, both for SR in the spatial domain and wavelet domain and for the LS (see Fig. 10, left). For

this case we have run the reconstruction on 250 different noise vectors and show the mean estimation result. Furthermore, we

assess the undersampling capability in the noisy case (see Fig. 10, right). For SR in the spatial domain, the relative error is only385

slightly higher for high resolutions and remains fairly constant across other spatial resolutions, suggesting that almost all errors
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occur in the reconstruction of emission strength rather than in the localization of emitters. Both SR in the wavelet domain and

the LS have a high relative error for high resolutions (below 7 km × 7 km), while at lower resolutions both perform better than

SR in the spatial domain, indicating that most of the error is due to incorrect localization of emitters.

As a result, they do not provide accurate localization of the emitters. To overcome this, more measurements are needed for SR390

in the wavelet domain and LS. To determine the number of measurements required, we show the relative errors for the highest

resolution (1 km × 1 km) when varying the number of measurements in Fig. 10 (b). For SR in the spatial domain, the relative

error drops significantly for m
n < 50 % and performs better than the other reconstruction methods for more measurements.

The wavelet domain performs similar to the LS for m
n < 1 and better for m

n > 1. These results indicate that SR in the spatial

domain, for Munich, is more robust against noise, while the wavelet domain is not as robust (many more measurements are395

needed than in the noiseless case for similar results).
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Figure 11. Qualitative and quantitative measure of how well SR and LS estimate the highest emissions with noise of 20 dB for Munich.

The qualitative plot shows how many percents of the highest emissions in the inventory are also contained in the same highest amount of

emission of the reconstruction. The quantitative plot shows the mean relative errors for different emission strengths.

Next, we analyze the performance of finding unknown emitters in the noisy case. For this purpose, we use the same setup as

in Sec. 4.2.3 but solely look at the emissions in Munich. We again use m
n ≈ 1.5 and add the noise with an SNR of 20 dB. We

employ a qualitative and a quantitative measure, both of which are depicted in Fig. 11 (for the description of the measures, see

Sec. 4.2.3). SR is the only method to identify the 0.4 % highest emitters (qualitative measure) and estimates their emissions400

with a significantly lower relative error of 2 % (quantitative measure). Slightly smaller emitters are better estimated by the SR

in the wavelet domain. For even lower emitters, there is no clear winner of which method estimates them best. Compared to the

noiseless case, the estimation errors are in general larger and SR in the wavelet domain does not achieve as promising results

as in the noiseless case. SR in the spatial domain remains sensitive to the largest emitters in the noisy case. These results for

Paris are found in the supplement.405
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5 Broader Comparison of Sparse Reconstruction for European Cities

In the following, case studies on emission fields of all cities considered in Sec. 3 are introduced to more broadly compare the

performance of SR. The measurement configuration corresponds to the specifications in Sec. 4.1. The emissions are recon-

structed using SR in the spatial and wavelet domains as well as the LS, first with m
n ≈ 75 % in the noiseless case and then

with m
n ≈ 1.5 in the noisy case. To compare the performance, we measure relative errors, relative smoothed errors (for a spatial

Table 3. Reconstruction performances for SR in the spatial and wavelet domain as well as for LS by measuring the relative error (1 km ×
1 km), relative smoothed error (5 km × 5 km), and the relative total error for different European cities. The best approach for each city and

type of error is highlighted in gray.

Case study relative total error relative smoothed error (5 km × 5 km) relative error (1 km × 1 km)

SR SR DWT LS SR SR DWT LS SR SR DWT LS

slightly compressible

London 0.0 % 0.9 % 0.0 % 4.5 % 4.3 % 4.2 % 32.2 % 27.8 % 31.5 %

Paris 0.0 % 1.4 % 0.0 % 4.4 % 6.4 % 6.7 % 27.4 % 29.4 % 43.2 %

highly compressible

Berlin 0.0 % 0.7 % 0.2 % 2.2 % 2.7 % 18.5 % 8.1 % 8.1 % 59.0 %

Hamburg 0.0 % 1.0 % 0.4 % 1.9 % 2.3 % 15.0 % 8.2 % 8.8 % 62.2 %

Munich 3.1 % 1.3 % 4.3 % 3.5 % 2.4 % 10.9 % 6.1 % 3.9 % 26.2 %

Vienna 2.2 % 1.5 % 1.3 % 4.9 % 3.2 % 13.0 % 6.9 % 6.2 % 48.8 %

410

resolution of 5 km× 5 km), and relative total errors. The results for the noiseless case are in Table 3. At the highest spatial res-

olution (1 km × 1 km, right column in Table 3), SR performs much better than LS for the highly compressible emission fields

in both domains. For the cities with emission fields that are slightly compressible, the SR performance is significantly worse

than the other cities but still slightly better than LS. For a lower spatial resolution of 5 km × 5 km (middle column in Table 3),

the error of all methods decreases. Among the highly compressible emissions, SR still performs significantly better than LS.415

Both for London and Paris (slightly compressible), all methods produce a similar error, with the LS giving the smallest error

in London and SR in the spatial domain giving the smallest error in Paris. For the total emissions, all reconstruction methods

perform similarly.

These results support our previous findings that SR performs well at high resolutions for cities with highly compressible

emissions.420

Next, we consider the noisy case with an SNR of 20.0 dB and m
n ≈ 1.5 (see the results in Table 4). For the cities that

are slightly compressible, SR in the spatial domain performs the worst, while SR in the wavelet domain and the LS perform

similarly.

For the highly compressible cities, SR in the spatial domain produces the best results for the 1 km × 1 km and 5 km × 5

km resolution and is worse than the other reconstruction methods for the total emissions (except for Vienna). Furthermore, SR425
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Table 4. Reconstruction performances for SR in the spatial and wavelet domain as well as for LS by using m
n
≈ 1.5 with an SNR of 20.0 dB

for different European cities. The results are evaluated using the relative error (1 km × 1 km), relative smoothed error (5 km × 5 km), and

the relative total error. The best approach for each city and type of error is highlighted in gray.

Case Study relative total error relative smoothed error (5 km × 5 km) relative error (1 km × 1 km)

SR SR DWT LS SR SR DWT LS SR SR DWT LS

slightly compressible

London 12.5 % 1.6 % 2.2 % 38.4 % 19.9 % 19.9 % 162.3 % 81.7 % 81.6 %

Paris 11.8 % 2.2 % 1.9 % 32.5 % 24.0 % 24.4 % 144.4 % 83.9 % 83.1 %

highly compressible

Berlin 10.6 % 0.1 % 1.3 % 18.0 % 29.0 % 32.6 % 36.5 % 85.3 % 85.8 %

Hamburg 10.1 % 1.2 % 1.5 % 20.7 % 32.7 % 34.1 % 70.3 % 88.2 % 87.0 %

Munich 19.3 % 2.6 % 5.6 % 16.9 % 23.6 % 32.8 % 21.4 % 70.8 % 84.2 %

Vienna 11.2 % 21.6 % 6.3 % 20.2 % 61.5 % 41.4 % 38.9 % 96.7 % 92.3 %

in the wavelet domain performs better than the LS. In contrast to the noiseless case, SR in the wavelet domain performs worse

than SR in the spatial domain for high resolutions (. 5 km × 5 km). Both results support our findings from Sec. 4.2.5, that SR

in the spatial domain accurately localizes emissions and that SR in the wavelet domain is not as robust to noise as the spatial

domain for high resolutions.

6 Conclusions430

In this paper, we introduced sparse reconstruction (SR) as a novel method for the inversion of urban GHG emissions, and

further provided key examples to identify the advantages of SR to inversely model emissions.

SR can be easily integrated into existing top-down frameworks for estimating emission. We examined the applicability of

this method by evaluating the sparseness of emissions from several European cities. Our results indicate that the emissions

from most of these cities are sparse and that SR is applicable. We also showed that a wavelet transform increases the sparsity435

of urban emissions, making SR applicable to cities with less sparse emissions. SR is known to have reconstruction guarantees

if conditions of compressed sensing (CS) are satisfied. We tested different CS conditions for various wind fields and showed

that wind fields with better CS conditions do significantly increase the performance of SR.

Compared to state-of-the-art inversion methods using Gaussian priors, our method requires fewer measurements and pro-

vides better localization and quantification of unknown emitters.440

SR works best if the underlying representation of the emissions is sparse. In this paper, we employed the wavelet transform to

increase the sparsity; however, other transformations, such as a curvelet transform or more general dictionary representations,

might be even more suited for specific spatial domains. Finding such transformations which also work well with CS conditions

is challenging, and future studies should be devoted to them.
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Code and data availability. The code for this paper (Zanger et al., 2022b) is written in Matlab 2021a and available on GitHub: https://445

github.com/tum-esm/recovery_of_sparse_urban_greeenhouse_gas_emissions (last access: 25 January 2022). The Gaussian plume footprints

are available at https://doi.org/10.5281/zenodo.5901298 (Zanger et al., 2022a). The TNO_GHGco_v1.1 emission inventory (van der Gon

et al., 2019) is not publicly available. The latitude and longitude boundaries used to generate the city emission fields from the inventory is

given in Appendix A.
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Appendix A: Boundaries of the emission inventories

Table A1. Longitude and latitude boundaries used to create the CO2 emission inventories for the European cities from the TNO_GHGco_v1.1

emission inventory.

City Southernmost latitude Northernmost latitude Westernmost longitude Easternmost longitude

slightly compressible

London 51.30° 51.70° -0.52° 0.21°

Paris 48.62° 49.10° 1.94° 2.66°

highly compressible

Berlin 52.34° 52.68° 13.07° 13.66°

Hamburg 53.37° 53.71° 9.67° 10.27°

Vienna 48.07° 48.31° 16.12° 16.52°

Munich 48.06° 48.25° 11.36° 11.72°

Table A1 shows the longitude and latitude boundaries used to create the CO2 emission fields for the European cities from455

the TNO_GHGco_v1.1 emission inventory.

Appendix B: Wind fields and Generation of the Sensing Matrix

The sensing matrices we use consist of vectorized footprints generated by the Gaussian plume model with artificial wind data.

The Gaussian plume model provides a good enough approximation for Lagrangian particle dispersion models for the purpose

of this paper. The footprints are generated for a high resolution grid using a dynamic Gaussian plume with varying wind speed,460

direction and diffusion. The footprints are then scaled to the domain size of the city. Because of the scaling, the wind speed and
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diffusion changes for each city. Nevertheless, we think that this approach makes the reconstruction performances for different

cities more comparable than using different footprints for every city.

For Sec. 4.2.1, we use a static Gaussian plume model to generate footprints for different wind coverages. This allows us to

ignore additional effects from the dynamical case, for example, in the dynamic case the change in the wind direction produces465

spiral looking footprints. These footprints have a different shape compared to the footprints generated using a static Gaussian

plume model . By using a static model, the footprints are more predictable and systematic, which makes the results of different

wind coverages more comparable to each other.

(a) STILT (b) Gaussian Plume

Figure B1. Comparison of a STILT footprint to a Gaussian plume footprint, where different wind fields have been used.

Fig. B1 shows a comparison between a STILT footprint for Munich and a Gaussian Plume footprint used in our work, where

the two footprints are generated using different wind fields.470

Appendix C: Recovery of Sparse Emissions

Consider s emitters producing an s sparse emission field in a city. We distribute these emitters over the city using a Gaussian

distribution, such that the probability for an emitter in the center of the city is higher compared to outside of the city. Further-

more, we use a Gaussian distribution to model the emission strength of each emitter with a mean value of 10 µmol · (m2 · s)−1

and a standard deviation of 1 µmol · (m2 · s)−1, so that all emitters have roughly a similar contribution to the total emissions. In475

Fig. C1, the reconstruction errors for the spatial domain using SR and LS are depicted. SR allows exact recovery for srel . 13 %

non zero emissions using m
n ≈ 50 % and srel > 35 % non zero emissions using m

n ≈ 75 %. In contrast, the relative error of LS

is generally much higher, but decreases with a larger number of measurements.

These results demonstrate the power of SR for sparse emission fields and illustrate the link between SR and CS. As shown in

Sec. 2.4, the sensing matrix A must satisfy some sufficient conditions to ensure that CS yields the best possible reconstruction.480

However, in real-world scenarios, it is challenging to verify these conditions. By using a Monte-Carlo algorithm, we found
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Figure C1. Reconstruction errors for sparse cities with (a) 50 % and (b) 75 % measurements m per emission fields n. Using SR (blue line),

it is possible to reconstruct sparse emissions. By increasing the number of measurement stations, and therefore observations, more emitters

can be reconstructed using SR (left: up to 13 %; right: up to 35 % non-zero emission cells). For the LS method (red line), the relative error

decreases both for less sparse signals and with a larger number of observations.

counterexamples that showed δ2s > 1 for already small s (both for Gaussian Plume footprints and STILT footprints). Thus, the

sensing matrix we use here does not guarantee CS for all cases. Nevertheless, A can be useful if it satisfies the CS conditions

for some specific emission distributions of interest.

Next, we consider the case with m
n ≈ 75 % and chose a number of emitters s, such that the relative error produced by SR and485

the LS is similar. Therefore, both methods produce the same relative error, which allows us to compare the spatial distribution

of the error on an equal basis. This is the case for srel = 46.9 %, where the relative error for SR is 28.1 % while the relative

error for LS is 27.3 %. We focus on the following questions:

– which emitters are found correctly (discovered)?

– which emitters are not found (undiscovered)?490

– which emitters are discovered, even though there is no emitter there (false discovered)?

Figure C2 depicts the discovered, not discovered, and falsely discovered emitters for SR (left) and LS (right). SR reconstructs

most emitters correctly, only 1.1 % of the emitters are undiscovered (yellow) and 8.0 % are falsely discovered (dark blue). In

contrast, the LS has no emitters which have not been found, but 45.6 % falsely discovered emitters. This is because the LS

prefers smooth estimates, which is equivalent to estimating emitters everywhere. This is also seen by the fraction between the495

emissions estimated for falsely discovered emitters and the total estimated emissions. While this fractions is only 3.0 % for

SR, for LS this fraction is 12.2 %.
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Figure C2. Visualization of false discovered (dark blue), undiscovered (yellow), and discovered (cyan) emissions in x by (a) SR and (b) LS.

These results demonstrates the advantage of SR for the localization of emitters. This property is especially useful to find

unknown emitters, since the spatial certainty of emitters for SR is much higher.

Appendix D: Discovering unknown emitters using less measurements500

In Sec. 4.2.3 we showed that SR is better in finding high emitters compared to LS and can reconstruct those with smaller errors.

This is visualized by the Fig. 7 which has been creates using m
n ≈ 75 %. In the following, we resemble this result using only

m
n ≈ 50 %.
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Figure D1. Qualitative and quantitative measure of how well SR and LS estimate the highest emitters for Munich (a) and Paris (b) using
m
n
≈ 50 %.

The results are depicted in Fig. D1. Compared to the case with more measurements, for Munich, SR in the spatial domain

performs better in the qualitative measure compared to the wavelet domain. Furthermore, for Paris, the margin between the505

performance of SR in the wavelet domain and the other methods has increased.

Appendix E: Uncertainty Quantification

Uncertainty quantification for sparse reconstruction is distinct different compared to uncertainty quantification for LS recon-

struction. First, while for the LS fit with Gaussian noise a closed form solution exists, there doesn’t exist any closed form

solution for sparse reconstruction.510

In the following we use the uncertainty quantification approach from Hase et al. (2017) in order to derive a variance plot

of the reconstruction result by applying bootstrapping. This gives us the covariance matrices for SR in the spatial and wavelet
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domain. We only use the variances of the matrix and plot the standard deviations for every single reconstructed emission, which

is depicted in Fig. E1. For the spatial domain, the standard deviation is localized around certain areas in the map, while for the

wavelet domain, the standard deviation covers much larger areas of the map. This let one believe that a reconstructed emission515

in the spatial domain has a higher certainty of location compared to SR in the wavelet domain. This assumption is verified by
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(b) Wavelet domain

Figure E1. Uncertainty of the emission estimates for Munich with m
n
≈ 1.5 and an SNR of 20 dB for SR in the (a) spatial domain and (b)

wavelet domain.

Appendix F: Least Square sensitivity for different wind coverages

In the following, we are showing that the changes of relative error for LS in sec. 4.2.1 are due to the fact that the sensitivity

to different areas of the map changes, while the total sensitivity does not change. Figure F1 depicts the sensitivity map of520

Munich for a wind coverage of (a) 72° and (b) 360°. For 72°, the south-east is well sensitive to the estimation, while other

parts, especially the west of the city, are weakly sensitive. For 360°, there is no area in the city which is not sensitive to the

estimation. However, some areas are less sensitive than in the 72° case, especially the south-east. If we compare this sensitivity

map to the emission map of Munich in Fig. 4, we see that the strongest emitter is positioned in the south-east. This explains

why for the case of 72°, the relative error of the LS is lower than for the 360° case. If we look at the mean sensitivity of an525

emission grid cell for both cases, we find that those are exactly the same, 0.6629, and a change in wind coverage does not

improve the total sensitivity.
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Sensitivity analysis Munich - 72.0°
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Figure F1. Sensitivity map of LS in Munich for a wind coverage of (a) 72° and (b) 360°. In (a), the south-east is well sensitive to the

estimation, while the west and north of the city is only weakly sensitive. In (b), there is no area which is not sensitive to the estimation, but

the areas in the south-east are less sensitive.
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